JP5127749B2 - Ni-base alloy for turbine rotor of steam turbine and turbine rotor of steam turbine using the same - Google Patents

Ni-base alloy for turbine rotor of steam turbine and turbine rotor of steam turbine using the same Download PDF

Info

Publication number
JP5127749B2
JP5127749B2 JP2009066517A JP2009066517A JP5127749B2 JP 5127749 B2 JP5127749 B2 JP 5127749B2 JP 2009066517 A JP2009066517 A JP 2009066517A JP 2009066517 A JP2009066517 A JP 2009066517A JP 5127749 B2 JP5127749 B2 JP 5127749B2
Authority
JP
Japan
Prior art keywords
turbine
steam turbine
alloy
turbine rotor
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009066517A
Other languages
Japanese (ja)
Other versions
JP2010215989A (en
Inventor
重和 宮下
潔 今井
政之 山田
邦義 根本
威夫 須賀
武雄 高橋
一隆 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009066517A priority Critical patent/JP5127749B2/en
Priority to US12/725,078 priority patent/US20100239425A1/en
Priority to EP10002795.2A priority patent/EP2233594B1/en
Priority to CN201010144757A priority patent/CN101838757A/en
Publication of JP2010215989A publication Critical patent/JP2010215989A/en
Application granted granted Critical
Publication of JP5127749B2 publication Critical patent/JP5127749B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/023Alloys based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

本発明は、蒸気タービンのタービンロータ用Ni基合金、およびこのNi基合金を用いた蒸気タービンのタービンロータに関するものである。   The present invention relates to a Ni-based alloy for a turbine rotor of a steam turbine, and a turbine rotor of a steam turbine using the Ni-based alloy.

火力発電プラントにおいては、地球環境の保護の観点から二酸化炭素の排出量の抑制技術が注目されており、また発電の高効率化のニーズが高まっている。
蒸気タービンの発電効率を上げるためには、蒸気タービンの蒸気温度を高温化することが有効であり、近年の火力発電プラントにおいては、タービンの蒸気温度は600℃以上に上昇しており、将来的には650℃、さらに700℃以上へと上昇することが予想される。
In thermal power plants, attention is focused on technologies for suppressing carbon dioxide emissions from the viewpoint of protecting the global environment, and there is an increasing need for higher efficiency in power generation.
In order to increase the power generation efficiency of the steam turbine, it is effective to increase the steam temperature of the steam turbine. In recent thermal power plants, the steam temperature of the turbine has risen to 600 ° C. or more, and in the future Is expected to rise to 650 ° C. and further to 700 ° C. or higher.

高温の蒸気を受けて回転する動翼を支持するタービンロータは、周囲に高温の蒸気が回流し高温になるとともに、回転により高い応力が発生する。そのため蒸気タービンのタービンロータは、高温、高応力に耐える必要があり、タービンロータを構成する材料として、室温から高温度の領域において優れた強度、延性、靭性を有する合金が求められている。   The turbine rotor that supports the rotating blades that receive high-temperature steam rotates to generate high stress due to the high-temperature steam circulating around it. Therefore, the turbine rotor of the steam turbine needs to withstand high temperature and high stress, and an alloy having excellent strength, ductility, and toughness in a region from room temperature to high temperature is required as a material constituting the turbine rotor.

特に蒸気温度が700℃を超える場合には、従来の鉄系材料では高温強度が不足するため、Ni基合金を用いることが検討されている(例えば、特許文献1参照。)。
Ni基合金は、高温強度、耐食性が優れていることから主にジェットエンジンやガスタービン材料として広く用いられてきており、その代表例として、インコネル617合金(スペシャルメタル社製)やインコネル706合金(スペシャルメタル社製)が挙げられる。
In particular, when the steam temperature exceeds 700 ° C., a conventional iron-based material lacks high-temperature strength, and therefore, use of a Ni-based alloy has been studied (for example, see Patent Document 1).
Ni-based alloys have been widely used mainly as jet engine and gas turbine materials because of their high-temperature strength and corrosion resistance. Typical examples thereof include Inconel 617 alloy (made by Special Metal Co.) and Inconel 706 alloy ( Special metal)).

Ni基合金の高温強度を強化するメカニズムとして、AlやTiを添加することにより、Ni基合金の母相材内にガンマプライム相(Ni(Al,Ti))、あるいはガンマダブルプライム相(NiNb)と称される析出相、又はそれらの両相を析出させて高温強度を確保させるようにしたものが知られている。例えばインコネル706合金がその例である。 As a mechanism for strengthening the high temperature strength of the Ni-based alloy, by adding Al or Ti, a gamma prime phase (Ni 3 (Al, Ti)) or a gamma double prime phase (Ni 3 Nb) is known as a precipitated phase, or both of these phases are precipitated to ensure high temperature strength. For example, Inconel 706 alloy is an example.

また、インコネル617合金のように、Co,Moを添加することにより、Ni基の母相を強化(固溶強化)して高温強度を確保するようにしたNi基合金も知られている。   Also known is an Ni-based alloy such as Inconel 617 alloy in which Co and Mo are added to strengthen the Ni-based matrix (solid solution strengthening) to ensure high temperature strength.

特開平7−150277号公報Japanese Unexamined Patent Publication No. 7-150277

上記したように、700℃を超える蒸気タービンのタービンロータ材として、鉄系材料よりは高温強度が強いNi基合金の使用が検討されており、Ni基合金の熱間加工性を維持しつつ、高温強度、鍛造性等を満足する組成の改良が求められている。   As described above, as a turbine rotor material for a steam turbine exceeding 700 ° C., the use of a Ni-based alloy having a higher high-temperature strength than an iron-based material has been studied, while maintaining the hot workability of the Ni-based alloy, There is a need for an improved composition that satisfies high temperature strength, forgeability, and the like.

そこで、本発明は、上記従来の事情に対処してなされたもので、熱間加工性を維持しつつ、高温強度と鍛造性の双方に優れた蒸気タービンのタービンロータ用Ni基合金およびそれを用いた蒸気タービンのタービンロータを提供することを目的とする。   Therefore, the present invention has been made in response to the above-described conventional circumstances, and maintains a hot workability, and is excellent in both high-temperature strength and forgeability. It aims at providing the turbine rotor of the used steam turbine.

本発明の蒸気タービンのタービンロータ用Ni基合金の一態様は、質量%で、C:0.01〜0.15%、Cr:18〜28%、Co:10〜15%、Mo:8〜12%、Al:0.5〜1.5%未満、Ti:0.7〜3.0%、B:0.001〜0.006%を含有し、残部がNiおよび不可避的不純物からなることを特徴とする。   One aspect of the Ni-based alloy for the turbine rotor of the steam turbine of the present invention is, by mass, C: 0.01 to 0.15%, Cr: 18 to 28%, Co: 10 to 15%, Mo: 8 to 12%, Al: 0.5 to less than 1.5%, Ti: 0.7 to 3.0%, B: 0.001 to 0.006%, the balance being made of Ni and inevitable impurities It is characterized by.

本発明の蒸気タービンのタービンロータの一態様は、高温蒸気が導入される蒸気タービンに貫設されるタービンロータであって、少なくとも所定部位が、上記した蒸気タービンのタービンロータ用Ni基合金からなることを特徴とする。     One aspect of the turbine rotor of the steam turbine of the present invention is a turbine rotor that is provided in a steam turbine into which high-temperature steam is introduced, and at least a predetermined portion is made of the above-described Ni-based alloy for the turbine rotor of the steam turbine. It is characterized by that.

本発明によれば、熱間加工性を維持しつつ、高温強度と鍛造性の双方に優れた蒸気タービンのタービンロータ用Ni基合金およびそれを用いた蒸気タービンのタービンロータを提供することができる。   According to the present invention, it is possible to provide a Ni-based alloy for a turbine rotor of a steam turbine excellent in both high-temperature strength and forgeability while maintaining hot workability, and a turbine rotor of a steam turbine using the same. .

本実施形態のNi基合金の組織写真。The structure photograph of the Ni base alloy of this embodiment. グリーブル試験の結果を示すグラフ。The graph which shows the result of a greeble test. Ni基合金の組織写真。Structure photograph of Ni-based alloy. Ni基合金の別の組織写真。Another structural photograph of Ni-based alloy.

以下、本発明に係る蒸気タービンのタービンロータ用Ni基合金およびそれを材料とする蒸気タービンのタービンロータの実施形態について説明する。
インコネル706合金、インコネル617合金などのNi基合金は、タービンロータ材として極めて有用な材料ではあるが、蒸気タービン発電設備のさらなる高効率化には、Ni基合金の熱間加工性(絞り等)を維持しつつ、高温強度(高温における機械的強度)、鍛造性をも満足させる必要がある。
Hereinafter, embodiments of a Ni-based alloy for a turbine rotor of a steam turbine according to the present invention and a turbine rotor of a steam turbine using the same will be described.
Ni-based alloys such as Inconel 706 alloy and Inconel 617 alloy are extremely useful materials as turbine rotor materials. However, in order to further improve the efficiency of steam turbine power generation equipment, hot workability of Ni-based alloys (drawing, etc.) While maintaining the above, it is necessary to satisfy high temperature strength (mechanical strength at high temperature) and forgeability.

たとえばインコネル617合金は、コバルト(Co)、モリブデン(Mo)を添加することにより、Ni基の母相を固溶強化して高温強度の向上を図った合金であるが、高温強度をさらに高めるに当たっては、固溶強化のみでは必ずしも十分ではない。
そこで本発明は、固溶強化の他に析出強化をも利用してさらなる高強度化を図ったものである。
For example, Inconel 617 alloy is an alloy in which high temperature strength is improved by solid solution strengthening of a Ni-based matrix by adding cobalt (Co) and molybdenum (Mo). However, solid solution strengthening alone is not always sufficient.
Therefore, the present invention aims to further increase the strength by utilizing precipitation strengthening in addition to solid solution strengthening.

以下、その高強度化の内容を詳細に説明する。
本発明の蒸気タービンのタービン用Ni基合金は、代表的なNi基合金であるインコネル617合金の組成を基本として、添加調整を図ることにより高温での強度特性、鍛造性の向上を図った。
従来のインコネル617合金のTi含有率は0.6質量%程度であって、この程度の含有率では析出強化は期待できない。このため、Ti含有率を0.7〜3.0質量%に増加させて、析出するγ’相(ガンマプライム相(Ni(Al,Ti)))の析出量を多くした。さらに、高温強度の向上を図るために、Al濃度を1.6質量%以上にし、かつ、Ti濃度を0.7質量%以上にした場合のNi基合金の組織写真を図3に示す。図3では、矢印で示すように、σ相と称される有害相の析出が認められた。なお、図3に示されたNi基合金の組成は、Ni−1.8Al−1.3Ti−23Cr−12Co−9Mo−0.1Ta−0.3Nb(構成成分の前に記載された数字は各構成成分の含有率(質量%)、残部はNi)である。そこで、本発明では、有害相の析出を防ぐため、Al濃度を0.5〜1.5質量%未満とし、必要に応じてタンタル(Ta)、ニオブ(Nb)を添加し、γ’相を安定的に析出させると共に、γ’相自身の安定性を向上させ、結果的に、当該Ni基合金の高強度化を達成することができた。
Hereinafter, the content of the high intensity | strength is demonstrated in detail.
The Ni-based alloy for turbines of the steam turbine of the present invention is based on the composition of the Inconel 617 alloy, which is a typical Ni-based alloy, and has been improved in strength characteristics and forgeability at high temperatures by adjusting the addition.
The Ti content of the conventional Inconel 617 alloy is about 0.6% by mass, and precipitation strengthening cannot be expected at this level of content. Therefore, by increasing the Ti content to 0.7 to 3.0 mass%, precipitated gamma 'phase (gamma prime phase (Ni 3 (Al, Ti) )) to increase the amount of precipitation of. Furthermore, FIG. 3 shows a structural photograph of the Ni-based alloy when the Al concentration is set to 1.6% by mass or more and the Ti concentration is set to 0.7% by mass or more in order to improve the high-temperature strength. In FIG. 3, as indicated by arrows, precipitation of a harmful phase called σ phase was observed. The composition of the Ni-based alloy shown in FIG. 3 is Ni-1.8Al-1.3Ti-23Cr-12Co-9Mo-0.1Ta-0.3Nb (the numbers described before the constituent components are The content rate (mass%) of a structural component and the remainder are Ni). Therefore, in the present invention, in order to prevent the precipitation of harmful phases, the Al concentration is set to less than 0.5 to 1.5% by mass, tantalum (Ta) and niobium (Nb) are added as necessary, and the γ ′ phase is added. In addition to the stable precipitation, the stability of the γ ′ phase itself was improved, and as a result, the strength of the Ni-based alloy could be increased.

本実施形態の蒸気タービンのタービンロータ用Ni基合金の実施形態は、以下の通りである。
(合金1) 質量%で、C:0.01〜0.15%、Cr:18〜28%、Co:10〜15%、Mo:8〜12%、Al:0.5〜1.5%未満、Ti:0.7〜3.0%、B:0.001〜0.006%を含有し、残部がNiおよび不可避的不純物からなる蒸気タービンのタービンロータ用Ni基合金。
(合金2) 質量%で、C:0.01〜0.15%、Cr:18〜28%、Co:10〜15%、Mo:8〜12%、Al:0.5〜1.5%未満、Ti:0.7〜3.0%、B:0.001〜0.006%、Ta:0.1〜0.7%を含有し、残部がNiおよび不可避的不純物からなる蒸気タービンのタービンロータ用Ni基合金。
(合金3) 質量%で、C:0.01〜0.15%、Cr:18〜28%、Co:10〜15%、Mo:8〜12%、Al:0.5〜1.5%未満、Ti:0.7〜3.0%、B:0.001〜0.006%、Nb:0.1〜0.4%を含有し、残部がNiおよび不可避的不純物からなる蒸気タービンのタービンロータ用Ni基合金。
(合金4) 質量%で、C:0.01〜0.15%、Cr:18〜28%、Co:10〜15%、Mo:8〜12%、Al:0.5〜1.5%未満、Ti:0.7〜3.0%、B:0.001〜0.006%、Ta:0.1〜0.7%、Nb:0.1〜0.4%を含有し、残部がNiおよび不可避的不純物からなる蒸気タービンのタービンロータ用Ni基合金。
(合金5) 質量%で、C:0.01〜0.15%、Cr:18〜28%、Co:10〜15%、Mo:8〜12%、Al:0.5〜1.5%未満、Ti:0.7〜3.0%、B:0.001〜0.006%、Ta+2Nb(TaとNbとのモル比が1:2):0.1〜0.7%を含有し、残部がNiおよび不可避的不純物からなる蒸気タービンのタービンロータ用Ni基合金。
なお、以下の説明において、合金の組成成分を表す%は、特に明記しない限り質量%である。
Embodiments of the Ni-based alloy for the turbine rotor of the steam turbine of the present embodiment are as follows.
(Alloy 1) By mass%, C: 0.01 to 0.15%, Cr: 18 to 28%, Co: 10 to 15%, Mo: 8 to 12%, Al: 0.5 to 1.5% Less than, Ti: 0.7-3.0%, B: 0.001-0.006%, The Ni-base alloy for turbine rotors of the steam turbine which the remainder consists of Ni and an unavoidable impurity.
(Alloy 2) By mass%, C: 0.01 to 0.15%, Cr: 18 to 28%, Co: 10 to 15%, Mo: 8 to 12%, Al: 0.5 to 1.5% Less than, Ti: 0.7-3.0%, B: 0.001-0.006%, Ta: 0.1-0.7%, the remainder of the steam turbine consisting of Ni and inevitable impurities Ni-base alloy for turbine rotor.
(Alloy 3) By mass%, C: 0.01 to 0.15%, Cr: 18 to 28%, Co: 10 to 15%, Mo: 8 to 12%, Al: 0.5 to 1.5% Less than, Ti: 0.7-3.0%, B: 0.001-0.006%, Nb: 0.1-0.4%, the remainder of the steam turbine consisting of Ni and inevitable impurities Ni-base alloy for turbine rotor.
(Alloy 4) By mass%, C: 0.01 to 0.15%, Cr: 18 to 28%, Co: 10 to 15%, Mo: 8 to 12%, Al: 0.5 to 1.5% Less than, Ti: 0.7-3.0%, B: 0.001-0.006%, Ta: 0.1-0.7%, Nb: 0.1-0.4%, the balance A Ni-based alloy for a turbine rotor of a steam turbine consisting of Ni and inevitable impurities.
(Alloy 5) By mass, C: 0.01 to 0.15%, Cr: 18 to 28%, Co: 10 to 15%, Mo: 8 to 12%, Al: 0.5 to 1.5% Less than, Ti: 0.7-3.0%, B: 0.001-0.006%, Ta + 2Nb (Molar ratio of Ta and Nb is 1: 2): 0.1-0.7% A Ni-based alloy for a turbine rotor of a steam turbine, the balance being Ni and inevitable impurities.
In the following description, “%” representing the composition component of the alloy is “% by mass” unless otherwise specified.

ここで、上記(合金1)〜(合金5)の蒸気タービンのタービンロータ用Ni基合金における不可避的不純物において、その不可避的不純物のうち、少なくともSi含有率を0.1%以下、Mn含有率を0.1%以下に低減することが望ましい。
次に、上記した本実施形態の蒸気タービンのタービンロータ用Ni基合金における各組成の成分範囲の限定理由について説明する。
Here, in the inevitable impurities in the Ni-based alloys for the turbine rotor of the steam turbine of the above (Alloy 1) to (Alloy 5), among the inevitable impurities, at least the Si content is 0.1% or less and the Mn content Is desirably reduced to 0.1% or less.
Next, the reasons for limiting the component ranges of the respective compositions in the Ni-based alloy for turbine rotors of the steam turbine of the present embodiment described above will be described.

(1)C(炭素)
Cは、強化相であるM23型炭化物の構成元素として有用であり、特に650℃以上の高温環境下では、タービンの運転中にM23型炭化物を析出させることが合金のクリープ強度を維持させる要因の一つである。また、鋳造時の溶湯の流動性を確保する効果も併せ持つものである。Cの含有率が0.01%未満の場合、炭化物の十分な析出量を確保できないため、高温強度が低下するとともに、鋳造時の溶湯の流動性が著しく低下する。一方、Cの含有率が0.15%を超えると、大型鋳塊を製作する際に成分の偏析傾向が増加するとともに、脆化相であるMC型炭化物の生成を促進し、さらに高温強度は向上するが、鍛造性は低下する。そのため、Cの含有率を0.01〜0.15%にした。
(1) C (carbon)
C is useful as a constituent element of M 23 C 6 type carbide, which is a strengthening phase. Particularly in a high temperature environment of 650 ° C. or higher, precipitation of M 23 C 6 type carbide during turbine operation causes creep of the alloy. This is one of the factors that maintain strength. It also has the effect of ensuring the fluidity of the molten metal during casting. When the C content is less than 0.01%, a sufficient amount of precipitation of carbide cannot be secured, so that the high-temperature strength is lowered and the fluidity of the molten metal during casting is significantly lowered. On the other hand, when the C content exceeds 0.15%, the segregation tendency of the components increases when producing a large ingot, and the generation of M 6 C type carbide which is an embrittlement phase is promoted. Strength is improved, but forgeability is reduced. Therefore, the C content is determined to be 0.01 to 0.15%.

(2)Cr(クロム)
Crは、Ni基合金の耐酸化性、耐食性、高温強度を高めるのに不可欠な元素である。さらにM23型炭化物の構成元素として不可欠であり、特に650℃以上の高温環境下では、タービンの運転中にM23型炭化物を析出させることで、合金のクリープ強度が維持される。また、Crは高温蒸気の環境下における耐酸化性を高めることができる。Crの含有率が18%未満の場合には、耐酸化性が低下する。一方、Crの含有率が28%を超えると、M23型炭化物の析出を著しく促進することによって粗大化傾向を高める。そのため、Crの含有率を18〜28%にした。
(2) Cr (chromium)
Cr is an essential element for increasing the oxidation resistance, corrosion resistance, and high temperature strength of the Ni-based alloy. Further, it is indispensable as a constituent element of M 23 C 6 type carbide, and particularly in a high temperature environment of 650 ° C. or higher, the creep strength of the alloy is maintained by precipitating M 23 C 6 type carbide during turbine operation. . Moreover, Cr can improve the oxidation resistance in the environment of high temperature steam. When the Cr content is less than 18%, the oxidation resistance decreases. On the other hand, when the Cr content exceeds 28%, precipitation of M 23 C 6 type carbides is remarkably promoted to increase the coarsening tendency. Therefore, the Cr content is set to 18 to 28%.

(3)Co(コバルト)
Coは、Ni基合金において、母相内に固溶して母相を強化する作用を有する。Coの含有率が10%未満の場合には、高温強度が低下する。一方、Coの含有率が15%を超えると、有害な金属間化合物相を生成し、さらに鍛造性が低下する。そのため、Coの含有率を10〜15%にした。
(3) Co (cobalt)
Co has a function of strengthening the parent phase by dissolving in the parent phase in the Ni-based alloy. When the Co content is less than 10%, the high-temperature strength decreases. On the other hand, if the Co content exceeds 15%, a harmful intermetallic compound phase is generated, and the forgeability is further reduced. Therefore, the Co content is set to 10 to 15%.

(4)Mo(モリブデン)
Moは、Ni母相中に固溶して母相の強度を高める効果を有し、また、M23型炭化物中に一部が置換することによって炭化物の安定性を高めることができる。Moの含有率が8%未満の場合には、上記した効果が発揮されず、一方、Moの含有率が12%を超えると、大型鋳塊を製作する際に成分の偏析傾向が増加するとともに、脆化相であるMC型炭化物の生成を促進する。そのため、Moの含有率を8〜12%にした。
(4) Mo (molybdenum)
Mo has the effect of increasing the strength of the parent phase by dissolving in the Ni parent phase, and the stability of the carbide can be increased by partially replacing the M 23 C 6 type carbide. When the Mo content is less than 8%, the above-described effects are not exhibited. On the other hand, when the Mo content exceeds 12%, the segregation tendency of components increases when a large ingot is manufactured. Promotes the formation of M 6 C type carbides, which are embrittled phases. Therefore, the Mo content is set to 8 to 12%.

(5)Al(アルミニウム)
Alは、Niとともにγ′相を生成し、析出によるNi基合金の強化を図ることができる。Alの含有率が0.5%未満の場合には、高温強度が低下する。一方、Alの含有率が1.5%以上の場合に、鍛造性の低下とともにσ相と称される脆化相の析出を促進する可能性がある。そのため、Alの含有率を0.5〜1.5%未満(0.5%以上、1.5%未満)にした。
(5) Al (aluminum)
Al forms a γ 'phase together with Ni, and can strengthen the Ni-based alloy by precipitation. When the Al content is less than 0.5%, the high temperature strength decreases. On the other hand, when the Al content is 1.5% or more, there is a possibility that precipitation of an embrittlement phase called a σ phase is promoted with a decrease in forgeability. Therefore, the Al content is set to 0.5 to less than 1.5% (0.5% or more and less than 1.5%).

(6)Ti(チタン)
Tiは、Alと同様に、Niとともにγ′相を生成し、Ni基合金を強化することができる。Tiの含有率が0.7%未満の場合には、高温強度は従来材と同等である。一方、Tiの含有率が3%を超えると、熱間加工性が低下し、鍛造性が低下したり、切欠き感受性が高くなったりする。そのため、Tiの含有率を0.7〜3.0%にした。
(6) Ti (titanium)
Ti, like Al, can form a γ ′ phase together with Ni and strengthen the Ni-based alloy. When the Ti content is less than 0.7%, the high temperature strength is equivalent to that of the conventional material. On the other hand, if the Ti content exceeds 3%, the hot workability decreases, the forgeability decreases, and the notch sensitivity increases. Therefore, the Ti content is set to 0.7 to 3.0%.

(7)B(ホウ素)
Bは、粒界に偏析して高温特性を向上させることができる。この効果を、Bの含有率が0.001%以上の場合に発現させることができる。しかしながら、Bの含有率が0.006%を超えると、粒界脆化を招く恐れがある。そのため、Bの含有率を、0.001〜0.006%にした。
(7) B (boron)
B segregates at the grain boundary and can improve high temperature characteristics. This effect can be exhibited when the B content is 0.001% or more. However, if the B content exceeds 0.006%, grain boundary embrittlement may occur. Therefore, the content rate of B is set to 0.001 to 0.006%.

(8)Ta(タンタル)
Taは、γ′相に固溶して析出強化相を安定化させる効果を有する。Taの含有率が0.1%未満の場合には、安定化効果が発揮されず、一方、Taの含有率が0.7%を超えると、高温強度は向上するが鍛造性が低下する。そのため、Taの含有率を0.1〜0.7%にした。
(8) Ta (tantalum)
Ta has an effect of stabilizing the precipitation strengthening phase by dissolving in the γ ′ phase. When the Ta content is less than 0.1%, the stabilizing effect is not exhibited. On the other hand, when the Ta content exceeds 0.7%, the high temperature strength is improved, but the forgeability is lowered. Therefore, the Ta content is set to 0.1 to 0.7%.

(9)Nb(ニオブ)
Nbは、Taと同様に、γ′相に固溶して高温強度を高め、析出強化相を安定化させる効果を有する。Nbの含有率が0.1%未満の場合には、上記した効果が発揮されず、Nbの含有率が0.4%を超えると、高温強度は向上するが、鍛造性が低下する。そのため、Nbの含有率を、0.1〜0.4%にした。
また、上記したTaとNbを、(Ta+2Nb)の含有率が0.1〜0.7%の範囲で含有することで、γ′相に固溶して高温強度を高め、析出強度を安定させる。(Ta+2Nb)の含有率が0.1%未満の場合には、上記した効果において従来材と比べて向上が見られず、一方、(Ta+2Nb)の含有率が0.7%を超えると、高温強度は向上するが、鍛造性が低下する。なお、この場合、TaおよびNbは、それぞれ少なくとも0.01%以上含有される。
(9) Nb (Niobium)
Nb, like Ta, has the effect of solid-dissolving in the γ ′ phase to increase the high-temperature strength and stabilize the precipitation strengthening phase. When the Nb content is less than 0.1%, the above effects are not exhibited. When the Nb content exceeds 0.4%, the high temperature strength is improved, but the forgeability is lowered. Therefore, the Nb content is set to 0.1 to 0.4%.
In addition, when Ta and Nb are contained in the range of (Ta + 2Nb) in the range of 0.1 to 0.7%, the γ ′ phase is dissolved to increase the high-temperature strength and stabilize the precipitation strength. . When the content of (Ta + 2Nb) is less than 0.1%, the above effect is not improved as compared with the conventional material. On the other hand, when the content of (Ta + 2Nb) exceeds 0.7%, Strength is improved, but forgeability is reduced. In this case, Ta and Nb are each contained at least 0.01% or more.

(10)Si(ケイ素)、Mn(マンガン)、Fe(鉄)、Cu(銅)およびS(硫黄)
Si、Mn、Fe、CuおよびSは、本実施形態の蒸気タービンのタービンロータ用Ni基合金においては、不可避的不純物に分類されるものである。これらの不可避的不純物は、可能な限りその残存含有率を0%に近づけることが望ましい。また、これらの不可避的不純物のうち、少なくとも、SiおよびMnは、それぞれ0.1%以下に抑制されることが好ましい。
Mnは、普通鋼の場合、脆性に起因するS(硫黄)をMnSとして脆性を防止する。しかしながら、Ni基合金中のS含有量は極めて少く、Mnを添加する必要はない。そのため、本実施形態の蒸気タービンのタービンロータ用Ni基合金では、Mnの含有率を0.1%以下とし、可能な限りその残存含有率を0%に近づけることが望ましい。
Siは、普通鋼の場合、耐食性を補うために添加される。しかしながら、Ni基合金ではCr含有量が多く、十分に耐食性を確保できることから、本実施形態の蒸気タービンのタービンロータ用Ni基合金では、Siの含有率を0.1%以下とし、可能な限りその残存含有率を0%に近づけることが望ましい。
(10) Si (silicon), Mn (manganese), Fe (iron), Cu (copper) and S (sulfur)
Si, Mn, Fe, Cu, and S are classified as inevitable impurities in the Ni-based alloy for the turbine rotor of the steam turbine of this embodiment. It is desirable that the residual content of these inevitable impurities is as close to 0% as possible. Of these inevitable impurities, at least Si and Mn are preferably suppressed to 0.1% or less, respectively.
In the case of ordinary steel, Mn prevents brittleness by using S (sulfur) due to brittleness as MnS. However, the S content in the Ni-based alloy is extremely small, and it is not necessary to add Mn. Therefore, in the Ni-based alloy for the turbine rotor of the steam turbine of this embodiment, it is desirable that the Mn content is 0.1% or less and the residual content is as close to 0% as possible.
In the case of ordinary steel, Si is added to supplement the corrosion resistance. However, since the Ni-based alloy has a large Cr content and can sufficiently secure corrosion resistance, in the Ni-based alloy for the turbine rotor of the steam turbine of the present embodiment, the Si content is set to 0.1% or less as much as possible. It is desirable to make the residual content close to 0%.

図4は従来のインコネル617合金の組織写真である。図1[組成:Ni−0.05C−1.15Al−1.8Ti−23Cr−12Co−9Mo−0.1Ta−0.3Nb−0.003B]は本実施形態の蒸気タービンのタービンロータ用Ni基合金の組織写真である。図1に示すように、本実施形態の蒸気タービンのタービンロータ用Ni基合金は、上記合金の合金組成範囲とすることにより、σ相の析出を抑制しつつγ母相中に、矢印で示すように、微細なγ’を安定的に析出させることが可能となった。   FIG. 4 is a structural photograph of a conventional Inconel 617 alloy. FIG. 1 [Composition: Ni-0.05C-1.15Al-1.8Ti-23Cr-12Co-9Mo-0.1Ta-0.3Nb-0.003B] is the Ni base for the turbine rotor of the steam turbine of this embodiment. It is a structure photograph of an alloy. As shown in FIG. 1, the Ni-based alloy for the turbine rotor of the steam turbine of the present embodiment is indicated by an arrow in the γ parent phase while suppressing the precipitation of the σ phase by setting the alloy composition range of the alloy. Thus, it became possible to precipitate fine γ ′ stably.

次に、本実施形態の蒸気タービンのタービンロータ用Ni基合金の好ましい製造方法について説明する。
上記のように成分調整された合金を、常法により溶製し鋳造する。その後、当該鋳塊に、安定化処理、通常の熱間鍛造、溶体化処理を施す。熱間鍛造後の溶体化処理では、γ’相の溶解温度以上でかつ局部溶融の開始温度以下とするのが望ましい。上記安定化処理および溶体化処理は合金組成と処理物のサイズによって条件が異なってくるが、安定化処理として、例えば1000〜1250℃の温度範囲で3〜72時間の加熱により行うことができ、一方、溶体化処理として、例えば1000〜1200℃の温度範囲で3〜24時間の加熱とその後の急冷により行うことができる。これらの処理は、多段に行うものであってもよい。さらに必要に応じ、700〜800℃の温度範囲で3〜24時間の時効処理を行うことにより、γ’の早期析出を達成することもできる。
Next, the preferable manufacturing method of the Ni-base alloy for turbine rotors of the steam turbine of this embodiment is demonstrated.
The alloy whose components are adjusted as described above is melted and cast by a conventional method. Thereafter, the ingot is subjected to stabilization treatment, normal hot forging, and solution treatment. In the solution treatment after hot forging, it is desirable that the temperature be higher than the melting temperature of the γ ′ phase and lower than the local melting start temperature. The conditions for the stabilization treatment and the solution treatment vary depending on the alloy composition and the size of the processed material, but the stabilization treatment can be performed, for example, by heating at a temperature range of 1000 to 1250 ° C. for 3 to 72 hours, On the other hand, the solution treatment can be performed, for example, by heating in a temperature range of 1000 to 1200 ° C. for 3 to 24 hours and then rapid cooling. These processes may be performed in multiple stages. Furthermore, if necessary, early precipitation of γ ′ can be achieved by performing an aging treatment for 3 to 24 hours in a temperature range of 700 to 800 ° C.

(高温強度特性および製造性の評価)
本実施形態を、Ni基合金の合金組成、高温強度特性および製造性について表を参照し説明する。表1に示す化学成分を有するNi基合金20kgを真空誘導溶解炉にて溶解し、26種類の鋳塊から鍛造材を得た。21種類の比較例は、本実施形態で示す各元素の添加量の範囲を評価するため、添加量を範囲外に調整した。残り5種類は実施例である。なお、比較例1は従来材であるインコネル617合金相当の化学成分を有する。表1中、Si、Mn、Fe、Cu、Sは不可避的に混入したものである。
(Evaluation of high temperature strength characteristics and manufacturability)
In the present embodiment, the alloy composition, high temperature strength characteristics and manufacturability of the Ni-based alloy will be described with reference to the table. 20 kg of Ni-based alloy having chemical components shown in Table 1 was melted in a vacuum induction melting furnace, and forgings were obtained from 26 types of ingots. In the 21 types of comparative examples, in order to evaluate the range of the addition amount of each element shown in the present embodiment, the addition amount was adjusted out of the range. The remaining five types are examples. In addition, the comparative example 1 has a chemical component equivalent to the Inconel 617 alloy which is a conventional material. In Table 1, Si, Mn, Fe, Cu, and S are inevitably mixed.

上記26種類の鍛造材は、いずれも直径約125mm、長さ約210mmの中実円筒状の鋳塊から表面の黒皮組織を切削除去して得られたものである。黒皮除去後の鍛造材は、直径約120mm、長さ約200mmとなった。これらの鍛造材を1180℃で6時間の安定化処理を施したのち、ただちに熱間鍛造を実施した。鍛造比が3となるまで、熱間鍛造を実施したが、その際、鍛造材の温度を計測し、鍛造材の温度が1000℃まで低下すると一旦鍛造作業を中断し、1180℃での再加熱を実施した。鍛造比が3となった時点、すなわち、鍛造品の全長が600mmとなった時点で、鍛造を終了し放冷した。この時点で鍛造品の直径は約70mmとなっていた。冷却後、鍛造品の表面を観察し、鍛造割れの有無を調査した。   Each of the 26 types of forgings was obtained by cutting and removing the black skin structure from a solid cylindrical ingot having a diameter of about 125 mm and a length of about 210 mm. The forged material after removal of the black skin was about 120 mm in diameter and about 200 mm in length. These forgings were subjected to stabilization treatment at 1180 ° C. for 6 hours, and immediately thereafter hot forging was performed. Hot forging was carried out until the forging ratio reached 3, but at that time, the temperature of the forging material was measured, and when the temperature of the forging material decreased to 1000 ° C, the forging operation was temporarily suspended and reheating at 1180 ° C was performed. Carried out. When the forging ratio reached 3, that is, when the total length of the forged product reached 600 mm, the forging was finished and allowed to cool. At this point, the diameter of the forged product was about 70 mm. After cooling, the surface of the forged product was observed to check for forging cracks.

次に、鍛造品それぞれを1170℃で4時間加熱したのち水冷する溶体化処理を実施した。溶体化処理後の鍛造品に対し、750℃で10時間の時効処理を実施した。時効処理後の鍛造品より、適宜試験片を採取して各種試験に供した。
溶体化処理および時効処理後の比較例1〜21および実施例1〜5について、室温(23℃)から高温(700℃および800℃)における引張強度試験の結果(0.2%耐力)および鍛造状況を表2に示す。なお、引張試験はJIS Z 2241(金属材料引張試験方法)にしたがって実施した。引張試験における温度条件である700℃、800℃は、蒸気タービンの通常の運転時の温度条件およびそれに安全率を見込んだ温度を考慮して設定した。表2において、「鍛造比」は、鍛造前と後の長さをL、LとしたときのL/Lの値であり、「リヒート回数」は、鍛造処理において「鍛造比」を3とするまでの間に、鍛造被対象物を再加熱した回数である。「鍛造割れ」は鍛造後に「鍛造割れ」の有無を目視観察した結果であり、「無」は「鍛造割れ」が無かったもの、「有」は有ったものである。「鍛造性」は鍛造性を評価した結果であり、「○」は良好と判定されたもの、「×」は鍛造性が良くなかったものである。
Next, each of the forged products was heated at 1170 ° C. for 4 hours, and then subjected to a solution treatment that was cooled with water. The forged product after the solution treatment was subjected to an aging treatment at 750 ° C. for 10 hours. Test pieces were appropriately collected from the forged product after the aging treatment and used for various tests.
Results of tensile strength test (0.2% proof stress) from room temperature (23 ° C.) to high temperature (700 ° C. and 800 ° C.) and forging for Comparative Examples 1-21 and Examples 1-5 after solution treatment and aging treatment The situation is shown in Table 2. The tensile test was performed according to JIS Z 2241 (metal material tensile test method). The temperature conditions in the tensile test, 700 ° C. and 800 ° C., were set in consideration of the temperature conditions during the normal operation of the steam turbine and the temperature taking into account the safety factor. In Table 2, “forging ratio” is a value of L 1 / L 0 when the lengths before and after forging are L 0 and L 1, and “number of reheats” is “forging ratio” in the forging process. This is the number of times the forged object is reheated during the period up to 3. “Forging crack” is a result of visual observation of the presence or absence of “forging crack” after forging. “No” indicates that there is no “forging crack”, and “Yes” indicates that it is present. “Forgeability” is a result of evaluation of forgeability, “◯” is determined to be good, and “x” is that forgeability is not good.

表2に示すように、実施例1〜5は、各温度において高い0.2%耐力が得られるとともに、鍛造性に優れていることが認められた。実施例は、比較例と対比して、析出/固溶強化により向上した高温強度と鍛造性の双方を備えていることがわかった。   As shown in Table 2, Examples 1 to 5 were found to have high 0.2% yield strength at each temperature and excellent forgeability. The examples were found to have both high temperature strength and forgeability improved by precipitation / solid solution strengthening as compared with the comparative examples.

(グリーブル試験)
表3は、表1に示す比較例1(従来材:インコネル617相当)と実施例1〜5について、熱間加工性を評価したグリーブル試験の結果を示す。グリーブル試験は、900℃、1000℃、1100℃、1200℃および1300℃にて引張速度10%歪/秒で行った。また、図2は、表3に示した各試料におけるグリーブル試験結果を示すグラフである。ここで、図2の横軸は試験温度(℃)を示し、また縦軸に示されている断面積減少率(絞り:Reduction of area)は、試験前の試験片の断面積に対する、試験後(破断後)における試験片において試験前の断面積から減少した分の断面積の割合を意味する。すなわち、この値が大きい場合には、優れた熱間加工性を有することとなる。
(Gleeble test)
Table 3 shows the results of a greeble test in which hot workability was evaluated for Comparative Example 1 (conventional material: equivalent to Inconel 617) and Examples 1 to 5 shown in Table 1. The greeble test was conducted at 900 ° C., 1000 ° C., 1100 ° C., 1200 ° C. and 1300 ° C. with a tensile rate of 10% strain / second. FIG. 2 is a graph showing a greeble test result in each sample shown in Table 3. Here, the horizontal axis in FIG. 2 indicates the test temperature (° C.), and the cross-sectional area reduction ratio (reduction of area) shown on the vertical axis is the post-test relative to the cross-sectional area of the test piece before the test. It means the ratio of the cross-sectional area that is reduced from the cross-sectional area before the test in the test piece (after fracture). That is, when this value is large, it has excellent hot workability.

表3に示すように、実施例1〜5は、従来材と同等で、鍛造の温度範囲である900〜1300℃において絞り値50%以上を確保しており、製造上の問題がないことがわかった。   As shown in Table 3, Examples 1 to 5 are equivalent to the conventional materials, and have a drawing value of 50% or more in the forging temperature range of 900 to 1300 ° C., and there is no problem in manufacturing. all right.

本実施形態の蒸気タービンのタービンロータ用Ni基合金は、従来のNi基合金における組成の成分範囲を細かく調整することにより、従来のNi基合金の加工性を維持しつつ、高温強度を向上させることができる。このため、本実施形態の蒸気タービンのタービンロータ用Ni基合金は、高温蒸気が導入される蒸気タービンのタービンロータ材として、高温環境下においても高い信頼性を得ることができる。
本実施形態の蒸気タービンのタービンロータ用Ni基合金によれば、上記した組成の成分範囲で構成されることで、従来のNi基合金の熱間加工性を維持しつつ、高温強度と鍛造性の双方を向上させることができる。
The Ni-based alloy for the turbine rotor of the steam turbine of the present embodiment improves the high-temperature strength while maintaining the workability of the conventional Ni-based alloy by finely adjusting the component range of the composition in the conventional Ni-based alloy. be able to. For this reason, the Ni-based alloy for the turbine rotor of the steam turbine of this embodiment can obtain high reliability even in a high-temperature environment as a turbine rotor material of a steam turbine into which high-temperature steam is introduced.
According to the Ni-based alloy for the turbine rotor of the steam turbine of the present embodiment, the high-temperature strength and forgeability are maintained while maintaining the hot workability of the conventional Ni-based alloy by being configured in the component range of the composition described above. Both can be improved.

また、高温蒸気が導入される蒸気タービンに貫設されるタービンロータを、上記したいずれか1つの本実施形態の蒸気タービンのタービンロータ用Ni基合金で構成することができる。すなわち、蒸気タービンのタービンロータの全ての部位をこのNi基合金で構成しても、また、特に高温となる上記タービンのタービンロータの一部の部位をこのNi基合金で構成してもよい。ここで、高温となる蒸気タービンのタービンロータの一部としては、具体的には、高圧蒸気タービン部の全域、または高圧蒸気タービン部から中圧蒸気タービン部の一部分までの領域等が挙げられる。このタービンロータによれば、高温強度を向上させることができ、高温環境下においても高い信頼性を有する。   Moreover, the turbine rotor penetrating through the steam turbine into which the high-temperature steam is introduced can be made of any one of the above-described Ni-based alloys for the turbine rotor of the steam turbine of this embodiment. That is, all the parts of the turbine rotor of the steam turbine may be made of this Ni-based alloy, or a part of the turbine rotor of the turbine that is particularly hot may be made of this Ni-based alloy. Here, as a part of the turbine rotor of the steam turbine that becomes high temperature, specifically, the entire region of the high-pressure steam turbine unit or the region from the high-pressure steam turbine unit to a part of the intermediate-pressure steam turbine unit can be cited. According to this turbine rotor, the high-temperature strength can be improved, and it has high reliability even in a high-temperature environment.

なお、本発明は、上記実施形態のみに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形してもよい。また、上記実施形態に開示されている複数の構成要素を適宜組み合わせることにより、種々の発明を構成できる。例えば実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。   In addition, this invention is not limited only to the said embodiment, You may change a component in the range which does not deviate from the summary in an implementation stage. In addition, various inventions can be configured by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

Claims (4)

質量%で、C:0.01〜0.15%、Cr:18〜28%、Co:10〜15%、Mo:8〜12%、Al:0.5〜1.5%未満、Ti:0.7〜3.0%、Ta:0.1〜0.7%、B:0.001〜0.006%を含有し、残部がNiおよび不可避的不純物からなることを特徴とする蒸気タービンのタービンロータ用Ni基合金。   In mass%, C: 0.01 to 0.15%, Cr: 18 to 28%, Co: 10 to 15%, Mo: 8 to 12%, Al: less than 0.5 to 1.5%, Ti: A steam turbine comprising 0.7 to 3.0%, Ta: 0.1 to 0.7%, B: 0.001 to 0.006%, the balance being made of Ni and inevitable impurities Ni-base alloy for turbine rotors. 前記タービンロータ用Ni基合金が、質量%で、Nb:0.1〜0.4%をさらに含有することを特徴とする請求項1記載の蒸気タービンのタービンロータ用Ni基合金。 The Ni-base alloy for a turbine rotor, by mass%, Nb: 0.1 to 0.4% is further characterized by containing claim 1 Symbol mounting of the steam turbine of the turbine rotor for the Ni-based alloy. 前記不可避的不純物のうち、質量%で、Si:0.1%以下、Mn:0.1%以下であることを特徴とする請求項1または2記載の蒸気タービンのタービンロータ用Ni基合金。 Among the unavoidable impurities, in mass%, Si: 0.1% or less, Mn: 0.1% or less according to claim 1, wherein the steam turbine of the turbine rotor for the Ni-based alloy, characterized in that. 高温蒸気が導入される蒸気タービンに貫設されるタービンロータであって、
少なくとも所定部位が、請求項1〜3のいずれか1項記載の蒸気タービンのタービンロータ用Ni基合金からなることを特徴とする蒸気タービンのタービンロータ。
A turbine rotor penetrating a steam turbine into which high-temperature steam is introduced,
A turbine rotor of a steam turbine, wherein at least a predetermined portion is made of the Ni-based alloy for a turbine rotor of a steam turbine according to any one of claims 1 to 3 .
JP2009066517A 2009-03-18 2009-03-18 Ni-base alloy for turbine rotor of steam turbine and turbine rotor of steam turbine using the same Active JP5127749B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009066517A JP5127749B2 (en) 2009-03-18 2009-03-18 Ni-base alloy for turbine rotor of steam turbine and turbine rotor of steam turbine using the same
US12/725,078 US20100239425A1 (en) 2009-03-18 2010-03-16 Nickel-base alloy for turbine rotor of steam turbine and turbine rotor of steam turbine using the same
EP10002795.2A EP2233594B1 (en) 2009-03-18 2010-03-17 Nickel-base alloy for a steam turbine rotor and steam turbine rotor thereof
CN201010144757A CN101838757A (en) 2009-03-18 2010-03-18 Be used for steam turbine turbine rotor nickel-base alloy and use the turbine rotor of the steam turbine of this nickel-base alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009066517A JP5127749B2 (en) 2009-03-18 2009-03-18 Ni-base alloy for turbine rotor of steam turbine and turbine rotor of steam turbine using the same

Publications (2)

Publication Number Publication Date
JP2010215989A JP2010215989A (en) 2010-09-30
JP5127749B2 true JP5127749B2 (en) 2013-01-23

Family

ID=42342740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009066517A Active JP5127749B2 (en) 2009-03-18 2009-03-18 Ni-base alloy for turbine rotor of steam turbine and turbine rotor of steam turbine using the same

Country Status (4)

Country Link
US (1) US20100239425A1 (en)
EP (1) EP2233594B1 (en)
JP (1) JP5127749B2 (en)
CN (1) CN101838757A (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2407565B1 (en) * 2010-07-12 2013-05-08 Rolls-Royce plc A method of improving the mechanical properties of a component
JP2012207594A (en) * 2011-03-30 2012-10-25 Mitsubishi Heavy Ind Ltd Rotor of rotary machine, and rotary machine
CN102162049B (en) * 2011-04-07 2012-12-19 上海大学 Nickel-base alloy material for super-supercritical steam turbine and preparation method thereof
JP2012255424A (en) * 2011-06-10 2012-12-27 Toshiba Corp Ni-BASED ALLOY FOR CASTING USED FOR STEAM TURBINE AND CASTING COMPONENT OF STEAM TURBINE
JP5703177B2 (en) * 2011-09-12 2015-04-15 株式会社東芝 Ni-base alloy for welding and filler metal
US20130209262A1 (en) * 2012-02-09 2013-08-15 Daniel Edward Matejczyk Method of manufacturing an airfoil
JP5921401B2 (en) * 2012-02-10 2016-05-24 株式会社東芝 Ni-based alloy, method for producing the same, and turbine component
JP5981251B2 (en) * 2012-07-20 2016-08-31 株式会社東芝 Ni-based alloy and forged parts for forging
JP6223743B2 (en) * 2013-08-07 2017-11-01 株式会社東芝 Method for producing Ni-based alloy
WO2015126487A2 (en) * 2013-12-17 2015-08-27 United Technologies Corporation Abrasively machined gas turbine components
US20170037737A1 (en) * 2015-08-05 2017-02-09 Rolls-Royce Corporation Rotating components with blind holes
CN105221190B (en) * 2015-09-11 2018-06-05 杭州汽轮机股份有限公司 Steam turbine high temperature sleeves and its manufacturing method
CN105112728B (en) * 2015-09-29 2017-03-22 钢铁研究总院 Heat-resisting alloy for 700-DEG C ultra-supercritical steam turbine rotor and preparation method thereof
GB2561147B (en) * 2017-02-28 2021-09-08 Gkn Aerospace Sweden Ab A method for heat treatment of a nickel base alloy such as alloy 282, said alloy and components thereof
CN114799441B (en) * 2022-04-15 2023-09-15 温州大学 Cobalt-containing Inconel625-Co alloy and preparation method thereof

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3785877A (en) * 1972-09-25 1974-01-15 Special Metals Corp Treating nickel base alloys
US4456481A (en) * 1981-09-08 1984-06-26 Teledyne Industries, Inc. Hot workability of age hardenable nickel base alloys
US5080734A (en) * 1989-10-04 1992-01-14 General Electric Company High strength fatigue crack-resistant alloy article
US5372662A (en) * 1992-01-16 1994-12-13 Inco Alloys International, Inc. Nickel-base alloy with superior stress rupture strength and grain size control
JP2778903B2 (en) * 1993-08-26 1998-07-23 三菱重工業株式会社 High temperature steam turbine rotor material
US5882586A (en) * 1994-10-31 1999-03-16 Mitsubishi Steel Mfg. Co., Ltd. Heat-resistant nickel-based alloy excellent in weldability
US6761854B1 (en) * 1998-09-04 2004-07-13 Huntington Alloys Corporation Advanced high temperature corrosion resistant alloy
JP2003113434A (en) * 2001-10-04 2003-04-18 Hitachi Metals Ltd Superalloy excellent in high-temperature sulfur corrosion resistance and manufacturing method therefor
JP4430974B2 (en) * 2004-04-27 2010-03-10 大同特殊鋼株式会社 Method for producing low thermal expansion Ni-base superalloy
US8066938B2 (en) * 2004-09-03 2011-11-29 Haynes International, Inc. Ni-Cr-Co alloy for advanced gas turbine engines
US20060051234A1 (en) * 2004-09-03 2006-03-09 Pike Lee M Jr Ni-Cr-Co alloy for advanced gas turbine engines
JP4783053B2 (en) * 2005-04-28 2011-09-28 株式会社東芝 Steam turbine power generation equipment
JP5147037B2 (en) * 2006-04-14 2013-02-20 三菱マテリアル株式会社 Ni-base heat-resistant alloy for gas turbine combustor
JP4805803B2 (en) * 2006-12-19 2011-11-02 株式会社東芝 Ni-based alloy and turbine rotor
JP2009084684A (en) * 2007-09-14 2009-04-23 Toshiba Corp Nickel-based alloy for turbine rotor of steam turbine, and turbine rotor of steam turbine

Also Published As

Publication number Publication date
CN101838757A (en) 2010-09-22
EP2233594B1 (en) 2015-06-17
US20100239425A1 (en) 2010-09-23
EP2233594A1 (en) 2010-09-29
JP2010215989A (en) 2010-09-30

Similar Documents

Publication Publication Date Title
JP5127749B2 (en) Ni-base alloy for turbine rotor of steam turbine and turbine rotor of steam turbine using the same
JP2009084684A (en) Nickel-based alloy for turbine rotor of steam turbine, and turbine rotor of steam turbine
JP6223743B2 (en) Method for producing Ni-based alloy
JP4982324B2 (en) Ni-based forged alloy, forged parts for steam turbine plant, boiler tube for steam turbine plant, bolt for steam turbine plant, and steam turbine rotor
JP2011162808A (en) Ni BASED ALLOY FOR FORGING AND COMPONENT FOR STEAM TURBINE PLANT USING THE SAME
JP4982539B2 (en) Ni-base alloy, Ni-base casting alloy, high-temperature components for steam turbine, and steam turbine casing
JP5395516B2 (en) Nickel-based alloy for steam turbine turbine rotor and steam turbine turbine rotor
JP2012255424A (en) Ni-BASED ALLOY FOR CASTING USED FOR STEAM TURBINE AND CASTING COMPONENT OF STEAM TURBINE
JP4387331B2 (en) Ni-Fe base alloy and method for producing Ni-Fe base alloy material
JP2012092378A (en) FORGING Ni-BASED ALLOY OF STEAM TURBINE, AND FORGED COMPONENT THEREOF
JP2010150586A (en) Ni-based alloy for forged part of steam turbine excellent in high-temperature strength, forgeability and weldability, rotor blade of steam turbine, stator blade of steam turbine, screw member for steam turbine, and pipe for steam turbine
JP2010150585A (en) Ni-based alloy for casting part of steam turbine excellent in high-temperature strength, castability and weldability, turbine casing of steam turbine, valve casing of steam turbine, nozzle box of steam turbine, and pipe of steam turbine
JP5981250B2 (en) Ni-base alloy for casting, method for producing Ni-base alloy for casting, and turbine cast component
JP5578916B2 (en) Ni-based alloy for cast components of steam turbine and cast components of steam turbine
JP5932622B2 (en) Austenitic heat resistant steel and turbine parts
JP4635065B2 (en) Ni-based alloy for steam turbine turbine rotor and steam turbine turbine rotor
JP5646521B2 (en) Ni-based alloy for steam turbine casting and cast component for steam turbine
JP5550298B2 (en) Ni-based alloy for forged parts of steam turbine, turbine rotor of steam turbine, moving blade of steam turbine, stationary blade of steam turbine, screwed member for steam turbine, and piping for steam turbine
JP6173822B2 (en) Austenitic heat resistant steel and turbine parts
JP6173956B2 (en) Austenitic heat resistant steel and turbine parts
JP2015086432A (en) Austenitic heat resistant steel and turbine component
JP5981251B2 (en) Ni-based alloy and forged parts for forging
JP2014005528A (en) Ni-BASED HEAT-RESISTANT ALLOY AND TURBINE COMPONENT
JP2010235985A (en) Nickel-based alloy for forged parts in steam-turbine excellent in high-temperature strength characteristics, forgeability and weldability, and member for steam-turbine
JP4585578B2 (en) Ni-based alloy for steam turbine turbine rotor and steam turbine turbine rotor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111019

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121030

R151 Written notification of patent or utility model registration

Ref document number: 5127749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3