JP2008297579A - Nickel-based alloy excellent in structural stability and high tension strength, and method for producing nickel-based alloy material - Google Patents

Nickel-based alloy excellent in structural stability and high tension strength, and method for producing nickel-based alloy material Download PDF

Info

Publication number
JP2008297579A
JP2008297579A JP2007142866A JP2007142866A JP2008297579A JP 2008297579 A JP2008297579 A JP 2008297579A JP 2007142866 A JP2007142866 A JP 2007142866A JP 2007142866 A JP2007142866 A JP 2007142866A JP 2008297579 A JP2008297579 A JP 2008297579A
Authority
JP
Japan
Prior art keywords
based alloy
aging treatment
high temperature
temperature
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007142866A
Other languages
Japanese (ja)
Other versions
JP4768672B2 (en
Inventor
Tatsuya Takahashi
達也 高橋
Eiji Maeda
榮二 前田
Takashi Hatano
隆司 波多野
Yoshikuni Kadoya
好邦 角屋
Ryuichi Yamamoto
隆一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Mitsubishi Heavy Industries Ltd
Original Assignee
Japan Steel Works Ltd
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Mitsubishi Heavy Industries Ltd filed Critical Japan Steel Works Ltd
Priority to JP2007142866A priority Critical patent/JP4768672B2/en
Publication of JP2008297579A publication Critical patent/JP2008297579A/en
Application granted granted Critical
Publication of JP4768672B2 publication Critical patent/JP4768672B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Ni-based alloy having stable high temperature characteristic even at a using temperature of ≥700°C. <P>SOLUTION: This Ni-based alloy contains 0.005-0.1% C, 8-15% Cr, 1-7% Mo, 5-20% W, 0.5-1.0% Al 1.0-2.5% Ti and if desired, at least one or more kinds of ≤1.0% Nb, ≤0.015% B and ≤0.01% Mg, and the balance Ni with inevitable impurities. The structure is made stable even at high temperature of ≥700°C and the excellent high temperature characteristic is obtained. By regulating the balance of Mo and W to 0.1≤Mo/(Mo+W)≤0.5, this alloy is made more excellent in the high temperature strength, high temperature ductility and creep characteristic. By regulating the balance of Al and Ti to 0.2≤Al/Ti≤1.0, this alloy is made more excellent in the high temperature tensile characteristic and the creep characteristic. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば、タービンロータのような高温に曝される発電機部材の素材に用いて、特に高温度域において優れた組織安定性と良好な高温強度と延性、及びクリープ特性を有するNi基合金およびNi基合金材の製造方法に関するものである。   The present invention is used, for example, as a material for a generator member exposed to high temperatures such as a turbine rotor, and has a Ni base having excellent structure stability, good high-temperature strength and ductility, and creep characteristics, particularly in a high temperature range. The present invention relates to a method for producing an alloy and a Ni-based alloy material.

化石燃料の消費量低減および地球温暖化防止などの観点から、USC(超々臨界圧)プラントの更なる高効率化に期待が寄せられている。特に近年、21世紀の発電プラントとして高効率石炭火力発電を指向する動きが盛んであり、主蒸気温度が700℃を超えた次世代超々臨界圧蒸気発電に対応したタービンロータやボイラー部材等の開発が進められている。   From the viewpoints of reducing the consumption of fossil fuels and preventing global warming, there are expectations for further improvement in the efficiency of USC (ultra-supercritical pressure) plants. Particularly in recent years, there has been a movement toward high-efficiency coal-fired power generation as a power plant in the 21st century, and development of turbine rotors and boiler components that support next-generation ultra-supercritical steam power generation with a main steam temperature exceeding 700 ° C. Is underway.

700℃を超える高温の蒸気に晒されるタービンロータ素材に使用される耐熱材料は、もはや従来までのフェライト系耐熱鋼では耐用温度の観点から使用することができず、Ni基合金を適用せざるを得ない。   The heat-resistant material used in the turbine rotor material exposed to high-temperature steam exceeding 700 ° C. can no longer be used in the conventional ferritic heat-resistant steel from the viewpoint of the service temperature, and a Ni-based alloy must be applied. I don't get it.

Ni基耐熱合金は良好な高温強度を得るために、TiやAl、或いはNbを少量添加してオーステナイト(以下γと記す)のマトリクス中にNi(Al、Ti)からなるガンマプライム相(以後γ’と記す)あるいは/およびNi(Al、Ti、Nb)からなるガンマダブルプライム相(γ”と記す)と呼ばれる析出相を整合的に微細析出させて強化する析出強化型の合金が多い。インコネル(商標、以下同じ)706や718はこれに当たる。 In order to obtain good high-temperature strength, a Ni-base heat-resistant alloy is added with a small amount of Ti, Al, or Nb, and a gamma prime phase (hereinafter referred to as γ) consisting of Ni 3 (Al, Ti) in an austenite (hereinafter referred to as γ) matrix There are many precipitation strengthening type alloys that reinforce and precipitate a precipitation phase called a gamma double prime phase (denoted as γ ″) composed of Ni 3 (Al, Ti, Nb) and / or Ni 3 (Al, Ti, Nb). Inconel (trademark, the same applies hereinafter) 706 and 718 are examples of this.

また、ワスパロイのように、γ’相の析出強化に加え、固溶強化とM23炭化物の分散強化により複合的に強化するタイプの合金や、インコネル617に代表されるように析出強化元素を殆ど含有せず、CoやMoにより固溶強化する、所謂、固溶強化型の合金も存在する。 Moreover, in addition to precipitation strengthening of the γ ′ phase, such as Waspaloy, alloys of the type that are strengthened in combination by solid solution strengthening and dispersion strengthening of M 23 C 6 carbide, and precipitation strengthening elements as represented by Inconel 617 There is also a so-called solid solution strengthening type alloy that does not contain Al and is strengthened by Co or Mo.

しかしながら、何れのタイプのNi基合金においても、従来使用されてきたフェライト系耐熱鋼に比べ線膨張係数が高くなるため、蒸気タービン部材を構成する他部材との熱膨張差の問題や、高温運転時の熱疲労の問題が指摘されている。
このため、特許文献1や特許文献2、或いは特許文献3では、フェライト系耐熱鋼と同等の低い線膨張係数を有しながら、かつフェライト系耐熱鋼の高温材料特性を上回る析出強化型Ni基合金が提案されている。
特開平9-157779号公報 特開2003-13161号公報 特開2005-314728号公報
However, in any type of Ni-base alloy, the coefficient of linear expansion is higher than that of conventionally used ferritic heat-resistant steel. The problem of thermal fatigue at times has been pointed out.
For this reason, in Patent Document 1, Patent Document 2, or Patent Document 3, a precipitation-strengthened Ni-based alloy having a low coefficient of linear expansion equivalent to that of a ferritic heat resistant steel and exceeding the high temperature material properties of the ferritic heat resistant steel. Has been proposed.
Japanese Patent Laid-Open No. 9-157779 JP 2003-13161 A JP 2005-314728 A

一方、タービンロータ部材は所定の10万時間クリープ破断強度が求められるように、高温長時間使用において安定した性能の材料でなければならず、運転温度域での強度や靭性のみならず、組織の安定性が極めて重要となってくる。Ni基合金の組織安定性に最も大きな影響を及ぼす要因は、強化析出相の高温安定性そのものであり、強化析出相の成長速度や変態挙動によりほぼ決定される。
前記で提案されている特許文献1の析出強化型Ni基合金では,従来想定されている600〜700℃での比較的短時間での使用環境においては安定した性能が維持されている。しかしながら,上記のように700?以上の温度域で数万〜十万時間オーダーの長期間に渡り使用すると,使用中に析出が進行し,過時効になって強度、あるいは延性や靱性などの機械的特性が著しく低下するなど、組織安定性に起因した問題が生じ、長期間に渡り700℃以上において安定して使用できるという点で課題を有している。
また,特許文献2,3の析出強化型Ni基合金では,線膨張係数を低下させるため
にMoとWの添加量を増やしており,組織安定性の観点からは課題を有する。
On the other hand, the turbine rotor member must be a material with stable performance in high-temperature and long-time use so that a predetermined 100,000-hour creep rupture strength is required, not only strength and toughness in the operating temperature range, Stability is extremely important. The factor that has the greatest effect on the structural stability of the Ni-based alloy is the high-temperature stability of the strengthening precipitation phase itself, which is almost determined by the growth rate and transformation behavior of the strengthening precipitation phase.
The precipitation-strengthened Ni-based alloy of Patent Document 1 proposed above maintains a stable performance in a relatively short-time use environment at 600 to 700 ° C., which is conventionally assumed. However, when used for a long time of the order of tens of thousands to 100,000 hours in the temperature range of 700? Or higher as described above, precipitation proceeds during use, and overaging causes mechanical properties such as strength, ductility and toughness. There is a problem in that it can be used stably at 700 ° C. or more for a long period of time due to a problem caused by tissue stability, such as markedly lowering of mechanical properties.
In addition, in the precipitation strengthened Ni-base alloys of Patent Documents 2 and 3, the addition amounts of Mo and W are increased in order to reduce the linear expansion coefficient, and there is a problem from the viewpoint of structure stability.

本発明は、上記事情を背景としてなされたものであり、700℃以上の使用温度においても安定した高温特性を有するNi基合金およびNi基合金材の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a Ni-based alloy and a method for producing a Ni-based alloy material having stable high-temperature characteristics even at a use temperature of 700 ° C. or higher.

Ni基合金に添加するAl、Ti、Nbといった析出強化元素やMoやW等の固溶強化元素は、その組み合わせや含有量により様々な金属間化合物を形成し、また機械的特性にも大きく作用する。本願発明者らは、様々な金属間化合物の形成について研究を進め、前記成分の含有量とバランスを適切に設定することによって700℃以上の高温においても組織の安定性が得られ、優れた高温特性を有することを見出し、本発明を完成するに至ったものである。   Precipitation strengthening elements such as Al, Ti, and Nb added to Ni-base alloys and solid solution strengthening elements such as Mo and W form various intermetallic compounds depending on their combination and content, and also have a significant effect on mechanical properties. To do. The inventors of the present application proceeded with research on the formation of various intermetallic compounds, and by appropriately setting the content and balance of the above components, the stability of the structure was obtained even at a high temperature of 700 ° C. or higher, and an excellent high temperature The inventors have found that the present invention has characteristics and have completed the present invention.

すなわち、本発明の組織安定性と高温強度に優れたNi基合金のうち、請求項1記載の発明は、質量%で、C:0.005〜0.1%、Cr:8〜15%、Mo:1〜7%、W:5〜20%、Al:0.5〜1.0%、Ti:1.0〜2.5%を含有し、残部がNiと不可避不純物からなることを特徴とする。   That is, among the Ni-based alloys having excellent structure stability and high temperature strength according to the present invention, the invention according to claim 1 is mass%, C: 0.005 to 0.1%, Cr: 8 to 15%, Mo: 1 to 7%, W: 5 to 20%, Al: 0.5 to 1.0%, Ti: 1.0 to 2.5%, the balance is made of Ni and inevitable impurities And

請求項2記載の組織安定性と高温強度に優れたNi基合金の発明は、請求項1記載の発明において、質量%で、さらに、Nb:1.0%以下を含有することを特徴とする。   The invention of the Ni-base alloy having excellent structure stability and high-temperature strength according to claim 2 is characterized in that, in the invention according to claim 1, it contains, in mass%, Nb: 1.0% or less. .

請求項3記載の組織安定性と高温強度に優れたNi基合金の発明は、請求項1または2に記載の発明において、質量%で、さらに、B:0.015%以下を含有することを特徴とする。   The invention of the Ni-base alloy having excellent structure stability and high temperature strength according to claim 3 is the invention according to claim 1 or 2, wherein the invention further contains B: 0.015% or less by mass%. Features.

請求項4記載の組織安定性と高温強度に優れたNi基合金の発明は、請求項1〜3のいずれかに記載の発明において、質量%で、さらにMg:0.01%以下を含有することを特徴とする。   The invention of the Ni-base alloy having excellent structure stability and high-temperature strength according to claim 4 is the invention according to any one of claims 1 to 3, and further contains Mg: 0.01% or less by mass. It is characterized by that.

請求項5記載の組織安定性と高温強度に優れたNi基合金の発明は、請求項1〜4のいずれかに記載の発明において、前記Mo含有量とW含有量とが、下記式1を満たすことを特徴とする。
0.1≦Mo/(Mo+W)≦0.5 …式1
The invention of the Ni-based alloy having excellent structure stability and high temperature strength according to claim 5 is the invention according to any one of claims 1 to 4, wherein the Mo content and the W content satisfy the following formula 1. It is characterized by satisfying.
0.1 ≦ Mo / (Mo + W) ≦ 0.5 Formula 1

請求項6記載の組織安定性と高温強度に優れたNi基合金の発明は、請求項1〜5のいずれかに記載の発明において、前記Al含有量とTi含有量とが下記式2を満たすことを特徴とする。
0.2≦Al/Ti≦1.0 …式2
The invention of the Ni-based alloy having excellent structure stability and high temperature strength according to claim 6 is the invention according to any one of claims 1 to 5, wherein the Al content and Ti content satisfy the following formula 2. It is characterized by that.
0.2 ≦ Al / Ti ≦ 1.0 Formula 2

請求項7記載の組織安定性と高温強度に優れたNi基合金材の製造方法の発明は、請求項1〜6のいずれかに記載の組成を有するNi基合金を、熱間鍛造後、再結晶温度以上で溶体化処理を行い、その後、800℃〜1000℃の範囲で1回目の時効処理を施し、その後、720℃〜780℃の範囲で2回目の時効処理を行うことを特徴とする。   The invention of the method for producing a Ni-base alloy material excellent in structure stability and high-temperature strength according to claim 7 is a method of reusing a Ni-base alloy having the composition according to any one of claims 1 to 6 after hot forging. The solution treatment is performed at a temperature higher than the crystal temperature, and then the first aging treatment is performed in the range of 800 ° C. to 1000 ° C., and then the second aging treatment is performed in the range of 720 ° C. to 780 ° C. .

請求項8記載の組織安定性と高温強度に優れたNi基合金材の製造方法の発明は、請求項7記載の発明において、前記1回目の時効処理後、20℃/h以上の冷却速度で2回目の時効処理温度にまで冷却して連続して時効処理を行うことを特徴とする。   The invention of the method for producing a Ni-based alloy material having excellent structure stability and high temperature strength according to claim 8 is the invention according to claim 7, wherein after the first aging treatment, the cooling rate is 20 ° C./h or more. It is characterized in that the aging treatment is continuously performed after cooling to the second aging treatment temperature.

以下に、本発明の合金組成および製造条件を設定した理由を以下に説明する。なお、以下の含有量はいずれも質量%で示されている。   The reason for setting the alloy composition and production conditions of the present invention will be described below. In addition, all the following contents are shown by the mass%.

<合金組成>
C:0.005〜0.1%
Cは、TiとはTiCを形成し、またCr、MoとはMC、およびM23タイプの炭化物を形成し、合金の結晶粒の粗大化を抑制すると共に、高温強度の向上にも寄与する。更に、MCやM23は結晶粒界に適量の炭化物を析出させることで粒界を強化するために、本発明では必須の元素である。Cが0.005%以上含まれないと上記の効果が得られず、0.1%を越えると析出強化に必要なTi量が減少するだけでなく、時効処理時に粒界へ析出するCr炭化物が多くなりすぎて粒界が脆弱化し、延性が低下する。従って、Cの添加量は0.005〜0.1%の範囲に限定する。なお、同様の理由で、下限を0.01%、上限を0.08%とするのが望ましい。
<Alloy composition>
C: 0.005-0.1%
C forms TiC with Ti, and forms M 6 C and M 23 C 6 type carbides with Cr and Mo, suppressing coarsening of alloy crystal grains and improving high-temperature strength. Also contribute. Further, M 6 C and M 23 C 6 are essential elements in the present invention in order to strengthen the grain boundary by precipitating an appropriate amount of carbides at the crystal grain boundary. If C is not contained in an amount of 0.005% or more, the above effect cannot be obtained. If it exceeds 0.1%, not only the amount of Ti required for precipitation strengthening is reduced but also Cr carbides precipitated at grain boundaries during aging treatment. Increases too much and grain boundaries become brittle and ductility decreases. Therefore, the addition amount of C is limited to a range of 0.005 to 0.1%. For the same reason, it is desirable that the lower limit is 0.01% and the upper limit is 0.08%.

Cr:8〜15%
Crは合金の耐酸化性、耐食性、強度を高めるに不可欠な元素である。また、Cと結びついて炭化物を析出させ、高温強度を高める。それらの効果を発揮させるためには、最低8%以上の添加量が必要である。しかしながら、多すぎる添加量はマトリクスの安定性を阻害し、σ相やα−Crなどの有害なTCP相の生成を助長することになり、延性や靱性に悪影響を及ぼす。また、Cr含有量の増加に伴い、線膨張係数が高くなることも知られている。従って、Crの添加量は8〜15%の範囲に限定する。なお、同様の理由で下限を9%、上限を14%とするのが望ましい。
Cr: 8-15%
Cr is an indispensable element for increasing the oxidation resistance, corrosion resistance, and strength of the alloy. Moreover, it couple | bonds with C and precipitates a carbide | carbonized_material and raises high temperature strength. In order to exhibit these effects, an addition amount of at least 8% is necessary. However, an excessive amount of addition inhibits the stability of the matrix, promotes the generation of harmful TCP phases such as σ phase and α-Cr, and adversely affects ductility and toughness. It is also known that the linear expansion coefficient increases as the Cr content increases. Therefore, the addition amount of Cr is limited to a range of 8 to 15%. For the same reason, it is desirable to set the lower limit to 9% and the upper limit to 14%.

Mo:1〜7%
Moは主にマトリクスに固溶してマトリクス自体を強化する固溶強化元素として有効であるとともに、γ’相に固溶してγ’相のAlサイトを置換することによりγ’相の安定性を高めるので高温での強度を高めるとともに組織の安定性を高めるのに有効である。Moが1%未満では上記効果が不十分であり、7%を越えるとμ相(Laves相)と呼ばれるTCP相を生成しやすくなるため、高温でのマトリクスの組織を却って不安定にするとともに高温組織安定性を悪化させる。したがって、Moの添加量は1〜7%の範囲に限定する。同様の理由で下限を2%、上限を7%とするのが望ましい。
Mo: 1-7%
Mo is mainly effective as a solid solution strengthening element for solid solution in the matrix to strengthen the matrix itself, and the stability of the γ 'phase by dissolving in the γ' phase and replacing the Al site of the γ 'phase. Is effective in increasing the strength at high temperatures and increasing the stability of the tissue. If Mo is less than 1%, the above effect is insufficient, and if it exceeds 7%, a TCP phase called a μ phase (Laves phase) is likely to be generated. Impairs tissue stability. Therefore, the addition amount of Mo is limited to a range of 1 to 7%. For the same reason, it is desirable to set the lower limit to 2% and the upper limit to 7%.

W:5〜20%
WもMoと同様にマトリクスに固溶してマトリクス自体を強化する固溶強化元素として有効であるとともに、γ’相に固溶してγ’相のAlサイトを置換することによりγ’相の安定性を高めるので高温での強度を高めるとともに組織の安定性を高めるのに有効である。また、線膨張係数を下げる効果も有しており、適切な含有量であれば、TCP相が析出しないので組織安定性を損なうことはない。ただし、多すぎる添加ではα−Wが析出し組織安定性を低下させるのみならず、熱間加工性も著しく劣化させる。従って、Wの添加量は5〜20%の範囲に限定する。同様の理由で下限を7%、上限を15%とするのが望ましい。
W: 5-20%
Like Mo, W is effective as a solid solution strengthening element for solid solution in the matrix and strengthening the matrix itself, and by dissolving in the γ ′ phase and replacing the Al site of the γ ′ phase, Since the stability is increased, it is effective to increase the strength at high temperature and the stability of the tissue. In addition, it has an effect of lowering the linear expansion coefficient. If the content is appropriate, the TCP phase does not precipitate, and the structural stability is not impaired. However, if it is added too much, not only α-W is precipitated and the structure stability is lowered, but also hot workability is remarkably deteriorated. Therefore, the addition amount of W is limited to a range of 5 to 20%. For the same reason, it is desirable to set the lower limit to 7% and the upper limit to 15%.

0.1≦Mo/(Mo+W)≦0.5
Mo、Wは上記作用を得ることができるが、高温での機械的特性、特に延性を確保するために、[Mo含有量]/[Mo含有量+W含有量]を0.1以上とするのが望ましい。一方、[Mo含有量]/[Mo含有量+W含有量]が0.5を超えると、μ相(Laves相)が析出し、前述のように高温でのマトリクス組織を不安定にするとともに高温組織安定性も悪化させるため、0.5以下とするのが望ましい。同様の理由で下限を0.25、上限を0.5とするのが一層望ましい。
0.1 ≦ Mo / (Mo + W) ≦ 0.5
Mo and W can obtain the above-mentioned effects, but in order to ensure mechanical properties at high temperatures, particularly ductility, [Mo content] / [Mo content + W content] is set to 0.1 or more. Is desirable. On the other hand, when [Mo content] / [Mo content + W content] exceeds 0.5, the μ phase (Laves phase) precipitates, destabilizing the matrix structure at high temperature and increasing the temperature as described above. In order to deteriorate the tissue stability, it is desirable to make it 0.5 or less. For the same reason, it is more desirable to set the lower limit to 0.25 and the upper limit to 0.5.

Al:0.5〜1.0%
AlはNiと結合してγ’相を析出し、合金の強化に寄与する。Alが0.5%未満では十分な析出強化を得ることが出来ないが、多すぎる添加はγ’相粒界への粗大凝集により、濃化領域と無析出帯とができ、高温特性の低下、切り欠き感受性の劣化を招き、機械的特性が大幅に低下する。従って、Alの添加量は0.5〜1.0%の範囲に限定する。なお、同様の理由で下限を0.5%、上限を0.9%とするのが望ましい。
Al: 0.5 to 1.0%
Al combines with Ni to precipitate a γ ′ phase and contributes to strengthening of the alloy. When Al is less than 0.5%, sufficient precipitation strengthening cannot be obtained, but too much addition can cause a concentrated region and no precipitation zone due to coarse aggregation at the γ 'phase grain boundary, resulting in deterioration of high temperature characteristics. In addition, the notch sensitivity is deteriorated, and the mechanical characteristics are greatly reduced. Therefore, the addition amount of Al is limited to the range of 0.5 to 1.0%. For the same reason, it is desirable to set the lower limit to 0.5% and the upper limit to 0.9%.

Ti:1.0〜2.5%
Tiは主にMC炭化物を形成して合金の結晶粒の粗大化を抑制するとともに、Alと同様、Niと結合してγ’相を析出し、合金の強化に寄与する。しかしながら、多すぎる添加は、高温におけるγ’相の安定性を低下させると共にη相が析出するため強度と延性、及び長時間組織安定性の低下を招く。従って、Tiの添加量は1.0〜2.5%の範囲に限定する。なお、同様の理由で下限を1.5%、上限を2.0%とするのが望ましい。
Ti: 1.0 to 2.5%
Ti mainly forms MC carbide and suppresses the coarsening of the crystal grains of the alloy, and like Al, it binds with Ni and precipitates a γ ′ phase, contributing to strengthening of the alloy. However, too much addition reduces the stability of the γ 'phase at high temperatures and precipitates the η phase, leading to a decrease in strength and ductility, and long-term tissue stability. Therefore, the addition amount of Ti is limited to the range of 1.0 to 2.5%. For the same reason, it is desirable to set the lower limit to 1.5% and the upper limit to 2.0%.

0.2≦Al/Ti≦1.0
AlとTiは、Ni(Ti,Al)としてNiと結合してγ’相を析出し、合金の強化に寄与する。しかしながら、AlとTiの比、即ちAl/Tiが1.0を超えると高温での引張延性が急激に低下すると共に、クリープ破断寿命とクリープ破断延性が著しく低下することを見出した。特にクリープ破断延性の低下は、切り欠き弱化にも繋がるため避けなければならない。一方、0.2未満の場合には、γ’相を形成せずにη相が多量に析出するようになるため、高温での機械的特性と組織安定性の両面をバランスさせるには、AlとTiの比を0.2以上、1.0以下とするのが望ましい。同様の理由で下限を0.4%、上限を0.8%とするのが一層望ましい。
0.2 ≦ Al / Ti ≦ 1.0
Al and Ti combine with Ni as Ni 3 (Ti, Al) to precipitate a γ ′ phase and contribute to strengthening of the alloy. However, it has been found that when the ratio of Al to Ti, that is, Al / Ti exceeds 1.0, the tensile ductility at high temperature is drastically lowered, and the creep rupture life and creep rupture ductility are markedly lowered. In particular, the decrease in creep rupture ductility must be avoided because it leads to weakening of the notch. On the other hand, when the ratio is less than 0.2, a large amount of η phase precipitates without forming a γ ′ phase, so in order to balance both the mechanical properties at high temperature and the structural stability, Al The ratio of Ti to Ti is preferably 0.2 or more and 1.0 or less. For the same reason, it is more desirable to set the lower limit to 0.4% and the upper limit to 0.8%.

Nb:1.0%以下
NbはAl、及びTiと同様に析出強化元素であり、γ”相を析出し合金の強化に寄与するので所望により含有させる。しかしながら、多量の添加はLaves相やδ相等の金属間化合物が析出しやすくなり、組織安定性を著しく損なう。したがって、所望により含有させるNbの含有量は1.0%以下とする。なお、上記作用を十分に得るためには、0.2%以上含有させるのが望ましく、また上記と同様の理由により、さらに上限を0.5%とするのが望ましい。
Nb: 1.0% or less Nb is a precipitation strengthening element like Al and Ti, and precipitates the γ ″ phase and contributes to strengthening of the alloy, so it is contained as desired. The intermetallic compounds such as phases are liable to precipitate and the structure stability is remarkably impaired, so that the Nb content is optionally set to 1.0% or less. .2% or more is desirable, and for the same reason as described above, it is desirable to further limit the upper limit to 0.5%.

B:0.015%以下
Bは粒界に偏析して高温特性に寄与するので所望により含有させる。但し、多過ぎる添加は硼化物を形成し易くなり、逆に粒界脆化を招く。したがって、所望により含有させるBの含有量は0.015%以下とする。なお、上記作用を十分に得るためには、0.0001%以上含有するのが望ましく、また上記と同様の理由により、さらに上限を0.01%とするのが望ましく、上限を0.005%とするのが一層望ましい。
B: 0.015% or less B is segregated at the grain boundary and contributes to high temperature characteristics, so is contained as desired. However, too much addition tends to form a boride, and conversely causes grain boundary embrittlement. Therefore, if desired, the B content is 0.015% or less. In order to sufficiently obtain the above action, the content is preferably 0.0001% or more, and for the same reason as described above, the upper limit is preferably 0.01%, and the upper limit is 0.005%. Is more desirable.

Mg:0.01%以下
Mgは主にSと結合して硫化物を形成し、熱間加工性を高める効果があるので所望により含有させる。ただし、多すぎる添加は逆に粒界脆化を招き、熱間加工性を著しく低下させる。従って、Mgの含有量は0.01%以下の範囲に限定する。
Mg: 0.01% or less Mg is mainly combined with S to form a sulfide, and has the effect of improving hot workability. However, too much addition conversely causes grain boundary embrittlement and significantly reduces hot workability. Therefore, the Mg content is limited to a range of 0.01% or less.

第1回目の時効処理:800℃〜1000℃
第1回目の時効処理によって粒界に炭化物が析出し、クリープ特性を向上させる。ここで、時効処理温度が800℃未満であると炭化物は効果的に析出せず、また、1000℃を超えて加熱すると炭化物の凝集・粗大化が生じるためその効果が消失する。したがって、第1回目の時効処理温度を800℃〜1000℃に定める。なお、時効処理時間はC添加量や熱処理する部材の形状や大きさにより適宜設定されるが、例えば5〜50時間が適当である。
First aging treatment: 800 ° C. to 1000 ° C.
By the first aging treatment, carbides are precipitated at the grain boundaries and the creep characteristics are improved. Here, when the aging treatment temperature is less than 800 ° C., the carbides are not effectively precipitated, and when heated above 1000 ° C., the agglomeration and coarsening of the carbides occur and the effect disappears. Therefore, the first aging treatment temperature is set to 800 ° C to 1000 ° C. The aging treatment time is appropriately set depending on the amount of C added and the shape and size of the member to be heat-treated.

第2回目の時効処理:720〜780℃
第2回目の時効処理によってγ’相を析出させ、所望の強度を付与する。ここで、時効処理温度が720℃未満であると、γ’相が十分に析出せず、実際の高温環境での使用中に更に時効析出が進行し、組織のみならず各種材料特性も変化してしまうことになる。一方、780℃を超えて加熱するとγ’相は粗大化するので効果的な析出強化を図ることが出来なくなる。したがって、第2回目の時効処理温度を720℃〜780℃に定める。なお、時効処理時間は析出強化元素の添加量や熱処理する部材の形状や大きさにより適宜設定されるが、例えば10〜100時間が適当である。
Second aging treatment: 720-780 ° C
The γ ′ phase is precipitated by the second aging treatment to give a desired strength. Here, when the aging treatment temperature is less than 720 ° C., the γ ′ phase does not sufficiently precipitate, and aging precipitation further proceeds during use in an actual high temperature environment, and not only the structure but also various material properties change. It will end up. On the other hand, when heated above 780 ° C., the γ ′ phase becomes coarse, so that effective precipitation strengthening cannot be achieved. Therefore, the second aging treatment temperature is set to 720 ° C to 780 ° C. The aging treatment time is appropriately set depending on the addition amount of the precipitation strengthening element and the shape and size of the member to be heat-treated. For example, 10 to 100 hours is appropriate.

第1回目から第2回目の時効処理に至る工程
第1回目の時効処理からは、その後連続的、あるいは一旦冷材を経由した後に、第2回目の時効処理に至ることができる。ただし、第1回目の時効処理からファン冷却などによって20℃/時間以上の冷却速度で連続的に2回目の時効処理を行うのが望ましい。これは、第1回目から第2回目の時効処理にいたる冷却、あるいは加熱工程においては不可避的に炭化物やγ’相が析出するため、20℃/時間未満の冷却速度では炭化物やγ’相が過剰に析出してしまい所望の機械的特性をコントロールすることが難しくなるためである。
Step from the first aging treatment to the second aging treatment The first aging treatment can be followed by the second aging treatment continuously or once after passing through the cold material. However, it is desirable to perform the second aging treatment continuously at a cooling rate of 20 ° C./hour or more by cooling the fan from the first aging treatment. This is because carbide and γ ′ phase are inevitably deposited in the cooling from the first to the second aging treatment, or in the heating step, so that the carbide and γ ′ phase are not cooled at a cooling rate of less than 20 ° C./hour. This is because it becomes difficult to control the desired mechanical properties due to excessive precipitation.

以上説明したように、本発明の組織安定性と高温強度に優れたNi基合金の発明は、質量%で、C:0.005〜0.1%、Cr:8〜15%、Mo:1〜7%、W:5〜20%、Al:0.5〜1.0%、Ti:1.0〜2.5%を含有し、所望により、Nb:1.0%以下を含有し、さらに所望によりB:0.015%以下を含有し、さらに所望によりMg:0.01%以下を含有し、残部がNiと不可避不純物からなるので、700℃以上の高温使用においても組織が安定し、優れた高温特性が得られる。
また、MoとWのバランスを0.1≦Mo/(Mo+W)≦0.5と規定することにより、高温強度、高温延性、クリープ特性がさらに優れたものとなる。
さらに、AlとTiのバランスを0.2≦Al/Ti≦1.0と規定することにより、高温引張り特性、クリープ特性がさらに優れたものとなる。
As described above, the invention of the Ni-based alloy having excellent structure stability and high temperature strength according to the present invention is mass%, C: 0.005 to 0.1%, Cr: 8 to 15%, Mo: 1. -7%, W: 5-20%, Al: 0.5-1.0%, Ti: 1.0-2.5%, optionally containing Nb: 1.0% or less, Further, if desired, it contains B: 0.015% or less, and if desired, Mg: 0.01% or less, and the balance is composed of Ni and inevitable impurities. Excellent high temperature characteristics can be obtained.
Further, by defining the balance between Mo and W as 0.1 ≦ Mo / (Mo + W) ≦ 0.5, the high-temperature strength, high-temperature ductility, and creep properties are further improved.
Furthermore, by defining the balance of Al and Ti as 0.2 ≦ Al / Ti ≦ 1.0, the high-temperature tensile properties and creep properties are further improved.

また、本発明の組織安定性と高温強度に優れたNi基合金材の製造方法は、上記組成を有するNi基合金を、熱間鍛造後、再結晶温度以上で溶体化処理を行い、その後、800℃〜1000℃の範囲で1回目の時効処理を施し、その後、720℃〜780℃の範囲で2回目の時効処理を行うので、γ’相を粗大とならないように十分に析出させるとともに、μ相の析出を回避し、よって高温での使用時に過時効が生じることなく安定した組織状態を有し、かつ優れた高温特性を有するNi基合金材が得られる。   In addition, the manufacturing method of the Ni-based alloy material having excellent structure stability and high-temperature strength according to the present invention is a Ni-based alloy having the above composition, subjected to solution treatment at a recrystallization temperature or higher after hot forging, Since the first aging treatment is performed in the range of 800 ° C. to 1000 ° C., and then the second aging treatment is performed in the range of 720 ° C. to 780 ° C., the γ ′ phase is sufficiently precipitated so as not to become coarse, Thus, precipitation of the μ phase can be avoided, and thus a Ni-based alloy material having a stable structure state without causing overaging when used at high temperatures and having excellent high temperature characteristics can be obtained.

以下に、本発明の一実施形態を説明する。
本発明のNi基合金は常法により溶製することができ、その製造方法が特に限定をされるものではない。ただし、本発明合金は、Si、Mn、P、S、O、Nの不純物をできる限り含有しないのが望ましく、したがって、好適には、VIM−ESRプロセスをとる所謂ダブルメルト法、あるいはVIM−ESR−VARプロセスをとる所謂トリプルメルト法などの溶解法が望ましい。なお、好適には、Si:0.3%以下、Mn:0.2%以下、P:0.01%以下、S:0.005%以下、O:30ppm以下、N:60ppm以下が望ましい。
Hereinafter, an embodiment of the present invention will be described.
The Ni-based alloy of the present invention can be melted by a conventional method, and the manufacturing method is not particularly limited. However, it is desirable that the alloy of the present invention does not contain impurities such as Si, Mn, P, S, O, and N as much as possible. Therefore, preferably, the so-called double melt method using the VIM-ESR process, or VIM-ESR is preferably used. -A solubilization method such as a so-called triple melt method using a VAR process is desirable. Preferably, Si is 0.3% or less, Mn is 0.2% or less, P is 0.01% or less, S is 0.005% or less, O is 30 ppm or less, and N is 60 ppm or less.

溶製されたNi基合金は、通常は、熱間鍛造が施されて加工による組織の調整がなされる。なお、本発明としては、熱間鍛造の条件等が特に限定されるものではなく、例えば常法に従って行うことができる。   The melted Ni-base alloy is usually subjected to hot forging and the structure is adjusted by processing. In the present invention, hot forging conditions and the like are not particularly limited, and can be performed according to, for example, a conventional method.

上記熱間鍛造後に、再結晶温度以上に加熱して溶体化処理を行う。この溶体化処理は、例えば1050〜1200℃において行うことができる。溶体化処理時間としては、材料の大きさ、形状などに応じて、適宜の時間を設定する。溶体化処理は、既知の加熱炉を用いて行うことができ、本発明としては加熱方法や加熱設備が特に限定されるものではない。溶体化処理後には、水冷、油冷、あるいは空冷などにより冷却する。   After the hot forging, a solution treatment is performed by heating above the recrystallization temperature. This solution treatment can be performed at, for example, 1050 to 1200 ° C. As the solution treatment time, an appropriate time is set according to the size and shape of the material. The solution treatment can be performed using a known heating furnace, and the heating method and the heating equipment are not particularly limited in the present invention. After the solution treatment, cooling is performed by water cooling, oil cooling, air cooling, or the like.

上記の溶体化処理後に既知の加熱炉などを用いて第1回目の時効処理を行う。該時効処理は、800℃〜1000℃の温度において行われる。該時効処理温度に至る昇温では、本発明としては特に昇温速度が限定されるものではない。第1回目の時効処理後は、第2回目の時効処理を行うが、連続して行ってもよく、一旦冷材を経由した後、行ってもよい。冷材を経由した後の第2回目の時効処理では、同一の加熱炉などを用いてもよく、また、他の加熱炉などを用いることもできる。
なお、第1回目の時効処理から第2回目の時効処理にかけては、ファン冷却などによって冷却をして、連続的に行うのが望ましく、その際の冷却速度は20℃/時間以上とするのが望ましい。
After the solution treatment, the first aging treatment is performed using a known heating furnace or the like. The aging treatment is performed at a temperature of 800 ° C to 1000 ° C. In the temperature increase to the aging treatment temperature, the temperature increase rate is not particularly limited in the present invention. After the first aging treatment, the second aging treatment is performed. However, the second aging treatment may be performed continuously or once after passing through the cooling material. In the second aging treatment after passing through the cold material, the same heating furnace or the like may be used, or another heating furnace or the like may be used.
It should be noted that the first aging treatment to the second aging treatment are preferably performed continuously by cooling with fan cooling or the like, and the cooling rate at that time is 20 ° C./hour or more. desirable.

第2回目の時効処理後は、特に冷却速度が限定されるものではなく、放冷、強制冷却などにより冷却することができる。なお、本発明方法では、上記のように第1回目、第2回目の時効処理について規定をしているが、それ以降の時効処理を排除するものではなく、必要に応じて第3回目以降の時効処理を施すことも可能である。   After the second aging treatment, the cooling rate is not particularly limited, and cooling can be performed by cooling or forced cooling. In the method of the present invention, the first aging process and the second aging process are defined as described above, but the subsequent aging process is not excluded, and the third and subsequent aging processes are performed as necessary. An aging treatment can also be applied.

本発明のNi基合金材は、発電機部材のタービンロータなどの素材に用いることができる。ただし、本発明の用途がこれらに限定をされるものではなく、高温での強度特性などが要求される種々の用途に用いることができる。また、高温での長期安定性にも優れており、例えば600〜650℃程度の従来の発電機部材の温度域においても当然に使用することが可能である。   The Ni-based alloy material of the present invention can be used for a material such as a turbine rotor of a generator member. However, the application of the present invention is not limited to these, and it can be used for various applications requiring strength characteristics at high temperatures. Moreover, it is excellent also in long-term stability at high temperature, and can be used naturally even in a temperature range of a conventional generator member of, for example, about 600 to 650 ° C.

以下に、本発明の実施例を説明する。
表1に示す組成(残部Niとその他不可避不純物)のNi基合金を真空誘導溶解炉(VIM)によって50kg鋳塊に溶製した。該試験鋳塊を拡散処理後、熱間鍛造により厚さ30mmの板材として供試材を得た。各供試材毎に再結晶温度以上の温度にて溶体化処理を施し、その後空冷し一旦冷材とした。840℃×10時間の安定化処理を行い、その後さらに第1回目の時効処理として840℃×10時間の条件で加熱処理をし、炉冷(冷却速度50℃/h)によって冷却をして、連続的に第2回目の時効処理を行った。第2回目の時効処理では、750℃×24時間の条件で加熱処理をし、その後、炉冷(冷却速度50℃/h)により冷却して供試材を用意した。
Examples of the present invention will be described below.
A Ni-based alloy having the composition shown in Table 1 (remainder Ni and other inevitable impurities) was melted into a 50 kg ingot by a vacuum induction melting furnace (VIM). After subjecting the test ingot to diffusion treatment, a test material was obtained as a plate having a thickness of 30 mm by hot forging. Each sample material was subjected to a solution treatment at a temperature equal to or higher than the recrystallization temperature, and then air-cooled to obtain a cold material. 840 ° C. × 10 hours of stabilization treatment, and then heat treatment under the conditions of 840 ° C. × 10 hours as the first aging treatment, and cooling by furnace cooling (cooling rate 50 ° C./h), The second aging treatment was continuously performed. In the second aging treatment, heat treatment was performed under conditions of 750 ° C. × 24 hours, and then cooled by furnace cooling (cooling rate 50 ° C./h) to prepare a test material.

得られた供試材について、室温引張試験および高温(700℃)引張試験を行い、さらに荷重条件を変えたクリープ試験を行った。試験結果の一覧を図1、2に示す。図1から明らかなように、本発明の供試材(No.1〜14)は、短時間引張特性においては室温及び700℃共に良好な強度と高い延性を兼ね揃えており、また、図2に示すように、本発明の供試材は、700℃でのクリープ破断特性においても良好な破断時間と破断延性を示している。一方、比較材(No.15〜24)では短時間引張特性が良好でも、クリープ破断特性が十分でない、あるいはその逆といった試験結果であった。即ち、室温や700℃での短時間強度は十分な強度を示すものの延性が低く、特にクリープ破断延性の著しい低下現象が認められ、あるいは短時間引張延性やクリープ破断延性が良好な値であっても、強度が不十分なためクリープ破断延性が全く不足しているといった結果であった。即ち、本発明材においては、室温、及び700℃での強度と延性バランスに優れ、かつ、700℃でのクリープ破断時間及びクリープ破断延性も極めて高い特性を得ることが出来るものであった。   About the obtained test material, the room temperature tensile test and the high temperature (700 degreeC) tensile test were done, and also the creep test which changed load conditions was done. A list of test results is shown in FIGS. As is apparent from FIG. 1, the test materials (Nos. 1 to 14) of the present invention have both good strength and high ductility at both room temperature and 700 ° C. in short-time tensile properties. As shown in the graph, the specimen of the present invention shows a good rupture time and rupture ductility even in the creep rupture characteristics at 700 ° C. On the other hand, the comparative materials (Nos. 15 to 24) had the test results that the creep rupture properties were insufficient or vice versa even though the short-time tensile properties were good. That is, the short-time strength at room temperature and 700 ° C. shows a sufficient strength, but the ductility is low, particularly a remarkable decrease in creep rupture ductility is observed, or the short-time tensile ductility and creep rupture ductility are good values. However, the result was that the creep rupture ductility was completely insufficient due to insufficient strength. That is, the material of the present invention was excellent in the balance between strength and ductility at room temperature and 700 ° C., and was able to obtain extremely high creep rupture time and creep rupture ductility at 700 ° C.

図3及び図4には、Al/Ti比を変動させた供試材における700℃での短時間引張特性とクリープ破断特性を供試材No.4を1として比較した相対評価結果を示す。なお、供試材No.4がAl/Ti=0.8/1.8≒0.3、供試材No.3がAl/Ti=0.8/1.6≒0.5、供試材No.1がAl/Ti=0.8/1.2≒0.7、供試材No.20がAl/Ti=1.4/0.8≒1.8、供試材No.19がAl/Ti=1.8/Free(Ti無添加材)であり、AlとTi以外の元素の含有量はほぼ一定となっている。700℃の短時間引張特性では、強度とAl/Ti比の相関、あるいはTi無添加の影響は認められないが、Al/Ti比が1を超える供試材(No.20)とTi無添加の供試材(No.19)において延性が若干低下する傾向が認められた。一方、700℃のクリープ破断特性では、Al/Ti比が高くなるにつれて、またTi無添加の供試材にてクリープ破断時間が明らかに低下する傾向を示した。また、特にクリープ破断延性においては、Al/Ti比が1を超える供試材(No.20)とTi無添加の供試材(No.19)で著しい低下が生じ、Al/Ti比が0.8未満の供試材との差は明らかであった。   3 and 4 show the short-time tensile properties and creep rupture properties at 700 ° C. of the specimens with varying Al / Ti ratios. The relative evaluation result compared with 4 as 1 is shown. The test material No. 4 is Al / Ti = 0.8 / 1.8≈0.3. 3 is Al / Ti = 0.8 / 1.6≈0.5. 1 is Al / Ti = 0.8 / 1.2≈0.7. 20 is Al / Ti = 1.4 / 0.8≈1.8. 19 is Al / Ti = 1.8 / Free (Ti-free material), and the contents of elements other than Al and Ti are almost constant. In the short-time tensile properties at 700 ° C, there is no correlation between strength and Al / Ti ratio, or the effect of no Ti addition, but the test material (No. 20) with an Al / Ti ratio exceeding 1 and no Ti addition In the test material (No. 19), the ductility tended to decrease slightly. On the other hand, in the creep rupture characteristics at 700 ° C., the creep rupture time tended to clearly decrease as the Al / Ti ratio increased and in the test material without addition of Ti. In particular, in the creep rupture ductility, a remarkable decrease occurs in the specimen (No. 20) having an Al / Ti ratio exceeding 1 and the specimen without addition of Ti (No. 19), and the Al / Ti ratio is 0. The difference with the test material of less than .8 was obvious.

上記の結果は、図5に示したNo.3とNo.20の粒界近傍のEPMA分析結果により説明することが出来る。安定化処理+時効処理まま材(840℃×10h+750℃×24h)では、Al/Ti比によらず粒界には成分の濃化は認められないが、安定化処理+時効処理材に更に700℃×1000hの長時間時効処理を施すと、粒界にAlが濃化することが明らかとなった。これは、長時間時効処理中に粒界に優先的にγ’相が析出し、時効時間の経過と共に凝集粗大化したものである。すなわち、Al/Tiの比率が高い材料ではγ’相が粒界に析出しやすく、かつ析出−凝集粗大化のスピードが著しく早まるため、高温での引張り特性、特に高温に晒されている時間が長くなるクリープ試験において破断延性が顕著に低下する。したがって、高温での良好な特性を得るためにAl含有量の上限を低く抑えることが必要であり、さらには、Al/Tiのバランスを適切に定めるのが望ましいことが明らかとなった。   The above results are shown in No. 1 shown in FIG. 3 and no. This can be explained by the EPMA analysis results in the vicinity of 20 grain boundaries. In the case of the stabilization treatment + aging treated material (840 ° C. × 10 h + 750 ° C. × 24 h), no concentration of components is observed at the grain boundary regardless of the Al / Ti ratio, but the stabilization treatment + aging treatment material is further added to 700. It was revealed that when aging treatment was performed at a temperature of 1000 ° C. for 1000 hours, Al was concentrated at the grain boundaries. This is because the γ 'phase is preferentially precipitated at the grain boundaries during the long-term aging treatment, and is agglomerated and coarsened as the aging time elapses. That is, in a material with a high Al / Ti ratio, the γ 'phase is likely to precipitate at the grain boundaries, and the speed of precipitation-aggregation coarsening is significantly increased. In the creep test that becomes longer, the fracture ductility is significantly reduced. Therefore, in order to obtain good characteristics at high temperatures, it is necessary to keep the upper limit of the Al content low, and it has become clear that it is desirable to appropriately determine the Al / Ti balance.

さらに、表1に示した供試材において、Mo/W比を変動させた供試材No.22、No.1、No.2、およびNo.23の700℃におけるクリープ破断特性を比較した結果を図6に示す。なお、供試材No.22がMo無添加材、供試材No.1がMo/(Mo+W)=0.3、供試材No.2がMo/(Mo+W)=0.5、供試材No.23がW無添加材であり、MoとW以外の元素の含有量はほぼ一定となっている。図6から明らかなように、Mo無添加材の供試材No.15とW無添加材の供試材No.16ではクリープ破断延性が著しく低下し、MoとWの複合添加により、良好なクリープ破断特性と破断延性が得られる事が判明した。   Furthermore, in the test materials shown in Table 1, the test material Nos. With different Mo / W ratios were used. 22, no. 1, no. 2, and no. FIG. 6 shows the result of comparison of the creep rupture characteristics of No. 23 at 700 ° C. The test material No. No. 22 is a Mo-free material, test material No. 1 is Mo / (Mo + W) = 0.3; 2 is Mo / (Mo + W) = 0.5. 23 is a W additive-free material, and the contents of elements other than Mo and W are almost constant. As is apparent from FIG. 6, the test material No. 15 and W additive-free material No. No. 16 significantly reduced the creep rupture ductility, and it was found that good creep rupture characteristics and rupture ductility can be obtained by the combined addition of Mo and W.

更に、Mo/W比を変動させた供試材No.22、No.1、No.2、およびNo.23の安定化処理+時効処理まま材(840℃×10h+750℃×24h)に、更に700℃×1000hの長時間時効処理を施すと、図7に示すように、14%Mo材(W Free)である供試材No.23にて、粒界及び粒内にμ相と推定される針状の析出物が多数確認された。これに対して、Mo量が7%以下の供試材No.22、No.1、No.2では、700℃×1000hの長時間時効処理後のミクロ組織は安定化処理+時効処理まま材の組織と全く変化しておらず、高温組織安定性が非常に優れている事が判明した。   Furthermore, the test material No. having a varied Mo / W ratio was used. 22, no. 1, no. 2, and no. When the material was subjected to a long-term aging treatment of 700 ° C. × 1000 h on the material (840 ° C. × 10 h + 750 ° C. × 24 h) as it was, the 14% Mo material (W Free) as shown in FIG. Specimen No. 23, a large number of needle-like precipitates presumed to be the μ phase were confirmed at the grain boundaries and within the grains. On the other hand, test material No. with Mo amount of 7% or less. 22, no. 1, no. In No. 2, the microstructure after the long-term aging treatment at 700 ° C. × 1000 h did not change at all from the structure of the material as it was in the stabilization treatment + aging treatment, and it was found that the high-temperature structure stability was very excellent.

また、Mo/W比を変動させた供試材No.22、No.1、No.2、およびNo.23については、図8に示す4種の時効条件にて室温、および700℃にて引張試験を実施した。その結果を図9に示す。何れの時効条件においても室温強度はMo/(Mo+W)の値が高くなるにつれて低下し、特にMo/(Mo+W)=1でのT.S.の低下が顕著であった。また室温延性については、Mo/(Mo+W)=0.5までは良好な値を保っているものの、Mo/(Mo+W)=1になると強度と同様急激に低下した。一方、700℃での強度は、0.2%Y.S.とT.S.とで異なる挙動を示した。即ち、700℃における0.2%Y.S.は室温強度と同様にMo/(Mo+W)の値が高くなるにつれて低下したが、T.S.はMo/(Mo+W)=0.3、および0.5で最大値となる傾向を示した。更に、700℃での延性はMo/(Mo+W)=0で最小値をとり、Mo/(Mo+W)の値が高くなるにつれて向上する傾向を示し、特にEl.にてその傾向が顕著に表れていた。従ってMo量、及びW量に関しては、これら機械的特性と組織安定性の観点からMoの添加量は1〜7%に限定した上で、0.1≦Mo/(Mo+W)≦0.5とするのが望ましい事が明らかである。   In addition, the test material No. having a varied Mo / W ratio was used. 22, no. 1, no. 2, and no. For No. 23, a tensile test was performed at room temperature and 700 ° C. under the four aging conditions shown in FIG. The result is shown in FIG. Under any aging condition, the room temperature strength decreases as the value of Mo / (Mo + W) increases, and in particular, the T.V. at Mo / (Mo + W) = 1. S. The decrease of was remarkable. The room temperature ductility maintained a good value up to Mo / (Mo + W) = 0.5, but when Mo / (Mo + W) = 1, it decreased abruptly as with the strength. On the other hand, the strength at 700 ° C. is 0.2% Y.V. S. And T. S. And showed different behavior. That is, 0.2% Y.P. S. Was decreased as the value of Mo / (Mo + W) was increased as in the case of room temperature strength. S. Tended to be maximum at Mo / (Mo + W) = 0.3 and 0.5. Further, the ductility at 700 ° C. takes a minimum value at Mo / (Mo + W) = 0, and shows a tendency to improve as the value of Mo / (Mo + W) increases. The tendency was prominent. Therefore, regarding the Mo amount and the W amount, from the viewpoint of these mechanical properties and structure stability, the amount of Mo is limited to 1 to 7%, and 0.1 ≦ Mo / (Mo + W) ≦ 0.5. Obviously it is desirable to do so.

本発明の一実施例における供試材の室温および高温での引張特性の試験結果を示す図である。It is a figure which shows the test result of the tensile property in room temperature and high temperature of the test material in one Example of this invention. 同じく、供試材の700℃におけるクリープ試験の結果を示す図である。Similarly, it is a figure which shows the result of the creep test in 700 degreeC of a test material. 同じく、Al/Ti比を変動させた供試材の700℃における短時間引張特性の試験結果を示す図である。Similarly, it is a figure which shows the test result of the short-time tensile characteristic in 700 degreeC of the test material which changed Al / Ti ratio. 同じく、Al/Ti比を変動させた供試材の700℃におけるクリープ試験の結果を示す図である。Similarly, it is a figure which shows the result of the creep test in 700 degreeC of the test material which changed Al / Ti ratio. 同じく、Al/Ti比を変動させた供試材のEPMA結果を示す図面代用写真である。Similarly, it is the drawing substitute photograph which shows the EPMA result of the test material which changed Al / Ti ratio. 同じく、Mo/W比を変動させた供試材の700℃におけるクリープ破断試験結果を示す図である。Similarly, it is a figure which shows the creep rupture test result in 700 degreeC of the test material which fluctuated Mo / W ratio. 同じく、Mo/W比を変動させた供試材のEPMA結果を示す図面代用写真である。Similarly, it is the drawing substitute photograph which shows the EPMA result of the test material which changed Mo / W ratio. 同じく、実施例に採用する時効条件A〜Dのヒートパターンを示す図である。Similarly, it is a figure which shows the heat pattern of aging conditions AD employ | adopted as an Example. 同じく、Mo/W比および時効条件を変えた供試材の室温および700℃における短時間引張特性の試験結果を示す図である。Similarly, it is a figure which shows the test result of the short-time tensile property in room temperature and 700 degreeC of the test material which changed Mo / W ratio and aging conditions.

Claims (8)

質量%で、C:0.005〜0.1%、Cr:8〜15%、Mo:1〜7%、W:5
〜20%、Al:0.5〜1.0%、Ti:1.0〜2.5%を含有し、残部がNiと不可避不純物からなることを特徴とする組織安定性と高温強度に優れたNi基合金。
In mass%, C: 0.005 to 0.1%, Cr: 8 to 15%, Mo: 1 to 7%, W: 5
Excellent structure stability and high temperature strength, characterized by containing ~ 20%, Al: 0.5-1.0%, Ti: 1.0-2.5%, the balance being made of Ni and inevitable impurities Ni-based alloy.
質量%で、さらに、Nb:1.0%以下を含有することを特徴とする請求項1記載の組織安定性と高温強度に優れたNi基合金。   The Ni-based alloy having excellent structure stability and high-temperature strength according to claim 1, further comprising Nb: 1.0% or less by mass%. 質量%で、さらに、B:0.015%以下を含有することを特徴とする請求項1または2に記載の組織安定性と高温強度に優れたNi基合金。   The Ni-based alloy having excellent structure stability and high temperature strength according to claim 1 or 2, further comprising B: 0.015% or less in mass%. 質量%で、さらにMg:0.01%以下を含有することを特徴とする請求項1〜3のいずれかに記載の組織安定性と高温強度に優れたNi基合金。   The Ni-based alloy having excellent structure stability and high-temperature strength according to any one of claims 1 to 3, further comprising Mg: 0.01% or less in terms of mass%. 前記Mo含有量とW含有量とが、下記式1を満たすことを特徴とする請求項1〜4のいずれかに記載の組織安定性と高温強度に優れたNi基合金。
0.1≦Mo/(Mo+W)≦0.5 …式1
The Ni content alloy excellent in structure stability and high temperature strength according to any one of claims 1 to 4, wherein the Mo content and the W content satisfy the following formula 1.
0.1 ≦ Mo / (Mo + W) ≦ 0.5 Formula 1
前記Al含有量とTi含有量とが下記式2を満たすことを特徴とする請求項1〜5のいずれかに記載の組織安定性と高温強度に優れたNi基合金。
0.2≦Al/Ti≦1.0 …式2
The Ni-based alloy having excellent structure stability and high-temperature strength according to any one of claims 1 to 5, wherein the Al content and the Ti content satisfy the following formula 2.
0.2 ≦ Al / Ti ≦ 1.0 Formula 2
請求項1〜6のいずれかに記載の組成を有するNi基合金を、熱間鍛造後、再結晶温度以上で溶体化処理を行い、その後、800℃〜1000℃の範囲で1回目の時効処理を施し、その後、720℃〜780℃の範囲で2回目の時効処理を行うことを特徴とする組織安定性と高温強度に優れたNi基合金材の製造方法。   The Ni-based alloy having the composition according to any one of claims 1 to 6 is subjected to a solution treatment at a recrystallization temperature or higher after hot forging, and then a first aging treatment in a range of 800 ° C to 1000 ° C. And then performing a second aging treatment in the range of 720 ° C. to 780 ° C., and a method for producing a Ni-based alloy material having excellent structure stability and high temperature strength. 前記1回目の時効処理後、20℃/h以上の冷却速度で2回目の時効処理温度にまで冷却して連続して時効処理を行うことを特徴とする請求項7記載の組織安定性と高温強度に優れたNi基合金材の製造方法。   The tissue stability and high temperature according to claim 7, wherein after the first aging treatment, the aging treatment is continuously performed by cooling to a second aging treatment temperature at a cooling rate of 20 ° C./h or more. A method for producing a Ni-based alloy material having excellent strength.
JP2007142866A 2007-05-30 2007-05-30 Ni-base alloy excellent in structure stability and high-temperature strength and method for producing Ni-base alloy material Active JP4768672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007142866A JP4768672B2 (en) 2007-05-30 2007-05-30 Ni-base alloy excellent in structure stability and high-temperature strength and method for producing Ni-base alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007142866A JP4768672B2 (en) 2007-05-30 2007-05-30 Ni-base alloy excellent in structure stability and high-temperature strength and method for producing Ni-base alloy material

Publications (2)

Publication Number Publication Date
JP2008297579A true JP2008297579A (en) 2008-12-11
JP4768672B2 JP4768672B2 (en) 2011-09-07

Family

ID=40171360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007142866A Active JP4768672B2 (en) 2007-05-30 2007-05-30 Ni-base alloy excellent in structure stability and high-temperature strength and method for producing Ni-base alloy material

Country Status (1)

Country Link
JP (1) JP4768672B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038680A1 (en) * 2008-09-30 2010-04-08 日立金属株式会社 Process for manufacturing ni-base alloy and ni-base alloy
JP2013216939A (en) * 2012-04-06 2013-10-24 Nippon Steel & Sumitomo Metal Corp Nickel-based heat-resistant alloy
JP2014019924A (en) * 2012-07-20 2014-02-03 Toshiba Corp Ni-BASED ALLOY FOR CASTING AND CASTING COMPONENT
CN106166614A (en) * 2016-08-23 2016-11-30 金川集团股份有限公司 A kind of preparation method of high-temperature nickel-base alloy powder
JP2018059142A (en) * 2016-10-04 2018-04-12 新日鐵住金株式会社 Ni-based heat-resistant alloy
CN115852283A (en) * 2023-03-08 2023-03-28 太原科技大学 High-strength plastic nickel-based alloy plate with double-peak structure and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105689711B (en) * 2016-02-04 2018-01-26 大连理工大学 A kind of electromagnetic agitation auxiliary laser Quick-forming nickel-base alloy part
CN111299578B (en) * 2020-03-06 2021-11-05 大连理工大学 Method for electromagnetic-assisted direct laser deposition of nickel-based superalloy-titanium alloy functionally-graded material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10317079A (en) * 1997-05-14 1998-12-02 Hitachi Ltd Steam turbine blade and its production
JP2004190060A (en) * 2002-12-09 2004-07-08 Hitachi Metals Ltd Heat-resistant alloy for engine valve
JP2006176864A (en) * 2004-12-24 2006-07-06 Hitachi Metals Ltd Alloy for fuel cell stack joining bolt

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10317079A (en) * 1997-05-14 1998-12-02 Hitachi Ltd Steam turbine blade and its production
JP2004190060A (en) * 2002-12-09 2004-07-08 Hitachi Metals Ltd Heat-resistant alloy for engine valve
JP2006176864A (en) * 2004-12-24 2006-07-06 Hitachi Metals Ltd Alloy for fuel cell stack joining bolt

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038680A1 (en) * 2008-09-30 2010-04-08 日立金属株式会社 Process for manufacturing ni-base alloy and ni-base alloy
JP5500452B2 (en) * 2008-09-30 2014-05-21 日立金属株式会社 Ni-based alloy manufacturing method and Ni-based alloy
US8845958B2 (en) 2008-09-30 2014-09-30 Hitachi Metals, Ltd. Process for manufacturing Ni-base alloy and Ni-base alloy
JP2013216939A (en) * 2012-04-06 2013-10-24 Nippon Steel & Sumitomo Metal Corp Nickel-based heat-resistant alloy
JP2014019924A (en) * 2012-07-20 2014-02-03 Toshiba Corp Ni-BASED ALLOY FOR CASTING AND CASTING COMPONENT
CN106166614A (en) * 2016-08-23 2016-11-30 金川集团股份有限公司 A kind of preparation method of high-temperature nickel-base alloy powder
JP2018059142A (en) * 2016-10-04 2018-04-12 新日鐵住金株式会社 Ni-based heat-resistant alloy
CN115852283A (en) * 2023-03-08 2023-03-28 太原科技大学 High-strength plastic nickel-based alloy plate with double-peak structure and preparation method thereof

Also Published As

Publication number Publication date
JP4768672B2 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
JP5792500B2 (en) Ni-base superalloy material and turbine rotor
JP4430974B2 (en) Method for producing low thermal expansion Ni-base superalloy
JP4861651B2 (en) Advanced Ni-Cr-Co alloy for gas turbine engines
JP4768672B2 (en) Ni-base alloy excellent in structure stability and high-temperature strength and method for producing Ni-base alloy material
WO2009102028A1 (en) Ni-base superalloy with excellent segregation properties
US7666352B2 (en) Iridium-based alloy with high heat resistance and high strength and process for producing the same
AU2017232119C1 (en) Method for producing Ni-based superalloy material
AU2017232117B2 (en) Method for producing Ni-based superalloy material
JPWO2020203460A1 (en) Manufacturing method of Ni-based super heat-resistant alloy and Ni-based super heat-resistant alloy
US7922969B2 (en) Corrosion-resistant nickel-base alloy
WO2018151262A1 (en) Ni-based alloy, gas turbine material, and method for manufacturing ni-based alloy
JP3781402B2 (en) Low thermal expansion Ni-base superalloy
JP4387331B2 (en) Ni-Fe base alloy and method for producing Ni-Fe base alloy material
JP6148843B2 (en) Large cast member made of nickel base alloy and method for producing the same
JP2014070230A (en) METHOD FOR PRODUCING Ni-BASED SUPERALLOY
JP2010275597A (en) Nickel-based alloy for turbine rotor of steam turbine, and the turbine rotor of steam turbine
JP5265325B2 (en) Heat resistant steel with excellent creep strength and method for producing the same
JP5880836B2 (en) Precipitation strengthened heat resistant steel and processing method thereof
KR101601207B1 (en) super heat resistant alloy and the manufacturing method thereof
JP2014129576A (en) Fe-Ni BASED ALLOY HAVING HIGH TEMPERATURE PROPERTY AND HYDROGEN EMBRITTLEMENT RESISTANCE, AND METHOD FOR PRODUCING THE SAME
JP5932622B2 (en) Austenitic heat resistant steel and turbine parts
JP2004256840A (en) COMPOSITE REINFORCED TYPE Ni BASED SUPERALLOY, AND PRODUCTION METHOD THEREFOR
JP2009013450A (en) Nickel-based alloy
JP2004107777A (en) Austenitic heat resistant alloy, production method therefor and steam turbine parts
JP6419102B2 (en) Ni-base superalloy and method for producing Ni-base superalloy

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110616

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4768672

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250