JP2678263B2 - High-strength and high-corrosion-resistant martensitic stainless steel manufacturing method and its application - Google Patents

High-strength and high-corrosion-resistant martensitic stainless steel manufacturing method and its application

Info

Publication number
JP2678263B2
JP2678263B2 JP2326324A JP32632490A JP2678263B2 JP 2678263 B2 JP2678263 B2 JP 2678263B2 JP 2326324 A JP2326324 A JP 2326324A JP 32632490 A JP32632490 A JP 32632490A JP 2678263 B2 JP2678263 B2 JP 2678263B2
Authority
JP
Japan
Prior art keywords
strength
corrosion
stainless steel
martensitic stainless
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2326324A
Other languages
Japanese (ja)
Other versions
JPH04193933A (en
Inventor
晃二 佐藤
賢一 宇佐美
寛 福井
博 ▲高▼安
文則 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2326324A priority Critical patent/JP2678263B2/en
Publication of JPH04193933A publication Critical patent/JPH04193933A/en
Application granted granted Critical
Publication of JP2678263B2 publication Critical patent/JP2678263B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水力発電用水車ランナ及びガイドベーンな
ど大型の鋳鋼品に係り、強度と靭性に優れ、かつ水中疲
労強度の高い高強度高耐食性マルテンサイト系ステンレ
ス鋼とその製造方法及び用途に関する。
The present invention relates to a large cast steel product such as a hydro turbine runner and a guide vane for hydroelectric power generation, and has excellent strength and toughness and high strength and corrosion resistance in water. TECHNICAL FIELD The present invention relates to martensitic stainless steel, a method for producing the same, and uses thereof.

〔従来の技術〕[Conventional technology]

船舶用プロペラあるいは水力発電用水車ランナなど大
型で高い繰返し荷重を受ける部材は、耐食性の他、強
度、特に腐食疲労強度と靭性が要求されるため、耐食性
が優れていると同時に強度及び靭性に優れた種々の材料
が開発されてきた。
Large-sized members such as propellers for ships or turbine runners for hydroelectric power generation that are subjected to high cyclic load require not only corrosion resistance but also strength, especially corrosion fatigue strength and toughness. Various materials have been developed.

例えば特公昭51−29086号公報にはC;0.07%以下、N2;
0.05%以下、Si;0.1〜2%、Mn;0.1〜4%、Cr;10〜15
%、Ni;2〜7%、Mo;0.1〜3%、更にTi,Ta,Nbの1種以
上を合計0.01〜1%含み、残部Fe及び不純物からなり、
マルテンサイトとオーステナイトを主とする組織で、残
留オーステナイト量が10〜45%、δフェライト量が20%
以下である高い腐食疲労強度を有するプロペラ用大型ス
テンレス鋳鋼が開示されている。また、特公昭60−5373
7号公報にはC;0.01〜0.15%、Si;0.1〜1%、Mn;0.1〜
2%、Cr;10〜15%、Ni;2〜7%、Mo;0.1〜3%、V;0.0
5〜0.5%さらにNb,Zr及びHfの1種以上を0.005〜0.5%
含むことができ、主としてマルテンサイトと残留オース
テナイトとの混合組織を有し、かつ残留オーステナイト
量が10〜40%、δフェライト量が10%以下である水車ラ
ンナ用ステンレス鋳鋼が開示されている。更に他の従来
例として特開昭58−87257号公報が挙げられる。この公
報に開示されている鋳鋼はCrが20.0〜30.0%と多く含ま
れているのが特徴である。
For example, Japanese Patent Publication No. 51-29086 discloses C: 0.07% or less, N 2 ;
0.05% or less, Si; 0.1 to 2%, Mn; 0.1 to 4%, Cr; 10 to 15
%, Ni; 2 to 7%, Mo; 0.1 to 3%, and 0.01 to 1% in total of at least one of Ti, Ta and Nb, and the balance Fe and impurities,
A structure mainly composed of martensite and austenite, the amount of retained austenite is 10 to 45%, and the amount of δ ferrite is 20%.
The following large-sized stainless cast steel for propellers having high corrosion fatigue strength is disclosed. In addition, Japanese Examined Japanese Patent Sho 60-5373
No. 7 discloses C; 0.01 to 0.15%, Si; 0.1 to 1%, Mn; 0.1 to
2%, Cr; 10-15%, Ni; 2-7%, Mo; 0.1-3%, V; 0.0
5 to 0.5% and 0.005 to 0.5% of one or more of Nb, Zr and Hf
Disclosed is a stainless cast steel for water turbine runners, which can be included, has a mixed structure of martensite and retained austenite, and has a retained austenite amount of 10 to 40% and a δ ferrite amount of 10% or less. Still another conventional example is JP-A-58-87257. The cast steel disclosed in this publication is characterized in that Cr is contained in a large amount of 20.0 to 30.0%.

ところで、近年電力需要の増大に伴ない、大型火力及
び原子力発電設備の建設と平行して水力発電において
は、夜間の予剰電力を利用して揚水し、ピーク時の電力
供給源としての揚水発電設備の建設が進められている。
そして、その経済性を高めるために年々高揚程、高速化
すると共に大容量化する傾向にあり、強度、特に水中疲
労強度と靭性に優れた水車用部材の開発が望まれてい
る。
By the way, with the recent increase in power demand, in parallel with the construction of large-scale thermal power and nuclear power generation facilities, in hydroelectric power generation, nighttime reserve power is used to pump water and pumped power generation as a power source at peak hours. Construction of equipment is underway.
Further, in order to increase the economical efficiency, there is a tendency that the height and speed are increased and the capacity is increased year by year, and development of a member for a water turbine excellent in strength, particularly in water fatigue strength and toughness is desired.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記特公昭51−29086号公報のプロペラ用ステンレス
鋳鋼は、主として海水腐食疲労強度の改善を目的として
開発された材料で、大型鋳塊を模擬した熱処理条件では
冷却速度が小さくひずみ取り焼純を行なっても靭性が低
いので高揚程水車ランナ用部材には適さない。また、特
公昭60−53737号公報の水車ランナ用ステンレス鋳鋼
は、良好な強度と靭性が得られているが、疲労強度の詳
細が記載されておらず、強度から腐食環境下での水中疲
労強度を判断することは困難である。更に特開昭58−87
257号公報の鋳鋼はCrの含有量多いため、マルテンサイ
ト系にはならない。
The stainless cast steel for propellers of Japanese Patent Publication No. 51-29086 mentioned above is a material developed mainly for the purpose of improving seawater corrosion fatigue strength. However, its low toughness makes it unsuitable for high-lift turbine runner members. Further, the cast stainless steel for water turbine runners of Japanese Patent Publication No. 60-53737 has obtained good strength and toughness, but details of fatigue strength are not described, and from strength to underwater fatigue strength under corrosive environment. Is difficult to judge. Furthermore, JP-A-58-87
The cast steel disclosed in Japanese Patent No. 257 does not become a martensitic system because it contains a large amount of Cr.

本発明の目的は、上記ステンレス鋳鋼と同等の強度を
有し、さらに水中疲労強度と靭性に優れた高強度高耐食
性マルテンサイト系ステンレス鋼の製造方法及び用途を
提供することにある。
An object of the present invention is to provide a method for producing a high-strength and high-corrosion-resistant martensitic stainless steel which has strength equivalent to that of the above-mentioned stainless cast steel and is also excellent in underwater fatigue strength and toughness, and uses thereof.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するため、本発明に係る部材は12〜17
%のCr及び3〜7%のNiを含むマルテンサイト系ステン
レス鋳鋼において、CoがMo及びVの溶解度を増加させ、
また、Coは変態点に及ぼす影響が小さく熱処理によって
強度を損なうことなく水中疲労強度と靭性を改善する上
で好適であり、さらに焼入性を増すための補助作用とし
てBが有益な成分であることを見い出して完成されたも
のである。
In order to achieve the above object, the member according to the present invention is 12 to 17
% Mar and 3 to 7% Ni in martensitic stainless cast steel, Co increases the solubility of Mo and V,
Further, Co has a small influence on the transformation point and is suitable for improving the underwater fatigue strength and toughness without deteriorating the strength by heat treatment, and B is a useful component as an auxiliary action for increasing hardenability. It was completed by finding out things.

すなわち、本発明は、重量で、C;0.01〜0.10%,Si;0.
1〜1.5%,Mn;0.1〜2.0%,Cr;12〜17%,Ni;3〜7%,Co;
0.1〜3%,Mo;0.1〜2.0%,V;0.05〜0.5%を含有し、主
としてマルテンサイトと残留オーステナイトから成る混
合組織を有し、かつ残留オーステナイト量が容積比で35
%以下、δフェライト量が面積比で15%以下からなる高
強度高耐食性マルテンサイト系ステンレス鋼において、
残部がFe及び不可避的不純物からなる組成物をAc3点以
上の温度で焼入れする工程と、その工程に次いでAc1とA
c3との間の温度で少なくとも一回中間焼入れする工程
と、その工程に次いでAc1以下の温度で焼もどしする工
程とを含むことを特徴とする高強度高耐食性マルテンサ
イト系ステンレス鋼の製造方法である。
That is, the present invention, by weight, C; 0.01 to 0.10%, Si;
1-1.5%, Mn; 0.1-2.0%, Cr; 12-17%, Ni; 3-7%, Co;
0.1 to 3%, Mo; 0.1 to 2.0%, V; 0.05 to 0.5% is contained, and it has a mixed structure consisting mainly of martensite and retained austenite, and the amount of retained austenite is 35% by volume.
%, Δ ferrite content is 15% or less in area ratio, in high strength and high corrosion resistance martensitic stainless steel,
A step of quenching a composition having the balance of Fe and unavoidable impurities at a temperature of Ac 3 point or higher, followed by Ac 1 and A
Production of high-strength and high-corrosion-resistant martensitic stainless steel, characterized by including a step of intermediate quenching at a temperature between c 3 and at least once, and then a step of tempering at a temperature of Ac 1 or lower. Is the way.

また、本発明は、重量で、C;0.01〜0.10%,Si;0.1〜
1.5%,MN;0.12.0%,Cr;12〜17%,Ni;3〜7%,Co;0.1〜
3%,Mo;0.1〜2.0%,V;0.05〜0.5%,B;0.0005〜0.01%
を含有し、主としてマルテンサイト残留オーステナイト
から成る混合組織を有し、かつ残留オーステナイト量が
容積比で35%以下、δフェライト量が面積比で15%以下
である高強度高耐食性マルテンサイト系ステンレス鋼に
おいて、残部がFe及び不可避的不純物からなる組成物を
Ac3点異常の温度で焼入れする工程と、その工程に次い
でAc1とAc3との間の温度で少なくとも一回中間焼入れす
る工程と、その工程に次いでAc1以下の温度で焼もどし
する工程とを含むことを特徴とする高強度高耐食性マル
テンサイト系ステンレス鋼の製造方法である。
Further, the present invention is, by weight, C; 0.01 to 0.10%, Si; 0.1 to
1.5%, MN; 0.12.0%, Cr; 12-17%, Ni; 3-7%, Co; 0.1-
3%, Mo; 0.1 to 2.0%, V; 0.05 to 0.5%, B; 0.0005 to 0.01%
High-strength, high-corrosion-resistant martensitic stainless steel with a mixed structure consisting mainly of martensite retained austenite and containing 35% or less of retained austenite by volume and 15% or less of δ ferrite by area. In, a composition in which the balance is Fe and inevitable impurities
A step of quenching at an Ac 3 point abnormal temperature, a step of intermediate quenching at a temperature between Ac 1 and Ac 3 at least after that step, and a step of tempering at a temperature of Ac 1 or less after that step And a high-strength and high-corrosion-resistant martensitic stainless steel.

また、本発明は、クラウンと、これと対向するシュラ
ウドリングと、クラウンとシュラウドリング間に複数設
けられた羽根とが一体に形成される水車ランナにおい
て、前記各構成部材が請求項1〜2のいずれかの高強度
高耐食正マルテンサイト系ステンレス鋼の製造方法で一
体製造されることを特徴とする水車ランナの製造方法で
ある。
Further, the present invention is a water turbine runner in which a crown, a shroud ring facing the crown, and a plurality of blades provided between the crown and the shroud ring are integrally formed. A method for manufacturing a water turbine runner, characterized in that it is integrally manufactured by any of the methods for manufacturing high-strength and high-corrosion-resistant normal martensitic stainless steel.

〔作用〕 すなわち、本発明からなる部材は、通常の焼入れ、焼
もどし処理においても十分な強度と靭性を得ることがで
きるが、焼入れ、焼もどしの間でAc1とAc3変態区間のα
+γの2相温度から中間焼入処理を施こすことにより、
析出γ相のMs点をさほど低下させることなく微細なマル
テンサイトが得られ、より優れた水中疲労強度と靭性と
を付与することができる。
(Operation) That is, the member according to the present invention can obtain sufficient strength and toughness even in the ordinary quenching and tempering treatments, but between the quenching and tempering, α 1 of the Ac 1 and Ac 3 transformation section
By applying an intermediate quenching treatment from the two-phase temperature of + γ,
Fine martensite can be obtained without significantly lowering the Ms point of the precipitated γ phase, and more excellent underwater fatigue strength and toughness can be imparted.

なお、強度と靭性との兼ね合から、通常の焼入れ、焼
もどし処理では主としてマルテンサイトと残留オーステ
ナイトの混合組織を有し、残留オーステナイト量が容積
比で10〜35%、δフェライト量が面積比で15%以下、ま
た、焼入れ、焼もどし処理の間にAc1とAc3変態からの2
次焼入処理を施こした場合は主としてマルテンサイト組
織を有し、残留オーステナイト量が容積比で20%以下、
δフェライト量が面積比で15%以下になるよう成分及び
熱処理によって調整される。
From the balance of strength and toughness, ordinary quenching and tempering treatment mainly have a mixed structure of martensite and retained austenite, the amount of retained austenite is 10 to 35% by volume, and the amount of δ ferrite is area ratio. 15% or less, and 2 from the Ac 1 and Ac 3 transformations during quenching and tempering treatments.
When subjected to the subsequent quenching treatment, it mainly has a martensite structure, and the amount of retained austenite is 20% or less by volume,
The amount of δ ferrite is adjusted by the composition and heat treatment so that the area ratio is 15% or less.

次に本発明からなる部材の化学成分の限定理由を述べ
る。
Next, the reasons for limiting the chemical components of the member of the present invention will be described.

ますCは、0.1%以上では耐食性、靭性及び溶接性を
悪くするので、上限を0.1%とし、強度及び溶解上の点
から0.01%以上に規制される。好ましくは0.03〜0.06%
である。
If 0.1% or more of C deteriorates corrosion resistance, toughness, and weldability, the upper limit is 0.1%, and 0.01% or more is restricted from the viewpoint of strength and melting. Preferably 0.03-0.06%
It is.

Siは、製鋼時の脱酸剤として0.1%以上必要である
が、靭性の点から1.5%以下に限定される。好ましくは
0.2〜0.7%である。
Si needs to be 0.1% or more as a deoxidizing agent during steel making, but is limited to 1.5% or less from the viewpoint of toughness. Preferably
0.2 to 0.7%.

Mnもやはり脱酸剤として用いられるが、オーステナイ
ト化元素として靭性に寄与するので、2%まで添加する
のが適当である。好ましくは0.3〜0.9%である。
Mn is also used as a deoxidizing agent, but since it contributes to toughness as an austenitizing element, it is suitable to add up to 2%. It is preferably 0.3 to 0.9%.

Crは、ステンレス鋼において耐食性を高める最も重要
な成分であり、特に水中疲労強度の点から12%以上必要
である。Cr量が増加すると耐食性は向上するが、δフェ
ライトが生成して脆化し易くなり靭性を害し、水中疲労
強度も高くならないので上限は17%に規制する。好まし
くは13〜16%である。
Cr is the most important component that enhances corrosion resistance in stainless steel, and is required to be 12% or more especially from the viewpoint of fatigue strength in water. Although the corrosion resistance improves as the Cr content increases, δ-ferrite is likely to be formed, which easily causes embrittlement, impairs toughness, and does not increase the fatigue strength in water, so the upper limit is limited to 17%. It is preferably 13 to 16%.

Niは、強力なオーステナイト形成元素であり、靭性及
び補修溶接時の溶接性向上のため少なくとも3%以上必
要である。しかし、7%以上Niを含有すると焼入れ及び
Ac1とAc3変態区間からの2次焼入処理においてMs点が低
下し、残留オーステナイト量を増し耐力及び水中疲労強
度が得られない。従って好ましくは4〜6%である。
Ni is a strong austenite forming element and is required to be at least 3% or more in order to improve toughness and weldability during repair welding. However, if 7% or more of Ni is contained, quenching and
In the secondary quenching treatment from the Ac 1 and Ac 3 transformation zone, the Ms point decreases, the amount of retained austenite increases, and proof stress and fatigue strength in water cannot be obtained. Therefore, it is preferably 4 to 6%.

Coは、オーステナイト形成元素で、その効果はNiに比
べ小さいが、焼入に際してMo及びVのオーステナイトへ
の溶解度を増してマトリックスを強化する。また、Ac1
とAc3変態区間からの2次焼入処理時の冷却に際して、
逆変態によって生成したオーステナイトのMs点をさほど
低下させることなく微細なマルテンサイトを得る上で不
可欠な成分である。Coの添加量はNi量との兼ね合いで決
定されるが、0.1%以下ではその効果は小さく、多量に
添加するとオーステナイトを安定化しその効果を十分発
揮することができないので上限を3%とする。好ましく
は0.2〜2%である。
Co is an austenite forming element and its effect is smaller than that of Ni, but it increases the solubility of Mo and V in austenite during hardening and strengthens the matrix. Also, Ac 1
When cooling during the secondary quenching process from the and Ac 3 transformation zones,
It is an essential component for obtaining fine martensite without significantly lowering the Ms point of austenite formed by reverse transformation. The amount of Co added is determined in consideration of the amount of Ni, but its effect is small at 0.1% or less, and if it is added in a large amount, austenite cannot be stabilized and its effect cannot be sufficiently exhibited, so the upper limit is made 3%. It is preferably 0.2 to 2%.

Moは、耐食性を高めると同時に中間焼入れ及び焼もど
し処理において、マトリックスの軟化を抑制して強度向
上にも有効な成分であり、かつ焼もどし脆化の防止にも
最適である。しかし、3%を越えると強度向上もさるこ
とながらδフェライト量を増し靭性低下が著しいので0.
1〜3%に規制される。好ましくは0.3〜2%である。
Mo is a component that not only enhances the corrosion resistance but also suppresses the softening of the matrix in the intermediate quenching and tempering treatments and is also effective for improving the strength, and is also most suitable for preventing the temper embrittlement. However, if it exceeds 3%, not only the strength is improved, but also the amount of δ ferrite is increased and the toughness is remarkably reduced.
It is regulated to 1 to 3%. It is preferably 0.3 to 2%.

Vは、強力な炭化物形成元素として知られているが、
Cr炭化物、窒化物の析出を抑制し、徐冷脆化を抑制する
とともに、焼もどし過程で二次硬化を起し強度を高める
働きがある。しかし、0.5%以上では偏析の問題を生
じ、また靭性が低下するので0.5%以下がよい。Vの効
果を期待するためには0.05%以上必要であり、0.05〜0.
5%に規制される。好ましくは0.1〜0.3%である。
V is known as a strong carbide-forming element,
It suppresses the precipitation of Cr carbides and nitrides, suppresses gradual cooling embrittlement, and has the function of increasing the strength by causing secondary hardening in the tempering process. However, if it is 0.5% or more, a problem of segregation occurs and toughness decreases, so 0.5% or less is preferable. To expect the effect of V, 0.05% or more is necessary, and 0.05 to 0.
Regulated to 5%. It is preferably 0.1 to 0.3%.

Bは、焼入性を増すほか、Vとの複合添加によって結
晶粒を微細化し、強度及び靭性を改善するが、その量を
増すと洗浄度が低下し脆化を招くので上限は0.01%と
し、好ましくは0.0007〜0.002%である。
B increases the hardenability as well as improves the strength and toughness by making the crystal grains finer by the combined addition of V, but if the amount is increased, the degree of cleaning decreases and embrittlement occurs, so the upper limit is made 0.01%. , Preferably 0.0007 to 0.002%.

残部は、Fe及び同伴する不純物からなり、不純物とし
てP,S及びその他As,Sbなどがあるが、これらの元素は延
性、靭性を害するとともに溶接性を低下させるため極力
少ない方が望ましい。
The balance consists of Fe and accompanying impurities. As impurities, there are P, S and other As, Sb, etc., but these elements impair ductility and toughness and reduce weldability, so it is desirable that the amount is as small as possible.

さらに、本発明に係る部材はZr,HfのMC型炭化物形成
元素の1種以上を0.5%以下含有させることにより強度
を高めることができる。特にこれらの元素は0.2%以下
が望ましい。更に、部材の延性を高めるためにCa,Mg、
希土類元素、Y等の酸化剤を加えることができる。それ
らの1種又は2種以上の含有量を0.3%以下にすること
が望ましい。
Furthermore, the strength of the member according to the present invention can be enhanced by containing 0.5% or less of one or more MC-type carbide forming elements of Zr and Hf. In particular, 0.2% or less of these elements is desirable. Furthermore, in order to increase the ductility of the member, Ca, Mg,
An oxidizing agent such as a rare earth element or Y can be added. It is desirable that the content of one or more of them be 0.3% or less.

〔実施例〕〔Example〕

以下、本発明を実施例によりさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to Examples.

第1図は、本発明からなる部材が適用される水車ラン
ナの断面図である。同図において、クラウン2とシュラ
ウドリング4の間に複数の羽根3が設けられている。ク
ラウン2の中心は駆動軸が連結されているが、この肉厚
の部分は特にクラウンボス1とよばれる。これらの水車
ランナ(またはポンプ水車)は主に一体鋳造で鋳込まれ
るか、または各部材毎に鋳込み後に溶接接合するか、い
ずれかの製造方法がとられる。また、第2図は、ガイド
ベーンの概略斜視図である。同図において、ガイドベー
ン5は駆動用のシステム6と一体化されており、これら
は一体鋳造で鋳込まれる。
FIG. 1 is a sectional view of a water turbine runner to which a member according to the present invention is applied. In the figure, a plurality of blades 3 are provided between the crown 2 and the shroud ring 4. A drive shaft is connected to the center of the crown 2, and this thick portion is particularly called a crown boss 1. These water turbine runners (or pump water turbines) are mainly cast by integral casting, or each member is cast and then welded and joined, and either manufacturing method is adopted. FIG. 2 is a schematic perspective view of the guide vane. In the figure, the guide vanes 5 are integrated with a drive system 6, which are cast by integral casting.

表1に試験に供した材料の化学成分を示す。試番1〜
4が比較材料であり、試番5〜9が本発明材料である。
Table 1 shows the chemical components of the materials used in the test. Trial number 1
4 is a comparative material, and trial numbers 5 to 9 are inventive materials.

これらは高周波炉で大気溶解し、30kg砂型に鋳造し
た。鋳造後いずれの試料も組成の均質化を図るため1000
℃で拡散焼なましを行なった。
These were melted in the air in a high frequency furnace and cast into a 30 kg sand mold. 1000 after casting to homogenize the composition of all samples
Diffusion annealing was performed at ℃.

第3図は供試材の熱処理線図を示す。図において、同
図(a)は比較材である試番1〜4における熱処理線図
であり、Ac3点以上の1000℃から焼入れ後、Ac1点付近の
600℃で焼もどしを行なった。同図(b)は本発明材の
熱処理線図であり、比較材と同じ1000℃から焼入後、Ac
1とAc3変態区間の760℃から2次焼入れ、引続きAc1以下
の560℃で焼きもどしを行なった。焼入れ及び2次焼入
時の冷却速度は600℃/hであり、これは実機ランナを強
製冷却した場合の冷却速度に近い。
FIG. 3 shows a heat treatment diagram of the test material. In the figure, (a) is a heat treatment diagram for the comparative materials of trial Nos. 1 to 4, and after quenching from 1000 ° C. at an Ac 3 point or higher, near the Ac 1 point.
Tempering was performed at 600 ° C. The figure (b) is a heat treatment diagram of the material of the present invention.
Secondary quenching was carried out from 760 ° C in the 1 and Ac 3 transformation sections, and subsequently tempering was carried out at 560 ° C below Ac 1 . The cooling rate at the time of quenching and secondary quenching is 600 ° C / h, which is close to the cooling rate when the actual runner is strongly cooled.

表2に供試材料の機械的性質及び水中疲労強度を示
す。なお、表2には1000℃から焼入処理を施こした試料
を用い、300℃/hで加熱、冷却したときの熱膨張計から
求めた変態点、また、調質後の残留オーステナイト量を
併記した。すなわち、変態点は試料の成分、加熱速度、
保持時間等により変わるため、この表2に示した変態点
の値は絶対的なものではなく、特定の熱処理条件下での
値である。水中疲労試験は、回転回げ疲労試験機を用
い、試験片中央部に水道水を滴下し、108回疲労強度を
求めた。
Table 2 shows the mechanical properties and underwater fatigue strength of the test materials. Table 2 shows the transformation points obtained from a thermal expansion meter when heated and cooled at 300 ° C / h, and the amount of retained austenite after tempering, using samples that were quenched at 1000 ° C. I also wrote it down. That is, the transformation point is the composition of the sample, the heating rate,
Since the value of the transformation point shown in Table 2 is not an absolute value because it changes depending on the holding time and the like, it is a value under a specific heat treatment condition. In the underwater fatigue test, a rotary fatigue tester was used, tap water was dropped on the center of the test piece, and the fatigue strength was determined 10 8 times.

表1及び表2において、13%Cr−5%Ni鋳鋼にMoを少
量添加した試番1は残留オーステナイト量が最も多く衝
撃値は高いが、引張強さ及び水中疲労強度は低い。試番
2はMo添加量を増し、さらにNbを添加した試料であり、
引張強さ及び疲労強度は改善されているが、衝撃値は7.
6kg f・m/cm2で低い。試番3はMoとVを複合添加した試
料であり、試番2と同等以上の強度を有し、水中疲労強
度及び衝撃値が改善されているが、水中疲労強度及び靭
性の向上がより望まれる。試番4はCrを15%と増し、Mo
を1.5%添加した試料であり、水中疲労強度は35kg f/mm
2が得られているが、十分な強度と靭性は得られていな
い。
In Tables 1 and 2, Trial No. 1 in which a small amount of Mo is added to 13% Cr-5% Ni cast steel has the largest amount of retained austenite and has a high impact value, but the tensile strength and the fatigue strength in water are low. Trial No. 2 is a sample in which the amount of Mo added is increased and Nb is added,
Tensile strength and fatigue strength are improved, but impact value is 7.
Low at 6 kg f ・ m / cm 2 . Trial No. 3 is a sample in which Mo and V are added together, and has strength equal to or higher than that of Trial No. 2 and has improved underwater fatigue strength and impact value, but improvement in underwater fatigue strength and toughness is more desirable. Be done. Trial number 4 increased Cr to 15%, Mo
Was added to 1.5%, and the fatigue strength in water was 35 kg f / mm.
2 is obtained, but sufficient strength and toughness are not obtained.

上記に対して、試番5〜9が本発明材である。本発明
材は強度が最も高い比較材試番2及び3より、0.2%耐
力が若干低いが、引張強さはほぼ同等で、水中疲労強度
は38〜41kg f/mm2で比較材よりいずれも高く、また、衝
撃値は12kg f・m/cm2以上が得られており、比較材と同
等の強度を有し、水中疲労強度及び延在、靭性が優れて
いることが明瞭である。
In contrast to the above, trial numbers 5 to 9 are materials of the present invention. The material of the present invention has a slightly lower 0.2% proof stress than the comparative material trial Nos. 2 and 3 having the highest strength, but the tensile strength is almost the same, and the water fatigue strength is 38 to 41 kg f / mm 2 , which is higher than that of the comparative material. It is high, and the impact value is 12 kg f · m / cm 2 or more, and it is clear that it has the same strength as the comparative material, and has excellent underwater fatigue strength, elongation, and toughness.

本発明による水車用部材は通常の電弧炉あるいは高周
波誘導炉等により容易に溶解、鋳込みができ、水車ラン
ナ及びガイドベーンの製造上特別な方法を必要としな
い。なお、VOD処理等を施こし不純物(P,S等)及び非金
属介在物(SiO2等)の低減により、更に優れた特性を得
ることが出来る。
The member for a water turbine according to the present invention can be easily melted and cast in an ordinary electric arc furnace, a high frequency induction furnace, or the like, and does not require a special method for manufacturing a water turbine runner and guide vanes. It should be noted that further excellent characteristics can be obtained by applying VOD treatment or the like to reduce impurities (P, S, etc.) and non-metallic inclusions (SiO 2, etc.).

〔発明の効果〕 本発明によれば、従来材料と比較して、強度、特に水
中疲労強度と靭性に優れた高強度高耐食性マルテンサイ
ト系ステンレス鋼を製造する製造方法を提供することが
でき、特に落差の大きい揚水型発電用水車ランナ及びガ
イドベーン等の水車部材の製造方法として好適に用いる
ことができる。
[Effects of the Invention] According to the present invention, compared with conventional materials, it is possible to provide a manufacturing method for manufacturing a high-strength, high-corrosion-resistant martensitic stainless steel having excellent strength, particularly in-water fatigue strength and toughness, In particular, it can be suitably used as a method for manufacturing a water turbine member having a large head, such as a water turbine runner for a pumped-storage power generation and guide vanes.

【図面の簡単な説明】[Brief description of the drawings]

第1図は水車ランナの構造を示す概略断面図、第2図は
ガイドベーンの斜視図、第3図は供試材の熱処理を示す
線図である。 1……クラウンボス、2……クラウン、3……羽根、 4……シュラウドリング、5……ガイドベーン、 6……ステム。
FIG. 1 is a schematic sectional view showing the structure of a water turbine runner, FIG. 2 is a perspective view of a guide vane, and FIG. 3 is a diagram showing heat treatment of a test material. 1 ... Crown boss, 2 ... Crown, 3 ... Blade, 4 ... Shroud ring, 5 ... Guide vane, 6 ... Stem.

フロントページの続き (72)発明者 ▲高▼安 博 茨城県日立市久慈町4026番地 株式会社 日立製作所日立研究所内 (72)発明者 岩城 文則 茨城県日立市幸町3丁目1番1号 株式 会社日立製作所日立工場内 (56)参考文献 特開 昭55−58353(JP,A) 特公 昭54−11245(JP,B1)Continuation of the front page (72) Inventor ▲ High ▼ Aki Hiroshi 4026 Kuji-cho, Hitachi City, Ibaraki Hitachi, Ltd., Hitachi Research Laboratory (72) Inventor Fuminori Iwaki 3-1-1, Saiwaicho, Hitachi City, Ibaraki Stock Company Hitachi, Ltd., Hitachi Plant (56) References JP-A-55-58353 (JP, A) JP-B-54-11245 (JP, B1)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量で、C;0.01〜0.10%,Si;0.1〜1.5%,M
n;0.1〜2.0%,Cr;12〜17%,Ni;3〜7%,Co;0.1〜3%,M
o;0.1〜2.0%,V;0.05〜0.5%を含有し、主としてマルテ
ンサイトと残留オーステナイトから成る混合組織を有
し、かつ残留オーステナイト量が容積比で35%以下、δ
フェライト量が面積比で15%以下からなる高強度高耐食
性マルテンサイト系ステンレス鋼において、残部がFe及
び不可避的不純物からなる組成物をAc3点以上の温度で
焼入れする工程と、その工程に次いでAc1とAc3との間の
温度で少なくとも一回中間焼入れする工程と、その工程
に次いでAc1以下の温度で焼もどしする工程とを含むこ
とを特徴とする高強度高耐食性マルテンサイト系ステン
レス鋼の製造方法。
1. By weight, C; 0.01 to 0.10%, Si; 0.1 to 1.5%, M
n; 0.1 to 2.0%, Cr; 12 to 17%, Ni; 3 to 7%, Co; 0.1 to 3%, M
o; 0.1-2.0%, V; 0.05-0.5%, having a mixed structure mainly composed of martensite and retained austenite, and the amount of retained austenite is 35% or less by volume ratio, δ
In the high-strength and high-corrosion-resistant martensitic stainless steel in which the amount of ferrite is 15% or less in area ratio, the step of quenching a composition having the balance of Fe and unavoidable impurities at a temperature of Ac 3 point or higher, and then the step High-strength, high-corrosion-resistant martensitic stainless steel characterized by comprising a step of intermediate quenching at a temperature between Ac 1 and Ac 3 at least once, and a step of tempering at a temperature of Ac 1 or less after that step. Steel manufacturing method.
【請求項2】重量で、C;0.01〜0.10%,Si;0.1〜1.5%,M
n;0.1〜2.0%,Cr;12〜17%,Ni;3〜7%,Co;0.1〜3%,M
o;0.1〜2.0%,V;0.05〜0.5%,B;0.0005〜0.01%を含有
し、主としてマルテンサイトと残留オーステナイトから
成る混合組織を有し、かつ残留オーステナイト量が容積
比で35%以下、δフェライト量が面積比で15%以下であ
る高強度高耐食性マルテンサイト系ステンレス鋼におい
て、残部がFe及び不可避的不純物からなる組成物をAc3
点以上の温度で焼入れする工程と、その工程に次いでAc
1とAc3との間の温度で少なくとも一回中間焼入れする工
程と、その工程に次いでAc1以下の温度で焼もどしする
工程とを含むことを特徴とする高強度高耐食性マルテン
サイト系ステンレス鋼の製造方法。
2. By weight, C; 0.01 to 0.10%, Si; 0.1 to 1.5%, M
n; 0.1 to 2.0%, Cr; 12 to 17%, Ni; 3 to 7%, Co; 0.1 to 3%, M
o; 0.1-2.0%, V; 0.05-0.5%, B; 0.0005-0.01%, having a mixed structure consisting mainly of martensite and retained austenite, and the amount of retained austenite is 35% or less by volume ratio, In a high-strength and high-corrosion-resistant martensitic stainless steel in which the amount of δ ferrite is 15% or less in area ratio, a composition in which the balance is Fe and inevitable impurities is Ac 3
Quenching at a temperature above the point, followed by Ac
High-strength high-corrosion-resistant martensitic stainless steel characterized by including a step of intermediate quenching at least once between 1 and Ac 3 and a step of tempering at a temperature of Ac 1 or lower. Manufacturing method.
【請求項3】クラウンと、これと対向するシュラウドリ
ングと、クラウンとシュラウドリング間に複数設けられ
た羽根とが一体に形成される水車ランナにおいて、前記
各構成部材が請求項1〜2のいずれかの高強度高耐食性
マルテンサイト系ステンレス鋼の製造方法で一体製造さ
れることを特徴とする水車ランナの製造方法。
3. A water turbine runner in which a crown, a shroud ring facing the crown, and a plurality of blades provided between the crown and the shroud ring are integrally formed, and each of the constituent members is any one of claims 1 and 2. A high-strength and high-corrosion-resistant martensitic stainless steel manufacturing method is integrally manufactured.
JP2326324A 1990-11-28 1990-11-28 High-strength and high-corrosion-resistant martensitic stainless steel manufacturing method and its application Expired - Fee Related JP2678263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2326324A JP2678263B2 (en) 1990-11-28 1990-11-28 High-strength and high-corrosion-resistant martensitic stainless steel manufacturing method and its application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2326324A JP2678263B2 (en) 1990-11-28 1990-11-28 High-strength and high-corrosion-resistant martensitic stainless steel manufacturing method and its application

Publications (2)

Publication Number Publication Date
JPH04193933A JPH04193933A (en) 1992-07-14
JP2678263B2 true JP2678263B2 (en) 1997-11-17

Family

ID=18186499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2326324A Expired - Fee Related JP2678263B2 (en) 1990-11-28 1990-11-28 High-strength and high-corrosion-resistant martensitic stainless steel manufacturing method and its application

Country Status (1)

Country Link
JP (1) JP2678263B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100441051B1 (en) * 2001-08-09 2004-07-21 두산중공업 주식회사 Martensitic Stainless Steel having high-strength and excellent erosion resistance
CN109082608A (en) * 2018-10-26 2018-12-25 成都先进金属材料产业技术研究院有限公司 The method for controlling delta ferrite level in low straight-chromiun stainless steel
CN115572902B (en) * 2022-09-30 2023-08-22 吉林建龙钢铁有限责任公司 Integrated steel for wheel hub and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60998B2 (en) * 1977-06-28 1985-01-11 オルガノ株式会社 How to process sugar solution
JPS6053737B2 (en) * 1978-10-20 1985-11-27 株式会社日立製作所 Stainless steel casting for water turbine runners
NL193218C (en) * 1985-08-27 1999-03-03 Nisshin Steel Company Method for the preparation of stainless steel.
JPH01119649A (en) * 1987-11-02 1989-05-11 Daido Steel Co Ltd Corrosion-resisting stainless steel having high strength and high toughness

Also Published As

Publication number Publication date
JPH04193933A (en) 1992-07-14

Similar Documents

Publication Publication Date Title
JPH0830249B2 (en) High temperature steam turbine rotor and method of manufacturing the same
EP0770696B1 (en) High strength and high toughness heat resisting steel and its manufacturing method
JPS6053737B2 (en) Stainless steel casting for water turbine runners
JP3483493B2 (en) Cast steel for pressure vessel and method of manufacturing pressure vessel using the same
JP3768091B2 (en) High strength and high corrosion resistance martensitic stainless steel and manufacturing method thereof
JP3492969B2 (en) Rotor shaft for steam turbine
JPS59116360A (en) Heat-resisting steel
JP2678263B2 (en) High-strength and high-corrosion-resistant martensitic stainless steel manufacturing method and its application
EP0109221B1 (en) High-strength austenitic steel
JPS6092455A (en) Cast steel for water turbine for seawater pump
JPH0672286B2 (en) ▲ High ▼ Austenitic stainless steel with excellent temperature strength
JP3328967B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JPS60165359A (en) High strength and high toughness steel for high and medium pressure rotor of steam turbine
JP3368413B2 (en) Manufacturing method of high Cr ferritic heat resistant steel
JP3345988B2 (en) Steam turbine rotor
JPS5811504B2 (en) High and low pressure integrated steam turbine rotor and its manufacturing method
JPS61104056A (en) High-strength and high-toughness low-carbon cr-mo steel plate having excellent creep-resisting property as well as superior resistance to weld crack and erosion
JPS60165360A (en) High strength and high toughness steam turbine rotor
JPH07118812A (en) Heat-resistant cast steel turbine casting and its production
JPH1036944A (en) Martensitic heat resistant steel
JPH07110970B2 (en) Method for producing acicular ferritic stainless steel with excellent resistance to stress corrosion cracking
JP3510606B2 (en) High and low pressure integrated turbine rotor and method of manufacturing the same
JPS6260447B2 (en)
JPS6178593A (en) Mercury device and its manufacture
JPH0152464B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees