JP4830466B2 - Heat-resistant alloy for exhaust valves that can withstand use at 900 ° C and exhaust valves using the alloys - Google Patents

Heat-resistant alloy for exhaust valves that can withstand use at 900 ° C and exhaust valves using the alloys Download PDF

Info

Publication number
JP4830466B2
JP4830466B2 JP2005341574A JP2005341574A JP4830466B2 JP 4830466 B2 JP4830466 B2 JP 4830466B2 JP 2005341574 A JP2005341574 A JP 2005341574A JP 2005341574 A JP2005341574 A JP 2005341574A JP 4830466 B2 JP4830466 B2 JP 4830466B2
Authority
JP
Japan
Prior art keywords
alloy
heat
exhaust valves
less
resistant alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005341574A
Other languages
Japanese (ja)
Other versions
JP2006225756A (en
Inventor
茂紀 植田
征児 倉田
哲也 清水
俊治 野田
克彦 富永
誠 阿左美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Daido Steel Co Ltd
Original Assignee
Honda Motor Co Ltd
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Daido Steel Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2005341574A priority Critical patent/JP4830466B2/en
Priority to EP06000958A priority patent/EP1696108B1/en
Priority to DE602006000160T priority patent/DE602006000160T2/en
Priority to US11/334,583 priority patent/US20060157171A1/en
Publication of JP2006225756A publication Critical patent/JP2006225756A/en
Application granted granted Critical
Publication of JP4830466B2 publication Critical patent/JP4830466B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/20Making machine elements valve parts
    • B21K1/22Making machine elements valve parts poppet valves, e.g. for internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/02Selecting particular materials for valve-members or valve-seats; Valve-members or valve-seats composed of two or more materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2301/00Using particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2303/00Manufacturing of components used in valve arrangements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、内燃エンジン、代表的には自動車のガソリンエンジンの排気バルブであって、900℃での使用に耐え、高い疲労特性と耐酸化性とを有するものに関する。本発明はまた、この排気バルブの材料とする耐熱合金と、その合金から排気バルブを製造する方法にも関する。 The present invention relates to an exhaust valve of an internal combustion engine, typically an automobile gasoline engine, which can withstand use at 900 ° C. and has high fatigue characteristics and oxidation resistance. The present invention also relates to a heat-resistant alloy as a material for the exhaust valve and a method for manufacturing the exhaust valve from the alloy.

自動車のガソリンエンジンの排気バルブにおいて、これまで、高強度のバルブを製造するための耐熱合金として、Ni基合金NCF751やNCF80Aが広く使用されて来た。さらに、高強度化のニーズに対しては、出願人が共同出願人とともに提案した、適量のC,SiおよびMnに加えて、Cr:15〜25%,Mo+0.5W:0.5〜5.0%,Nb+Ta:0.3〜3.0%,Ti:1.5〜3.5%,Al:0.5〜2.5%およびB:0.001〜0.02%を含有するNi基合金(特許文献1)がある。そのほか、適量のC,SiおよびMnに加えて、Co:2.0〜8.0%,Cr:17.0〜23.5%,Mo+0.5W:2.0〜5.5%,Al:1.0〜2.0%,Ti:2.5〜5.0%,B:0.001〜0.020%およびZr:0.005〜0.15%を含有するNi基合金(特許文献2)などが開発されている。
特開昭61−119640 特開平05−059472
In the exhaust valves of automobile gasoline engines, Ni-based alloys NCF751 and NCF80A have been widely used as heat-resistant alloys for producing high-strength valves. Furthermore, for the need for higher strength, in addition to appropriate amounts of C, Si and Mn proposed by the applicant with the joint applicant, Cr: 15-25%, Mo + 0.5W: 0.5-5. Ni containing 0%, Nb + Ta: 0.3-3.0%, Ti: 1.5-3.5%, Al: 0.5-2.5% and B: 0.001-0.02% There is a base alloy (Patent Document 1). In addition to appropriate amounts of C, Si and Mn, Co: 2.0 to 8.0%, Cr: 17.0 to 23.5%, Mo + 0.5W: 2.0 to 5.5%, Al: Ni-based alloy containing 1.0 to 2.0%, Ti: 2.5 to 5.0%, B: 0.001 to 0.020% and Zr: 0.005 to 0.15% (Patent Documents) 2) has been developed.
JP 61-119640 A JP 05-059472 A

よく知られているように、排気バルブの耐久力を高く保つためには、繰り返し加わる曲げ応力に耐えることが必要であり、上記の、近年開発された合金の108回疲れ強さは、使用温度が850℃に至るまでは、245MPa以上ある。ところが最近のエンジンでは、理論空燃比に近い燃焼の実現が意図され、それに伴って、排気バルブに求められる耐熱温度が、900℃という高い値になることがある。しかし、既知の排気バルブ用耐熱合金は、900℃になると疲れ強さが245MPaを下回り、高性能を意図したエンジンに使用するには、要求される強度条件を満たさないことが多い。 As is well known, in order to keep exhaust valve durability high, it is necessary to withstand repeated bending stress, and the above-mentioned recently developed alloy has 10 8 times fatigue strength. It is 245 MPa or more until the temperature reaches 850 ° C. However, recent engines are intended to achieve combustion close to the stoichiometric air-fuel ratio, and accordingly, the heat-resistant temperature required for the exhaust valve may be as high as 900 ° C. However, known heat-resistant alloys for exhaust valves have fatigue strengths below 245 MPa at 900 ° C., and often do not satisfy the required strength conditions for use in engines intended for high performance.

発明者らは、「900℃における108回疲れ強さが245MPa以上」の耐熱条件を満たす合金の開発を意図し、検討した結果、従来の排気バルブ用合金より高い耐熱性を有する材料として、ガスタービンのディスクやブレードの材料とする合金があることに着目して、その特性を詳細に調査した結果、排気バルブ用材料としても、おおむね使用に耐えることを確認した。それらの耐熱合金は、“Waspaloy”とか“Udimet 520”と呼ばれるものであって、代表的な組成は、それぞれつぎのとおりである(重量%)。
Waspaloy Ni−19Cr−4.3Mo−14Co−1.4Al−3Ti−0.003B
Udimet 520 Ni−20Cr−6Mo−1W−12Co−2Al−3Ti−0.003B
The inventors intended and developed an alloy that satisfies the heat resistance condition of “10 8 times fatigue strength at 900 ° C. of 245 MPa or more”. As a result, as a material having higher heat resistance than conventional exhaust valve alloys, Focusing on the fact that there are alloys used as materials for gas turbine disks and blades, a detailed investigation of their properties confirmed that they can generally withstand the use of exhaust valve materials. These heat-resistant alloys are called “Waspaloy” or “Udimet 520”, and their typical compositions are as follows (% by weight).
Waspaloy Ni-19Cr-4.3Mo-14Co-1.4Al-3Ti-0.003B
Udimet 520 Ni-20Cr-6Mo-1W-12Co-2Al-3Ti-0.003B

ただし、ガスタービンとエンジンの排気バルブとでは、要求される耐久性の内容が異なるので、それに対応する必要があることもわかった。具体的には、ガスタービンの材料は高温クリープ特性がよいことが求められるのに対し、排気バルブは、高温の疲れ強さが高いことが肝要であるから、合金組成だけでなく加工条件や熱処理条件を、所望の特性が得られるように選択しなければならない。 However, it was also found that the required durability is different between the gas turbine and the exhaust valve of the engine, and it is necessary to cope with it. Specifically, gas turbine materials are required to have good high-temperature creep characteristics, whereas exhaust valves are required to have high fatigue strength at high temperatures. Conditions must be selected so that the desired properties are obtained.

高い疲れ強さを実現するという観点から、上記のガスタービン用材料の転用に対して性能面でいっそうの改善が得られる方策を探求した発明者らは、MoおよびWを、Mo+0.5Wにして3〜10%という比較的高い領域にえらび、Coの添加量を適切に選択し、原子%で、Al+Tiが6.3〜8.5%であって、Ti/A1比が0.4〜0.8の範囲となるようにすることで、900℃においても、前記した疲れ強さに対する要求、すなわち「108回疲れ強さが245MPa以上」を満足させることが可能であることを見出した。微量のCuを含有するだけで、900℃における耐酸化性に効果があることも判明した。 From the viewpoint of realizing high fatigue strength, the inventors who have sought a measure that can further improve performance in terms of diversion of the gas turbine material described above, set Mo and W to Mo + 0.5W. In a relatively high region of 3 to 10%, the addition amount of Co is appropriately selected. At atomic%, Al + Ti is 6.3 to 8.5%, and Ti / A1 ratio is 0.4 to 0. It was found that by making it in the range of .8, it was possible to satisfy the requirement for fatigue strength, that is, “10 8 times fatigue strength of 245 MPa or more” even at 900 ° C. It has also been found that the oxidation resistance at 900 ° C. is effective only by containing a small amount of Cu.

本発明の一般的な目的は、発明者らが得た上記の知見に基づいて、900℃において使用可能であって、高い疲れ強度と耐酸化性とを示す排気バルブ用の耐熱合金を提供することにある。本発明の特別の目的は、この排気バルブ用の耐熱合金において、とくに疲れ強さが高いもの、換言すれば、同じ要求強度水準においてより多数のサイクルを示す耐熱合金を提供することにある。これらの耐熱合金を使用して排気バルブを製造する方法を提供することも、本発明の目的に含まれる。 A general object of the present invention is to provide a heat-resistant alloy for exhaust valves that can be used at 900 ° C. and exhibits high fatigue strength and oxidation resistance based on the above findings obtained by the inventors. There is. A particular object of the present invention is to provide a heat-resistant alloy for exhaust valves that has a particularly high fatigue strength, in other words, a heat-resistant alloy that exhibits more cycles at the same required strength level. Providing a method for manufacturing an exhaust valve using these heat-resistant alloys is also included in the object of the present invention.

上記の目的を達成する本発明の、900℃での使用に耐える排気バルブ用耐熱合金は、質量%で、C:0.01〜0.15%、Si:2.0%以下、Mn:1.0%以下、P:0.02%以下、S:0.01%以下、Co:0.1〜15%、Cr:15〜25%、Mo:〜10%(ただし、5%である場合を除く)およびW:0.1〜5%の1種または2種を、Mo+0.5Wで3〜10%、Al:1.0〜3.0%、Ti:2.0〜3.5%、ただし、原子%でAl+Tiが6.3〜8.5%であってTi/A1比が0.4〜0.8とし、さらに重量%で、B:0.001〜0.01%を含有し、Fe:3%以下であって、残部がNiおよび不可避な不純物からなる合金組成を有する。
The heat-resistant alloy for exhaust valves that can withstand use at 900 ° C. according to the present invention, which achieves the above object, is, in mass %, C: 0.01 to 0.15%, Si: 2.0% or less, Mn: 1 .0% or less, P: 0.02% or less, S: 0.01% or less, Co: 0.1~15%, Cr: 15~25%, Mo: 5 ~10% ( provided that 5% Except for cases) and W: 0.1 to 5% of 1 type or 2 types, Mo + 0.5W, 3 to 10%, Al: 1.0 to 3.0%, Ti: 2.0 to 3.5 %, Provided that Al + Ti is 6.3 to 8.5% in atomic%, Ti / A1 ratio is 0.4 to 0.8, and B: 0.001 to 0.01% by weight%. And Fe: 3% or less, with the balance being an alloy composition consisting of Ni and inevitable impurities.

この耐熱合金を材料として排気バルブを製造する本発明の方法は、1000〜1200℃での熱間鍛造により軸と傘部とからなる排気バルブの形状を与え、ついで、1000〜1200℃の固溶化熱処理と、700〜950℃の時効処理とを施すことからなる。 The method of the present invention for manufacturing an exhaust valve using this heat-resistant alloy as a material gives the shape of an exhaust valve composed of a shaft and an umbrella by hot forging at 1000 to 1200 ° C., and then solidifies at 1000 to 1200 ° C. It consists of performing heat processing and 700-950 degreeC aging treatment.

本発明の排気バルブ用耐熱合金は、固溶化熱処理および時効処理を経た後、900℃における108回疲れ強さが245MPa以上であり、かつ、900℃に400時間保持する酸化試験後の酸化増量が5mg/cm2以下である。それゆえこの合金から排気バルブを製造すれば、従来の材料で製造したバルブでは耐えられなかった900℃の高温に耐え、高い曲げ疲労強度と耐酸化性を示す耐久性の高いバルブが得られ、自動車エンジンの高出力化の傾向に対応することができる。 The heat-resisting alloy for exhaust valves of the present invention, after undergoing solution heat treatment and aging treatment, has a 10 8 times fatigue strength at 900 ° C. of 245 MPa or more, and an oxidation increase after an oxidation test held at 900 ° C. for 400 hours. Is 5 mg / cm 2 or less. Therefore, if an exhaust valve is manufactured from this alloy, a highly durable valve that can withstand a high temperature of 900 ° C., which could not be endured by a valve manufactured by a conventional material, and exhibits high bending fatigue strength and oxidation resistance, can be obtained. It can cope with the trend of higher output of automobile engines.

本発明の排気バルブ用耐熱合金は、上記した基本的な合金成分に加えて、V:0.2〜1%、Nb:0.5〜1.5%およびTa:0.5〜1.5%の1種または2種以上を、原子%で、A1+Ti+Nb+Ta+V:6.3〜8.5%となる範囲で含有することができる。これらの元素の添加により、さらに強度が向上する。 The heat-resistant alloy for exhaust valves of the present invention includes V: 0.2 to 1%, Nb: 0.5 to 1.5%, and Ta: 0.5 to 1.5 in addition to the basic alloy components described above. % Or more can be contained in the range of A1 + Ti + Nb + Ta + V: 6.3 to 8.5% in atomic%. Addition of these elements further improves the strength.

この排気バルブ用耐熱合金は、さらに、Mg:0.001〜0.03%、Ca:0.001〜0.03%、Zr:0.001〜0.1%およびREM:0.001〜0.1%の1種または2種以上を含有することができる。これらの元素を添加することにより、熱間加工性が改善される。REMは、それに加えて、耐酸化性を向上させる。 This heat-resistant alloy for exhaust valves further includes Mg: 0.001-0.03%, Ca: 0.001-0.03%, Zr: 0.001-0.1%, and REM: 0.001-0. .1% of one kind or two kinds or more can be contained. By adding these elements, hot workability is improved. In addition, REM improves oxidation resistance.

本発明の排気バルブ用耐熱合金は、さらに、Cu:0.01〜2%を含有することができる。Cuの含有により、バルブの耐酸化性がいっそう高まる。 The heat-resistant alloy for exhaust valves of the present invention can further contain Cu: 0.01 to 2%. By containing Cu, the oxidation resistance of the valve is further enhanced.

以下に、本発明の排気バルブ用耐熱合金の合金組成を上記のように選択した理由を、必須合金元素および任意添加元素の順に説明する。 Hereinafter, the reason why the alloy composition of the heat-resistant alloy for exhaust valves of the present invention is selected as described above will be described in the order of the essential alloy element and the optional additive element.

C:0.01〜0.15%
Cは、Ti,Nb,Taと結合してMC型炭化物を形成したり、Cr,Mo,Wと結合してM23、MC炭化物を形成したりして、結晶粒粗大化防止や粒界の強化に寄与する。この効果を得るためには、Cが少なくとも0.01%存在する必要がある。多すぎると、炭化物の生成量が多くなりすぎて、バルブとしての成形性および靭延性が低下するから、0.15%を上限とする。
C: 0.01 to 0.15%
C combines with Ti, Nb, Ta to form MC type carbide, or combines with Cr, Mo, W to form M 23 C 6 , M 6 C carbide to prevent grain coarsening Contributes to strengthening grain boundaries. In order to obtain this effect, C must be present at least 0.01%. If the amount is too large, the amount of carbide produced is too large, and the formability and toughness as a valve are lowered, so 0.15% is made the upper limit.

Si:2.0%以下
Siは、主に溶解精練時の脱酸剤として作用させる元素であり、必要に応じて使用することができる。Siはまた、耐酸化性の向上にとっても有用である。しかし、多量に含有すると靭性や加工性が低くなるので、2.0%以内の添加に止める。
Si: 2.0% or less Si is an element that mainly acts as a deoxidizer during dissolution and scouring, and can be used as necessary. Si is also useful for improving oxidation resistance. However, if it is contained in a large amount, the toughness and workability become low, so the addition is limited to 2.0% or less.

Mn:1.0%以下
MnもSiと同様に脱酸材として作用する元素であり、必要に応じて添加することができる。多量の添加は加工性および高温酸化性を損なうので、その弊害がない1.0%以下の添加量を選ぶ。
Mn: 1.0% or less Mn is an element that acts as a deoxidizing material in the same manner as Si, and can be added as necessary. Addition of a large amount impairs workability and high-temperature oxidation, so an addition amount of 1.0% or less is selected so as not to cause the harmful effects.

P:0.02%以下、S:0.01%以下
PおよびSは、混入を避けがたい不純物であり、熱間加工性を低くするので好ましくない成分である。とくに本発明の合金は、Ni基合金としてはNi量を低くしてあるため、熱間加工可能な加工条件の範囲が狭い。できるだけ熱間加工性を確保するという観点から、PおよびSの許容限界を上記のように設定した。
P: 0.02% or less, S: 0.01% or less P and S are impurities that are unavoidable to be mixed, and are undesirable components because they reduce hot workability. In particular, the alloy of the present invention has a low Ni content as a Ni-based alloy, and therefore the range of processing conditions for hot working is narrow. From the viewpoint of ensuring hot workability as much as possible, the allowable limits of P and S were set as described above.

Co:0.1〜15%
Coは高温においてγ'相を安定にし、さらにマトリクスを強化して疲労特性の向上に寄与する。しかし、多量の添加はコスト上昇を招き、また過剰になるとオーステナイト相を不安定にする。好ましい添加量の範囲は2〜15%、さらに好ましい範囲は8〜14%である。
Co: 0.1 to 15%
Co stabilizes the γ ′ phase at a high temperature and further strengthens the matrix, thereby contributing to improvement of fatigue characteristics. However, the addition of a large amount causes an increase in cost, and if it is excessive, the austenite phase becomes unstable. A preferable range of the addition amount is 2 to 15%, and a more preferable range is 8 to 14%.

Cr:15〜25%
Crは合金の耐熱性を高くするのに必要な元素であり、このためには15%以上の添加が必要である。しかし、20%を超えて添加すると次第にσ相が析出して、靭性が低下するとともに高温強度が低下してくるから、25%までの添加量を選ぶべきである。好ましいのは、低めの15〜20%の範囲である。
Cr: 15-25%
Cr is an element necessary for increasing the heat resistance of the alloy. For this purpose, addition of 15% or more is necessary. However, if the addition exceeds 20%, the σ phase gradually precipitates, and the toughness decreases and the high-temperature strength decreases. Therefore, the addition amount up to 25% should be selected. Preferred is a lower 15-20% range.

Mo:〜10%(ただし、5%である場合を除く)およびW:0.1〜5%の1種または2種を、Mo+0.5Wで3〜10%
MoもWも、主にマトリクスの固溶強化により、合金の高温強度を向上させる元素であって、本発明が意図した、900℃における疲労強度の向上にとって重要な成分である。このため、Moは5%以上、Wは0.1%以上の添加を行なうが、多量の添加は、いずれも、コストの上昇を招くし、加工性を低下させるので、上記のような上限値を設けた。Moの過剰な添加は、耐酸化性を低下させて好ましくない。
Mo: 5 to 10% (except for the case of 5% ) and W: 0.1 to 5% of 1 type or 2 types, Mo + 0.5W, 3 to 10%
Both Mo and W are elements that improve the high-temperature strength of the alloy mainly by solid solution strengthening of the matrix, and are important components for improving the fatigue strength at 900 ° C. intended by the present invention. For this reason, Mo is added at 5% or more, and W is added at 0.1% or more. However, addition of a large amount causes an increase in cost and lowers workability, so the upper limit as described above. Was provided. Excessive addition of Mo is not preferable because it reduces oxidation resistance.

Al:1.0〜3.0%、Ti:2.0〜3.5%
AlはNiと結合してγ'相を形成するうえで重要な元素であり、1.0%未満ではγ'相の析出が不十分で、高温強度の確保ができず、一方、3.0%を超えると、熱間加工性が低下する。Tiもまた、Niと結合して、高温強度を向上させるのに有効なγ'相を形成する。Tiが2.0%に達しない少量であると、γ'の固溶温度が低下し、十分な高温強度が得られない。3.5%を超える多量を添加すると加工性が低下するし、η相(Ni3Ti)が析出しやすくなって、高温強度および靭性を低くする。また、熱間加工も困難になる。
Al: 1.0-3.0%, Ti: 2.0-3.5%
Al is an important element for forming a γ ′ phase by combining with Ni. If it is less than 1.0%, precipitation of the γ ′ phase is insufficient, and high temperature strength cannot be ensured. When it exceeds%, hot workability is lowered. Ti also combines with Ni to form a γ ′ phase effective to improve high temperature strength. When Ti is a small amount that does not reach 2.0%, the solid solution temperature of γ ′ decreases, and sufficient high-temperature strength cannot be obtained. When a large amount exceeding 3.5% is added, the workability is lowered, and the η phase (Ni 3 Ti) is likely to be precipitated, so that the high-temperature strength and toughness are lowered. Also, hot working becomes difficult.

原子%で、Al+Tiが6.3〜8.5%
Ti/A1比が0.4〜0.8
上記したところから明らかなように、Al+Ti(+Nb)は900℃におけるγ'量を示す指標であり、これが少ないと疲労特性が低いし、多すぎると熱間加工が困難になる。この理由で、原子%6.3〜8.5%の範囲を選んだ。Ti/Al比は、900℃におけるγ'相の安定と、疲れ強さの向上にとって重要な因子である。0.4に達しない低い値であると、時効が遅く、十分な強度が得られないという弊害があり、一方、0.8を超える高い値にすると、脆化相であるη相が析出しやすくなり、強度が低下する、という問題が生じる。この範囲内では0.6〜0.8が好ましく、この範囲にTi/A1比を選ぶことにより、疲労強度の向上という意図が、いっそうよく達成できる。
Atomic%, Al + Ti is 6.3 to 8.5%
Ti / A1 ratio is 0.4 to 0.8
As apparent from the above, Al + Ti (+ Nb) is an index indicating the amount of γ ′ at 900 ° C., and if it is small, the fatigue characteristics are low, and if it is too large, hot working becomes difficult. For this reason, a range of 6.3% to 8.5% atomic% was chosen. The Ti / Al ratio is an important factor for the stability of the γ ′ phase at 900 ° C. and the improvement of fatigue strength. If it is a low value that does not reach 0.4, aging is slow and sufficient strength cannot be obtained. On the other hand, if it is a high value exceeding 0.8, the η phase that is an embrittlement phase precipitates. It becomes easy and the problem that intensity falls is produced. Within this range, 0.6 to 0.8 is preferable, and by selecting the Ti / A1 ratio within this range, the intention of improving fatigue strength can be achieved even better.

B:0.001〜0.01%
Bは熱間加工性の改善に寄与するとともに、粒界に偏析して粒界強度を高め、疲労特性を向上させるから、この効果が得られる0.001%以上を添加する。過剰な添加は母材の融点を下げて熱間加工性を損なうから、0.01%以下の添加に止める。
B: 0.001 to 0.01%
B contributes to the improvement of hot workability and segregates at the grain boundaries to increase the grain boundary strength and improve the fatigue characteristics. Therefore, 0.001% or more is added to obtain this effect. Excessive addition lowers the melting point of the base material and impairs hot workability, so it is limited to 0.01% or less.

Fe:3%以下
Feは、合金製造時の原料の選択によっては不可避的に混入する成分である。多量になると強度が低下するので、なるべく少量に抑えたい。混入の許容限度として、上記3%を置いた。1%以下に抑えることが好ましく、それは原料を吟味することにより可能である。
Fe: 3% or less Fe is a component that is inevitably mixed depending on the selection of raw materials during alloy production. Since the strength decreases when the amount becomes large, it is desirable to keep it as small as possible. The above 3% was set as the allowable limit of contamination. It is preferable to keep it to 1% or less, and this is possible by examining the raw materials.

V:0.2〜1%、Nb:0.5〜1.5%およびTa:0.5〜1.5%の1種または2種以上を、原子%で、A1+Ti+Nb+Ta+V:6.3〜8.5%
Nb、TaおよびVは、いずれもAlとともにNiと結合して、γ'相を強化させる働きがある。Vは、固溶強化にも寄与する。このような効果を期待するときは、それぞれ上記の下限値以上の量を添加するとよい。過剰に存在すると靭性を低下させるので、それぞれの上限値以内であって、かつ、合計量の範囲を超えないように添加する。
One or two or more of V: 0.2 to 1%, Nb: 0.5 to 1.5% and Ta: 0.5 to 1.5%, in atomic%, A1 + Ti + Nb + Ta + V: 6.3-8 .5%
Nb, Ta, and V all have a function of strengthening the γ ′ phase by combining with Al together with Ni. V also contributes to solid solution strengthening. When such an effect is expected, an amount equal to or more than the above lower limit value is preferably added. If it is present excessively, the toughness is lowered. Therefore, it is added so that it is within the respective upper limit values and does not exceed the range of the total amount.

Mg:0.001〜0.03%、Ca:0.001〜0.03%、Zr:0.001〜0.1%およびREM:0.001〜0.1%の1種または2種以上
これらの元素を添加することにより、合金の熱間加工性が改善される。Zrは、粒界に偏析し、粒界を強化する効果もある。REMは、熱間加工性に加えて、耐酸化性を向上させる。こうした効果を得たい場合は、それぞれ上記の下限値以上の量を添加するとよい。過剰に存在すると合金の溶融開始温度が低下し、かえって熱間加工性が悪くなるので、それぞれの上限値を超えないように添加する。
One or more of Mg: 0.001-0.03%, Ca: 0.001-0.03%, Zr: 0.001-0.1% and REM: 0.001-0.1% By adding these elements, the hot workability of the alloy is improved. Zr also has the effect of segregating at the grain boundaries and strengthening the grain boundaries. REM improves oxidation resistance in addition to hot workability. In order to obtain such an effect, it is preferable to add an amount equal to or more than the above lower limit value. If it is present excessively, the melting start temperature of the alloy is lowered and the hot workability is rather deteriorated. Therefore, it is added so as not to exceed the respective upper limit values.

Cu:0.01〜2%
前述のように、Cuを添加すると、合金の耐酸化性が増大し、バルブの耐久性を高めるから、0.01%以上の有効量を添加するとよい。ただし、添加しすぎると熱間加工性を低下させるから、2%までとする。
Cu: 0.01-2%
As described above, the addition of Cu increases the oxidation resistance of the alloy and improves the durability of the valve. Therefore, it is preferable to add an effective amount of 0.01% or more. However, if too much is added, the hot workability is lowered, so the content is limited to 2%.

表1(実施例および参考例)および表2(比較例)に示す合金組成を有するNi基合金を、50kg高周波誘導炉で溶製して、インゴットに鋳造した。比較のため用意したNi基合金は、従来排気バルブの材料として使用され、または提案されていたものであって、それぞれ下記の鋼種である。
比較例1:NCF751
比較例2:NCF80
比較例3:特許文献1の発明のNi基合金
比較例4:特許文献2の発明のNi基合金
Ni-base alloys having the alloy compositions shown in Table 1 (Examples and Reference Examples ) and Table 2 (Comparative Examples) were melted in a 50 kg high-frequency induction furnace and cast into ingots. Ni-based alloys prepared for comparison have been conventionally used or proposed as materials for exhaust valves, and are each of the following steel types.
Comparative Example 1: NCF751
Comparative Example 2: NCF80
Comparative Example 3: Ni-based alloy of the invention of Patent Document 1 Comparative Example 4: Ni-based alloy of the invention of Patent Document 2

Figure 0004830466
Figure 0004830466

Figure 0004830466
Figure 0004830466

それぞれのインゴットを鍛造および圧延して、直径16mmの丸棒とした。いずれも1050℃×1時間−水冷の固溶化処理を行なった後、750℃×4時間−空冷の時効処理を施した。得られた素材を対象に、900℃において、引張試験、回転曲げ疲労試験および400時間の連続酸化試験を行なった。それらの結果を、Ti/Al比およびAl+Ti(+Nb+Ta+V)の原子%の値とともに、表3(実施例および参考例)および表4(比較例)に示す。
Each ingot was forged and rolled into a round bar with a diameter of 16 mm. In any case, after performing a solid solution treatment of 1050 ° C. × 1 hour-water cooling, an aging treatment of 750 ° C. × 4 hours-air cooling was performed. The obtained material was subjected to a tensile test, a rotating bending fatigue test and a continuous oxidation test for 400 hours at 900 ° C. The results are shown in Table 3 (Examples and Reference Examples ) and Table 4 (Comparative Examples) together with the Ti / Al ratio and the value of atomic% of Al + Ti (+ Nb + Ta + V).

表3 試験結果 実施例および参考例

Figure 0004830466
Table 3 Test results Examples and reference examples
Figure 0004830466

Figure 0004830466
Figure 0004830466

Claims (6)

質量%で、C:0.01〜0.15%、Si:2.0%以下、Mn:1.0%以下、P:0.02%以下、S:0.01%以下、Co:0.1〜15%、Cr:15〜25%、Mo:〜10%(ただし、5%である場合を除く)およびW:0.1〜5%の1種または2種を、Mo+0.5Wで3〜10%、Al:1.0〜3.0%、Ti:2.0〜3.5%、ただし、原子%で、Al+Tiが6.3〜8.5%であって、Ti/A1比が0.4〜0.8とし、さらに質量%で、B:0.001〜0.01%、Fe:3%以下であって、残部がNiおよび不可避な不純物からなる合金組成を有する900℃での使用に耐える排気バルブ用耐熱合金。 In mass %, C: 0.01 to 0.15%, Si: 2.0% or less, Mn: 1.0% or less, P: 0.02% or less, S: 0.01% or less, Co: 0 0.1 to 15%, Cr: 15 to 25%, Mo: 5 to 10% (except for the case of 5% ) and W: 0.1 to 5%, or Mo + 0.5W 3-10%, Al: 1.0-3.0%, Ti: 2.0-3.5%, provided that atomic percent, Al + Ti is 6.3-8.5%, and Ti / A1 ratio is set to 0.4 to 0.8, and further, by mass %, B: 0.001 to 0.01%, Fe: 3% or less, and the balance is an alloy composition composed of Ni and inevitable impurities. Heat-resistant alloy for exhaust valves that can withstand use at 900 ° C. 合金が、さらに、質量%で、V:0.2〜1%、Nb:0.5〜1.5%およびTa:0.5〜1.5%の1種または2種以上を、原子%で、A1+Ti+Nb+Ta+V:6.3〜8.5%となる範囲で添加した請求項1の排気バルブ用耐熱合金。 The alloy further contains, in mass %, one or more of V: 0.2 to 1%, Nb: 0.5 to 1.5%, and Ta: 0.5 to 1.5% in atomic percent. The heat-resistant alloy for exhaust valves according to claim 1, wherein A1 + Ti + Nb + Ta + V is added in a range of 6.3 to 8.5%. 合金が、さらに、質量%で、Mg:0.001〜0.03%、Ca:0.001〜0.03%、Zr:0.001〜0.1%およびREM:0.001〜0.1%の1種または2種以上を含有する請求項1または2の排気バルブ用耐熱合金。 The alloy is further, in mass %, Mg: 0.001-0.03%, Ca: 0.001-0.03%, Zr: 0.001-0.1% and REM: 0.001-0. The heat-resistant alloy for exhaust valves according to claim 1 or 2, which contains 1% or two or more of 1%. 合金が、さらに、質量%で、Cu:0.01〜2%を含有する請求項1ないし3のいずれかの排気バルブ用耐熱合金。 The heat-resistant alloy for exhaust valves according to any one of claims 1 to 3, wherein the alloy further contains Cu: 0.01 to 2% by mass . 請求項1〜4のいずれかに記載の合金に、1000〜1200℃での熱間鍛造により軸と傘部とからなる排気バルブの形状を与え、ついで、1000〜1200℃の固溶化熱処理と、700〜950℃の時効処理とを施すことからなる排気バルブの製造方法。 The alloy according to any one of claims 1 to 4 is given a shape of an exhaust valve composed of a shaft and an umbrella by hot forging at 1000 to 1200 ° C, and then a solution heat treatment at 1000 to 1200 ° C, An exhaust valve manufacturing method comprising performing an aging treatment at 700 to 950 ° C. 請求項に記載の方法により製造した排気バルブの軸部側に、マルテンサイト系またはオーステナイト系の耐熱鋼の軸を摩擦接合して一体化することからなる排気バルブの製造方法。 A method for producing an exhaust valve, comprising: integrating a shaft of a martensitic or austenitic heat-resistant steel by friction bonding to a shaft portion side of the exhaust valve produced by the method according to claim 5 .
JP2005341574A 2005-01-19 2005-11-28 Heat-resistant alloy for exhaust valves that can withstand use at 900 ° C and exhaust valves using the alloys Active JP4830466B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005341574A JP4830466B2 (en) 2005-01-19 2005-11-28 Heat-resistant alloy for exhaust valves that can withstand use at 900 ° C and exhaust valves using the alloys
EP06000958A EP1696108B1 (en) 2005-01-19 2006-01-17 Heat resistant alloy for exhaust valves durable at 900°C and exhaust valves made for the alloy
DE602006000160T DE602006000160T2 (en) 2005-01-19 2006-01-17 Heat resistant alloy for 900oC sustainable exhaust valves and exhaust valves made from this alloy
US11/334,583 US20060157171A1 (en) 2005-01-19 2006-01-19 Heat resistant alloy for exhaust valves durable at 900°C and exhaust valves made of the alloy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005012030 2005-01-19
JP2005012030 2005-01-19
JP2005341574A JP4830466B2 (en) 2005-01-19 2005-11-28 Heat-resistant alloy for exhaust valves that can withstand use at 900 ° C and exhaust valves using the alloys

Publications (2)

Publication Number Publication Date
JP2006225756A JP2006225756A (en) 2006-08-31
JP4830466B2 true JP4830466B2 (en) 2011-12-07

Family

ID=36263922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005341574A Active JP4830466B2 (en) 2005-01-19 2005-11-28 Heat-resistant alloy for exhaust valves that can withstand use at 900 ° C and exhaust valves using the alloys

Country Status (4)

Country Link
US (1) US20060157171A1 (en)
EP (1) EP1696108B1 (en)
JP (1) JP4830466B2 (en)
DE (1) DE602006000160T2 (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4972972B2 (en) * 2006-03-22 2012-07-11 大同特殊鋼株式会社 Ni-based alloy
US7651575B2 (en) * 2006-07-07 2010-01-26 Eaton Corporation Wear resistant high temperature alloy
US10041153B2 (en) * 2008-04-10 2018-08-07 Huntington Alloys Corporation Ultra supercritical boiler header alloy and method of preparation
KR101007582B1 (en) 2008-06-16 2011-01-12 한국기계연구원 Method of heat treatment of Ni based superalloy for wave type grain-boundary and Ni based superalloy the same
FR2949234B1 (en) * 2009-08-20 2011-09-09 Aubert & Duval Sa SUPERALLIAGE NICKEL BASE AND PIECES REALIZED IN THIS SUPALLIATION
CN101906557A (en) * 2010-09-15 2010-12-08 江苏天业合金材料有限公司 Ultralow-temperature welded alloy steel and production method thereof
US10266926B2 (en) 2013-04-23 2019-04-23 General Electric Company Cast nickel-base alloys including iron
JP6393993B2 (en) * 2013-07-12 2018-09-26 大同特殊鋼株式会社 Ni-base superalloy with high temperature strength and capable of hot forging
CN103695826B (en) * 2013-12-20 2015-07-29 钢铁研究总院 The thin brilliant forging method of large size GH690 nickel-base alloy rod base
CN103789576B (en) * 2014-01-15 2016-03-02 常州大学 A kind of high grain-boundary strength nickel-base alloy and preparation method thereof
DE102014001330B4 (en) * 2014-02-04 2016-05-12 VDM Metals GmbH Curing nickel-chromium-cobalt-titanium-aluminum alloy with good wear resistance, creep resistance, corrosion resistance and processability
DE102014001329B4 (en) * 2014-02-04 2016-04-28 VDM Metals GmbH Use of a thermosetting nickel-chromium-titanium-aluminum alloy with good wear resistance, creep resistance, corrosion resistance and processability
DE102014001328B4 (en) * 2014-02-04 2016-04-21 VDM Metals GmbH Curing nickel-chromium-iron-titanium-aluminum alloy with good wear resistance, creep resistance, corrosion resistance and processability
CN103898371B (en) * 2014-02-18 2016-04-06 上海发电设备成套设计研究院 700 DEG C of grade ultra supercritical coal power station nickel base superalloys and preparation thereof
CN103924125B (en) * 2014-04-21 2016-03-23 西北工业大学 A kind of K4169 superalloy increasing zr element content
CN103938134B (en) * 2014-04-28 2015-09-30 钢铁研究总院 Improve the method for the radial homogeneity of structure of refractory alloy heavy wall extruded tube
JP5995158B2 (en) * 2014-09-29 2016-09-21 日立金属株式会社 Ni-base superalloys
CN105583251B (en) * 2014-10-24 2017-11-10 中国科学院金属研究所 A kind of forging method of big specification Inconel690 alloy bar materials
CN104451263A (en) * 2014-12-02 2015-03-25 常熟市良益金属材料有限公司 Super thermal resistant nickel-cobalt alloy
CN104764352A (en) * 2015-03-05 2015-07-08 苏州市凯业金属制品有限公司 U-shaped pipe of steam generator
CN104988357A (en) * 2015-06-17 2015-10-21 上海大学兴化特种不锈钢研究院 Nickel base alloy material for ultra-supercritical steam turbine
CN106319296A (en) * 2015-06-30 2017-01-11 比亚迪股份有限公司 Aluminum alloy and preparation method and application thereof
KR20180095557A (en) * 2015-12-18 2018-08-27 보르그워너 인코퍼레이티드 Wasted gate parts including novel alloys
JP6733210B2 (en) * 2016-02-18 2020-07-29 大同特殊鋼株式会社 Ni-based superalloy for hot forging
JP6733211B2 (en) 2016-02-18 2020-07-29 大同特殊鋼株式会社 Ni-based superalloy for hot forging
KR101836713B1 (en) * 2016-10-12 2018-03-09 현대자동차주식회사 Nickel alloy for exhaust system components
US10533240B2 (en) 2016-12-23 2020-01-14 Caterpillar Inc. High temperature alloy for casting engine valves
JP6960083B2 (en) * 2017-06-15 2021-11-05 日立金属株式会社 Heat resistant plate material
JP6821147B2 (en) * 2018-09-26 2021-01-27 日立金属株式会社 Ni-based super heat-resistant alloy for aircraft engine cases and aircraft engine cases made of this
CN110093532B (en) * 2019-06-14 2020-04-21 中国华能集团有限公司 Precipitation strengthening type nickel-based high-chromium high-temperature alloy and preparation method thereof
GB2586036B (en) * 2019-07-30 2022-06-01 Alloyed Ltd A nickel-based alloy
KR20210071623A (en) * 2019-12-06 2021-06-16 현대자동차주식회사 Preparing method of engine valve
CN116000134B (en) * 2022-12-08 2023-10-27 北京钢研高纳科技股份有限公司 GH4738 alloy cold drawn bar and preparation method and application thereof
CN116855779B (en) * 2023-07-28 2024-01-23 北京钢研高纳科技股份有限公司 Preparation method of nickel-based alloy for high temperature and nickel-based alloy for high temperature

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3907552A (en) * 1971-10-12 1975-09-23 Teledyne Inc Nickel base alloys of improved properties
US4140555A (en) * 1975-12-29 1979-02-20 Howmet Corporation Nickel-base casting superalloys
US4376650A (en) * 1981-09-08 1983-03-15 Teledyne Industries, Inc. Hot workability of an age hardenable nickle base alloy
JPS61119640A (en) * 1984-11-16 1986-06-06 Honda Motor Co Ltd Alloy for exhaust valve
JPS6293333A (en) * 1985-10-18 1987-04-28 Mitsubishi Heavy Ind Ltd Ni alloy
JPH0559472A (en) * 1991-08-28 1993-03-09 Hitachi Metals Ltd Heat resistant alloy for engine valve
JPH10219377A (en) * 1997-02-07 1998-08-18 Daido Steel Co Ltd Manufacture of high corrosion resistant valve for intake and exhaust valve for diesel engine and intake and exhaust valve
JPH1122427A (en) * 1997-07-03 1999-01-26 Daido Steel Co Ltd Manufacture of diesel engine valve
JP3671271B2 (en) * 1997-10-03 2005-07-13 大同特殊鋼株式会社 Manufacturing method of engine exhaust valve
EP1154027B1 (en) * 1999-01-28 2004-11-10 Sumitomo Electric Industries, Ltd. Heat-resistant alloy wire
US7160400B2 (en) * 1999-03-03 2007-01-09 Daido Tokushuko Kabushiki Kaisha Low thermal expansion Ni-base superalloy
JP3781402B2 (en) * 1999-03-03 2006-05-31 三菱重工業株式会社 Low thermal expansion Ni-base superalloy
KR100372482B1 (en) * 1999-06-30 2003-02-17 스미토모 긴조쿠 고교 가부시키가이샤 Heat resistant Ni base alloy
JP4382269B2 (en) * 2000-09-13 2009-12-09 日立金属株式会社 Method for producing Ni-base alloy having excellent resistance to high-temperature sulfidation corrosion
CA2396578C (en) * 2000-11-16 2005-07-12 Sumitomo Metal Industries, Ltd. Ni-base heat-resistant alloy and weld joint thereof
JP4895434B2 (en) * 2001-06-04 2012-03-14 清仁 石田 Free-cutting Ni-base heat-resistant alloy
JP4277113B2 (en) * 2002-02-27 2009-06-10 大同特殊鋼株式会社 Ni-base alloy for heat-resistant springs
JP2004256840A (en) * 2003-02-24 2004-09-16 Japan Steel Works Ltd:The COMPOSITE REINFORCED TYPE Ni BASED SUPERALLOY, AND PRODUCTION METHOD THEREFOR
US7481970B2 (en) * 2004-05-26 2009-01-27 Hitachi Metals, Ltd. Heat resistant alloy for use as material of engine valve

Also Published As

Publication number Publication date
JP2006225756A (en) 2006-08-31
DE602006000160T2 (en) 2008-07-24
EP1696108B1 (en) 2007-10-17
US20060157171A1 (en) 2006-07-20
DE602006000160D1 (en) 2007-11-29
EP1696108A1 (en) 2006-08-30

Similar Documents

Publication Publication Date Title
JP4830466B2 (en) Heat-resistant alloy for exhaust valves that can withstand use at 900 ° C and exhaust valves using the alloys
JP5302192B2 (en) Abrasion resistant heat resistant alloy
EP0384433B1 (en) Ferritic heat resisting steel having superior high-temperature strength
EP0639654B1 (en) Fe-Ni-Cr-base super alloy, engine valve and knitted mesh supporter for exhaust gas catalyzer
JP3951943B2 (en) High-strength heat-resistant alloy for exhaust valves with excellent anti-aging characteristics
JP2011219864A (en) Heat resistant steel for exhaust valve
US5660938A (en) Fe-Ni-Cr-base superalloy, engine valve and knitted mesh supporter for exhaust gas catalyzer
JP4972972B2 (en) Ni-based alloy
JP4830443B2 (en) Heat-resistant alloy for exhaust valves with excellent strength characteristics at high temperatures
US9745649B2 (en) Heat-resisting steel for exhaust valves
JP5272020B2 (en) Heat resistant steel for engine valves with excellent high temperature strength
JP3412234B2 (en) Alloy for exhaust valve
JP5011622B2 (en) Stainless cast steel with excellent heat resistance and machinability
US8741215B2 (en) Heat-resisting steel for engine valves excellent in high temperature strength
JP6738010B2 (en) Nickel-based alloy with excellent high-temperature strength and high-temperature creep properties
JP6745050B2 (en) Ni-based alloy and heat-resistant plate material using the same
JP3424314B2 (en) Heat resistant steel
JP3744084B2 (en) Heat-resistant alloy with excellent cold workability and overaging characteristics
JP4057208B2 (en) Fe-base heat-resistant alloy for engine valves with good cold workability and high-temperature strength
JP2000204449A (en) Iron base superalloy excellent in cold workability and high temperature thermal stability
JP3840762B2 (en) Heat resistant steel with excellent cold workability
JP3744083B2 (en) Heat-resistant alloy with excellent cold workability
JPH11199987A (en) Heat resistant alloy suitable for cold working
JP2015108177A (en) Nickel-based alloy
JPH0953138A (en) Diesel engine valve and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110905

R150 Certificate of patent or registration of utility model

Ref document number: 4830466

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250