JP2009242902A - Ni based alloy for turbine rotor of steam turbine, and turbine rotor of steam turbine - Google Patents
Ni based alloy for turbine rotor of steam turbine, and turbine rotor of steam turbine Download PDFInfo
- Publication number
- JP2009242902A JP2009242902A JP2008092782A JP2008092782A JP2009242902A JP 2009242902 A JP2009242902 A JP 2009242902A JP 2008092782 A JP2008092782 A JP 2008092782A JP 2008092782 A JP2008092782 A JP 2008092782A JP 2009242902 A JP2009242902 A JP 2009242902A
- Authority
- JP
- Japan
- Prior art keywords
- turbine
- based alloy
- turbine rotor
- steam turbine
- steam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 57
- 239000000956 alloy Substances 0.000 title claims abstract description 57
- 239000012535 impurity Substances 0.000 claims abstract description 11
- 230000000149 penetrating effect Effects 0.000 claims description 2
- 238000005242 forging Methods 0.000 abstract description 18
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 56
- 238000000034 method Methods 0.000 description 15
- 239000000203 mixture Substances 0.000 description 15
- 239000011651 chromium Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 239000010936 titanium Substances 0.000 description 10
- 239000011572 manganese Substances 0.000 description 9
- 239000000126 substance Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 230000006698 induction Effects 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229910052748 manganese Inorganic materials 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 238000010313 vacuum arc remelting Methods 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 229910001026 inconel Inorganic materials 0.000 description 3
- 229910001063 inconels 617 Inorganic materials 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000003303 reheating Methods 0.000 description 3
- 238000002791 soaking Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/055—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2201/00—Metals
- F05C2201/04—Heavy metals
- F05C2201/0433—Iron group; Ferrous alloys, e.g. steel
- F05C2201/0466—Nickel
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
本発明は、高温の蒸気が作動流体として流入する蒸気タービンのタービンロータを構成する材料に係わり、特に高温強度等に優れた蒸気タービンのタービンロータ用のNi基合金、およびこのNi基合金からなる蒸気タービンのタービンロータに関する。 The present invention relates to a material constituting a turbine rotor of a steam turbine into which high-temperature steam flows as a working fluid, and particularly comprises a Ni-based alloy for a turbine rotor of a steam turbine excellent in high-temperature strength and the like, and this Ni-based alloy. The present invention relates to a turbine rotor of a steam turbine.
蒸気タービンを含む火力プラントにおいて、地球環境保護の観点から二酸化炭素の排出量抑制技術が注目されており、また発電の高効率化のニーズが高まっている。 In a thermal power plant including a steam turbine, carbon dioxide emission suppression technology has attracted attention from the viewpoint of protecting the global environment, and there is a growing need for higher efficiency in power generation.
蒸気タービンの発電効率を上げるためには、タービン蒸気温度を高温化することが有効であり、近年の蒸気タービンを備える火力発電プラントにおいて、その蒸気温度は600℃以上まで上昇している。将来的には650℃、さらに700℃へと上昇する傾向がみられる。 In order to increase the power generation efficiency of the steam turbine, it is effective to increase the turbine steam temperature. In a thermal power plant equipped with a steam turbine in recent years, the steam temperature has increased to 600 ° C. or higher. In the future, there is a tendency to increase to 650 ° C. and further to 700 ° C.
高温の蒸気により回転する動翼が植設されたタービンロータでは、周囲に高温の蒸気が回流し高温になるとともに、回転により高い応力が発生する。そのためタービンロータは、高温、高応力に耐える必要があり、タービンロータを構成する材料として、室温から高温度領域において優れた強度、延性、靭性を有するものが求められている。 In a turbine rotor in which moving blades that are rotated by high-temperature steam are implanted, high-temperature steam circulates in the surroundings and becomes high temperature, and high stress is generated by rotation. Therefore, it is necessary for the turbine rotor to withstand high temperatures and high stresses, and materials having excellent strength, ductility, and toughness in a range from room temperature to high temperature are required as materials constituting the turbine rotor.
特に、蒸気温度が700℃を超える場合には、従来の鉄系材料では高温強度が不足するため、Ni基合金の適用が検討されている(例えば、特許文献1参照。)。 In particular, when the steam temperature exceeds 700 ° C., the conventional iron-based material lacks high-temperature strength, and therefore application of a Ni-based alloy has been studied (for example, see Patent Document 1).
Ni基合金は、高温強度、耐食性に優れていることから主にジェットエンジンやガスタービン材料として広く適用されてきた。その代表例としてインコネル617合金(スペシャルメタル社製)やインコネル706合金(スペシャルメタル社製)が用いられてきた。 Ni-base alloys have been widely applied mainly as jet engine and gas turbine materials because of their excellent high-temperature strength and corrosion resistance. Typical examples thereof include Inconel 617 alloy (made by Special Metal) and Inconel 706 alloy (made by Special Metal).
Ni基合金の高温強度を強化するメカニズムとして、AlやTiを添加することによりNi基合金の母相材内にガンマプライム相(Ni3(Al,Ti))、あるいはガンマダブルプライム相と呼ばれる析出相、それらの両相を析出させて高温強度を確保するものがある。このガンマプライム相あるいはガンマダブルプライム相の両相を析出させて高温強度を確保するものとして、例えばインコネル706合金が挙げられる。 As a mechanism to strengthen the high-temperature strength of Ni-base alloys, precipitation is called gamma prime phase (Ni 3 (Al, Ti)) or gamma double-prime phase in the matrix material of Ni-base alloys by adding Al or Ti. There are phases that precipitate both phases to ensure high temperature strength. As an example of depositing the gamma prime phase or the gamma double prime phase to ensure high temperature strength, Inconel 706 alloy can be cited.
一方、インコネル617合金のように、Co、Moを添加することにより、Ni基の母相を強化(固溶強化)して高温強度を確保するものがある。また、このインコネル合金の成分を基本として、添加元素成分を調整することにより、高温強度特性の向上を図ったニッケル基合金が開示されている(例えば、特許文献2−3参照。)。特許文献2におけるニッケル基合金は、高温での硫化腐食性を改善したものである。特許文献3では、長時間使用することで形成される脆弱な金属間化合物を抑制したニッケル基合金を用いたロータシャフトが記載されている。
上記した従来のニッケル基合金は、製造性が悪いことから、比較的小型の高温部品等にのみ使用されていた。そのため、従来のニッケル基合金を、例えば、ジェットエンジンまたはガスタービン部材へ適用する場合、このニッケル基合金が使用される部位として、長さが1m未満の小型翼や、総重量が1トン未満のディスク材等に限られていた。 The above-described conventional nickel-based alloys have been used only for relatively small high-temperature parts and the like because of their poor productivity. Therefore, when a conventional nickel-based alloy is applied to, for example, a jet engine or a gas turbine member, a small blade having a length of less than 1 m or a total weight of less than 1 ton is used as a part where the nickel-based alloy is used. It was limited to disk materials.
そこで、本発明は、上記課題を解決するためになされたものであり、鍛造性等の加工性に優れ、大型鍛造品であるタービンロータを製造可能な蒸気タービンのタービンロータ用のNi基合金および蒸気タービンのタービンロータを提供することを目的とする。 Therefore, the present invention has been made to solve the above-mentioned problems, and is excellent in workability such as forgeability, Ni-based alloy for a turbine rotor of a steam turbine capable of manufacturing a turbine rotor that is a large forged product, and It aims at providing the turbine rotor of a steam turbine.
上記目的を達成するために、本発明の蒸気タービンのタービンロータ用のNi基合金は、重量%で、C:0.05〜0.15、Cr:22〜28、Co:10〜22、Mo:8〜12、Al:0.8〜1.5未満、Ti:0.1〜0.6、B:0.001〜0.006、Re:0.1〜2.5を含有し、残部がNiおよび不可避的不純物からなることを特徴とする。 In order to achieve the above object, the Ni-based alloy for the turbine rotor of the steam turbine of the present invention is C: 0.05 to 0.15, Cr: 22 to 28, Co: 10 to 22, Mo. : 8 to 12, Al: less than 0.8 to 1.5, Ti: 0.1 to 0.6, B: 0.001 to 0.006, Re: 0.1 to 2.5, the balance Consists of Ni and inevitable impurities.
この蒸気タービンのタービンロータ用のNi基合金によれば、上記した組成成分範囲で構成されることで、鍛造性等の加工性が向上する。 According to the Ni-based alloy for the turbine rotor of the steam turbine, workability such as forgeability is improved by being configured in the above-described composition component range.
また、高温蒸気が導入される蒸気タービンに貫設されるタービンロータの少なくとも所定部位を上記したいずれか1つのNi基合金で構成してもよい。この鍛造性等の加工性に優れたNi基合金を用いることで、製造時における割れ等を発生することなく、高い信頼性を有するタービンロータが提供される。 Further, at least a predetermined portion of the turbine rotor penetrating the steam turbine into which the high-temperature steam is introduced may be constituted by any one of the Ni-based alloys described above. By using this Ni-based alloy having excellent workability such as forgeability, a turbine rotor having high reliability can be provided without causing cracks during production.
本発明では、鍛造性等の加工性に優れ、大型鍛造品であるタービンロータを製造可能な蒸気タービンのタービンロータ用のNi基合金および蒸気タービンのタービンロータを提供することができる。 According to the present invention, it is possible to provide a Ni-based alloy for a turbine rotor of a steam turbine and a turbine rotor of a steam turbine that are excellent in workability such as forgeability and can manufacture a turbine rotor that is a large forged product.
以下、本発明の一実施の形態を説明する。 Hereinafter, an embodiment of the present invention will be described.
本発明に係る一実施の形態における蒸気タービンのタービンロータ用のNi基合金は、以下に示す組成成分範囲で構成される。なお、以下の説明において組成成分を表す%は、特に明記しない限り重量%とする。 An Ni-based alloy for a turbine rotor of a steam turbine in an embodiment according to the present invention is configured with a composition component range shown below. In the following description, “%” representing a composition component is “% by weight” unless otherwise specified.
(M1)C:0.05〜0.15、Cr:22〜28、Co:10〜22、Mo:8〜12、Al:0.8〜1.5未満、Ti:0.1〜0.6、B:0.001〜0.006、Re:0.1〜2.5を含有し、残部がNiおよび不可避的不純物からなるNi基合金。 (M1) C: 0.05 to 0.15, Cr: 22 to 28, Co: 10 to 22, Mo: 8 to 12, Al: less than 0.8 to 1.5, Ti: 0.1 to 0. 6, Ni: Alloy containing B: 0.001 to 0.006, Re: 0.1 to 2.5, the balance being Ni and inevitable impurities.
ここで、上記(M1)のNi基合金における不可避的不純物において、その不可避的不純物のうち、少なくとも、Siが1以下、Mnが1以下に抑制されていることが好ましい。 Here, in the inevitable impurities in the Ni-based alloy (M1), it is preferable that at least Si is suppressed to 1 or less and Mn is suppressed to 1 or less among the inevitable impurities.
上記した組成成分範囲のNi基合金は、運転時の温度が680〜750℃となる蒸気タービンのタービンロータを構成する材料として好適である。ここで、蒸気タービンのタービンロータのすべての部位をこのNi基合金で構成しても、また、特に高温となる蒸気タービンのタービンロータの一部の部位をこのNi基合金で構成してもよい。ここで、高温となる蒸気タービンのタービンロータの一部としては、具体的には、高圧蒸気タービン部の全領域、または高圧蒸気タービン部から中圧蒸気タービン部の一部分までの領域などが挙げられる。 The Ni-based alloy having the composition range described above is suitable as a material constituting a turbine rotor of a steam turbine in which the temperature during operation is 680 to 750 ° C. Here, all the parts of the turbine rotor of the steam turbine may be made of this Ni-based alloy, or some parts of the turbine rotor of the steam turbine that is particularly hot may be made of this Ni-based alloy. . Here, as a part of the turbine rotor of the steam turbine that becomes high temperature, specifically, the entire region of the high-pressure steam turbine unit or the region from the high-pressure steam turbine unit to a part of the intermediate-pressure steam turbine unit may be mentioned. .
また、上記した組成成分範囲のNi基合金は、鍛造性等の加工性を向上させることができる。すなわち、このNi基合金を用いて蒸気タービンのタービンロータを構成することで、タービンロータの鍛造性等の加工性を向上させることができ、製造時における割れ等を発生することなく、高い信頼性を有するタービンロータを作製することができる。 Moreover, the Ni-based alloy having the above compositional component range can improve workability such as forgeability. That is, by using this Ni-based alloy to configure the turbine rotor of a steam turbine, the workability such as forgeability of the turbine rotor can be improved, and high reliability can be achieved without causing cracks during production. A turbine rotor having
次に、上記した本発明に係るNi基合金における各組成成分範囲の限定理由を説明する。 Next, the reasons for limiting the respective composition component ranges in the Ni-based alloy according to the present invention will be described.
(1)C(炭素)
Cは、強化相であるM23C6型炭化物の構成元素として有用であり、特に650℃以上の高温環境下では、蒸気タービンの運転中にM23C6型炭化物を析出させることが合金のクリープ強度を維持させる要因の一つである。また、鋳造時の溶湯の流動性を確保する効果も併せ持つ。Cの含有率が0.05%未満の場合には、炭化物の十分な析出量を確保することができないため、機械的強度が低下するとともに、鋳造時の溶湯の流動性が著しく低下する。一方、Cの含有率が0.15%を超えると、大型鋳塊作製時の成分偏析傾向が増加するとともに脆化相であるM6C型炭化物の生成を促進し、機械的強度は向上するが、鍛造性が低下する。そのため、Cの含有率を0.05〜0.15%とした。
(1) C (carbon)
C is useful as a constituent element of M 23 C 6 type carbide, which is a strengthening phase. In particular, in a high temperature environment of 650 ° C. or higher, it is possible to precipitate M 23 C 6 type carbide during operation of a steam turbine. This is one of the factors that maintain the creep strength. It also has the effect of ensuring the fluidity of the molten metal during casting. When the C content is less than 0.05%, a sufficient amount of carbides cannot be ensured, so that the mechanical strength is lowered and the fluidity of the molten metal during casting is significantly lowered. On the other hand, if the C content exceeds 0.15%, the tendency of component segregation during the production of large ingots increases and the generation of M 6 C type carbides, which are embrittled phases, is promoted, and the mechanical strength is improved. However, forgeability is reduced. Therefore, the C content is determined to be 0.05 to 0.15%.
(2)Cr(クロム)
Crは、Ni基合金の耐酸化性、耐食性および機械的強度を高めるのに不可欠な元素である。さらにM23C6型炭化物の構成元素として不可欠であり、特に650℃以上の高温環境下では、蒸気タービンの運転中にM23C6型炭化物を析出させることで、合金のクリープ強度が維持される。また、Crは、高温蒸気環境下における耐酸化性を高める。Crの含有率が22%未満の場合には、耐酸化性が低下する。一方、Crの含有率が28%を超えると、M23C6型炭化物の析出を著しく促進することによって粗大化傾向を高める。そのため、Crの含有率を22〜28%とした。
(2) Cr (chromium)
Cr is an essential element for increasing the oxidation resistance, corrosion resistance and mechanical strength of the Ni-based alloy. Furthermore, it is indispensable as a constituent element of M 23 C 6 type carbide, and especially in a high temperature environment of 650 ° C. or higher, the creep strength of the alloy is maintained by precipitating M 23 C 6 type carbide during the operation of the steam turbine. The Moreover, Cr improves the oxidation resistance in a high temperature steam environment. When the Cr content is less than 22%, the oxidation resistance decreases. On the other hand, when the content of Cr exceeds 28%, increasing the tendency of coarsening significantly promotes the precipitation of the M 23 C 6 type carbide. Therefore, the Cr content is determined to be 22 to 28%.
(3)Co(コバルト)
Coは、Ni基合金において、母相内に固溶して母相の機械的強度を向上させる。しかしながら、Coの含有率が22%を超えると、機械的強度を低下させる金属間化合物相を生成し、鍛造性が低下する、一方、Coの含有率が10%未満では、加工性が低下し、さらに機械的強度が低下する。そのため、Coの含有率を10〜22%とした。
(3) Co (cobalt)
Co is a solid solution in the parent phase in the Ni-based alloy and improves the mechanical strength of the parent phase. However, if the Co content exceeds 22%, an intermetallic compound phase that lowers the mechanical strength is generated, and forgeability is reduced. On the other hand, if the Co content is less than 10%, the workability decreases. Further, the mechanical strength is lowered. Therefore, the Co content is determined to be 10 to 22%.
(4)Mo(モリブデン)
Moは、Ni母相中に固溶して母相の機械的強度を向上させる効果を有し、また、M23C6型炭化物中に一部が置換することによって炭化物の安定性を高める。Moの含有率が8%未満の場合には、上記した効果が発揮されず、Moの含有率が12%を超えると、大型鋳塊作製時の成分偏析傾向が増加するとともに、脆化相であるM6C型炭化物の生成を促進する。そのため、Moの含有率を8〜12%とした。
(4) Mo (molybdenum)
Mo has the effect of improving the mechanical strength of the parent phase by solid solution in the Ni parent phase, and increases the stability of the carbide by partially replacing the M 23 C 6 type carbide. When the Mo content is less than 8%, the above-mentioned effects are not exhibited. When the Mo content exceeds 12%, the tendency of component segregation during the production of a large ingot increases and the embrittlement phase Promotes the formation of certain M 6 C type carbides. Therefore, the Mo content is determined to be 8 to 12%.
ここで、Moは、上記したCoと母相の機械的強度を向上させる効果を有する点で共通している。そして、この共通の特徴およびそれぞれの他の特徴を有効に発揮するため、例えば、Moの含有率が8〜10未満%の場合には、Coの含有率を15%より大きく22%以下とすることが好ましい。また、例えば、Moの含有率が10〜12%の場合には、Coの含有率を10〜15%とすることが好ましい。 Here, Mo is common in that it has the effect of improving the mechanical strength of the parent phase with Co described above. And in order to exhibit this common feature and each other feature effectively, for example, when the Mo content is less than 8 to 10%, the Co content is set to more than 15% and 22% or less. It is preferable. For example, when the Mo content is 10 to 12%, the Co content is preferably 10 to 15%.
(5)Al(アルミニウム)
Alは、Niとともにγ’(ガンマプライム:Ni3Al)相を生成し、析出によるNi基合金の機械的強度を向上させる。Alの含有率が0.8%未満の場合には、機械的強度が従来鋼と比べて向上されず、Alの含有率が1.5%以上では、機械的強度は向上するが、鍛造性が低下する。そのため、Alの含有率を0.8〜1.5未満%とした。
(5) Al (aluminum)
Al forms a γ ′ (gamma prime: Ni 3 Al) phase together with Ni, and improves the mechanical strength of the Ni-based alloy by precipitation. When the Al content is less than 0.8%, the mechanical strength is not improved as compared with the conventional steel. When the Al content is 1.5% or more, the mechanical strength is improved, but the forgeability is improved. Decreases. Therefore, the Al content is set to 0.8 to less than 1.5%.
(6)Ti(チタン)
Tiは、Alと同様、Niとともにγ’(ガンマプライム:Ni3Al)相を生成し、Ni基合金の機械的強度を向上させる。Tiの含有率が0.1%未満の場合には、上記した効果が発揮されず、Tiの含有率が0.6%を超えると、熱間加工性および鍛造性が低下し、さらに、切欠き感受性が高くなる。そのため、Tiの含有率を0.1〜0.6%とした。
(6) Ti (titanium)
Ti, like Al, produces a γ ′ (gamma prime: Ni 3 Al) phase together with Ni and improves the mechanical strength of the Ni-based alloy. When the Ti content is less than 0.1%, the above-described effects are not exhibited. When the Ti content exceeds 0.6%, the hot workability and forgeability are reduced. The lack sensitivity increases. Therefore, the Ti content is determined to be 0.1 to 0.6%.
(7)B(ホウ素)
Bは、粒界に偏析して高温特性に影響を及ぼす。また、Bは、Ni母相中に析出して母相の機械的強度を向上させる効果を有する。Bの含有率が0.001%未満の場合には、母相の機械的強度を向上させる効果が発揮されず、Bの含有率が0.006%を超えると、粒界脆化を招く恐れがある。そのため、Bの含有率を0.001〜0.006%とした。
(7) B (boron)
B segregates at the grain boundaries and affects the high temperature characteristics. Further, B has an effect of being precipitated in the Ni matrix and improving the mechanical strength of the matrix. When the B content is less than 0.001%, the effect of improving the mechanical strength of the matrix is not exhibited, and when the B content exceeds 0.006%, grain boundary embrittlement may occur. There is. Therefore, the B content is determined to be 0.001 to 0.006%.
(8)Re(レニウム)
Reは、Ni母相中に固溶して母相の機械的強度を向上させる効果を有する。Reの含有率が0.1%未満の場合には、母相の機械的強度を向上させる効果が発揮されず、Reの含有率が2.5%を超えると、脆弱な相を形成する。そのため、Reの含有率を0.1〜2.5%とした。
(8) Re (Rhenium)
Re has the effect of improving the mechanical strength of the parent phase by dissolving in the Ni parent phase. When the Re content is less than 0.1%, the effect of improving the mechanical strength of the parent phase is not exhibited, and when the Re content exceeds 2.5%, a fragile phase is formed. Therefore, the Re content is determined to be 0.1 to 2.5%.
ここで、Co、MoもReと同様にNi母相中に固溶して母相の機械的強度を向上させる効果を有するが、同量の含有率でReが最も機械的強度の向上に優れ、ベース金属の化学成分組成を大きく変化させることなく機械的強度を向上させることができる。 Here, Co and Mo also have the effect of improving the mechanical strength of the parent phase by dissolving in the Ni parent phase in the same way as Re, but Re has the highest mechanical strength improvement at the same content. The mechanical strength can be improved without greatly changing the chemical composition of the base metal.
(9)Si(ケイ素)およびMn(マンガン)
SiおよびMnは、本発明に係るNi基合金においては、不可避的不純物に分類されるものである。ここでは、不可避的不純物のうち、特に、SiおよびMnの残存含有率を制限している。このような、不可避的不純物は、可能な限りその残存含有率を0%に近づけることが望ましい。
(9) Si (silicon) and Mn (manganese)
Si and Mn are classified as inevitable impurities in the Ni-based alloy according to the present invention. Here, among the inevitable impurities, in particular, the residual content of Si and Mn is limited. It is desirable that such inevitable impurities have a residual content as close to 0% as possible.
Siは、普通鋼の場合、耐食性を補うため添加される。しかしながら、Ni基合金はCr含有量が多く、十分に耐食性を確保できることから、本発明に係るNi基合金では、Siの残存含有率を1%以下とし、可能な限りその残存含有率を0%に近づけることが望ましい。 In the case of plain steel, Si is added to supplement the corrosion resistance. However, since the Ni-based alloy has a large Cr content and can sufficiently secure corrosion resistance, the Ni-based alloy according to the present invention has a residual content of Si of 1% or less and a residual content of 0% as much as possible. It is desirable to be close to
Mnは、普通鋼の場合、脆性に起因するS(硫黄)をMnSとして脆性を防止する。しかしながら、Ni基合金におけるSの含有量は極めて少なく、Mnを添加する必要はない。そのため、本発明に係るNi基合金では、Mnの残存含有率を1%以下とし、可能な限りその残存含有率を0%に近づけることが望ましい。 In the case of ordinary steel, Mn prevents brittleness by using S (sulfur) due to brittleness as MnS. However, the content of S in the Ni-based alloy is extremely small, and it is not necessary to add Mn. Therefore, in the Ni-based alloy according to the present invention, it is desirable that the residual content of Mn is 1% or less and that the residual content is as close to 0% as possible.
上記した本発明に係るNi基合金は、Ni基合金を構成する組成成分を真空誘導溶解炉にて溶解して得られた鋳塊をソーキング処理し、鍛造し、溶体化処理を施すことで作製される。 The above-described Ni-based alloy according to the present invention is produced by soaking, forging, and solution-treating an ingot obtained by melting composition components constituting the Ni-based alloy in a vacuum induction melting furnace. Is done.
ソーキング処理では、1050〜1075℃の温度範囲で5〜6時間維持し、溶体化処理では、1100〜1180℃の温度範囲で4〜5時間維持することが好ましい。ここで、溶体化処理温度は、γ’相析出物を均質に固溶化するために行われ、温度が1100℃を下回る温度では十分に固溶されず、1180℃を上回る温度では結晶粒の粗大化により強度が低下する。また、鍛造は、950〜1100℃(再加熱温度1100℃)の温度範囲で行われる。 In the soaking process, it is preferably maintained in a temperature range of 1050 to 1075 ° C. for 5 to 6 hours, and in the solution treatment, it is preferably maintained in a temperature range of 1100 to 1180 ° C. for 4 to 5 hours. Here, the solution treatment temperature is carried out in order to form a solid solution of the γ ′ phase precipitate. When the temperature is lower than 1100 ° C., the solution is not sufficiently dissolved, and when the temperature is higher than 1180 ° C., the crystal grains are coarse. As a result, the strength decreases. Forging is performed in a temperature range of 950 to 1100 ° C. (reheating temperature 1100 ° C.).
また、上記した本発明に係るNi基合金において蒸気タービンのタービンロータを構成する場合には、例えば、1つの方法(ダブルメルト)として、原料を真空誘導溶解(VIM)し、エレクトロスラグ再溶解(ESR)し、所定の型に流し込む。続いて、鍛造処理、熱処理を施しタービンロータを作製する。他の方法(ダブルメルト)として、原料を真空誘導溶解(VIM)し、真空アーク再溶解(VAR)し、所定の型に流し込む。続いて、鍛造処理、熱処理を施しタービンロータを作製する。さらに、他の方法(トリプルメルト)として、原料を真空誘導溶解(VIM)し、エレクトロスラグ再溶解(ESR)し、真空アーク再溶解(VAR)し、所定の型に流し込む。続いて、鍛造処理、熱処理を施しタービンロータを作製する。なお、上記方法によって作製されたタービンロータは、超音波検査等が行われる。 Further, when the turbine rotor of the steam turbine is configured in the above-described Ni-based alloy according to the present invention, for example, as one method (double melt), the raw material is subjected to vacuum induction melting (VIM) and electroslag remelting ( ESR) and pour into a predetermined mold. Subsequently, a forging process and a heat treatment are performed to produce a turbine rotor. As another method (double melt), the raw material is subjected to vacuum induction melting (VIM), vacuum arc remelting (VAR), and poured into a predetermined mold. Subsequently, a forging process and a heat treatment are performed to produce a turbine rotor. Further, as another method (triple melt), the raw material is subjected to vacuum induction melting (VIM), electroslag remelting (ESR), vacuum arc remelting (VAR), and poured into a predetermined mold. Subsequently, a forging process and a heat treatment are performed to produce a turbine rotor. In addition, ultrasonic inspection etc. are performed for the turbine rotor produced by the said method.
以下に、本発明に係るNi基合金が、機械的強度および鍛造性に優れていることを説明する。 The following explains that the Ni-based alloy according to the present invention is excellent in mechanical strength and forgeability.
(鍛造性の評価)
ここでは、本発明の化学組成範囲にあるNi基合金が、優れた鍛造性を有することを説明する。表1は、鍛造性の評価に用いられた試料1〜試料5の化学組成を示す。なお、試料1〜試料4は、本発明の化学組成範囲にあるNi基合金であり、試料5は、その組成が本発明の化学組成範囲にないNi基合金であり、比較例である。また、試料5は、従来鋼であるインコネル617相当の化学組成を有する。なお、ここで使用した本発明の化学組成範囲にあるNi基合金には、不可避的不純物として、Si、Mn以外に、Fe(鉄)、Cu(銅)S(硫黄)が含まれている。
(Evaluation of forgeability)
Here, it is explained that the Ni-based alloy in the chemical composition range of the present invention has excellent forgeability. Table 1 shows the chemical compositions of Sample 1 to Sample 5 used for evaluation of forgeability. Samples 1 to 4 are Ni-based alloys in the chemical composition range of the present invention, and Sample 5 is a Ni-based alloy whose composition is not in the chemical composition range of the present invention, and is a comparative example. Sample 5 has a chemical composition equivalent to Inconel 617, which is a conventional steel. The Ni-based alloy in the chemical composition range of the present invention used here contains Fe (iron) and Cu (copper) S (sulfur) in addition to Si and Mn as unavoidable impurities.
鍛造性の評価では、表1に示す化学組成を有する試料1〜試料5のNi基合金10kgをそれぞれ真空誘導溶解炉にて溶解し、直径が87mmで長さが140mmの円柱状の鋳塊からなる試験片を作製した。続いて、この鋳塊に対して、1050℃で5時間ソーキング処理を行った。その後、950〜1100℃(再加熱が1100℃)の温度範囲で500kgfハンマー鍛造機にて鍛造処理を施した。ここで、鍛造性は、試験片の直径が30mmとなるまで上記した鍛造処理を行い、そのときの鍛錬成形比および鍛造割れの有無によって評価した。 In the evaluation of forgeability, 10 kg of the Ni-based alloys of Samples 1 to 5 having the chemical compositions shown in Table 1 were melted in a vacuum induction melting furnace, respectively, and a cylindrical ingot having a diameter of 87 mm and a length of 140 mm A test piece was prepared. Subsequently, the ingot was subjected to a soaking process at 1050 ° C. for 5 hours. Thereafter, forging treatment was performed with a 500 kgf hammer forging machine in a temperature range of 950 to 1100 ° C. (reheating was 1100 ° C.). Here, the forgeability was evaluated by performing the forging process described above until the diameter of the test piece reached 30 mm, and the forging ratio at that time and the presence or absence of forging cracks.
ここで、鍛錬成形比とは、鍛造処理後における、伸長された鍛造被対象物である試験片の長さを、鍛造処理を施す前における、鍛造被対象物である試験片の長さで除したものである。また、鍛造処理では、試験片の温度が低下したとき、すなわち試験片が硬化してきたときには、上記した再加熱温度1100℃まで再度加熱して鍛造処理を繰り返す。また、鍛造割れの有無は、鍛造処理後の試験片を目視観察し、割れがない場合には「無」と示し、さらに、鍛造性が優れていることを示すため、鍛造性の評価を「○」で示す。一方、割れがある場合には「有」と示し、さらに、鍛造性が劣ることを示すため、鍛造性の評価を「×」で示す。 Here, the forging ratio is obtained by dividing the length of a test piece that is an elongated forged object after the forging process by the length of the test piece that is a forged object before performing the forging process. It is what. Further, in the forging process, when the temperature of the test piece is lowered, that is, when the test piece is cured, the forging process is repeated by heating again to the above-described reheating temperature of 1100 ° C. In addition, the presence or absence of forging cracks, by visually observing the test piece after the forging process, when there is no crack, indicates "No", and further indicates that the forgeability is excellent, the evaluation of forgeability is " “○”. On the other hand, when there is a crack, it is indicated as “present”, and further, the forgeability is indicated by “x” in order to indicate that the forgeability is inferior.
表2は、各試料における鍛造性の評価の結果を示す。 Table 2 shows the results of evaluation of forgeability in each sample.
表2に示すように、試料1〜試料4は、試料5に比べて、鍛造性に優れていることが明らかとなった。 As shown in Table 2, it was revealed that Sample 1 to Sample 4 were superior in forgeability compared to Sample 5.
Claims (3)
少なくとも所定部位が、請求項1または2記載の蒸気タービンのタービンロータ用のNi基合金からなることを特徴する蒸気タービンのタービンロータ。 A turbine rotor penetrating a steam turbine into which high-temperature steam is introduced,
A turbine rotor for a steam turbine, wherein at least a predetermined portion is made of a Ni-based alloy for a turbine rotor of a steam turbine according to claim 1 or 2.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008092782A JP4585578B2 (en) | 2008-03-31 | 2008-03-31 | Ni-based alloy for steam turbine turbine rotor and steam turbine turbine rotor |
US12/395,983 US20090257865A1 (en) | 2008-03-31 | 2009-03-02 | Ni-base alloy for turbine rotor of steam turbine and turbine rotor of steam turbine |
DE102009012877A DE102009012877A1 (en) | 2008-03-31 | 2009-03-12 | Nickel-based alloy for a turbine rotor of a steam turbine and turbine rotor of a steam turbine |
FR0951960A FR2929293B1 (en) | 2008-03-31 | 2009-03-30 | NI-BASED ALLOY FOR STEAM TURBINE ROTOR AND STEAM TURBINE ROTOR COMPRISING SAME |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008092782A JP4585578B2 (en) | 2008-03-31 | 2008-03-31 | Ni-based alloy for steam turbine turbine rotor and steam turbine turbine rotor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009242902A true JP2009242902A (en) | 2009-10-22 |
JP4585578B2 JP4585578B2 (en) | 2010-11-24 |
Family
ID=41060805
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008092782A Active JP4585578B2 (en) | 2008-03-31 | 2008-03-31 | Ni-based alloy for steam turbine turbine rotor and steam turbine turbine rotor |
Country Status (4)
Country | Link |
---|---|
US (1) | US20090257865A1 (en) |
JP (1) | JP4585578B2 (en) |
DE (1) | DE102009012877A1 (en) |
FR (1) | FR2929293B1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6376840A (en) * | 1986-09-12 | 1988-04-07 | インコ、アロイス、インターナショナルインコーポレーテッド | High temperature nickel base alloy having improved stability |
JP2002266064A (en) * | 2000-10-20 | 2002-09-18 | General Electric Co <Ge> | Method for protecting surface of nickel base article with corrosion-resistant aluminum alloy layer |
JP2004256840A (en) * | 2003-02-24 | 2004-09-16 | Japan Steel Works Ltd:The | COMPOSITE REINFORCED TYPE Ni BASED SUPERALLOY, AND PRODUCTION METHOD THEREFOR |
JP2006307280A (en) * | 2005-04-28 | 2006-11-09 | Toshiba Corp | Steam-turbine power generating unit |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3707409A (en) * | 1970-07-17 | 1972-12-26 | Special Metals Corp | Nickel base alloy |
US3785876A (en) * | 1972-09-25 | 1974-01-15 | Special Metals Corp | Treating nickel base alloys |
US4764225A (en) * | 1979-05-29 | 1988-08-16 | Howmet Corporation | Alloys for high temperature applications |
US5372662A (en) * | 1992-01-16 | 1994-12-13 | Inco Alloys International, Inc. | Nickel-base alloy with superior stress rupture strength and grain size control |
JP3492969B2 (en) * | 2000-03-07 | 2004-02-03 | 株式会社日立製作所 | Rotor shaft for steam turbine |
JP4382269B2 (en) * | 2000-09-13 | 2009-12-09 | 日立金属株式会社 | Method for producing Ni-base alloy having excellent resistance to high-temperature sulfidation corrosion |
US6692228B2 (en) * | 2002-03-14 | 2004-02-17 | General Electric Company | Rotor insert assembly and method of retrofitting |
DE102006013557B4 (en) * | 2005-03-30 | 2015-09-24 | Alstom Technology Ltd. | Rotor for a steam turbine |
TW200816601A (en) | 2006-09-29 | 2008-04-01 | Sunonwealth Electr Mach Ind Co | Motor structure |
JP2009084684A (en) * | 2007-09-14 | 2009-04-23 | Toshiba Corp | Nickel-based alloy for turbine rotor of steam turbine, and turbine rotor of steam turbine |
-
2008
- 2008-03-31 JP JP2008092782A patent/JP4585578B2/en active Active
-
2009
- 2009-03-02 US US12/395,983 patent/US20090257865A1/en not_active Abandoned
- 2009-03-12 DE DE102009012877A patent/DE102009012877A1/en not_active Ceased
- 2009-03-30 FR FR0951960A patent/FR2929293B1/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6376840A (en) * | 1986-09-12 | 1988-04-07 | インコ、アロイス、インターナショナルインコーポレーテッド | High temperature nickel base alloy having improved stability |
JP2002266064A (en) * | 2000-10-20 | 2002-09-18 | General Electric Co <Ge> | Method for protecting surface of nickel base article with corrosion-resistant aluminum alloy layer |
JP2004256840A (en) * | 2003-02-24 | 2004-09-16 | Japan Steel Works Ltd:The | COMPOSITE REINFORCED TYPE Ni BASED SUPERALLOY, AND PRODUCTION METHOD THEREFOR |
JP2006307280A (en) * | 2005-04-28 | 2006-11-09 | Toshiba Corp | Steam-turbine power generating unit |
Also Published As
Publication number | Publication date |
---|---|
DE102009012877A1 (en) | 2009-10-15 |
JP4585578B2 (en) | 2010-11-24 |
FR2929293A1 (en) | 2009-10-02 |
FR2929293B1 (en) | 2010-04-23 |
US20090257865A1 (en) | 2009-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5127749B2 (en) | Ni-base alloy for turbine rotor of steam turbine and turbine rotor of steam turbine using the same | |
JP5478601B2 (en) | Ni-based forged alloy and gas turbine using the same | |
JP2009084684A (en) | Nickel-based alloy for turbine rotor of steam turbine, and turbine rotor of steam turbine | |
JP5395516B2 (en) | Nickel-based alloy for steam turbine turbine rotor and steam turbine turbine rotor | |
JP4982539B2 (en) | Ni-base alloy, Ni-base casting alloy, high-temperature components for steam turbine, and steam turbine casing | |
EP2537608B1 (en) | Ni-based alloy for casting used for steam turbine and casting component of steam turbine | |
JP4387331B2 (en) | Ni-Fe base alloy and method for producing Ni-Fe base alloy material | |
JP2010150585A (en) | Ni-based alloy for casting part of steam turbine excellent in high-temperature strength, castability and weldability, turbine casing of steam turbine, valve casing of steam turbine, nozzle box of steam turbine, and pipe of steam turbine | |
JP2010150586A (en) | Ni-based alloy for forged part of steam turbine excellent in high-temperature strength, forgeability and weldability, rotor blade of steam turbine, stator blade of steam turbine, screw member for steam turbine, and pipe for steam turbine | |
JP5578916B2 (en) | Ni-based alloy for cast components of steam turbine and cast components of steam turbine | |
JP5981250B2 (en) | Ni-base alloy for casting, method for producing Ni-base alloy for casting, and turbine cast component | |
JP4635065B2 (en) | Ni-based alloy for steam turbine turbine rotor and steam turbine turbine rotor | |
JP2010126813A (en) | Highly heat-resistant and oxidation-resistant material | |
JP4805803B2 (en) | Ni-based alloy and turbine rotor | |
JP5932622B2 (en) | Austenitic heat resistant steel and turbine parts | |
JP5646521B2 (en) | Ni-based alloy for steam turbine casting and cast component for steam turbine | |
JP4585578B2 (en) | Ni-based alloy for steam turbine turbine rotor and steam turbine turbine rotor | |
JP5550298B2 (en) | Ni-based alloy for forged parts of steam turbine, turbine rotor of steam turbine, moving blade of steam turbine, stationary blade of steam turbine, screwed member for steam turbine, and piping for steam turbine | |
JP2010235985A (en) | Nickel-based alloy for forged parts in steam-turbine excellent in high-temperature strength characteristics, forgeability and weldability, and member for steam-turbine | |
JP2015199980A (en) | Ni-BASED ALLOY FOR CASTING AND TURBINE CASTING COMPONENT | |
JP2014005528A (en) | Ni-BASED HEAT-RESISTANT ALLOY AND TURBINE COMPONENT | |
JP6173956B2 (en) | Austenitic heat resistant steel and turbine parts | |
JP5981251B2 (en) | Ni-based alloy and forged parts for forging | |
JP6062326B2 (en) | Cast Ni-base alloy and turbine casting parts | |
JPWO2016142961A1 (en) | Ni-base alloy for casting and casting parts for turbine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100308 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100805 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100810 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100903 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4585578 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130910 Year of fee payment: 3 |