JP4387331B2 - Ni-Fe base alloy and method for producing Ni-Fe base alloy material - Google Patents

Ni-Fe base alloy and method for producing Ni-Fe base alloy material Download PDF

Info

Publication number
JP4387331B2
JP4387331B2 JP2005192064A JP2005192064A JP4387331B2 JP 4387331 B2 JP4387331 B2 JP 4387331B2 JP 2005192064 A JP2005192064 A JP 2005192064A JP 2005192064 A JP2005192064 A JP 2005192064A JP 4387331 B2 JP4387331 B2 JP 4387331B2
Authority
JP
Japan
Prior art keywords
alloy
base alloy
temperature
phase
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005192064A
Other languages
Japanese (ja)
Other versions
JP2007009279A (en
Inventor
憲亮 広田
達也 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2005192064A priority Critical patent/JP4387331B2/en
Publication of JP2007009279A publication Critical patent/JP2007009279A/en
Application granted granted Critical
Publication of JP4387331B2 publication Critical patent/JP4387331B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、例えば発電機部材や航空機部材等の高温強度を必要とする素材に用いられ、特に良好な鍛造性と疲労特性を有するNi−Fe基合金および該合金を用いたNi−Fe基合金材の製造方法に関するものである。   The present invention is used for a material requiring high temperature strength, such as a generator member or an aircraft member, and has a particularly good forgeability and fatigue characteristics, and a Ni-Fe base alloy using the alloy. The present invention relates to a method for manufacturing a material.

析出強化型のNi基合金は極低温から高温まで高い組織安定性と良好な機械的特性を有しているため、各種の発電機部材や航空機部材等に広く用いられている。
この析出強化型Ni基合金の特徴として、溶体化処理及び時効処理の組み合わせによって製造されるのが一般的である。溶体化処理とは、前段階までの製造工程、例えば鍛造工程で不可避的に生じた析出物を一旦マトリックス中に固溶させる製造工程である。時効処理とは合金組成によって決定される所定温度で所定時間の熱処理を施して、所望の機械的性質が得られるように特定の析出物を出現させる製造工程である。この特定の析出物は合金組成及び時効処理条件によって決定される。
Precipitation-strengthened Ni-based alloys are widely used for various generator members, aircraft members, and the like because they have high structural stability and excellent mechanical properties from cryogenic temperatures to high temperatures.
As a feature of this precipitation strengthened Ni-base alloy, it is generally manufactured by a combination of solution treatment and aging treatment. The solution treatment is a manufacturing process in which precipitates inevitably generated in a manufacturing process up to the previous stage, for example, a forging process, are once dissolved in a matrix. The aging treatment is a manufacturing process in which a specific precipitate appears so as to obtain a desired mechanical property by performing a heat treatment for a predetermined time at a predetermined temperature determined by the alloy composition. This particular precipitate is determined by the alloy composition and aging conditions.

主としてオーステナイト(以下γと記す)のマトリックス中に出現する析出相の典型例としては、インコネル706(インコアロイズ社の商標、以下同じ)の場合にはNi(Al,Ti)からなるガンマプライム相(以後γ’と記す)あるいは/およびγ’とNiNbからなるガンマダブルプライム相(以後γ”と記す)との共析出相(以後γ’―γ”と記す)と呼ばれる析出相を整合的に微細析出させる。一方インコネル718(インコアロイズ社の商標)の場合には、γ”により合金の強化を成し遂げている。このように出現する析出相が異なる原因は、基本的には各合金の組成が異なるからであると言われている。 A typical example of a precipitated phase mainly appearing in a matrix of austenite (hereinafter referred to as γ) is a gamma prime phase composed of Ni 3 (Al, Ti) in the case of Inconel 706 (trademark of Incoalloys, the same applies hereinafter). (Hereinafter referred to as γ ′) or / and a co-precipitation phase (hereinafter referred to as γ′−γ ″) of γ ′ and a gamma double prime phase composed of Ni 3 Nb (hereinafter referred to as γ ″) matched. Finely deposited. On the other hand, in the case of Inconel 718 (trademark of Incoalloys), strengthening of the alloy has been achieved by γ ″. The reason why the precipitated phases appear in this way is fundamentally because the composition of each alloy is different. It is said that there is.

またこれら強化に寄与するγ’、γ”に対して、主として粒界近傍に出現し、γ粒界をピンニングする析出相も存在する。インコネル706の場合にはNiTiからなるイータ相(以後ηと記す)があり、インコネル718の場合にはNiNbからなるデルタ相(以後δと記す)があることが知られている。これらη、δといった異なる析出相が生じる原因は、強化に寄与するγ’、γ”同様、各合金の組成が異なることに起因している。例えばδ相を析出させるために本願出願人は、Nbを積極的に添加する合金を提案している(特許文献1参照)。
特開平10−237574号公報
Further, with respect to γ ′ and γ ″ contributing to the strengthening, there is also a precipitation phase that appears mainly in the vicinity of the grain boundary and pins the γ grain boundary. In the case of Inconel 706, an eta phase (hereinafter referred to as Ni 3 Ti) In the case of Inconel 718, it is known that there is a delta phase (hereinafter referred to as δ) composed of Ni 3 Nb. This is due to the difference in the composition of each alloy as in the case of contributing γ ′ and γ ″. For example, in order to precipitate the δ phase, the present applicant has proposed an alloy in which Nb is positively added (see Patent Document 1).
Japanese Patent Laid-Open No. 10-237574

ところで近年は、発電効率の上昇に伴って発電用のガスタービン部材等は大型化、さらに部材のさらなる信頼性向上のため、低サイクル疲労特性向上が望まれている。近年ではこれら課題に対して、鍛造型Ni−Fe基合金のインコネル706、718では、種々の問題点があることが明らかになってきた。   By the way, in recent years, with an increase in power generation efficiency, gas turbine members for power generation and the like have been increased in size, and further improvement in low cycle fatigue characteristics is desired in order to further improve the reliability of the members. In recent years, it has become clear that inconel 706 and 718 of the forging die Ni—Fe base alloy has various problems with respect to these problems.

すなわち、このような部材は一般的に鋼塊製造、鍛造、熱処理、機械加工といった工程を経て製造されるが、インコネル706においては、ηが980℃以上では固溶してしまうため、980℃以上での鍛造中における粒界ピンニングによる結晶粒微細化が期待できない。
一方、インコネル718では、γ粒界ピンニング効果のあるδが析出する。δの固溶温度は1000℃以上であり、鍛造中の結晶粒微細化を行うための加工熱処理に利用する事ができる。このδを析出させるには、前記特許文献1に示すように、比重8.56であるNbを少なくとも1.5%以上添加する必要がある。しかしこのNbは強化元素の中では最も重い元素であるため、多量の添加は、鋼塊製造時、すなわち凝固時に液相部下部に滞留しやすく、偏析性を著しく促進する。したがってNbの多量の添加は、発電用もしくは航空機用のブレードへの適用といった小型の部材であれば、比較的偏析性の問題もなく製造可能となるが、タービンロータやガスタービンディスクといったtonオーダーの大型部材製造に関しては不適である。
このような観点から、γ粒径をより高温にてピンニングでき、かつ偏析性の高いNbを低減した低偏析でかつ結晶粒微細化能に優れたNi−Fe基合金の開発が望まれる。
That is, such a member is generally manufactured through steps such as steel ingot manufacturing, forging, heat treatment, and machining, but in Inconel 706, since η is solid solution at 980 ° C. or higher, it is 980 ° C. or higher. Grain refinement cannot be expected by grain boundary pinning during forging.
On the other hand, in Inconel 718, δ having a γ grain boundary pinning effect is precipitated. The solid solution temperature of δ is 1000 ° C. or higher, and can be used for a heat treatment for refining crystal grains during forging. In order to precipitate this δ, it is necessary to add at least 1.5% or more of Nb having a specific gravity of 8.56 as shown in Patent Document 1. However, since Nb is the heaviest element among the strengthening elements, a large amount of Nb tends to stay in the lower part of the liquid phase part during the production of the steel ingot, that is, during solidification, and remarkably promotes segregation. Therefore, a large amount of Nb can be manufactured with a relatively small segregation problem if it is a small member such as a blade for power generation or aircraft, but it is of a ton order such as a turbine rotor or a gas turbine disk. It is unsuitable for large-size member production.
From such a point of view, it is desired to develop a Ni—Fe-based alloy that can pin the γ grain size at a higher temperature, has low segregation, and has high segregation ability and excellent crystal grain refining ability.

本発明は、上記の実状に鑑みなされたものであり、δあるいはγ”−NiNbに代わる新たな金属間化合物を利用した低偏析でかつ結晶粒微細粒化能に優れたNi−Fe基合金および該合金を用いたNi−Fe基合金材を提供することにある。 The present invention has been made in view of the above circumstances, and is a Ni-Fe group that has low segregation and excellent crystal grain refining ability using a new intermetallic compound in place of δ or γ ″ -Ni 3 Nb. It is an object to provide an alloy and a Ni—Fe based alloy material using the alloy.

Vは、NiNb金属間化合物と複合添加されることにより、より高温安定なNiV(Nb)−δあるいはγ”を生成させることができる。このため本発明では、前述の課題を解決するため、比重8.56であるNbよりも、5.98と比重が低いVを利用することに着目した。すなわち、Ni−Fe基合金においてNb量を少量に抑え、その一方で、Vを添加することでNiV(Nb)を生成させることにより、低偏析でかつ結晶粒微細粒化能に優れた新規Ni−Fe基合金を開発するに至った。 V can be combined with a Ni 3 Nb intermetallic compound to generate Ni 3 V (Nb) -δ or γ ″ that is stable at higher temperatures. Therefore, the present invention solves the above-described problems. Therefore, we focused on using V, which has a specific gravity of 5.98, which is lower than that of Nb, which has a specific gravity of 8.56. By adding Ni 3 V (Nb) by addition, a new Ni—Fe based alloy having low segregation and excellent crystal grain refining ability has been developed.

すなわち、本発明のNi−Fe基合金の発明は、質量%で、Ni:24.0〜55.0%、Cr:13.0〜21.0%、Al:0.05〜5.0%、Ti:3.0%以下、Nb:0.1〜3.0%、V:2.0〜12.0%、C:0.005〜0.1%、B:0.015%以下を含有し、残部がFeおよび不可避的不純物からなることを特徴とする。 That is, the invention of the Ni-Fe-based alloy of the present invention is, in mass%, Ni: 24.0-55.0%, Cr: 13.0-21.0%, Al: 0.05-5.0% Ti: 3.0% or less, Nb: 0.1-3.0%, V: 2.0-12.0%, C: 0.005-0.1%, B: 0.015% or less And the balance is made of Fe and inevitable impurities.

請求項2記載のNi−Fe基合金の発明は、質量%で、Ni:24.0〜55.0%、Cr:13.0〜21.0%、Mo:0.1〜5.0%、Al:0.05〜5.0%、Ti:3.0%以下、Nb:0.1〜3.0%、V:2.0〜12.0%、C:0.005〜0.1%、B:0.015%以下を含有し、残部がFeおよび不可避的不純物からなることを特徴とする。 The invention of the Ni—Fe base alloy according to claim 2 is, in mass%, Ni: 24.0 to 55.0%, Cr: 13.0 to 21.0%, Mo: 0.1 to 5.0% Al: 0.05-5.0%, Ti: 3.0% or less, Nb: 0.1-3.0%, V: 2.0-12.0%, C: 0.005-0. 1%, B: 0.015% or less, with the balance being Fe and inevitable impurities.

請求項3記載のNi−Fe基合金の発明は、請求項1または2に記載の発明において、前記V含有量が、質量%で2.0〜10.0%であることを特徴とする。   The invention of the Ni—Fe based alloy according to claim 3 is characterized in that, in the invention according to claim 1 or 2, the V content is 2.0 to 10.0% by mass%.

請求項4記載のNi−Fe基合金材の製造方法の発明は、請求項1〜3のいずれかに記載の組成を有するNi−Fe基合金を熱間鍛造した後、粒内析出相を固溶させる溶体化処理を行い、その後、時効処理を施すことを特徴とする。   According to a fourth aspect of the present invention, there is provided a method for producing a Ni—Fe based alloy material comprising hot forging a Ni—Fe based alloy having the composition according to any one of claims 1 to 3 and then solidifying the intragranular precipitated phase. A solution treatment is performed, followed by an aging treatment.

以下に、本発明で規定する成分の作用及び限定理由について説明する。なお、以下における含有量はいずれも質量%を意味している。   Below, the effect | action of the component prescribed | regulated by this invention and the reason for limitation are demonstrated. In addition, all the contents in the following mean the mass%.

Ni:24.0〜55.0%
Niは合金のマトリックスであるγを安定化させると共に、Al、Ti、Nbと結合してγ’、γ”相を形成させる重要な元素である。その効果を発揮させるには、最低24.0%以上の添加が必要であるが、過剰な添加は合金全体のコスト増を招いて従来合金よりも、高価格化してしまう。したがってその添加量は、24.0〜55.0%の範囲に限定する。なお、同様に理由により、下限を35.0%、上限を45.0%とするのが望ましい。
Ni: 24.0-55.0%
Ni is an important element that stabilizes γ as a matrix of the alloy and combines with Al, Ti, and Nb to form a γ ′, γ ″ phase. In order to exert the effect, at least 24.0. However, excessive addition leads to an increase in the cost of the entire alloy, resulting in a higher price than conventional alloys, so the amount added is in the range of 24.0 to 55.0%. For the same reason, it is desirable that the lower limit is 35.0% and the upper limit is 45.0%.

Cr:13.0〜21.0%
Crは耐酸化性、耐食性、強度を高める上で必須元素であると同時に、非磁性を維持する上でも必要になる。それらの効果を発揮するためには、最低13.0%以上の添加量が必要である。しかし過剰な添加は、マトリックスであるγの安定性を悪化させ、σ相等のTCP相を析出して延靭性を低下させる。したがって添加量は、13.0〜21.0%の範囲に限定する。なお、同様に理由により、下限を15.0%、上限20.0%とするのが望ましい。
Cr: 13.0-21.0%
Cr is an essential element for enhancing oxidation resistance, corrosion resistance, and strength, and at the same time, is necessary for maintaining nonmagnetic properties. In order to exert these effects, an addition amount of at least 13.0% is necessary. However, excessive addition deteriorates the stability of γ which is a matrix, precipitates a TCP phase such as a σ phase, and lowers the toughness. Therefore, the addition amount is limited to the range of 13.0 to 21.0%. For the same reason, it is desirable that the lower limit is 15.0% and the upper limit is 20.0%.

Mo:添加なし又は0.1〜5.0%
Moは比重が10.28と強偏析であるため、大型鋼塊製造には不適な元素である。したがって、今回の発明材では無添加とすることが望ましい。したがって、Moを積極的に添加しない場合、不純物量としてのMo量は0.1%未満となる。ただし、偏析防止の観点からは、未添加の場合0.05%以下が望ましく、さらに0.02%以下が望ましい。一方でMoは、マトリックス中に固溶してマトリックス自体を固溶強化する元素でもあり、0.1%程度の添加であれば、鋼塊サイズによる偏析性を悪化させずに、強化にのみ寄与させることが可能となる。それでも過剰な添加はやはり偏析性を助長するため、Moを積極的に添加する場合には、その添加量は0.1〜5.0%とすることが望ましい。
Mo: No addition or 0.1 to 5.0%
Since Mo has a specific gravity of 10.28 and is strongly segregated, it is an element unsuitable for the production of large steel ingots. Therefore, it is desirable that no additives be added in the present invention material. Therefore, when Mo is not actively added, the amount of Mo as an impurity amount is less than 0.1%. However, from the viewpoint of preventing segregation, 0.05% or less is desirable when not added, and further 0.02% or less is desirable. On the other hand, Mo is also an element that dissolves in the matrix and strengthens the matrix itself, and if added at about 0.1%, it contributes only to strengthening without degrading the segregation due to the steel ingot size. It becomes possible to make it. Nevertheless, excessive addition still promotes segregation, so when Mo is positively added, the addition amount is preferably 0.1 to 5.0%.

Al:0.1〜5.0%
AlはNiと結合してγ’を析出し、合金の強化に寄与する。またAl保護皮膜を形成することで、耐酸化性及び耐食性の向上、また鋼塊中の脱酸元素としても寄与するため、最低0.05%以上添加する必要がある。但し、過剰な添加はγ’相の粗大化を招き、それにともなって延性が低下する。したがって、その添加量は、0.05〜5.0%の範囲に限定する。なお、同様の理由により、下限を0.05%、上限を3.0%とするのが望ましい。
Al: 0.1 to 5.0%
Al combines with Ni to precipitate γ 'and contributes to strengthening of the alloy. Further, by forming an Al 2 O 3 protective film, it contributes to an improvement in oxidation resistance and corrosion resistance, and also contributes as a deoxidizing element in the steel ingot. Therefore, it is necessary to add at least 0.05% or more. However, excessive addition leads to coarsening of the γ ′ phase, and ductility decreases accordingly. Therefore, the addition amount is limited to a range of 0.05 to 5.0%. For the same reason, it is desirable that the lower limit is 0.05% and the upper limit is 3.0%.

Ti:3.0%以下
TiはAlと同様にNiと結合してγ’を析出し、合金の強化に寄与する。また、耐食性、脱酸元素としても、寄与する。但し過剰な添加は、ηを析出して、延靭性を低下させる。したがってその添加量は、3.0%以下の範囲に限定する。なお、上記作用を得るためには0.1%以上添加するのが望ましく、また、同様の理由により、下限を0.1%、上限を1.5%とするのがさらに望ましい。
Ti: 3.0% or less Ti, like Al, binds to Ni and precipitates γ ', contributing to strengthening of the alloy. It also contributes to corrosion resistance and deoxidation elements. However, excessive addition precipitates η and reduces ductility. Therefore, the addition amount is limited to a range of 3.0% or less. In order to obtain the above effect, it is desirable to add 0.1% or more. For the same reason, it is more desirable that the lower limit is 0.1% and the upper limit is 1.5%.

Nb:0.1〜3.0%
NbはNiと結合してγ”を析出し、合金の強化に寄与する。また高温側ではδを析出し、粒界ピンニングによる結晶粒微細化に寄与するので、0.1%以上含有させる。但し、Nbは強化元素の中で最も重い元素であるために、鋼塊製造時、すなわち凝固時には液相部下部に滞留しやすく、偏析しやすい元素である。したがって過剰な添加はγ”相の粗大化を招くとともに、偏析性を助長させる。したがってその添加量は、0.1〜3.0%とする。なお、同様に理由により、下限を0.60%、上限を2.5%とするのが望ましい。
Nb: 0.1-3.0%
Nb combines with Ni to precipitate γ ″ and contribute to strengthening of the alloy. Further, δ precipitates on the high temperature side and contributes to crystal grain refinement by grain boundary pinning, so it is contained in an amount of 0.1% or more. However, since Nb is the heaviest element among the strengthening elements, it is an element that tends to stay in the lower part of the liquid phase part during the production of a steel ingot, that is, during solidification, and is likely to segregate. It causes coarsening and promotes segregation. Therefore, the added amount is 0.1 to 3.0%. For the same reason, it is desirable that the lower limit is 0.60% and the upper limit is 2.5%.

V:2.0〜12.0%
VはNiNbと同様、Niと結合しNiV−γ”を析出させ、合金の強化に寄与する。また高温側でもδを析出し、粒界ピンニングによる結晶粒微細化に寄与する。特にNbとVを複合添加することにより、NiNbより高温安定性に優れたNiV(Nb)が生成される。これによりNiTi−η、NiNb−δの固溶温度領域で鍛造を行っても、γ粒界ピンニングによる結晶粒微細化が達成できる。したがってVの添加は、結晶粒微細化による延性、靭性、低サイクル疲労特性向上に寄与する。またNbは比重8.56であるのに対してVは比重5.98であるため、凝固時での偏析は生じにくい。しかしVの過剰な添加は、Cr、Vからなる脆化相を生成させるとともに酸化しやすい元素であるため、鍛造加熱時に大量の酸化スケールを発生させ、粒界脆弱化、熱間加工性低下を招く。したがってその添加量は2.0〜12.0%とするが、望ましくは2.0〜10.0%とする。なお、同様の理由により、下限を7.0%、上限を10.0%とするのがさらに望ましい。
V: 2.0 to 12.0%
V, like Ni 3 Nb, binds to Ni and precipitates Ni 3 V-γ ″ and contributes to strengthening of the alloy. Further, δ precipitates even on the high temperature side and contributes to grain refinement by grain boundary pinning. In particular, by adding Nb and V in combination, Ni 3 V (Nb) having higher temperature stability than Ni 3 Nb is generated, whereby the solid solution temperature range of Ni 3 Ti-η and Ni 3 Nb-δ Even when forging is performed, grain refinement by γ grain boundary pinning can be achieved, so the addition of V contributes to the improvement of ductility, toughness, and low cycle fatigue properties by grain refinement, and Nb has a specific gravity of 8. 56, while V has a specific gravity of 5.98, segregation during solidification is unlikely to occur, but excessive addition of V generates an embrittled phase composed of Cr and V and easily oxidizes. Because of the large amount during forging heating Therefore, the grain boundary becomes brittle and the hot workability decreases, so the amount added is 2.0 to 12.0%, preferably 2.0 to 10.0%. For the same reason, it is more desirable to set the lower limit to 7.0% and the upper limit to 10.0%.

C:0.005〜0.1%
CはTiとTiCを形成し、またCr、MoとはMC、M及びM23タイプの炭化物を形成し、合金の粗大化を抑制する。特にMC、M23は結晶粒界に適量の炭化物を析出させることで粒界を強化する働きをもつ。これらの作用のために、Cを0.005%以上含有させる。しかし、炭素を過剰に含有させると、安定化処理時に粒界へ析出するCr炭化物が多くなりすぎて粒界を脆弱化させ、延性を低下させるので0.1%以下にする。したがってCの添加量は、0.005〜0.1wt%の範囲に限定する。なお、同様の理由により、下限を0.005%、上限を0.01%とするのがさらに望ましい。
C: 0.005-0.1%
C forms Ti and TiC, and Cr and Mo form M 6 C, M 7 C 3 and M 23 C 6 type carbides to suppress the coarsening of the alloy. In particular, M 6 C and M 23 C 6 have a function of strengthening the grain boundaries by precipitating an appropriate amount of carbides at the grain boundaries. For these actions, C is contained in an amount of 0.005% or more. However, if carbon is excessively contained, too much Cr carbide precipitates at the grain boundary during the stabilization treatment, which weakens the grain boundary and lowers the ductility. Therefore, the addition amount of C is limited to a range of 0.005 to 0.1 wt%. For the same reason, it is more desirable that the lower limit is 0.005% and the upper limit is 0.01%.

B:0.015%以下
Bは粒界に偏析してマトリックスを強化させ、高温強度及び延性向上を促す。しかし、多量の添加は硼化物を形成しやすくし、逆に粒界脆弱化を招く。したがって、Bの添加量は0.015wt%以下の範囲に限定する。なお、上記作用を得るために、0.001%以上を含有するのが望ましい。さらに、同様の理由により、下限を0.001%、上限を0.005%とするのが一層望ましい。
B: 0.015% or less B segregates at the grain boundary to strengthen the matrix, and promotes high-temperature strength and ductility. However, the addition of a large amount facilitates the formation of borides and conversely weakens the grain boundaries. Therefore, the addition amount of B is limited to a range of 0.015 wt% or less. In addition, in order to acquire the said effect | action, it is desirable to contain 0.001% or more. Furthermore, for the same reason, it is more desirable that the lower limit is 0.001% and the upper limit is 0.005%.

以上、説明したように、本発明のNi−Fe基合金によれば、質量%で、Ni:24.0〜55.0%、Cr:13.0〜21.0%、Al:0.05〜5.0%、Ti:3.0%以下、Nb:0.1〜3.0%、V:2.0〜12.0%、C:0.005〜0.1%、B:0.015%以下を含有し、さらに所望によりMo:0.1〜5.0%を含有し、残部がFeおよび不可避的不純物からなるので、低偏析で製造が可能であり、さらに熱間鍛造に供する際にも粒界ピンニングによる結晶粒微細化が十分に得られる。
すなわち、本発明のNi−Fe基合金により、インコネル706、718に代表されるNbを含有したNi−Fe基合金よりも低偏析でかつ結晶粒微細化能に優れたNi−Fe基合金が製造可能となり、発電機部材や航空機部材等の大型化、低サイクル疲労特性向上による適用範囲拡大が期待される。
As described above, according to the Ni—Fe based alloy of the present invention, Ni: 24.0 to 55.0%, Cr: 13.0 to 21.0%, Al: 0.05 by mass%. -5.0%, Ti: 3.0% or less, Nb: 0.1-3.0%, V: 2.0-12.0%, C: 0.005-0.1%, B: 0 0.15% or less, further containing Mo: 0.1 to 5.0% if desired, and the balance is made of Fe and inevitable impurities, so that it can be manufactured with low segregation, and for hot forging. Even when it is used, crystal grain refinement by grain boundary pinning can be sufficiently obtained.
That is, the Ni—Fe base alloy of the present invention produces a Ni—Fe base alloy having lower segregation and superior crystal grain refining ability than Ni—Fe base alloys containing Nb represented by Inconel 706 and 718. It is possible to expand the application range by increasing the size of generator members and aircraft members and improving low cycle fatigue characteristics.

また、本発明のNi−Fe基合金材の製造方法によれば、上記組成を有するNi−Fe基合金を熱間鍛造した後、粒内析出相を固溶させる溶体化処理を行い、その後、時効処理を施すので、低偏析でかつ結晶粒微細粒化を実現させた合金材が得られ、さらに、延性、靱性、低サイクル疲労特性に優れた材料が得られる。   Moreover, according to the manufacturing method of the Ni-Fe base alloy material of the present invention, after hot forging the Ni-Fe base alloy having the above composition, a solution treatment for dissolving the intragranular precipitated phase is performed, Since the aging treatment is performed, an alloy material with low segregation and crystal grain refinement can be obtained, and a material excellent in ductility, toughness, and low cycle fatigue characteristics can be obtained.

以下に、本発明の一実施形態を説明する。
本発明のNi−Fe基合金は、規定された組成となるように合金成分を調整して溶製することができる。なお、本発明合金は常法により作製することができ、その製造方法が特に限定されるものではない。
上記Ni−Fe基合金は、必要に応じて拡散熱処理等の熱処理を施すことができる。拡散熱処理としては、例えば1150〜1200℃の加熱温度、3〜70時間の保持時間が例示される。その後、熱間鍛造に供する。
熱間鍛造は、例えば940〜1150℃に加熱して鍛造を行うことができ、鍛造工程における条件について本発明は特に限定されない。
Hereinafter, an embodiment of the present invention will be described.
The Ni—Fe-based alloy of the present invention can be prepared by adjusting the alloy components so as to have a prescribed composition. In addition, this invention alloy can be produced by a conventional method, The manufacturing method is not specifically limited.
The Ni—Fe-based alloy can be subjected to a heat treatment such as a diffusion heat treatment as necessary. Examples of the diffusion heat treatment include a heating temperature of 1150 to 1200 ° C. and a holding time of 3 to 70 hours. Thereafter, it is subjected to hot forging.
Hot forging can be performed by heating to 940 to 1150 ° C., for example, and the present invention is not particularly limited with respect to the conditions in the forging process.

熱間鍛造後には、溶体化処理を行う。溶体化処理では、再結晶温度以上に加熱して、γ’、γ”といった粒内析出相を固溶させる。ただし、この際に、結晶粒粗大化が開始する温度以下が望ましい。すなわち、熱間鍛造後の溶体化処理では、該合金の再結晶温度以上で、かつγ’、γ”といった粒内析出相が固溶する温度であるとともに、結晶粒粗大化が開始する温度以下とするのが望ましい。この温度は、成分によって多少の違いがあるが、例えば940〜1020℃の温度を例示することができる。また、溶体化処理は、1〜3時間の保持によりおこなうことができる。上記加熱後には、0.5℃/分以上で急冷するのが望ましい。   After hot forging, solution treatment is performed. In the solution treatment, heating is performed at a temperature higher than the recrystallization temperature to cause the intragranular precipitation phase such as γ ′ and γ ″ to form a solid solution. However, at this time, the temperature is preferably equal to or lower than the temperature at which crystal grain coarsening starts. In the solution treatment after the forging, the temperature is not less than the recrystallization temperature of the alloy and the temperature at which the intragranular precipitation phase such as γ ′ and γ ″ is solid-solved and not more than the temperature at which the grain coarsening starts. Is desirable. Although this temperature has some differences with components, for example, a temperature of 940 to 1020 ° C. can be exemplified. The solution treatment can be performed by holding for 1 to 3 hours. After the heating, it is desirable to rapidly cool at 0.5 ° C./min or more.

上記溶体化処理後には、時効処理を行って機械的性質を向上させる。該時効処理としては、700℃〜800℃で24〜100時間加熱する処理を例示することができる。
上記により得られるNi−Fe基合金材は、微細な結晶組織を有しており、例えば、結晶粒度番号5.5以上の組織が得られる。
After the solution treatment, an aging treatment is performed to improve mechanical properties. Examples of the aging treatment include a treatment of heating at 700 to 800 ° C. for 24 to 100 hours.
The Ni—Fe-based alloy material obtained as described above has a fine crystal structure, and for example, a structure having a crystal grain size number of 5.5 or more is obtained.

本発明のNi−Fe基合金は、タービンロータやタービンディスクのような高温に曝される析出強化型合金に好適であり、特に鍛造性に優れ、低偏析でかつ結晶粒微細化に伴う延性、靭性、低サイクル疲労特性向上が期待できる大型部材に好適なものである。ただし、本発明は、タービンロータやタービンディスクのようなタービン部材に用途が限定されるものではなく、その特性を利用して種々の用途に利用することができるものである。   The Ni-Fe based alloy of the present invention is suitable for precipitation strengthened alloys that are exposed to high temperatures such as turbine rotors and turbine disks, and is particularly excellent in forgeability, low segregation, and ductility associated with grain refinement, It is suitable for large members that can be expected to improve toughness and low cycle fatigue characteristics. However, the application of the present invention is not limited to a turbine member such as a turbine rotor or a turbine disk, and the present invention can be used for various applications by utilizing the characteristics.

以下、本発明の実施例を詳細に説明する。表1に示す組成(残部:不純物)を有する合金を真空誘導溶解炉により溶製した50kg鋼塊を得た。該鋼塊を、1175℃×70時間にて拡散処理後、熱間鍛造(加熱温度1020℃)により厚さ30mm×120mm×Lの板材とした。各供試材毎に粒内析出相の固溶化を成し遂げられる領域で、かつ結晶粒粗大化が生じない最適な溶体化処理温度領域を選定した。
なお各供試材の最適な溶体化処理温度領域把握には、各供試材を900〜1100℃で1時間保持した後、水冷した試材を用いて、ミクロ組織観察と硬さ測定結果から求めた静的再結晶挙動、粒成長挙動に基づいて判断した。
Hereinafter, embodiments of the present invention will be described in detail. A 50 kg steel ingot in which an alloy having the composition shown in Table 1 (remainder: impurities) was melted in a vacuum induction melting furnace was obtained. The steel ingot was subjected to diffusion treatment at 1175 ° C. × 70 hours, and then made into a plate material having a thickness of 30 mm × 120 mm × L by hot forging (heating temperature 1020 ° C.). An optimum solution treatment temperature region in which the intragranular precipitation phase was solidified for each test material and no crystal grain coarsening occurred was selected.
In addition, in order to grasp the optimum solution treatment temperature region of each test material, each test material was held at 900 to 1100 ° C. for 1 hour, and then the water-cooled test material was used, from the microstructure observation and hardness measurement results. Judgment was made based on the obtained static recrystallization behavior and grain growth behavior.

Figure 0004387331
Figure 0004387331

図1に鍛造まま材及び鍛造後900℃〜1100℃で1時間保持した各供試材の結晶粒度変化を示す。比較材No.5(インコネル706)、比較材No.6(インコネル718)では、再結晶と同時に粒内析出相が固溶し粒成長が開始するため、比較材No.5では960℃から比較材No.6では1000℃から粒成長が開始している。
しかしながら発明材は、粒成長開始温度が980℃〜1020℃と高温側に移行していることから、比較材よりも高温側で結晶粒が微細な状態を維持できている。さらに発明材の中でもV添加量の増大に伴い、最適な溶体化処理温度領域での結晶粒サイズは微細化する。したがって発明材では、NiV(Nb)によるδ相がより高温域で安定に存在するため、γ粒界ピンニングによる結晶粒微細化が達成されている。結晶粒の微細化は、延性、靭性、疲労強度を大幅に向上させることから、最適溶体化処理温度は、再結晶温度以上、かつ粒成長開始温度以下であることが望ましい。
FIG. 1 shows the change in crystal grain size of the as-forged material and the specimens held at 900 ° C. to 1100 ° C. for 1 hour after forging. Comparative material No. 5 (Inconel 706), comparative material No. 6 (Inconel 718), the intragranular precipitated phase was dissolved at the same time as recrystallization, and grain growth started. In Comparative Example No. 5 from 960 ° C. In No. 6, grain growth started at 1000 ° C.
However, since the invention material has a grain growth start temperature of 980 ° C. to 1020 ° C. and has shifted to the high temperature side, the crystal grains can maintain a finer state on the high temperature side than the comparative material. Furthermore, among the inventive materials, the crystal grain size in the optimum solution treatment temperature region becomes finer as the amount of V added increases. Therefore, in the inventive material, since the δ phase due to Ni 3 V (Nb) exists stably in a higher temperature range, the grain refinement by γ grain boundary pinning is achieved. Since refinement of crystal grains greatly improves ductility, toughness, and fatigue strength, it is desirable that the optimum solution treatment temperature be not less than the recrystallization temperature and not more than the grain growth start temperature.

図2に、鍛造材及び鍛造後900℃〜1100℃で1時間保持した各供試材の硬さ変化を示す。比較材No.5(インコネル706)、比較材No.6(インコネル718)における粒内析出相固溶温度は、比較材No.5で960℃から、比較材No.6で1000℃からである。しかしながら、発明材No.1〜No.4はいずれも940℃で粒内析出相固溶が開始している。発明材の粒内析出相の固溶温度が比較材よりも低温側に存在するということは、より低温側での変形抵抗が低減され、高温域での鍛造性が良好となる。   In FIG. 2, the hardness change of each test material hold | maintained at 900 to 1100 degreeC for 1 hour after forging and forging is shown. Comparative material No. 5 (Inconel 706), comparative material No. 6 (Inconel 718), the intragranular precipitation phase solution temperature is comparative material No. No. 5 from 960 ° C. 6 is from 1000 ° C. However, the invention material No. 1-No. In all cases, intragranular precipitation phase solid solution started at 940 ° C. The fact that the solid solution temperature of the intragranular precipitation phase of the inventive material exists on the lower temperature side than the comparative material reduces the deformation resistance on the lower temperature side and improves the forgeability in the high temperature region.

図3に比較材及び発明材の静的再結晶挙動、粒成長挙動、粒内析出相の固溶温度の比較を示す。比較材の結晶粒粗大化を抑制しつつ、粒内析出相の固溶化が成し遂げられる領域は比較材No.6で960℃及び比較材No.7で1000℃のみであるのに対して、発明材No.1、4では900℃〜980℃、発明材No.2、3では940℃〜1020℃とその範囲が大幅に拡大している。このことは、本発明材の鍛造でのプロセスウィンドウが比較材より大幅に拡大していることを意味し、より高温域での鍛造による結晶粒微細化が達成できる。   FIG. 3 shows a comparison of the static recrystallization behavior, grain growth behavior, and solid solution temperature of the intragranular precipitation phase of the comparative material and the inventive material. The region where the solidification of the intragranular precipitated phase is achieved while suppressing the coarsening of the crystal grains of the comparative material is Comparative Material No. 6 at 960 ° C. and comparative material No. No. 7 is only 1000 ° C. Nos. 1 and 4 are 900 ° C. to 980 ° C. In 2 and 3, the range of 940 ° C. to 1020 ° C. is greatly expanded. This means that the process window in the forging of the material of the present invention is significantly larger than that of the comparative material, and crystal grain refinement by forging in a higher temperature range can be achieved.

比較材及び発明材の溶体化温度上昇に伴う結晶粒度の変化を示す図である。It is a figure which shows the change of the crystal grain size accompanying the solution temperature rise of a comparative material and invention material. 比較材及び発明材の溶体化温度上昇に伴う硬さの変化を示す図である。It is a figure which shows the change of the hardness accompanying the solution temperature rise of a comparative material and invention material. 発明材及び比較材における静的再結晶挙動、粒成長挙動、粒内析出相固溶温度をまとめた模式図である。It is the schematic which put together the static recrystallization behavior, the grain growth behavior, and the intragranular precipitation phase solution temperature in the inventive material and the comparative material.

Claims (4)

質量%で、Ni:24.0〜55.0%、Cr:13.0〜21.0%、Al:0.05〜5.0%、Ti:3.0%以下、Nb:0.1〜3.0%、V:2.0〜12.0%、C:0.005〜0.1%、B:0.015%以下を含有し、残部がFeおよび不可避的不純物からなることを特徴とするNi−Fe基合金。 In mass%, Ni: 24.0-55.0%, Cr: 13.0-21.0%, Al: 0.05-5.0%, Ti: 3.0% or less, Nb: 0.1 -3.0%, V: 2.0-12.0%, C: 0.005-0.1%, B: 0.015% or less, the balance consisting of Fe and inevitable impurities Characteristic Ni-Fe base alloy. 質量%で、Ni:24.0〜55.0%、Cr:13.0〜21.0%、Mo:0.1〜5.0%、Al:0.05〜5.0%、Ti:3.0%以下、Nb:0.1〜3.0%、V:2.0〜12.0%、C:0.005〜0.1%、B:0.015%以下を含有し、残部がFeおよび不可避的不純物からなることを特徴とするNi−Fe基合金。 In mass%, Ni: 24.0-55.0%, Cr: 13.0-21.0%, Mo: 0.1-5.0%, Al: 0.05-5.0%, Ti: 3.0% or less, Nb: 0.1 to 3.0%, V: 2.0 to 12.0%, C: 0.005 to 0.1%, B: 0.015% or less, A Ni—Fe base alloy characterized in that the balance consists of Fe and inevitable impurities. 前記V含有量が、質量%で2.0〜10.0%であることを特徴とする請求項1または2に記載のNi−Fe基合金。   The Ni-Fe base alloy according to claim 1 or 2, wherein the V content is 2.0 to 10.0% by mass. 請求項1〜3のいずれかに記載の組成を有するNi−Fe基合金を熱間鍛造した後、粒内析出相を固溶させる溶体化処理を行い、その後、時効処理を施すことを特徴とするNi−Fe基合金材の製造方法。   After hot forging the Ni-Fe base alloy having the composition according to any one of claims 1 to 3, a solution treatment for dissolving the intragranular precipitation phase is performed, and then an aging treatment is performed. A method for producing a Ni—Fe based alloy material.
JP2005192064A 2005-06-30 2005-06-30 Ni-Fe base alloy and method for producing Ni-Fe base alloy material Expired - Fee Related JP4387331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005192064A JP4387331B2 (en) 2005-06-30 2005-06-30 Ni-Fe base alloy and method for producing Ni-Fe base alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005192064A JP4387331B2 (en) 2005-06-30 2005-06-30 Ni-Fe base alloy and method for producing Ni-Fe base alloy material

Publications (2)

Publication Number Publication Date
JP2007009279A JP2007009279A (en) 2007-01-18
JP4387331B2 true JP4387331B2 (en) 2009-12-16

Family

ID=37748158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005192064A Expired - Fee Related JP4387331B2 (en) 2005-06-30 2005-06-30 Ni-Fe base alloy and method for producing Ni-Fe base alloy material

Country Status (1)

Country Link
JP (1) JP4387331B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130133793A1 (en) * 2011-11-30 2013-05-30 Ati Properties, Inc. Nickel-base alloy heat treatments, nickel-base alloys, and articles including nickel-base alloys
JP5670929B2 (en) 2012-02-07 2015-02-18 三菱マテリアル株式会社 Ni-based alloy forging
JP5373147B2 (en) * 2012-04-19 2013-12-18 株式会社日立製作所 Steam turbine rotor, Ni-based forged alloy, boiler tube for steam turbine plant
JP5356572B2 (en) * 2012-04-24 2013-12-04 株式会社日立製作所 Turbine rotor
CN103422038B (en) * 2013-09-04 2015-04-08 上海康晟特种合金有限公司 Method for heat treatment of lining die sleeve of high-temperature copper alloy extruding machine
US10563293B2 (en) 2015-12-07 2020-02-18 Ati Properties Llc Methods for processing nickel-base alloys
JP6829830B2 (en) * 2016-11-11 2021-02-17 大同特殊鋼株式会社 Fe—Ni based alloy and its manufacturing method

Also Published As

Publication number Publication date
JP2007009279A (en) 2007-01-18

Similar Documents

Publication Publication Date Title
JP5478601B2 (en) Ni-based forged alloy and gas turbine using the same
JP4430974B2 (en) Method for producing low thermal expansion Ni-base superalloy
JP5278936B2 (en) Heat resistant superalloy
JP6057363B1 (en) Method for producing Ni-base superalloy
US20130206287A1 (en) Co-based alloy
JP5127749B2 (en) Ni-base alloy for turbine rotor of steam turbine and turbine rotor of steam turbine using the same
JP5792500B2 (en) Ni-base superalloy material and turbine rotor
US8685316B2 (en) Ni-based heat resistant alloy, gas turbine component and gas turbine
JP2009084684A (en) Nickel-based alloy for turbine rotor of steam turbine, and turbine rotor of steam turbine
JP4387331B2 (en) Ni-Fe base alloy and method for producing Ni-Fe base alloy material
JP2013502511A (en) Nickel superalloys and parts made from nickel superalloys
JP6733210B2 (en) Ni-based superalloy for hot forging
KR20200002965A (en) Precipitation Hardening Cobalt-Nickel Base Superalloys and Articles Made therefrom
JP6315319B2 (en) Method for producing Fe-Ni base superalloy
JP4982539B2 (en) Ni-base alloy, Ni-base casting alloy, high-temperature components for steam turbine, and steam turbine casing
JP5395516B2 (en) Nickel-based alloy for steam turbine turbine rotor and steam turbine turbine rotor
JP6358503B2 (en) Consumable electrode manufacturing method
JP6148843B2 (en) Large cast member made of nickel base alloy and method for producing the same
JP6293682B2 (en) High strength Ni-base superalloy
JP2008297579A (en) Nickel-based alloy excellent in structural stability and high tension strength, and method for producing nickel-based alloy material
JP2014070230A (en) METHOD FOR PRODUCING Ni-BASED SUPERALLOY
JP6733211B2 (en) Ni-based superalloy for hot forging
JP2004256840A (en) COMPOSITE REINFORCED TYPE Ni BASED SUPERALLOY, AND PRODUCTION METHOD THEREFOR
JP4635065B2 (en) Ni-based alloy for steam turbine turbine rotor and steam turbine turbine rotor
JPH09268337A (en) Forged high corrosion resistant superalloy alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090930

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees