JP2004277860A - Heat-resistant alloy for high-strength exhaust valve excellent in overaging resistance - Google Patents

Heat-resistant alloy for high-strength exhaust valve excellent in overaging resistance Download PDF

Info

Publication number
JP2004277860A
JP2004277860A JP2003073822A JP2003073822A JP2004277860A JP 2004277860 A JP2004277860 A JP 2004277860A JP 2003073822 A JP2003073822 A JP 2003073822A JP 2003073822 A JP2003073822 A JP 2003073822A JP 2004277860 A JP2004277860 A JP 2004277860A
Authority
JP
Japan
Prior art keywords
alloy
less
strength
heat
exhaust valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003073822A
Other languages
Japanese (ja)
Other versions
JP3951943B2 (en
Inventor
Katsuhiko Tominaga
克彦 富永
Shoichi Nakatani
庄一 中谷
Katsuaki Sato
克明 佐藤
Shigenori Ueda
茂紀 植田
Toshiharu Noda
俊治 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Daido Steel Co Ltd
Original Assignee
Honda Motor Co Ltd
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Daido Steel Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003073822A priority Critical patent/JP3951943B2/en
Priority to EP04006427A priority patent/EP1464718A1/en
Priority to US10/803,054 priority patent/US20040184946A1/en
Publication of JP2004277860A publication Critical patent/JP2004277860A/en
Application granted granted Critical
Publication of JP3951943B2 publication Critical patent/JP3951943B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat-resistant alloy for exhaust valves which has a Ni content restricted to at most 62% from the viewpoint of material cost, secures strength equal to or higher than that of a conventional alloy, and retains the strength after high-temperature long-term use. <P>SOLUTION: The heat resistant alloy contains, by wt.%, 0.01-0.2% C, ≤1% Si, ≤1% Mn, ≤0.02% P, ≤0.01% S, 30-62% Ni, 13-20% Cr, 0.01-3.0% W, ≥0.7% and less than 1.6% Al, 1.5-3.0% Ti, 0.5-1.5% Nb, 0.001-0.01% B, and the balance substantially being Fe and inevitable impurities, provided %Ti/%Al is 1.6 or higher but lower than 2.0. The alloy may further contain (I) ≤2.0% Mo (in this case, Mo+0.5W is 1.0-2.5%), (II) at least either 0.001-0.03% Mg or 0.001-0.03% Ca, (III) 0.001-0.1% Zr, (IV) ≤2.0% Cu, and (5) 0.05-1.0% V. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、自動車エンジンなどのエンジンの排気バルブ用材料として好適な、耐過時効特性にすぐれた高強度の排気バルブ用耐熱合金に関する。この合金は、排気ガス浄化触媒用メッシュの材料としても好適であり、「排気バルブ用」は主たる用途を示すものとして、限定的に解すべきでない。
【0002】
【従来の技術】
エンジンの排気バルブ用材料には、以前は耐熱鋼SUH35が広く用いられて来た。ところが、近年の排気ガス規制などからバルブへの負荷が大きくなり、SUH35では強度が不足することがあるので、より高い強度をもつバルブ材料が求められるようになった。そこで、NCF751のようなNi基合金が選択されるようになったが、Ni基合金は高価であるから、高級車でなければ、使用することは困難であった。バルブ材料の価格を低廉にするため、Ni量を減らした種々の合金が開発されている。
【0003】
出願人は、多年バルブ用材料の開発を続け、種々の合金や、その熱処理技術を開示してきた。その歴史を概観すれば、まず、特開昭56−20148は、C:0.01〜0.20%、Si:2.0%以下、Ni:25〜50%,Cr:13〜23%,Ti:1.5〜3.5%およびAl:0.1〜1.5%を含有し、残余が実質的にFeからなる排気バルブ用合金が挙げられる。この合金は、溶体化および時効処理によりオーステナイト基地中にγ’相Ni(Al,Ti)を析出させて、高温強度および耐食性を確保したものである。TiおよびAlの含有量の範囲は広いが、実施データではTi/Al比が2.8〜7.8と高めであったため、γ’相が不安定になり、η相が析出していた。
【0004】
この点を改良した特開昭58−34129は、上記の合金であってTi/Al比を2.0以上に選んだものに対して、700〜975℃における予備熱処理、975℃以下の温度における熱間加工、および975℃以下の温度における固溶化および時効処理を行なうことを内容とし、すぐれた高温特性ことに引張強度と疲労強度とを実現したものである。
【0005】
特開昭60−13020もバルブ合金の熱処理方法を対象とし、γ’相が析出するFe−Ni基合金を、再結晶温度以上の高温で均質化したのち、再結晶温度以下の温度で加工歪みを与え、時効硬化処理して、γ’相の粒内析出を促進するとともに、粒界におけるη相NiTiの析出を抑制するようにしたことが特徴である。これに続き特開昭60−13050は、上記のFe−Ni基合金において、強度および切り欠き感受性にとって有害なη相の析出を、適量のB(0.001〜0.05%)およびAl(0.1〜0.7%)の添加によって防止した発明である。
【0006】
特開昭60−46343は、C:0.01〜0.15%、Si:2.0%以下、Mn:2.5%以下、Ni:35〜65%、Cr:15〜25%、Mo:0.5〜3.0%,Nb:0.3〜3.0%,Ti:2.0〜3.5%、Al:0.2〜1.5%およびB:0.001〜0.020%を基本合金成分とし、Mg,CaおよびREMの1種を適量含有し、残余が実質的にFeからなる排気バルブ用合金を開示している。この材料は、比較的高合金であるが、それに伴って高温強度や耐食性が高く、熱間加工性がすぐれていることが利点である。
【0007】
特開昭60−162760は、前記の特開昭60−13020の系譜にある技術であって、C:0.01〜0.20%、Cr:13〜23%、Ti:1.5〜3.5%、Al:0.1〜4.5%で(Ti+Al):2.0%以上を基本合金成分とするNi基合金を、γ’相の固溶温度以上の温度で均熱したのち、再結晶温度以下20%以上の加工によって加工硬化させ、ついで600〜850℃で時効硬化させることを特徴とする。この製造法により得られる製品は、高強度かつ高靱性である。
【0008】
一方、特開昭60−211028は、高温耐食性とくにPbO+PbSO耐性にすぐれた排気バルブ用合金として、C:0.01〜0.15%、Si:2.0%以下、Mn:2.5%以下、Ni:53〜65%、Cr:15〜25%、Nb:0.3〜3.0%,Ti:2.0〜3.5%、Al:0.1〜1.5%、B:0.001〜0.020%、残部が実質的にFeからなる組成を提案している。
【0009】
特開昭61−119640は、高温強度をいっそう高め、かつ熱間加工性がよいNi基耐熱合金を開示したもので、その合金の組成は、C:0.01〜0.15%、Si:2.0%以下、Mn:2.5%以下、Cr:15〜25%、Mo+1/2W:0.5〜5.0%、Ti:1.5〜3.5%、Al:0.5〜2.5%、B:0.001〜0.020%、Fe:5%以下、残部が実質的にNiからなる。
【0010】
上記のほか、排気バルブ用合金に関して、特開昭58−34129、特開平7−109539、特開平7−216482、特開平9−279309および特開平11−229059が知られている。これらのうちで、特開昭58−34129および特開平7−216482は、Niバランスが依然として高価な側にあって、低廉化が不十分である。特開平7−109539は、Ni量を最大49%に抑えたので、低廉化は実現したが、熱間加工性が低いという点で、十分満足できるものではない。その理由は、Al量が高いことにあると考えられる。特開平9−279309は、強度は高いものの、高い強度の発揮は短時間に止まり、高温で長時間使用したときの強度低下が著しく、耐過時効性において劣っている。特開平11−229059もまた、Al添加量が高いためか、熱間加工性がよくないのが弱点である。
【0011】
【発明が解決しようとする課題】
本発明の目的は、排気バルブ用耐熱合金において、材料コストの面からの制約としてNi量を最大で62%に制限し、強度を従来のNi基の排気バルブ合金に比べて同等以上のレベルに確保し、かつ、高温で長時間使用したのちも、その強度が保持されているものを提供することにある。
【0012】
【課題を解決するための手段】
上記の目的を達成する本発明の耐過時効特性にすぐれた高強度の排気バルブ用耐熱合金は、重量%で、C:0.01〜0.2%、Si:1%以下、Mn:1%以下、P:0.02%以下、S:0.01%以下、Ni:30〜62%、Cr:13〜20%、W:0.01〜3.0%、Al:0.7%以上1.6%未満、Ti:1.5〜3.0%、Nb:0.5〜1.5%およびB:0.001〜0.01%を含有し、ただし、%Ti/%A1:1.6以上2.0未満であって、残部が実質的にFeおよび不可避的不純物からなる合金組成を有する。
【0013】
【発明の実施形態】
本発明の排気バルブ用耐熱合金は、上記した基本的な合金成分に加えて、下記の5個のグループに属する成分を、1種または2種以上、任意に添加することができる。
I)Mo:2.0%以下(ただし、Mo+0.5W:1.0〜2.5%)
II)Mg:0.001〜0.03%およびCa:0.001〜0.03%の1種または2種
III)Zr:0.001〜0.1%
IV)Cu:2.0%以下
V)V:0.05〜1.0%
【0014】
本発明の排気バルブ用耐熱合金を構成する合金成分の作用と、組成範囲を上記のように限定した理由を、必須成分および任意成分の両方について示せば、つぎのとおりである。
【0015】
C:0.01〜0.2%
Cは、CrおよびTi、Nb、Taと結合して炭化物を形成することにより、母材の高温強度を高める。この効果を得るためには、0.01%以上のCの存在が必要であるが、多すぎると炭化物の生成量が多くなりすぎて、熱間・冷間の加工性を悪くし、靭延性が低下するので、0.2%を上限とした。
【0016】
Si:1.0%以下
Siは溶解精練時の脱酸剤として添加される元素であり、脱酸剤として効果がある程度の少量の添加は問題ないが、多量に添加すると靭性も加工性も低下するから1.0%以下に止める。
【0017】
Mn:1.0%以下
Mnも、Siと同様、脱酸剤として作用する。必要に応じて添加してよいが、多量に添加すると加工性および高温酸化性を損なうから、やはり1.0%以下の添加量を選ぶ。
【0018】
Ni:30〜62%
Niは、マトリックスをオーステナイトにする元素であり、耐熱性および耐食性を確保するために、また析出強化相のγ’を形成する上でも、合金にとって重要な成分である。Ni量が30%未満では、強度および相安定性が不足し、熱間加工性も低い。多量の添加はコスト増加を招くため、前述のように、あらかじめ上限値を62%と定めた。合金の性能とコストのバランスからみて好適な範囲は30〜54%、より好ましい範囲は35〜54%である。
【0019】
Niは、その一部、5%までをCoで置き換えることができる。Coで置き換えることにより、クリープ強度を高める効果が得られる。しかし、CoはNiよりも高価であり、多量の添加は、コスト高を招いて低廉化の意図に反するだけでなく、γ’の相安定性を低下させる点で好ましくない。
【0020】
Cr:13〜20%
Crは、合金の耐熱性を確保するのに必要な元素であり、少なくとも13%の存在が必要である。しかし、20%を超えて添加すると、σ相が析出して靭性が低下するとともに高温強度が低下する。好ましくは18%以下である。
【0021】
Al:0.7%以上1.6%未満
AlはNiと結合してγ’相を形成する点で重要な元素である。0.7%未満であるとγ’相の析出が不十分で、高温強度の確保ができず、1.6%以上になると熱間加工性が低下する。
【0022】
Ti:1.5〜3.0%
TiはAl,Nb,TaとともにNiと結合して、高温強度を向上させるのに有効なγ’相を形成する。その含有量が1.5%未満であると、γ’の固溶温度が低下し、十分な高温強度が得られない。一方、3.0%を超えて過剰に添加すると、加工性が低下する上、η相(NiTi)が析出しやすくなり、高温強度および靭性が低下する。
【0023】
W:0.01〜3.0%
Wは、固溶強化により合金の高温強度を向上させる作用があり、その効果を発揮させるために、0.01%以上の適量を添加するとよい。添加しすぎると、コストの上昇と加工性の低下を招くから、3.0%という限度内の添加量を選ぶ。
【0024】
Mo:2.0%以下、ただし、Mo+0.5W:1.0〜2.5%
MoもWと同様に、固溶強化により合金の高温強度を向上させる作用があり、適量を添加するとよい。よく知られているように、MoとWとを併用する場合には、Mo当量すなわち(Mo+0.5W)の値が問題であり、上記の効果を確実に得るためには、Mo当量にして1.0%以上を添加することが好ましい。Moもまた高価であって、多量の添加はコストの上昇を招き、加工性を低下させるから、2.0%以内の添加量を選ぶ。Mo当量としての上限は、2.5%である。
【0025】
Nb:0.5〜1.5%、好ましくは0.6〜1.5%
Nbはγ’相形成元素であり、γ’の形成により、合金の強度を一層高める作用をする。この効果を得るためには0.5%以上、なるべくは0.6%以上のNbを添加する必要がある。一方で、過剰な添加は、靭性を低下させるから避けるべきであって、1.5%が、この理由にもとづく上限である。Nbの一部は、同じ作用をするTaで置き換えることができる。それゆえ、上記のNb量の範囲は、Nb+Taのそれとして理解すべきである。
【0026】
B:0.001〜0.01%
Bは、熱間加工性の改善に寄与するとともに、η相の生成を抑制して高温強度および靭性の低下を防止し、さらに高温クリープ強度を高めるはたらきがある。この効果は、0.001%という少量の添加で得られるが、0.01%を超える添加は過剰であって、母材の融点を下げて熱間加工性を損う。
【0027】
%Ti/%Al:1.6以上2.0未満
この種の合金の強度は、γ’を均一微細に析出させることによる時効硬化がもたらすものである。このときに析出するγ’の量とその相安定性は、Ti/A1比によって支配されることがわかった。すなわち、この値が2.0以上になるとγ’が不安定になり、η相が析出してきて強度が低下してしまう。これが過時効の現象である。η相の析出を避け、耐過時効性を得るには、この比を2.0未満に止めなければならない。一方、この比が低すぎて、1.6を下回るようになると、合金の初期強度が低くて好ましくない。
【0028】
P:0.02%以下、S:0.01%以下
この合金はNi量を制限したため、熱間加工可能な範囲が狭い。したがって、できるだけ熱間加工性が高まる方向に合金設計すべきである。PもSも不可避的不純物であるが、ともに熱間加工性を悪くする元素であるから、その存在量は低いほどよい。上記の数値は、どちらも許容限度である。
【0029】
Mg:0.001〜0.03%およびCa:0.001〜0.03%の1種または2種
MgおよびCaは、脱酸・脱硫作用を有する元素であり、鋼の清浄度を高め、また粒界に偏析して粒界を強化する。こうした効果は、どちらも0.001%という少量の添加で得られ、一方で、多量の添加は熱間加工性を低下させるから、どちらも0.03%を上限とした。
【0030】
Zr:0.001〜0.1%
Zrは、Bと同様に、クリープ強度を高める作用があり、0.001%以上の添加で有効である。0.1%を超える添加量は、靭性の低下を招く。
【0031】
Cu:2.0%以下
ディーゼルエンジンでは、燃料に含まれるSに起因する硫酸腐食が問題になることがある。Cuの存在は、この硫酸腐食への耐性を与える点で、バルブの用途によっては有意義である。そのほか、耐酸化性の向上にも寄与する。添加しすぎると熱間加工性が低下するから、2.0%以内の添加量を選択する。
【0032】
V:0.05〜1.0%
Vは、MoやW同様に、固溶強化元素として有効である。また、MC型炭化物を形成し、炭化物を安定化させる効果もある。そこで、0.05%以上を添加するとよい。1.0%を超える過剰な添加は、靭性を低下させる。
【0033】
【実施例】
表1(実施例)および表2(比較例)に示す合金組成の排気バルブ用耐熱合金を、50kg高周波誘導炉で溶製したのち鋳造した。比較合金1および2は、前掲の特開昭60−46343および特開昭60−211028の材料、比較合金3は特開昭58−34129の材料、そして比較合金4は特開平9−279309の材料である。得られたインゴットを鍛造および圧延して、直径16mmの丸棒に加工した。それぞれの丸棒に対し、1050℃×1時間→水冷の固溶化処理および750℃×4時間→空冷の時効処理を施した。
【0034】
得られた素材を用いて、常温引張試験、高温高速引張試験、ロックウェル硬さ測定、高温引張試験、および回転曲げ疲労試験を行なって、表3(実施例)および表4(比較例)の結果を得た。試験方法は、つぎのとおりである。
[常温引張試験]
JIS Z 2241の方法に従った。
[高温高速引張試験]
800〜1250℃の温度域において、50℃間隔で、引張速度50mm/secで実施した。熱間加工性の目安として、60%以上の絞りが得られる温度の幅を記録した。
【0035】
別に、800℃×400時間→空冷の時効処理を施した素材を用いて、ロックウェル硬さ測定および回転曲げ疲労試験を行なった。その結果を表5(実施例)および表6(比較例)に示す。
【0036】

Figure 2004277860
【0037】
Figure 2004277860
【0038】
表3 成績1(実施例)
Figure 2004277860
【0039】
表4 成績1(比較例)
Figure 2004277860
【0040】
表5 成績2(実施例)
Figure 2004277860
【0041】
表6 成績2(比較例)
Figure 2004277860
【0042】
表3〜6に掲げた成績をみると、本発明に従った実施例A〜Hは、試験した諸特性がいずれも良好で、好ましいバランスをもって実現しているのに対し、本発明の範囲外の比較例1〜5は、なんらかの問題を含んでいる。比較例1は、高温における加工性がよくない。比較例2は、Ti/Alの比が低いにもかかわらず初期強度(常温強度)が高く、その理由はMo当量が高いことにあるが、その代り、硬さが高すぎ、熱間の加工性が低い。比較例3は、熱間の加工性が低い。比較例4は、疲労強度が不足である。比較例5は、硬さが足りず初期強度が低い。
【0043】
排気バルブ用材料の実用上の特性としては、鍛造の容易さが重要である。具体的には、鍛造可能な温度の幅が広いことであって、高温高速引張試験で絞り60%以上を与える温度の幅が250℃以上あることが要求される。この温度幅をみると、本発明の実施例では250〜300℃あるのに対し、比較例はそれより狭い。比較例2がとくに狭い(175℃)のは、Mo当量が3.5%と高いためである。温度幅250℃以上の条件を満たす比較例4は、上に指摘したとおり、強度が不足である。
【0044】
【発明の効果】
本発明の排気バルブ用耐熱合金は、Ni量をあらかじめ最大62%と限定したことによって、価格が安く製造できる。それにもかかわらず、上記した実施例のデータが示すとおり、同じ、またはより多量のNiを含有する従来合金より、高い強度をもっている。先行技術における過時効が生じやすいという問題は、本発明でTi/Al比を低い領域に選んだ結果、解消した。熱間加工性がよい点も、本発明の合金の特徴である。これは、Mo+0.5Wの値を低めに抑えることができ、したがって加工性に有利なFe量を高くすることができた合金組成により与えられたものである。
【0045】
はじめにことわったとおり、この合金はガソリンエンジンやディーゼルエンジンの排気バルブ用材料として好適なものであるが、同様な物性、すなわち熱間加工性、耐過時効性および高強度を必要とする種々の用途にとっても有用な材料である。[0001]
[Industrial applications]
The present invention relates to a high-strength heat-resistant alloy for an exhaust valve having excellent overaging resistance, which is suitable as a material for an exhaust valve of an engine such as an automobile engine. This alloy is also suitable as a material for a mesh for an exhaust gas purifying catalyst, and "for exhaust valves" should not be construed as limiting as it indicates a main use.
[0002]
[Prior art]
Previously, heat-resistant steel SUH35 has been widely used as a material for an exhaust valve of an engine. However, the load on the valve has increased due to recent exhaust gas regulations and the like, and the strength of the SUH35 may be insufficient. Therefore, a valve material having higher strength has been required. Therefore, a Ni-based alloy such as NCF751 has been selected. However, since the Ni-based alloy is expensive, it is difficult to use it unless it is a luxury car. In order to reduce the price of the valve material, various alloys with a reduced amount of Ni have been developed.
[0003]
Applicants have been developing valve materials for many years and have disclosed various alloys and their heat treatment techniques. An overview of the history is as follows. First, JP-A-56-20148 discloses that C: 0.01 to 0.20%, Si: 2.0% or less, Ni: 25 to 50%, Cr: 13 to 23%, An exhaust valve alloy containing Ti: 1.5 to 3.5% and Al: 0.1 to 1.5%, with the balance being substantially Fe, may be mentioned. In this alloy, γ′-phase Ni 3 (Al, Ti) is precipitated in an austenite matrix by solution treatment and aging treatment to ensure high-temperature strength and corrosion resistance. Although the ranges of the contents of Ti and Al are wide, the Ti / Al ratio was as high as 2.8 to 7.8 in the practical data, so that the γ 'phase became unstable and the η phase was precipitated.
[0004]
Japanese Patent Application Laid-Open No. 58-34129 which improves this point discloses a pre-heat treatment at 700 to 975 ° C. and a pre-heat treatment at a temperature of 975 ° C. or less for the above alloys having a Ti / Al ratio of 2.0 or more. The subject of the present invention is to carry out hot working and solution treatment and aging treatment at a temperature of 975 ° C. or lower, and realize tensile strength and fatigue strength in addition to excellent high-temperature characteristics.
[0005]
JP-A-60-13020 is also directed to a heat treatment method for a valve alloy, in which a Fe-Ni-based alloy in which a γ 'phase is precipitated is homogenized at a temperature higher than a recrystallization temperature and then deformed at a temperature lower than the recrystallization temperature. Aging hardening treatment to promote the intragranular precipitation of the γ ′ phase and to suppress the precipitation of the η phase Ni 3 Ti at the grain boundaries. Subsequently, Japanese Patent Application Laid-Open No. 60-13050 discloses that the precipitation of the η phase, which is harmful to the strength and the notch sensitivity in the above-mentioned Fe-Ni-based alloy, is reduced by using appropriate amounts of B (0.001 to 0.05%) and Al ( (0.1-0.7%).
[0006]
JP-A-60-46343 discloses that C: 0.01 to 0.15%, Si: 2.0% or less, Mn: 2.5% or less, Ni: 35 to 65%, Cr: 15 to 25%, Mo : 0.5 to 3.0%, Nb: 0.3 to 3.0%, Ti: 2.0 to 3.5%, Al: 0.2 to 1.5%, and B: 0.001 to 0 Disclosed is an exhaust valve alloy containing 0.020% as a basic alloying component, containing an appropriate amount of one of Mg, Ca and REM, and substantially consisting of Fe. Although this material is a relatively high alloy, it is advantageous that it has high high-temperature strength and corrosion resistance and excellent hot workability.
[0007]
JP-A-60-162760 is a technology in the genealogy of JP-A-60-13020, wherein C: 0.01 to 0.20%, Cr: 13 to 23%, Ti: 1.5 to 3%. A Ni-based alloy containing 0.5%, Al: 0.1-4.5% and (Ti + Al): 2.0% or more as a basic alloy component is soaked at a temperature equal to or higher than the solid solution temperature of the γ 'phase. Work hardening by working at a recrystallization temperature of 20% or less, and then age hardening at 600 to 850 ° C. The product obtained by this manufacturing method has high strength and high toughness.
[0008]
On the other hand, JP-60-211028, as the alloy for exhaust valve having excellent high temperature corrosion resistance and country PbO + PbSO 4 resistance, C: 0.01~0.15%, Si: 2.0% or less, Mn: 2.5% Hereinafter, Ni: 53 to 65%, Cr: 15 to 25%, Nb: 0.3 to 3.0%, Ti: 2.0 to 3.5%, Al: 0.1 to 1.5%, B : 0.001 to 0.020%, with the balance being substantially composed of Fe.
[0009]
Japanese Patent Application Laid-Open No. 61-119640 discloses a Ni-base heat-resistant alloy which further enhances high-temperature strength and has good hot workability. The composition of the alloy is as follows: C: 0.01 to 0.15%, Si: 2.0% or less, Mn: 2.5% or less, Cr: 15 to 25%, Mo + 1 / 2W: 0.5 to 5.0%, Ti: 1.5 to 3.5%, Al: 0.5 2.5%, B: 0.001 to 0.020%, Fe: 5% or less, the balance substantially consisting of Ni.
[0010]
In addition to the above, regarding exhaust valve alloys, JP-A-58-34129, JP-A-7-109439, JP-A-7-216482, JP-A-9-279309 and JP-A-11-229059 are known. Of these, Japanese Patent Application Laid-Open Nos. 58-34129 and 7-216482 disclose that the Ni balance is still expensive and the cost reduction is insufficient. Japanese Patent Application Laid-Open No. 7-109539 reduced the amount of Ni to a maximum of 49%, and thus realized a reduction in cost. However, it is not satisfactory in terms of low hot workability. It is considered that the reason is that the amount of Al is high. Japanese Patent Application Laid-Open No. 9-279309 has a high strength, but exhibits a high strength only in a short time, shows a marked decrease in strength when used at a high temperature for a long time, and is inferior in overaging resistance. Japanese Patent Application Laid-Open No. 11-229059 also has a weak point that the hot workability is not good, probably because of the high amount of Al added.
[0011]
[Problems to be solved by the invention]
An object of the present invention is to limit the Ni content to a maximum of 62% as a restriction in terms of material cost in a heat-resistant alloy for an exhaust valve, and to achieve a strength equal to or higher than that of a conventional Ni-based exhaust valve alloy. It is an object of the present invention to provide a material which secures and maintains its strength even after being used at a high temperature for a long time.
[0012]
[Means for Solving the Problems]
The high-strength heat-resistant alloy for exhaust valves of the present invention, which achieves the above object and has excellent overaging resistance, is expressed in terms of% by weight: C: 0.01 to 0.2%, Si: 1% or less, Mn: 1%. %, P: 0.02% or less, S: 0.01% or less, Ni: 30 to 62%, Cr: 13 to 20%, W: 0.01 to 3.0%, Al: 0.7% Contains less than 1.6%, Ti: 1.5 to 3.0%, Nb: 0.5 to 1.5%, and B: 0.001 to 0.01%, provided that% Ti /% A1 : 1.6 or more and less than 2.0, and the balance has an alloy composition substantially composed of Fe and inevitable impurities.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In the heat-resistant alloy for an exhaust valve of the present invention, one or more kinds of components belonging to the following five groups can be arbitrarily added in addition to the above basic alloy components.
I) Mo: 2.0% or less (however, Mo + 0.5W: 1.0 to 2.5%)
II) One or two of Mg: 0.001 to 0.03% and Ca: 0.001 to 0.03% III) Zr: 0.001 to 0.1%
IV) Cu: 2.0% or less V) V: 0.05-1.0%
[0014]
The effects of the alloy components constituting the heat-resistant alloy for an exhaust valve of the present invention and the reasons for limiting the composition range as described above will be described below for both the essential components and the optional components.
[0015]
C: 0.01-0.2%
C combines with Cr and Ti, Nb, and Ta to form carbides, thereby increasing the high-temperature strength of the base material. In order to obtain this effect, the presence of C of 0.01% or more is necessary. However, if it is too large, the amount of carbide formed becomes too large, thereby deteriorating the hot and cold workability and deteriorating the toughness and ductility. , The upper limit was made 0.2%.
[0016]
Si: 1.0% or less Si is an element added as a deoxidizing agent at the time of dissolving and refining. There is no problem in adding a small amount of the effect as a deoxidizing agent to a certain extent, but adding a large amount lowers toughness and workability. To 1.0% or less.
[0017]
Mn: 1.0% or less Mn also acts as a deoxidizing agent like Si. It may be added as needed, but if it is added in a large amount, the workability and the high-temperature oxidation property are impaired.
[0018]
Ni: 30 to 62%
Ni is an element that makes the matrix austenite, and is an important component for the alloy in order to ensure heat resistance and corrosion resistance and also in forming γ ′ of the precipitation strengthening phase. If the Ni content is less than 30%, strength and phase stability are insufficient, and hot workability is also low. Since the addition of a large amount leads to an increase in cost, the upper limit is previously set to 62% as described above. From the viewpoint of the balance between the performance and the cost of the alloy, a preferable range is 30 to 54%, and a more preferable range is 35 to 54%.
[0019]
Ni can be partially replaced with Co by up to 5%. By replacing with Co, an effect of increasing the creep strength can be obtained. However, Co is more expensive than Ni, and the addition of a large amount is not preferable because it not only increases the cost and contradicts the intention of reducing the cost, but also lowers the phase stability of γ ′.
[0020]
Cr: 13-20%
Cr is an element necessary for securing the heat resistance of the alloy, and it needs to be present in at least 13%. However, if it is added in excess of 20%, the σ phase precipitates, lowering the toughness and lowering the high-temperature strength. Preferably it is 18% or less.
[0021]
Al: 0.7% or more and less than 1.6% Al is an important element in that it combines with Ni to form a γ 'phase. If it is less than 0.7%, the precipitation of the γ 'phase is insufficient, and high-temperature strength cannot be ensured. If it exceeds 1.6%, hot workability deteriorates.
[0022]
Ti: 1.5 to 3.0%
Ti, together with Al, Nb, and Ta, combines with Ni to form a γ 'phase that is effective for improving high-temperature strength. If the content is less than 1.5%, the solid solution temperature of γ ′ decreases, and sufficient high-temperature strength cannot be obtained. On the other hand, if it is added in excess of 3.0%, the workability is reduced and the η phase (Ni 3 Ti) is more likely to precipitate, and the high-temperature strength and toughness are reduced.
[0023]
W: 0.01 to 3.0%
W has an effect of improving the high-temperature strength of the alloy by solid solution strengthening, and in order to exhibit the effect, it is preferable to add an appropriate amount of 0.01% or more. If added too much, the cost is increased and the workability is reduced. Therefore, the addition amount is selected within the limit of 3.0%.
[0024]
Mo: 2.0% or less, provided that Mo + 0.5W: 1.0 to 2.5%
Mo also has the effect of improving the high-temperature strength of the alloy by solid solution strengthening similarly to W, and it is preferable to add an appropriate amount. As is well known, when Mo and W are used together, the Mo equivalent, that is, the value of (Mo + 0.5 W) is a problem, and in order to surely obtain the above-mentioned effect, the Mo equivalent is 1%. It is preferable to add 0.0% or more. Mo is also expensive, and a large amount of Mo causes an increase in cost and lowers workability. The upper limit as Mo equivalent is 2.5%.
[0025]
Nb: 0.5 to 1.5%, preferably 0.6 to 1.5%
Nb is a γ ′ phase-forming element, and acts to further increase the strength of the alloy by forming γ ′. To obtain this effect, it is necessary to add 0.5% or more, preferably 0.6% or more of Nb. On the other hand, excessive addition should be avoided because it lowers toughness, and 1.5% is the upper limit based on this reason. Part of Nb can be replaced by Ta, which has the same effect. Therefore, the above range of Nb amount should be understood as that of Nb + Ta.
[0026]
B: 0.001 to 0.01%
B contributes to the improvement of hot workability, and at the same time, has a function of suppressing the formation of the η phase, preventing a decrease in high-temperature strength and toughness, and further increasing a high-temperature creep strength. This effect can be obtained with a small addition of 0.001%, but the addition exceeding 0.01% is excessive and lowers the melting point of the base material to deteriorate hot workability.
[0027]
% Ti /% Al: 1.6 or more and less than 2.0 The strength of this type of alloy is due to age hardening due to uniform and fine precipitation of γ '. It has been found that the amount of γ ′ precipitated at this time and its phase stability are governed by the Ti / A1 ratio. That is, when this value is 2.0 or more, γ ′ becomes unstable, and the η phase is precipitated, and the strength is reduced. This is the phenomenon of overaging. This ratio must be kept below 2.0 to avoid precipitation of the η phase and to obtain overage resistance. On the other hand, if this ratio is too low and falls below 1.6, the initial strength of the alloy is undesirably low.
[0028]
P: 0.02% or less, S: 0.01% or less This alloy has a limited Ni content, and thus has a narrow range in which hot working is possible. Therefore, the alloy should be designed so that the hot workability is enhanced as much as possible. Although both P and S are unavoidable impurities, since both are elements that deteriorate hot workability, the lower the abundance, the better. Both of the above values are acceptable limits.
[0029]
Mg or Ca of 0.001 to 0.03% and Ca: 0.001 to 0.03% is an element having a deoxidizing and desulfurizing effect, and increases the cleanliness of steel. In addition, segregation at the grain boundaries strengthens the grain boundaries. Both of these effects can be obtained with a small addition of 0.001%. On the other hand, a large addition lowers the hot workability.
[0030]
Zr: 0.001-0.1%
Zr, like B, has the effect of increasing the creep strength, and is effective when added at 0.001% or more. An addition amount exceeding 0.1% causes a decrease in toughness.
[0031]
Cu: 2.0% or less In a diesel engine, sulfuric acid corrosion caused by S contained in fuel may be a problem. The presence of Cu is significant in some valve applications in providing resistance to this sulfuric acid corrosion. In addition, it contributes to improvement of oxidation resistance. If it is added too much, the hot workability decreases, so an addition amount of 2.0% or less is selected.
[0032]
V: 0.05-1.0%
V, like Mo and W, is effective as a solid solution strengthening element. It also has the effect of forming MC type carbide and stabilizing the carbide. Therefore, it is preferable to add 0.05% or more. Excessive addition exceeding 1.0% decreases toughness.
[0033]
【Example】
A heat-resistant alloy for an exhaust valve having an alloy composition shown in Table 1 (Example) and Table 2 (Comparative Example) was melted in a 50 kg high-frequency induction furnace and then cast. Comparative alloys 1 and 2 are the materials disclosed in JP-A-60-46343 and JP-A-60-211028, comparative alloy 3 is the material disclosed in JP-A-58-34129, and comparative alloy 4 is the material disclosed in JP-A-9-279309. It is. The obtained ingot was forged and rolled to be processed into a round bar having a diameter of 16 mm. Each round bar was subjected to a solution treatment of 1050 ° C. × 1 hour → water cooling and an aging treatment of 750 ° C. × 4 hours → air cooling.
[0034]
Using the obtained material, a room-temperature tensile test, a high-temperature high-speed tensile test, a Rockwell hardness measurement, a high-temperature tensile test, and a rotary bending fatigue test were performed, and the results shown in Table 3 (Example) and Table 4 (Comparative Example) were obtained. The result was obtained. The test method is as follows.
[Temperature test at room temperature]
The method of JIS Z 2241 was followed.
[High-temperature high-speed tensile test]
In a temperature range of 800 to 1250 ° C., the test was performed at 50 ° C. intervals and at a tensile speed of 50 mm / sec. As a measure of hot workability, the temperature range at which a reduction of 60% or more was obtained was recorded.
[0035]
Separately, a material subjected to aging treatment of 800 ° C. × 400 hours → air cooling was subjected to Rockwell hardness measurement and rotational bending fatigue test. The results are shown in Table 5 (Example) and Table 6 (Comparative Example).
[0036]
Figure 2004277860
[0037]
Figure 2004277860
[0038]
Table 3 Grade 1 (Example)
Figure 2004277860
[0039]
Table 4 Grade 1 (Comparative example)
Figure 2004277860
[0040]
Table 5 Grade 2 (Example)
Figure 2004277860
[0041]
Table 6 Grade 2 (Comparative example)
Figure 2004277860
[0042]
As can be seen from the results shown in Tables 3 to 6, Examples A to H according to the present invention were all excellent in the tested properties and realized with a favorable balance, but were outside the scope of the present invention. Comparative Examples 1 to 5 have some problems. Comparative Example 1 has poor workability at high temperatures. In Comparative Example 2, the initial strength (room temperature strength) was high despite the low Ti / Al ratio, which was due to the high Mo equivalent. Poor. Comparative Example 3 has low hot workability. Comparative Example 4 is insufficient in fatigue strength. Comparative Example 5 is insufficient in hardness and low in initial strength.
[0043]
As a practical characteristic of the exhaust valve material, ease of forging is important. Specifically, it is required that the temperature range in which forging can be performed is wide, and that the temperature range in which high-speed high-speed tensile test provides 60% or more of drawing is 250 ° C. or more. Looking at this temperature range, the temperature of the embodiment of the present invention is 250 to 300 ° C., whereas that of the comparative example is narrower. The reason why Comparative Example 2 is particularly narrow (175 ° C.) is that the Mo equivalent is as high as 3.5%. Comparative Example 4, which satisfies the condition of a temperature width of 250 ° C. or more, has insufficient strength as indicated above.
[0044]
【The invention's effect】
The heat-resistant alloy for an exhaust valve according to the present invention can be manufactured at a low price by limiting the amount of Ni in advance to a maximum of 62%. Nevertheless, as the data of the above examples show, they have higher strength than conventional alloys containing the same or higher amounts of Ni. The problem of the prior art that overaging is likely to occur has been resolved as a result of selecting a low Ti / Al ratio in the present invention. The good hot workability is also a feature of the alloy of the present invention. This is given by the alloy composition that allowed the value of Mo + 0.5W to be kept low and thus increased the Fe content, which is advantageous for workability.
[0045]
As mentioned earlier, this alloy is suitable as a material for exhaust valves of gasoline engines and diesel engines, but for various applications that require similar physical properties, namely hot workability, overage resistance and high strength. It is also a useful material for

Claims (7)

重量%で、C:0.01〜0.2%、Si:1%以下、Mn:1%以下、Ni:30〜62%、Cr:13〜20%、W:0.01〜3.0%、Al:0.7%以上1.6%未満、Ti:1.5〜3.0%、(ただし、%Ti/%A1:1.6以上2.0未満)、Nb:0.5〜1.5%、およびB:0.001〜0.01%を含有し、P:0.02%以下、S:0.01%以下であって、残部が実質的にFeおよび不可避的不純物からなる合金組成を有する、耐過時効特性にすぐれた高強度の排気バルブ用耐熱合金。% By weight, C: 0.01 to 0.2%, Si: 1% or less, Mn: 1% or less, Ni: 30 to 62%, Cr: 13 to 20%, W: 0.01 to 3.0% %, Al: 0.7% or more and less than 1.6%, Ti: 1.5-3.0%, (however,% Ti /% A1: 1.6 or more and less than 2.0), Nb: 0.5 1.51.5%, and B: 0.001 to 0.01%, P: 0.02% or less, S: 0.01% or less, the balance being substantially Fe and unavoidable impurities High-strength heat-resistant alloy for exhaust valves with excellent overaging resistance, having an alloy composition of 請求項1に記載の合金成分に加え、Mo:2%以下(ただし、Mo+0.5W:1.0〜2.5%)を含有する耐過時効特性にすぐれた高強度の排気バルブ用耐熱合金。A high-strength heat-resistant alloy for an exhaust valve having excellent overaging resistance containing Mo: 2% or less (Mo + 0.5W: 1.0 to 2.5%) in addition to the alloy component according to claim 1. . 請求項1に記載の合金成分に加え、Mg:0.001〜0.03%、Ca:0.001〜0.03%およびZr:0.001〜0.1%の1種または2種以上を含有する耐過時効特性にすぐれた高強度の排気バルブ用耐熱合金。One or more of Mg: 0.001 to 0.03%, Ca: 0.001 to 0.03%, and Zr: 0.001 to 0.1% in addition to the alloy components according to claim 1. High-strength heat-resistant alloy for exhaust valves with excellent overaging resistance. 請求項1に記載の合金成分に加え、Cu:2.0%以下を含有する耐過時効特性にすぐれた高強度の排気バルブ用耐熱合金。A high-strength heat-resistant alloy for an exhaust valve having excellent overaging resistance, containing Cu: 2.0% or less in addition to the alloy component according to claim 1. 請求項1に記載の合金成分に加え、V:0.05〜1.0%を含有する耐過時効特性にすぐれた高強度の排気バルブ用耐熱合金。A high-strength heat-resistant alloy for an exhaust valve having excellent overaging resistance, comprising V: 0.05 to 1.0% in addition to the alloy component according to claim 1. Niの一部を5%以下のCoで置き換えた合金組成を有する請求項1ないし5のいずれかの排気バルブ用耐熱合金。The heat-resistant alloy for an exhaust valve according to any one of claims 1 to 5, having an alloy composition in which a part of Ni is replaced by 5% or less of Co. Nbの全部または一部をTaで置き換えた合金組成を有する請求項1ないし5のいずれかの排気バルブ用耐熱合金。The heat-resistant alloy for an exhaust valve according to any one of claims 1 to 5, having an alloy composition in which all or a part of Nb is replaced with Ta.
JP2003073822A 2003-03-18 2003-03-18 High-strength heat-resistant alloy for exhaust valves with excellent anti-aging characteristics Expired - Lifetime JP3951943B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003073822A JP3951943B2 (en) 2003-03-18 2003-03-18 High-strength heat-resistant alloy for exhaust valves with excellent anti-aging characteristics
EP04006427A EP1464718A1 (en) 2003-03-18 2004-03-17 High-strength, heat-resistant alloy for exhaust valves with improved overaging-resistance
US10/803,054 US20040184946A1 (en) 2003-03-18 2004-03-18 High-strength, heat-resistant alloy for exhaust valves with improved overaging-resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003073822A JP3951943B2 (en) 2003-03-18 2003-03-18 High-strength heat-resistant alloy for exhaust valves with excellent anti-aging characteristics

Publications (2)

Publication Number Publication Date
JP2004277860A true JP2004277860A (en) 2004-10-07
JP3951943B2 JP3951943B2 (en) 2007-08-01

Family

ID=32844569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003073822A Expired - Lifetime JP3951943B2 (en) 2003-03-18 2003-03-18 High-strength heat-resistant alloy for exhaust valves with excellent anti-aging characteristics

Country Status (3)

Country Link
US (1) US20040184946A1 (en)
EP (1) EP1464718A1 (en)
JP (1) JP3951943B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010234397A (en) * 2009-03-31 2010-10-21 Hitachi Ltd Welding material and welded rotor
EP2371980A1 (en) 2010-03-25 2011-10-05 Daido Tokushuko Kabushiki Kaisha Heat resistant steel for exhaust valve
JP2012046823A (en) * 2010-08-30 2012-03-08 General Electric Co <Ge> Nickel-iron-base alloy and method of forming nickel-iron-base alloy
WO2013027841A1 (en) 2011-08-24 2013-02-28 大同特殊鋼株式会社 Heat-resisting steel for exhaust valves
JP2017508075A (en) * 2014-02-04 2017-03-23 ファオデーエム メタルズ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツングVDM Metals International GmbH Hardening nickel / chromium / iron / titanium / aluminum alloy with good wear resistance, creep resistance, corrosion resistance, and workability
JP2017508884A (en) * 2014-02-04 2017-03-30 ファオデーエム メタルズ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツングVDM Metals International GmbH Hardening nickel / chromium / cobalt / titanium / aluminum alloys with good wear resistance, creep resistance, corrosion resistance, and workability
WO2017104755A1 (en) * 2015-12-18 2017-06-22 日立金属株式会社 Metal gasket and production method therefor
US11098389B2 (en) 2014-02-04 2021-08-24 Vdm Metals International Gmbh Hardened nickel-chromium-titanium-aluminum alloy with good wear resistance, creep resistance, corrosion resistance and workability
CN113881904A (en) * 2021-10-11 2022-01-04 四川三鑫南蕾气门座制造有限公司 Chromium alloy for engine valve seat ring and preparation method thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7651575B2 (en) 2006-07-07 2010-01-26 Eaton Corporation Wear resistant high temperature alloy
CN103451559B (en) * 2012-05-31 2016-02-24 宝钢特钢有限公司 A kind of alloy material for gas valve and manufacture method thereof
CN104630597B (en) * 2015-01-27 2018-02-02 宝钢特钢有限公司 A kind of iron nickel and chromium high temperature alloy and its manufacture method
CN108193142B (en) * 2017-12-26 2019-10-25 钢铁研究总院 A kind of high hardness alloy air valve and preparation method thereof
CN109609858B (en) * 2018-12-31 2020-10-23 博众优浦(常熟)汽车部件科技有限公司 Production process of motor shell for automobile
JP7330132B2 (en) * 2020-04-09 2023-08-21 本田技研工業株式会社 Seal member and manufacturing method thereof
JP2024500556A (en) * 2021-01-13 2024-01-09 ハンチントン、アロイス、コーポレーション High strength, thermally stable nickel-based alloy
CN115707788A (en) * 2021-08-19 2023-02-21 大同特殊钢株式会社 Heat-resistant alloy material and elastic member obtained by processing and forming the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834129A (en) * 1981-08-21 1983-02-28 Daido Steel Co Ltd Heat-resistant metallic material
JPS6013050A (en) * 1983-07-05 1985-01-23 Daido Steel Co Ltd Heat-resistant alloy
JPS6013020A (en) * 1983-07-05 1985-01-23 Daido Steel Co Ltd Heat treating method of heat resistant alloy
JPS61119640A (en) * 1984-11-16 1986-06-06 Honda Motor Co Ltd Alloy for exhaust valve
JP3058794B2 (en) * 1993-08-19 2000-07-04 日立金属株式会社 Fe-Ni-Cr based super heat resistant alloy, knit mesh for engine valve and exhaust gas catalyst
JPH09279309A (en) * 1996-04-12 1997-10-28 Daido Steel Co Ltd Iron-chrome-nickel heat resistant alloy
JP4203609B2 (en) * 1997-02-07 2009-01-07 大同特殊鋼株式会社 Exhaust valve manufacturing method
JPH11199987A (en) * 1997-11-10 1999-07-27 Hitachi Metals Ltd Heat resistant alloy suitable for cold working
JP2001158943A (en) * 1999-12-01 2001-06-12 Daido Steel Co Ltd Heat resistant bolt
JP4277113B2 (en) * 2002-02-27 2009-06-10 大同特殊鋼株式会社 Ni-base alloy for heat-resistant springs

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010234397A (en) * 2009-03-31 2010-10-21 Hitachi Ltd Welding material and welded rotor
EP2371980A1 (en) 2010-03-25 2011-10-05 Daido Tokushuko Kabushiki Kaisha Heat resistant steel for exhaust valve
JP2012046823A (en) * 2010-08-30 2012-03-08 General Electric Co <Ge> Nickel-iron-base alloy and method of forming nickel-iron-base alloy
US9745649B2 (en) 2011-08-24 2017-08-29 Daido Steel Co., Ltd. Heat-resisting steel for exhaust valves
WO2013027841A1 (en) 2011-08-24 2013-02-28 大同特殊鋼株式会社 Heat-resisting steel for exhaust valves
KR101876399B1 (en) * 2014-02-04 2018-07-09 파우데엠 메탈스 인테르나티오날 게엠베하 Hardening nickel-chromium-iron-titanium-aluminum alloy with good wear resistance, creep strength, corrosion resistance and processability
JP2017508884A (en) * 2014-02-04 2017-03-30 ファオデーエム メタルズ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツングVDM Metals International GmbH Hardening nickel / chromium / cobalt / titanium / aluminum alloys with good wear resistance, creep resistance, corrosion resistance, and workability
JP2017508075A (en) * 2014-02-04 2017-03-23 ファオデーエム メタルズ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツングVDM Metals International GmbH Hardening nickel / chromium / iron / titanium / aluminum alloy with good wear resistance, creep resistance, corrosion resistance, and workability
US10870908B2 (en) 2014-02-04 2020-12-22 Vdm Metals International Gmbh Hardening nickel-chromium-iron-titanium-aluminium alloy with good wear resistance, creep strength, corrosion resistance and processability
US11098389B2 (en) 2014-02-04 2021-08-24 Vdm Metals International Gmbh Hardened nickel-chromium-titanium-aluminum alloy with good wear resistance, creep resistance, corrosion resistance and workability
WO2017104755A1 (en) * 2015-12-18 2017-06-22 日立金属株式会社 Metal gasket and production method therefor
JPWO2017104755A1 (en) * 2015-12-18 2017-12-14 日立金属株式会社 Metal gasket and manufacturing method thereof
US11471929B2 (en) 2015-12-18 2022-10-18 Hitachi Metals, Ltd. Metal gasket and production method therefor
US11890665B2 (en) 2015-12-18 2024-02-06 Proterial, Ltd. Metal gasket and production method therefor
CN113881904A (en) * 2021-10-11 2022-01-04 四川三鑫南蕾气门座制造有限公司 Chromium alloy for engine valve seat ring and preparation method thereof

Also Published As

Publication number Publication date
US20040184946A1 (en) 2004-09-23
JP3951943B2 (en) 2007-08-01
EP1464718A1 (en) 2004-10-06

Similar Documents

Publication Publication Date Title
JP4830466B2 (en) Heat-resistant alloy for exhaust valves that can withstand use at 900 ° C and exhaust valves using the alloys
JP4277113B2 (en) Ni-base alloy for heat-resistant springs
JP3951943B2 (en) High-strength heat-resistant alloy for exhaust valves with excellent anti-aging characteristics
EP0639654B1 (en) Fe-Ni-Cr-base super alloy, engine valve and knitted mesh supporter for exhaust gas catalyzer
JPH09279309A (en) Iron-chrome-nickel heat resistant alloy
US5660938A (en) Fe-Ni-Cr-base superalloy, engine valve and knitted mesh supporter for exhaust gas catalyzer
JP2011219864A (en) Heat resistant steel for exhaust valve
JP2005002451A (en) Fe-Ni-Cr ALLOY FOR HEAT-RESISTANT SPRING AND PRODUCTION METHOD OF HEAT-RESISTANT SPRING
JP2963842B2 (en) Alloy for exhaust valve
JP4830443B2 (en) Heat-resistant alloy for exhaust valves with excellent strength characteristics at high temperatures
JP4972972B2 (en) Ni-based alloy
JP3412234B2 (en) Alloy for exhaust valve
JP3073754B2 (en) Heat resistant steel for engine valves
JPH07188819A (en) Electrothermal alloy
JP2819906B2 (en) Ni-base alloy for tools with excellent room and high temperature strength
JP3424314B2 (en) Heat resistant steel
JPS61238942A (en) Heat resisting alloy
JP4057208B2 (en) Fe-base heat-resistant alloy for engine valves with good cold workability and high-temperature strength
JP3744084B2 (en) Heat-resistant alloy with excellent cold workability and overaging characteristics
JP2004190060A (en) Heat-resistant alloy for engine valve
JP2000192205A (en) Heat resistant alloy excellent in oxidation resistance
JP2000204449A (en) Iron base superalloy excellent in cold workability and high temperature thermal stability
JP2001158943A (en) Heat resistant bolt
JPH11199987A (en) Heat resistant alloy suitable for cold working
JP3216837B2 (en) Iron-based super heat-resistant alloy for heat-resistant bolts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3951943

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term