JP2014070230A - METHOD FOR PRODUCING Ni-BASED SUPERALLOY - Google Patents

METHOD FOR PRODUCING Ni-BASED SUPERALLOY Download PDF

Info

Publication number
JP2014070230A
JP2014070230A JP2012214950A JP2012214950A JP2014070230A JP 2014070230 A JP2014070230 A JP 2014070230A JP 2012214950 A JP2012214950 A JP 2012214950A JP 2012214950 A JP2012214950 A JP 2012214950A JP 2014070230 A JP2014070230 A JP 2014070230A
Authority
JP
Japan
Prior art keywords
less
solution treatment
aging treatment
treatment
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012214950A
Other languages
Japanese (ja)
Inventor
Chuya Aoki
宙也 青木
Tomonori Ueno
友典 上野
Toshihiro Uehara
利弘 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2012214950A priority Critical patent/JP2014070230A/en
Publication of JP2014070230A publication Critical patent/JP2014070230A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a Ni-based superalloy having substantially improved creep rupture strength.SOLUTION: There is provided a method for producing a Ni-based superalloy which contains by mass%: 0.01-0.2% of C; 0.5% or less of Si; 0.5% or less of Mn; 10-24% of Cr; 5-17% of one or two of Mo and W in terms of Mo+0.5 W; 0.5-2.0% of Al; 1.0-3.0% of Ti; 10% or less of Fe; one or two of more than 0% and 0.02% or less of B and more than 0% and 0.2% or less of Zr; and the balance comprising Ni and impurities. The method for producing the Ni-based superalloy comprises: a step of providing a material for solution heat treatment having the above composition; a solution heat treatment step of performing solution heat treatment for 1.5-5 hours at 1,100-1,140°C (not performing multi-stage solution heat treatment) to obtain a solution heat treated material using the material for solution heat treatment; an aging treatment step of performing a first stage aging treatment at 820-880°C and a second stage aging treatment at 600-800°C using the solution heat treated material.

Description

本発明は、Ni基超耐熱合金の製造方法に関するものである。   The present invention relates to a method for producing a Ni-base superalloy.

近年、地球温暖化防止の観点からCO排出量を削減するため火力発電プラントの高効率化が求められている。現在、火力発電プラントの蒸気温度は600〜630℃に達しているが、更なる発電効率向上のため、今後も蒸気温度の上昇が見込まれており、蒸気タービン等の部材で高温強度、特にクリープ破断強度に優れるNi基超耐熱合金の使用が有望視されている。例えば、650℃級超々臨界圧火力発電プラントでの使用に最適なNi基合金として、特開平9−157779公報(特許文献1)には、優れたクリープ特性と低い熱膨張係数を特徴とするNi基超耐熱合金の発明が提案されている。また、再公表特許WO10/038680号公報(特許文献2)には、前述の特許文献1のミクロ偏析に起因するクリープ特性のばらつきを軽減することを目的として適切な均質化熱処理を施し、Moの偏析比を1〜1.17の範囲に留めるNi基超耐熱合金の発明が提案されている。さらに、特開2011−84812(特許文献3)では、Ni基超耐熱合金のクリープの高強度化と延性低下抑制を目的として、高温の溶体化処理と低温の溶体化処理により、結晶粒径を特定の大きさに成長させ、且つ、結晶粒界の粒状析出物の形態を制御する発明が提案されている。 In recent years, in order to reduce CO 2 emissions from the viewpoint of preventing global warming, higher efficiency of thermal power plants has been demanded. Currently, the steam temperature of thermal power plants has reached 600 to 630 ° C, but in order to further improve power generation efficiency, the steam temperature is expected to rise in the future. The use of a Ni-base superalloy having excellent breaking strength is considered promising. For example, as a Ni-based alloy that is optimal for use in a 650 ° C. class super-supercritical thermal power plant, Japanese Patent Application Laid-Open No. 9-157779 (Patent Document 1) describes Ni having excellent creep characteristics and a low thermal expansion coefficient. Inventions of basic superalloys have been proposed. In addition, in the re-published patent WO 10/038680 (Patent Document 2), an appropriate homogenization heat treatment is performed for the purpose of reducing the variation in creep characteristics due to the microsegregation of Patent Document 1 described above, and the Mo An invention of a Ni-base superalloy having a segregation ratio in the range of 1-1.17 has been proposed. Furthermore, in Japanese Patent Application Laid-Open No. 2011-84812 (Patent Document 3), for the purpose of increasing the strength of creep of a Ni-base superalloy and suppressing the decrease in ductility, the crystal grain size is adjusted by high-temperature solution treatment and low-temperature solution treatment. There has been proposed an invention for growing to a specific size and controlling the form of granular precipitates at grain boundaries.

特開平9−157779号公報JP-A-9-157779 再公表特許WO2010/038680号公報Republished patent WO2010 / 038680 特開2011−84812号公報JP 2011-84812 A

前述の特許文献1及び特許文献2のNi基超耐熱合金は、狙い組成のインゴットに均質化熱処理を施した後、熱間塑性加工を行い所定の形状に仕上げて製造される。これに溶体化処理とその後の時効処理を行うことによって、700℃級超々臨界圧火力発電プラントへの使用も可能な優れたクリープ特性が得られる。前述の特許文献1や特許文献2のNi基超耐熱合金は、その優れたクリープ特性から700℃級超々臨界圧火力発電プラントの蒸気タービン、ボイラ管等の部材に適用が可能とされている。
しかしながら、蒸気タービンの使用環境は極めて苛酷であり、より高い信頼性が求められることから、クリープ特性を最大限発揮させることが求められている。
また、特許文献3では、1100〜1160℃で施される第1溶体化処理と、それに引き続いて980〜1080℃で施される第2溶体化処理という、特別な溶体化処理によって結晶の平均粒径を72〜289μmとし、平均長さが0.5〜2.5μmの粒状析出物(炭化物)を結晶粒界に析出させ、クリープ強度を向上させつつも延性の低下を抑制することが可能とされている。
しかしながら、生産性を考慮すると、2段の溶体化処理よりも通常の1段の溶体化処理の方が有利である。
本発明の目的は、通常の1段の溶体化処理を適用しつつもクリープ破断強度を大幅に向上させたNi基超耐熱合金の製造方法を提供することである。
The Ni-base superalloys described in Patent Document 1 and Patent Document 2 described above are manufactured by subjecting an ingot having a target composition to homogenization heat treatment, and then performing hot plastic working to finish it into a predetermined shape. By performing solution treatment and subsequent aging treatment on this, excellent creep characteristics that can be used for 700 ° C. class super supercritical thermal power plants can be obtained. The Ni-based superalloys described in Patent Document 1 and Patent Document 2 described above can be applied to members such as steam turbines and boiler tubes of 700 ° C. class super supercritical thermal power plants because of their excellent creep characteristics.
However, since the use environment of the steam turbine is extremely severe and higher reliability is required, it is required to maximize the creep characteristics.
Moreover, in patent document 3, the average grain of a crystal | crystallization is obtained by special solution treatment called the 1st solution treatment performed at 1100-1160 degreeC, and the 2nd solution treatment performed at 980-1080 degree after that. With a diameter of 72 to 289 μm and an average length of 0.5 to 2.5 μm, granular precipitates (carbides) are precipitated at the crystal grain boundaries, and it is possible to suppress a decrease in ductility while improving creep strength. Has been.
However, in consideration of productivity, the normal one-stage solution treatment is more advantageous than the two-stage solution treatment.
An object of the present invention is to provide a method for producing a Ni-base superalloy having significantly improved creep rupture strength while applying a normal one-step solution treatment.

本発明者は、特許文献1や特許文献2で記されるNi基合金において、特許文献3で示される熱処理条件と比較して、生産性に優れ、且つ、より高いクリープ破断強度が発揮できるような方法を鋭意検討した。
特許文献1や特許文献2で記されるNi基合金では、溶体化処理で合金元素のマトリクスへの固溶と結晶粒径のコントロールを行い、その後の時効処理では結晶粒界に主として炭化物、粒内に微細なガンマプライム相を析出させ高強度を得ている。
本発明者は、クリープ破断強度を向上させる金属組織の制御として、結晶粒サイズと結晶粒界に析出する炭化物量に着目し、C添加量と溶体化処理条件の適正化を調査した。その結果、結晶粒界に析出する炭化物とガンマプライム相は主にC添加量と結晶粒サイズに依存し、C添加量の適正化を図ると共に溶体化処理を限られた温度範囲で行うことでクリープ破断強度を飛躍的に向上できることを知見し、本発明に到達した。
The present inventor is superior in productivity and can exhibit higher creep rupture strength in the Ni-based alloys described in Patent Document 1 and Patent Document 2 as compared with the heat treatment conditions described in Patent Document 3. We studied various methods.
In the Ni-based alloys described in Patent Document 1 and Patent Document 2, the solution treatment is performed to control the solid solution of the alloy elements in the matrix and the crystal grain size, and the subsequent aging treatment mainly includes carbides and grains in the grain boundaries. A fine gamma prime phase is precipitated in it to obtain high strength.
As a control of the metal structure that improves the creep rupture strength, the present inventor has focused on the crystal grain size and the amount of carbide precipitated at the crystal grain boundary, and investigated the optimization of the C addition amount and the solution treatment conditions. As a result, carbides and gamma prime phases precipitated at the grain boundaries mainly depend on the amount of C added and the size of the crystal grains, and by optimizing the amount of C added and performing the solution treatment in a limited temperature range. The inventors have found that the creep rupture strength can be dramatically improved and have reached the present invention.

すなわち本発明は、質量%で、C:0.01〜0.2%、Si:0.5%以下、Mn:0.5%以下、Cr:10〜24%、MoとWの1種または2種をMo+0.5W:5〜17%、Al:0.5〜2.0%、Ti:1.0〜3.0%、Fe:10%以下、及び、B:0.02%以下(0%は含まず)とZr:0.2%以下(0%は含まず)の1種または2種を含有し、残部はNi及び不可避的不純物でなるNi基超耐熱合金の製造方法において、
前記組成を有する溶体化処理用素材を準備する工程と、
前記溶体化処理用素材を用いて、1100〜1140℃で1.5〜5時間の溶体化処理(多段の溶体化処理は行わない)を行って、溶体化処理材を得る溶体化処理工程と、
前記溶体化処理材を用いて、820〜880℃での第1段時効処理、および600〜800℃での第2段時効処理を行なう時効処理工程と、
を含むことを特徴とするNi基超耐熱合金の製造方法である。
That is, the present invention is, by mass%, C: 0.01 to 0.2%, Si: 0.5% or less, Mn: 0.5% or less, Cr: 10-24%, one of Mo and W or Two types are Mo + 0.5W: 5 to 17%, Al: 0.5 to 2.0%, Ti: 1.0 to 3.0%, Fe: 10% or less, and B: 0.02% or less ( 0% is not included) and Zr: 0.2% or less (not including 0%) is included in one or two types, and the balance is Ni and an inevitable impurity Ni-base superalloy,
Preparing a solution treatment material having the composition;
A solution treatment step of obtaining a solution treatment material by performing a solution treatment for 1.5 to 5 hours at 1100 to 1140 ° C. (no multistage solution treatment is performed) using the solution treatment material; and ,
Using the solution treatment material, an aging treatment step of performing a first stage aging treatment at 820 to 880 ° C. and a second stage aging treatment at 600 to 800 ° C.,
A method for producing a Ni-base superalloy, comprising:

本発明によれば、Ni基合金のクリープ破断強度を大幅に向上させることができる。これを用いてなる火力発電プラントの蒸気タービン、ボイラ管材等の信頼性を高めることが可能となる。   According to the present invention, the creep rupture strength of a Ni-based alloy can be greatly improved. It becomes possible to improve the reliability of the steam turbine, boiler tube material, etc. of the thermal power plant using this.

本発明の製造方法を適用したNi基超耐熱合金の金属組織の電子顕微鏡写真である。It is an electron micrograph of the metal structure of the Ni base superalloy according to the manufacturing method of the present invention. 本発明の製造方法を適用したNi基超耐熱合金の金属組織の模式図である。It is a schematic diagram of the metal structure of the Ni-base superalloy according to the manufacturing method of the present invention.

先ず、本発明では、以下に示す成分を有する溶体化処理用素材を準備する。
溶体化処理用素材は、溶解の後、熱間鍛造や熱間プレス等の熱間塑性加工を行った熱間塑性加工材を用いると良い。溶体化処理用素材を得るための工程の一例を示す。
Ni基超耐熱合金の溶解は常法の溶解方法を適用すれば良い。本発明では高温高強度を得るためガンマプライム相の構成元素であるAl及びTiを必須で添加するため、有害な酸化物や窒化物等の非金属介在物の析出を防ぐため、脱ガス効果のある真空溶解を行うことが好ましい。真空溶解の後、真空アーク再溶解やエレクトロスラグ再溶解等の再溶解を行うことが好ましい。
また、真空溶解後のインゴットまたは真空溶解後の電極、再溶解後のインゴットに1160〜1220℃にて1〜100時間の均質化熱処理を行って成分偏析の低減を行って、熱間塑性加工用素材とするのが好ましい。
First, in the present invention, a solution treatment material having the following components is prepared.
As the material for solution treatment, it is preferable to use a hot plastic working material which has been subjected to hot plastic working such as hot forging or hot pressing after melting. An example of the process for obtaining the solution treatment raw material is shown.
A conventional melting method may be applied for melting the Ni-base superalloy. In the present invention, in order to obtain high temperature and high strength, Al and Ti, which are constituent elements of the gamma prime phase, are indispensably added, so that precipitation of non-metallic inclusions such as harmful oxides and nitrides is prevented. It is preferable to perform some vacuum melting. It is preferable to perform remelting such as vacuum arc remelting or electroslag remelting after vacuum melting.
In addition, the ingot after vacuum melting, the electrode after vacuum melting, and the ingot after remelting are subjected to homogenization heat treatment at 1160 to 1220 ° C. for 1 to 100 hours to reduce component segregation, and for hot plastic working The material is preferred.

次に、本発明では上述した成分を有する熱間塑性加工用素材を900〜1200℃で熱間塑性加工して熱間塑性加工材を得る工程を行うと良い。
鋳造組織は溶解後の冷却中に結晶粒が特定の方向に成長した金属組織であるため、機械的特性に異方性が生じる。そのため、溶解で生成された鋳造組織を壊し、均一な再結晶組織を得るために熱間塑性加工を行うものである。
熱間塑性加工の温度が900℃未満では熱間加工性が乏しいため所定の寸法に変形させることが困難であるとともに割れの原因となる。一方、熱間塑性加工の温度が1200℃を超えると、BやZrが偏析する結晶粒界の強度が大きく低下して熱間加工性が著しく損なわれる。したがって、熱間塑性加工は900〜1200℃の温度範囲とする。熱間塑性加工の温度の好ましい上限は1180℃である。
以上、説明した熱間塑性加工材を用いて溶体化処理用素材とすれば良い。
Next, in this invention, it is good to perform the process of obtaining the hot plastic work material by hot plastic working the raw material for hot plastic working which has the component mentioned above at 900-1200 degreeC.
Since the cast structure is a metal structure in which crystal grains grow in a specific direction during cooling after melting, anisotropy occurs in mechanical properties. Therefore, hot plastic working is performed to break the cast structure generated by melting and obtain a uniform recrystallized structure.
If the temperature of the hot plastic working is less than 900 ° C., the hot workability is poor, so that it is difficult to be deformed to a predetermined dimension and causes cracking. On the other hand, when the temperature of hot plastic working exceeds 1200 ° C., the strength of the crystal grain boundary where B or Zr segregates is greatly reduced, and hot workability is significantly impaired. Therefore, the hot plastic working is performed in a temperature range of 900 to 1200 ° C. A preferable upper limit of the temperature of the hot plastic working is 1180 ° C.
As described above, the solution processing material may be used by using the hot plastic working material described above.

次に、本発明で規定する成分限定理由を述べる。なお、各元素の含有量は質量%である。
C:0.01%〜0.2%
Cは、優れたクリープ破断強度を得るための最も重要な元素である。クリープ破断強度を向上させるためには溶体化処理によって結晶粒を大きくすることが有効である。しかし、Cが0.2%より多いと結晶粒成長の抑制効果が過剰になるため、結晶粒径のコントロールが困難となる。本発明ではCの上限を0.2%とした。また、Cは、時効処理を行うことで結晶粒界に炭化物を析出させて結晶粒界を強化し、クリープ変形を抑制する効果がある。十分なクリープ破断強度を得るためには結晶粒界に0.2〜0.4mol%程度の炭化物の析出が必要である。粒界炭化物は、結晶粒界を強化すると同時にガンマプライム相の結晶粒界への析出を促進する効果があり、クリープ中の粒界すべりを抑制する効果が高くなる。しかし、Cが0.01%未満では結晶粒界に十分な炭化物を析出させることができず、ガンマプライム相の結晶粒界への析出が不足する。その結果、結晶粒界の強化が不十分となりクリープ破断強度は低下する。そのため、Cの下限を0.01%と規定した。Cの好ましい下限は0.015%であり、好ましい上限は0.1%である。さらに好ましい下限は0.02%であり、さらに好ましい上限は0.05%である。
Si:0.5%以下
Siは、合金溶製時に脱酸剤として用いられる。また、Siは酸化被膜の剥離を抑制する効果がある。しかし、過度に含有すると延性、加工性が低下するため、0.5%以下に限定する。
Mn:0.5%以下
Mnは合金溶製時に脱酸剤や脱硫剤として用いられる。不可避的不純物としてOやSが結晶粒界に偏析し熱間脆性を引き起こすため、Mnを用いて脱酸、脱硫を行う。しかし過度に添加すると延性が低下するため、0.5%以下に限定する。
Next, the reasons for limiting the components defined in the present invention will be described. In addition, content of each element is the mass%.
C: 0.01% to 0.2%
C is the most important element for obtaining excellent creep rupture strength. In order to improve the creep rupture strength, it is effective to enlarge the crystal grains by solution treatment. However, if C is more than 0.2%, the effect of suppressing the crystal grain growth becomes excessive, and it becomes difficult to control the crystal grain size. In the present invention, the upper limit of C is set to 0.2%. Further, C has an effect of strengthening the crystal grain boundaries by carrying out an aging treatment to precipitate carbides at the crystal grain boundaries and suppressing creep deformation. In order to obtain a sufficient creep rupture strength, it is necessary to deposit about 0.2 to 0.4 mol% of carbides at the grain boundaries. The grain boundary carbide has an effect of strengthening the grain boundary and at the same time promoting the precipitation of the gamma prime phase to the grain boundary, and the effect of suppressing the grain boundary slip during creep is enhanced. However, if C is less than 0.01%, sufficient carbide cannot be precipitated at the crystal grain boundary, and the gamma prime phase is insufficiently precipitated at the crystal grain boundary. As a result, the grain boundary strengthening becomes insufficient and the creep rupture strength decreases. Therefore, the lower limit of C is defined as 0.01%. The preferable lower limit of C is 0.015%, and the preferable upper limit is 0.1%. A more preferred lower limit is 0.02%, and a more preferred upper limit is 0.05%.
Si: 0.5% or less Si is used as a deoxidizer during alloy melting. Moreover, Si has an effect of suppressing peeling of the oxide film. However, when it contains excessively, ductility and workability will fall, It limits to 0.5% or less.
Mn: 0.5% or less Mn is used as a deoxidizing agent or a desulfurizing agent during alloy melting. Deoxidation and desulfurization are performed using Mn because O and S as inevitable impurities segregate at the grain boundaries and cause hot brittleness. However, since ductility will fall when it adds excessively, it limits to 0.5% or less.

Cr:10〜24%
CrはCと結合して結晶粒界に炭化物を生成することで結晶粒界を強化し高温での強度、延性を向上させる効果がある。また、マトリクスに固溶して合金の耐酸化性、耐食性を向上させるとともに、切り欠き感受性を大幅に緩和させる効果を有する。Crが10%未満では上記効果を確実に得られず、また、24%を超える過度の添加は、脆化相の生成により合金の製造性や加工性、機械的特性が低下する問題が生じる。これらの理由によりCrは10〜24%に限定する。好ましいCrの下限は15%である。
式「Mo+0.5W」で規定される量で、Mo、Wの1種または2種を5〜17%
Mo及びWは、マトリクスに固溶して基地を強化するとともに合金の熱膨張係数を下げる効果がある。Ni基合金は熱膨張係数が大きいため、高温で安定して使用するには熱疲労を起こしやすく信頼性が欠ける難点がある。Moは熱膨張係数を下げるのに最も有効な元素であるため、Moを必須としてMo単独あるいはMoとWの2種を添加する。この効果を確実に得るにはMo+0.5Wで5〜17%が必要となる。Mo+0.5W量で5%未満では上記効果を確実に得ることができず、また、17%を超えると合金の製造性や加工性が困難となり易くなるため、Mo+0.5W量でMo、Wの1種または2種を5〜17%に限定する。
Cr: 10 to 24%
Cr combines with C to generate carbides at the grain boundaries, thereby strengthening the grain boundaries and improving the strength and ductility at high temperatures. In addition, it has the effect of improving the oxidation resistance and corrosion resistance of the alloy by dissolving in the matrix, and greatly reducing notch sensitivity. If the Cr content is less than 10%, the above-mentioned effects cannot be obtained with certainty, and excessive addition exceeding 24% causes a problem that the manufacturability, workability, and mechanical properties of the alloy deteriorate due to the formation of the brittle phase. For these reasons, Cr is limited to 10 to 24%. A preferable lower limit of Cr is 15%.
The amount specified by the formula “Mo + 0.5W”, 5 to 17% of one or two of Mo and W
Mo and W are effective in reducing the thermal expansion coefficient of the alloy as well as strengthening the matrix by dissolving in the matrix. Since the Ni-based alloy has a large coefficient of thermal expansion, there is a difficulty in that it is liable to cause thermal fatigue when used stably at high temperatures and lacks reliability. Since Mo is the most effective element for lowering the thermal expansion coefficient, Mo is essential, and Mo alone or Mo and W are added. In order to reliably obtain this effect, 5 + 17% is required at Mo + 0.5W. If the Mo + 0.5W amount is less than 5%, the above effect cannot be obtained reliably. If the Mo + 0.5W amount is more than 17%, the productivity and workability of the alloy tend to be difficult. Limit one or two to 5-17%.

Al:0.5〜2.0%
Alは、Ni、Tiとともにガンマプライム相と呼ばれる金属間化合物(Ni(Al、Ti))を形成し、合金の高温強度を高めるために添加する。ガンマプライム相は粒内および結晶粒界に析出し、粒内および結晶粒界の強化に寄与する。特に結晶粒界への析出は、粒界炭化物と同様、結晶粒界のすべりを抑制しクリープ破断強度の向上に寄与する。0.5%未満では上記効果が得られず、また過度の添加は合金の製造性や加工性が劣化するため、Alは0.5〜2.0%に限定する。
Ti:1.0〜3.0%
Tiは、Ni、Alと同様ガンマプライム相(Ni(Ti、Al))を合金の高温強度を高める効果がある。Tiの原子径はNiのそれよりも大きくマトリクスに弾性歪を与えるため、NiAlよりも強化に寄与する。1.0%未満では上記効果が得られず、過度に添加すると合金の製造性や加工性が劣化するためTiは1.0〜3.0%に限定する。
Al: 0.5 to 2.0%
Al forms an intermetallic compound (Ni 3 (Al, Ti)) called a gamma prime phase together with Ni and Ti, and is added to increase the high temperature strength of the alloy. The gamma prime phase precipitates in the grains and at the grain boundaries, and contributes to the strengthening of the grains and the grain boundaries. In particular, the precipitation at the grain boundary, like the grain boundary carbide, suppresses the slip of the grain boundary and contributes to the improvement of the creep rupture strength. If the content is less than 0.5%, the above effect cannot be obtained, and excessive addition deteriorates the manufacturability and workability of the alloy, so Al is limited to 0.5 to 2.0%.
Ti: 1.0-3.0%
Ti, like Ni and Al, has the effect of increasing the high temperature strength of the gamma prime phase (Ni 3 (Ti, Al)) alloy. Since the atomic diameter of Ti is larger than that of Ni and gives an elastic strain to the matrix, it contributes to strengthening more than Ni 3 Al. If less than 1.0%, the above effect cannot be obtained. If excessively added, the productivity and workability of the alloy deteriorate, so Ti is limited to 1.0 to 3.0%.

Fe:10%以下
Feは、必ずしも添加する必要はないが、合金の熱間加工性を改善する効果があるため、必要に応じて添加することができる。Feを過剰に添加すると合金の熱膨張係数が大きくなり高温使用時に割れが発生する問題が生じる。また耐酸化性が劣化するため10%以下に限定する。好ましいFeの上限は5%、さらに好ましいFeの上限は3%である。
B:0.02%以下(0%は含まず)とZr:0.2%以下(0%は含まず)の1種または2種
B、Zrは結晶粒界強化のために用いられ、BとZrの何れかまたは両方を添加する必要がある。B、Zrはマトリクスを構成する原子であるNiより原子の大きさが著しく小さいため、結晶粒界に偏析し高温での粒界すべりを抑制する効果がある。特に切り欠き感受性を大幅に緩和させる効果を有する。そのため、クリープ破断強度やクリープ破断延性が向上する効果が得られるが、過度に添加すると耐酸化性が劣化するためB、Zrはそれぞれ0.02%以下(0%は含まず)、0.2%以下(0%は含まず)に限定する。
Fe: 10% or less Fe is not necessarily added, but it has an effect of improving the hot workability of the alloy, and can be added as necessary. When Fe is added excessively, the thermal expansion coefficient of the alloy increases, and there is a problem that cracks occur when used at high temperatures. Moreover, since oxidation resistance deteriorates, it limits to 10% or less. A preferable upper limit of Fe is 5%, and a more preferable upper limit of Fe is 3%.
One or two of B: 0.02% or less (not including 0%) and Zr: 0.2% or less (not including 0%) B and Zr are used for strengthening grain boundaries, It is necessary to add either or both of Zr and Zr. Since B and Zr are significantly smaller in size than Ni which is an atom constituting the matrix, B and Zr are segregated at the crystal grain boundary and have an effect of suppressing the grain boundary sliding at a high temperature. In particular, it has the effect of greatly reducing notch sensitivity. Therefore, the effect of improving the creep rupture strength and creep rupture ductility can be obtained, but if added excessively, the oxidation resistance deteriorates, so B and Zr are each 0.02% or less (excluding 0%), 0.2 % Or less (excluding 0%).

残部のNiは本発明に係る合金の主要構成元素であり、他の元素を固溶しつつfcc構造を有するマトリクスのガンマ相を形成する元素である。マトリクスのガンマ相は合金元素の固溶限が大きく、析出強化の要であるガンマプライム相の析出に有利である。また、Niは析出強化相であるガンマプライム相の主要構成元素であるため、Al、Ti量に対して十分な量を有する必要がある。本発明では残部をNiとする。勿論、不純物は含まれる。   The remaining Ni is a main constituent element of the alloy according to the present invention, and is an element that forms a gamma phase of a matrix having an fcc structure while dissolving other elements. The gamma phase of the matrix has a large solid solubility limit of the alloy element, which is advantageous for the precipitation of the gamma prime phase, which is the key to precipitation strengthening. Moreover, since Ni is a main constituent element of the gamma prime phase that is a precipitation strengthening phase, it is necessary to have a sufficient amount with respect to the amounts of Al and Ti. In the present invention, the balance is Ni. Of course, impurities are included.

溶体化処理工程
本発明では、前記の熱間塑性加工材を用いて、1100〜1140℃で溶体化処理を行って、溶体化処理材を得る。
溶体化処理は熱間塑性加工で得られた再結晶組織の結晶粒サイズを調整するとともに、時効処理でガンマプライム相や炭化物を析出させるための構成元素を一旦マトリクスに固溶させる目的で行う。本発明では、クリープ破断強度を向上させるために結晶粒をある程度粗大にすると同時にその後の第1段時効処理で結晶粒界に炭化物とガンマプライム相を結晶粒界に沿って連続かつくさび状に十分に析出させる。第1段時効処理で結晶粒界に炭化物を十分析出させると同時に、炭化物を起点にガンマプライム相も結晶粒界に析出させることで本発明の粒界組織が得られる。即ち、本発明の粒界組織は、結晶粒サイズ、C添加量、時効処理温度のバランスによって決定付けられる。そのため、例えば、特許文献3で開示されるような溶体化処理の後、ガンマプライム相の固溶温度以上で炭化物のみを析出させるような第2段目の溶体化処理を行わなくてもクリープ破断強度向上の十分な効果が得られる。
Solution Treatment Step In the present invention, a solution treatment material is obtained by performing a solution treatment at 1100 to 1140 ° C. using the hot plastic working material.
The solution treatment is performed for the purpose of adjusting the crystal grain size of the recrystallized structure obtained by hot plastic working and for once dissolving the constituent elements for precipitating the gamma prime phase and carbides in the matrix by aging treatment. In the present invention, in order to improve the creep rupture strength, the grains are coarsened to a certain extent, and at the same time, the carbide and gamma prime phase are continuously formed along the grain boundaries in the first stage aging treatment so as to form a rust-like shape. To precipitate. The grain boundary structure of the present invention can be obtained by sufficiently precipitating carbides at the grain boundaries by the first stage aging treatment and simultaneously precipitating the gamma prime phase at the grain boundaries starting from the carbides. That is, the grain boundary structure of the present invention is determined by the balance of crystal grain size, C addition amount, and aging treatment temperature. Therefore, for example, after the solution treatment as disclosed in Patent Document 3, creep rupture is performed without performing the second-stage solution treatment in which only carbides are precipitated at a temperature equal to or higher than the solid solution temperature of the gamma prime phase. A sufficient effect of strength improvement can be obtained.

前述の粒界組織を得るのに必要な本発明で適用する溶体化処理温度は、従来よりも高温で、且つ、限定された温度範囲の1100〜1140℃とする。溶体化処理の温度が1100℃より低温でも化合物元素のマトリクスへの固溶が十分ではなく、且つクリープ破断強度を向上させるだけの結晶粒成長の効果が期待できない。一方、溶体化処理の温度が1140℃より高温では、結晶粒の粗大化によるクリープ破断強度向上の効果はあるもののクリープ破断延性が低下する。したがって、溶体化処理温度は1100〜1140℃とする。溶体化処理の温度の好ましい下限は1110℃であり、好ましい上限は1130℃である。
また、上記効果を得るための溶体化処理の時間は1.5〜5時間である。溶体化処理の時間が1.5時間未満では、結晶粒サイズが十分に成長していないため、その後の第1段時効処理で析出させる炭化物の結晶粒界に占める割合が不十分となり、その結果、結晶粒界の炭化物とガンマプライム相からなる連続且つくさび状の組織が得られなくなる。また、溶体化処理の目的は、析出物の構成元素の固溶と結晶粒の粗大化であるため、溶体化処理の時間が5時間を超える熱処理は必要以上に長く経済的ではない。
The solution treatment temperature applied in the present invention necessary for obtaining the above grain boundary structure is set to 1100 to 1140 ° C., which is higher than the conventional temperature range and in a limited temperature range. Even when the temperature of the solution treatment is lower than 1100 ° C., the solid solution of the compound element in the matrix is not sufficient, and the effect of crystal grain growth sufficient to improve the creep rupture strength cannot be expected. On the other hand, when the temperature of the solution treatment is higher than 1140 ° C., although there is an effect of improving the creep rupture strength due to the coarsening of the crystal grains, the creep rupture ductility is lowered. Therefore, the solution treatment temperature is 1100 to 1140 ° C. The preferable lower limit of the solution treatment temperature is 1110 ° C., and the preferable upper limit is 1130 ° C.
In addition, the solution treatment time for obtaining the above effect is 1.5 to 5 hours. If the solution treatment time is less than 1.5 hours, the crystal grain size is not sufficiently grown, so that the proportion of carbides precipitated in the subsequent first stage aging treatment becomes insufficient, and as a result Thus, a continuous and wedge-shaped structure composed of carbides and gamma prime phases at grain boundaries cannot be obtained. In addition, since the purpose of the solution treatment is solid solution of the constituent elements of the precipitate and the coarsening of the crystal grains, the heat treatment in which the solution treatment time exceeds 5 hours is longer than necessary and is not economical.

時効処理工程
本発明では、前記溶体化処理材に820〜880℃での第1段時効処理、および600〜800℃での第2段時効処理を行なう。
十分なクリープ破断強度を得るために溶体化処理による結晶粒径の調整だけではなく、時効処理で結晶粒界や結晶粒内を強化させる必要がある。上述したように、第1段時効処理では結晶粒界に炭化物とガンマプライム相を連続且つくさび状に十分析出させ、結晶粒界を強化する。第1段時効処理の温度が820℃未満では化合物の析出量が少なく結晶粒界の強化が不十分となる。一方、第1段時効処理の温度が880℃を超えると付随的に結晶粒内に析出するガンマプライム相が粗大に成長することで粒内の析出強化の効果が損なわれてしまう。そのため、第1段時効処理の温度は820〜880℃とする。第1段時効処理の温度の好ましい下限は840℃であり、好ましい上限は860℃である。
なお、上記効果を得るための第1段時効処理の時間は1〜10時間程度で十分である。
前述の第1段時効処理に続いて行う第2段時効処理では結晶粒内にガンマプライム相を微細に析出させ、結晶粒内を強化する。第2段時効処理の温度が600℃未満ではガンマプライム相の析出が不十分であるため高温強度が不足する。一方、第2段時効処理の温度が800℃を超えるとガンマプラム相が粗大化し高温強度は低下しやすくなる。そのため、本発明では2段目の時効処理は600〜800℃とする。第2段時効処理の温度の好ましい下限は700℃であり、好ましい上限は780℃である。
なお、上記効果を得るための第2段時効処理の時間は10〜30時間程度が好ましい。
Aging treatment step In the present invention, the solution treatment material is subjected to a first-stage aging treatment at 820 to 880 ° C and a second-stage aging treatment at 600 to 800 ° C.
In order to obtain sufficient creep rupture strength, it is necessary not only to adjust the crystal grain size by solution treatment, but also to strengthen the grain boundaries and crystal grains by aging treatment. As described above, in the first stage aging treatment, carbides and gamma prime phases are sufficiently precipitated continuously and in a wedge shape at the grain boundaries to strengthen the grain boundaries. When the temperature of the first stage aging treatment is less than 820 ° C., the amount of the precipitated compound is small and the strengthening of the crystal grain boundary becomes insufficient. On the other hand, when the temperature of the first stage aging treatment exceeds 880 ° C., the effect of precipitation strengthening in the grains is impaired due to the coarse growth of the gamma prime phase that precipitates in the grains. Therefore, the temperature of the first stage aging treatment is 820 to 880 ° C. The preferable lower limit of the temperature of the first stage aging treatment is 840 ° C., and the preferable upper limit is 860 ° C.
In addition, about 1 to 10 hours are sufficient for the time of the 1st stage aging treatment for obtaining the said effect.
In the second-stage aging treatment performed after the first-stage aging treatment described above, the gamma prime phase is finely precipitated in the crystal grains to strengthen the inside of the crystal grains. If the temperature of the second stage aging treatment is less than 600 ° C., the precipitation of the gamma prime phase is insufficient and the high temperature strength is insufficient. On the other hand, when the temperature of the second stage aging treatment exceeds 800 ° C., the gamma plum phase becomes coarse and the high-temperature strength tends to decrease. Therefore, in the present invention, the second stage aging treatment is set to 600 to 800 ° C. The preferable lower limit of the temperature of the second stage aging treatment is 700 ° C., and the preferable upper limit is 780 ° C.
In addition, the time of the second stage aging treatment for obtaining the above effect is preferably about 10 to 30 hours.

以上、説明する本発明の製造方法を適用すれば、Ni基超耐熱合金のクリープ破断強度を向上させることができる。その結果、700℃級超々臨界圧火力発電プラントの蒸気タービンブレード、ボルト等の部材として、高い信頼性を付与することが可能となる。   As described above, when the production method of the present invention to be described is applied, the creep rupture strength of the Ni-base superalloy can be improved. As a result, high reliability can be imparted as a member such as a steam turbine blade and a bolt of a 700 ° C. class ultra-supercritical thermal power plant.

真空誘導溶解により10kgインゴットを作製し、表1に示す化学成分のNi基超耐熱合金を得た。表に示さない残部はNiと不純物である。
今回製造した鋼塊の成分は、C含有量と溶体化処理の関係を明確とするために、C以外の本発明で規定した元素の含有量は固定した。
A 10 kg ingot was produced by vacuum induction melting, and Ni-base superalloys having chemical components shown in Table 1 were obtained. The balance not shown in the table is Ni and impurities.
In order to clarify the relationship between the C content and the solution treatment, the contents of the elements specified in the present invention other than C were fixed.

表1に示す組成のNi基超耐熱合金のインゴットに対して、1200℃で均質化熱処理を行って熱間塑性加工用素材とした。前述の熱間塑性加工用素材を用いて、1150℃で熱間塑性加工を行って熱間塑性加工材とした。
クリープ強度に影響を及ぼす溶体化処理工程の条件と、時効処理工程の条件を表2に示す。
A Ni-based superheat-resistant alloy ingot having the composition shown in Table 1 was subjected to homogenization heat treatment at 1200 ° C. to obtain a material for hot plastic working. Using the aforementioned hot plastic working material, hot plastic working was performed at 1150 ° C. to obtain a hot plastic work material.
Table 2 shows the conditions of the solution treatment step that affects the creep strength and the conditions of the aging treatment step.

上述した溶体化処理工程と時効処理工程を行ったNi基超耐熱合金のクリープ破断特性の評価を行った。評価は700℃級超々臨界圧火力発電プラントへの使用を想定し、700℃と750℃でのクリープ破断試験とした。
クリープ破断試験は、試験温度700℃、荷重応力385N/mm、及び、試験温度750℃、荷重応力242N/mmの条件で行った。クリープ破断試験結果を表3に示す。なお、表3に示す平均結晶粒径は時効処理工程後のものであり、炭化物量はCALPHAD法を用いた計算により求めたものである。また、時効処理工程後の合金No.2の金属組織の電子顕微鏡写真とその模式図を図1、2にそれぞれ示す。
The creep rupture properties of the Ni-base superalloys subjected to the solution treatment step and the aging treatment step described above were evaluated. The evaluation was made as a creep rupture test at 700 ° C. and 750 ° C. assuming use in a 700 ° C. class super supercritical thermal power plant.
The creep rupture test was performed under the conditions of a test temperature of 700 ° C., a load stress of 385 N / mm 2 , a test temperature of 750 ° C., and a load stress of 242 N / mm 2 . The creep rupture test results are shown in Table 3. In addition, the average crystal grain size shown in Table 3 is after the aging treatment step, and the amount of carbide is obtained by calculation using the CALPHAD method. In addition, alloy No. after the aging treatment step. The electron micrograph of the metal structure of 2 and its schematic diagram are shown in FIGS.

表3より、700℃、750℃でのクリープ破断試験結果について、本発明の合金No.1、合金No.2は比較例No.3、4、5と比較してクリープ破断寿命が向上している。クリープ破断絞りについては、本発明合金は、比較例と比較してやや劣るものの十分な延性を満足していることが分かる。良好なクリープ破断延性を満足できる範囲で、最も重要視されるクリープ破断強度が改善できていることが分かる。
一方、比較例No.5は本発明合金No.1、2と同程度の結晶粒径であるが、溶体化処理温度が低いため未固溶炭化物が残存し、時効処理で粒界への炭化物析出が不十分であるため、本発明合金No.1、2と比較してクリープ破断強度は低い結果となった。
また、本発明の製造方法を適用したNo.1、2合金では、図1及び図2の金属組織写真とその模式図に示すように、炭化物とガンマプライム相が結晶粒界に沿って連続的且つくさび状に多数析出し、クリープ中の粒界すべりが抑制されることでクリープ破断強度を向上させることができる。
From Table 3, the results of the creep rupture test at 700 ° C. and 750 ° C. are shown for Alloy No. of the present invention. 1. Alloy no. 2 is Comparative Example No. Compared with 3, 4, and 5, the creep rupture life is improved. Regarding the creep rupture drawing, it can be seen that the alloy of the present invention satisfies the sufficient ductility although it is slightly inferior to the comparative example. It can be seen that the most important creep rupture strength can be improved within a range where satisfactory creep rupture ductility can be satisfied.
On the other hand, Comparative Example No. No. 5 shows the alloy No. Although the crystal grain size is about the same as that of Nos. 1 and 2, since the solution treatment temperature is low, undissolved carbides remain, and carbide precipitation at the grain boundaries is insufficient during aging treatment. Compared with 1 and 2, the creep rupture strength was low.
In addition, No. to which the manufacturing method of the present invention was applied. In the alloys 1 and 2, as shown in the metal structure photographs of FIG. 1 and FIG. 2 and the schematic diagram thereof, a large number of carbides and gamma prime phases are continuously and wedged precipitated along the grain boundaries, The creep rupture strength can be improved by suppressing the boundary slip.

1 マトリクス
2 ガンマプライム相
3 析出物(炭化物及びガンマプライム相)
1 Matrix 2 Gamma Prime Phase 3 Precipitate (Carbide and Gamma Prime Phase)

Claims (1)

質量%で、C:0.01〜0.2%、Si:0.5%以下、Mn:0.5%以下、Cr:10〜24%、MoとWの1種または2種をMo+0.5W:5〜17%、Al:0.5〜2.0%、Ti:1.0〜3.0%、Fe:10%以下、及び、B:0.02%以下(0%は含まず)とZr:0.2%以下(0%は含まず)の1種または2種を含有し、残部はNi及び不可避的不純物でなるNi基超耐熱合金の製造方法において、
前記組成を有する溶体化処理用素材を準備する工程と、
前記溶体化処理用素材を用いて、1100〜1140℃で1.5〜5時間の溶体化処理(多段の溶体化処理は行わない)を行って、溶体化処理材を得る溶体化処理工程と、
前記溶体化処理材を用いて、820〜880℃での第1段時効処理、および600〜800℃での第2段時効処理を行なう時効処理工程と、
を含むことを特徴とするNi基超耐熱合金の製造方法。
By mass%, C: 0.01 to 0.2%, Si: 0.5% or less, Mn: 0.5% or less, Cr: 10 to 24%, and one or two of Mo and W are added to Mo + 0. 5W: 5 to 17%, Al: 0.5 to 2.0%, Ti: 1.0 to 3.0%, Fe: 10% or less, and B: 0.02% or less (0% not included) ) And Zr: 0.2% or less (not including 0%) or two of them, the balance being Ni and an inevitable impurity Ni-based superalloy,
Preparing a solution treatment material having the composition;
A solution treatment step of obtaining a solution treatment material by performing a solution treatment for 1.5 to 5 hours at 1100 to 1140 ° C. (no multistage solution treatment is performed) using the solution treatment material; and ,
Using the solution treatment material, an aging treatment step of performing a first stage aging treatment at 820 to 880 ° C. and a second stage aging treatment at 600 to 800 ° C.,
A method for producing a Ni-base superalloy, comprising:
JP2012214950A 2012-09-27 2012-09-27 METHOD FOR PRODUCING Ni-BASED SUPERALLOY Pending JP2014070230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012214950A JP2014070230A (en) 2012-09-27 2012-09-27 METHOD FOR PRODUCING Ni-BASED SUPERALLOY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012214950A JP2014070230A (en) 2012-09-27 2012-09-27 METHOD FOR PRODUCING Ni-BASED SUPERALLOY

Publications (1)

Publication Number Publication Date
JP2014070230A true JP2014070230A (en) 2014-04-21

Family

ID=50745730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012214950A Pending JP2014070230A (en) 2012-09-27 2012-09-27 METHOD FOR PRODUCING Ni-BASED SUPERALLOY

Country Status (1)

Country Link
JP (1) JP2014070230A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104152827A (en) * 2014-08-06 2014-11-19 华能国际电力股份有限公司 Heat treatment technology for strengthening crystal boundary of cold rolling state ferronickel-based high temperature alloy
WO2020195049A1 (en) * 2019-03-26 2020-10-01 日立金属株式会社 Method for producing ni-based super-heat-resistant alloy, and ni-based super-heat-resistant alloy
JP2021502487A (en) * 2017-11-10 2021-01-28 ヘインズ インターナショナル,インコーポレーテッド Heat treatment to improve ductility of Ni-Cr-Co-Mo-Ti-Al alloy
JP2021088776A (en) * 2017-05-22 2021-06-10 川崎重工業株式会社 High-temperature component and metal powder
CN113684395A (en) * 2020-05-19 2021-11-23 宝武特种冶金有限公司 Nickel-based alloy resistant to high temperature molten salt corrosion and easy to process
CN114645161A (en) * 2022-03-09 2022-06-21 中国地质大学(武汉) High-oxidation-resistance nickel-based alloy block material and preparation method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104152827A (en) * 2014-08-06 2014-11-19 华能国际电力股份有限公司 Heat treatment technology for strengthening crystal boundary of cold rolling state ferronickel-based high temperature alloy
JP2021088776A (en) * 2017-05-22 2021-06-10 川崎重工業株式会社 High-temperature component and metal powder
US11326230B2 (en) 2017-05-22 2022-05-10 Kawasaki Jukogyo Kabushiki Kaisha High temperature component and method for producing same
JP7109608B2 (en) 2017-05-22 2022-07-29 川崎重工業株式会社 hot parts
US11773470B2 (en) 2017-05-22 2023-10-03 Kawasaki Jukogyo Kabushiki Kaisha High temperature component and method for producing same
JP2021502487A (en) * 2017-11-10 2021-01-28 ヘインズ インターナショナル,インコーポレーテッド Heat treatment to improve ductility of Ni-Cr-Co-Mo-Ti-Al alloy
JP7431730B2 (en) 2017-11-10 2024-02-15 ヘインズ インターナショナル,インコーポレーテッド Heat treatment to improve ductility of Ni-Cr-Co-Mo-Ti-Al alloy
WO2020195049A1 (en) * 2019-03-26 2020-10-01 日立金属株式会社 Method for producing ni-based super-heat-resistant alloy, and ni-based super-heat-resistant alloy
JP6826766B1 (en) * 2019-03-26 2021-02-10 日立金属株式会社 Manufacturing method of Ni-based super heat-resistant alloy and Ni-based super heat-resistant alloy
CN113684395A (en) * 2020-05-19 2021-11-23 宝武特种冶金有限公司 Nickel-based alloy resistant to high temperature molten salt corrosion and easy to process
CN114645161A (en) * 2022-03-09 2022-06-21 中国地质大学(武汉) High-oxidation-resistance nickel-based alloy block material and preparation method thereof
CN114645161B (en) * 2022-03-09 2022-11-29 中国地质大学(武汉) High-oxidation-resistance nickel-based alloy block material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5657964B2 (en) High-strength Ni-base forged superalloy and manufacturing method thereof
JP5478601B2 (en) Ni-based forged alloy and gas turbine using the same
JP2778705B2 (en) Ni-based super heat-resistant alloy and method for producing the same
JP5792500B2 (en) Ni-base superalloy material and turbine rotor
JP5127749B2 (en) Ni-base alloy for turbine rotor of steam turbine and turbine rotor of steam turbine using the same
JP6839401B1 (en) Manufacturing method of Ni-based super heat-resistant alloy and Ni-based super heat-resistant alloy
WO2011062231A1 (en) Heat-resistant superalloy
JP5995158B2 (en) Ni-base superalloys
AU2017232119C1 (en) Method for producing Ni-based superalloy material
JP5921401B2 (en) Ni-based alloy, method for producing the same, and turbine component
US10344367B2 (en) Method for producing Ni-based superalloy material
JP6315319B2 (en) Method for producing Fe-Ni base superalloy
JP6842316B2 (en) Manufacturing method of Ni-based alloy, gas turbine material and Ni-based alloy with excellent creep characteristics
JP5323162B2 (en) Polycrystalline nickel-based superalloy with excellent mechanical properties at high temperatures
JP6733210B2 (en) Ni-based superalloy for hot forging
JP2014070230A (en) METHOD FOR PRODUCING Ni-BASED SUPERALLOY
JP5395516B2 (en) Nickel-based alloy for steam turbine turbine rotor and steam turbine turbine rotor
JP6620475B2 (en) Manufacturing method of Ni-base heat-resistant alloy tube
JP6293682B2 (en) High strength Ni-base superalloy
JP4387331B2 (en) Ni-Fe base alloy and method for producing Ni-Fe base alloy material
JP2008297579A (en) Nickel-based alloy excellent in structural stability and high tension strength, and method for producing nickel-based alloy material
JP2004256840A (en) COMPOSITE REINFORCED TYPE Ni BASED SUPERALLOY, AND PRODUCTION METHOD THEREFOR
JP2004107777A (en) Austenitic heat resistant alloy, production method therefor and steam turbine parts
JP2009221545A (en) Ni-BASED ALLOY FOR TURBINE ROTOR OF STEAM TURBINE, AND TURBINE ROTOR OF STEAM TURBINE
JP4543380B2 (en) Fuel cell stack fastening bolt alloy