JP2002088455A - METHOD FOR MANUFACTURING Ni-BASE ALLOY HAVING EXCELLENT HIGH TEMPERATURE SULFIDATION CORROSION RESISTANCE - Google Patents

METHOD FOR MANUFACTURING Ni-BASE ALLOY HAVING EXCELLENT HIGH TEMPERATURE SULFIDATION CORROSION RESISTANCE

Info

Publication number
JP2002088455A
JP2002088455A JP2000278277A JP2000278277A JP2002088455A JP 2002088455 A JP2002088455 A JP 2002088455A JP 2000278277 A JP2000278277 A JP 2000278277A JP 2000278277 A JP2000278277 A JP 2000278277A JP 2002088455 A JP2002088455 A JP 2002088455A
Authority
JP
Japan
Prior art keywords
temperature
treatment
alloy
sulfidation corrosion
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000278277A
Other languages
Japanese (ja)
Other versions
JP4382269B2 (en
Inventor
Toshiaki Nonomura
敏明 野々村
Takehiro Ono
丈博 大野
Toshihiro Uehara
利弘 上原
Hiroshi Yakuwa
浩 八鍬
Matsusuke Miyasaka
松甫 宮坂
Shuhei Nakahama
修平 中浜
Shigeru Sawada
茂 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Proterial Ltd
Original Assignee
Ebara Corp
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Hitachi Metals Ltd filed Critical Ebara Corp
Priority to JP2000278277A priority Critical patent/JP4382269B2/en
Priority to DE60100884T priority patent/DE60100884T2/en
Priority to EP01116668A priority patent/EP1191118B1/en
Priority to US09/906,098 priority patent/US6562157B2/en
Publication of JP2002088455A publication Critical patent/JP2002088455A/en
Application granted granted Critical
Publication of JP4382269B2 publication Critical patent/JP4382269B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method, particularly forging and heat treatment methods, by which the high temperature sulfidation corrosion resistance of an Ni-base alloy used for corrosion resisting high temperature equipment members, such as a high temperature sulfidation corrosion resisting Ni-base alloy of examined publication number H9-227975 and Waspaloy (R) ( a registered trademark of the United Technologies), can be improved while maintaining its high temperature strength characteristics at a level equivalent to that of the conventional only. SOLUTION: The method for manufacturing the Ni-base alloy having a composition consisting of, by mass, 0.005-0.1% C, 18-21% Cr, 12-15% CO, 3.5-5.0% Mo, <=3.25% Ti, 1.2-4.0% Al and the balance essentially Ni and having high temperature sulfidation corrosion resistance comprises steps of: finish hot working at a temperature not higher than the carbide solid solution temperature; solution heat treatment at a temperature not higher than the carbide solid solution temperature and also not higher than the recrystallization temperature; and stabilizing treatment and aging treatment at a temperature not higher than the carbide solid solution temperature and also not higher than the recrystallization temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高温における腐食
環境下、特にH2S やSO2 などを含む硫化腐食環境下で使
用される装置、例えば石油精製装置の流動層接触分解装
置から出る排ガスのエネルギーを回収利用するエキスパ
ンダータービンなどに用いられる耐高温硫化腐食特性に
優れる耐熱合金の製造方法に関する。
The present invention relates to a device used in a corrosive environment at a high temperature, particularly in a sulfide corrosive environment containing H 2 S and SO 2 , for example, an exhaust gas from a fluidized bed catalytic cracking device of an oil refinery. The present invention relates to a method for producing a heat-resistant alloy having excellent resistance to high-temperature sulfidation corrosion used in an expander turbine or the like that recovers and uses energy from a fuel.

【0002】[0002]

【従来の技術】従来、エキスパンダータービンのロータ
など高温で用いられる部材には、高温での強度および耐
食性が優れるNi基耐熱合金が用いられ、その代表例とし
てはワスパロイ(United Technologies社の商標) として
知られている合金が使用されている。
2. Description of the Related Art Conventionally, Ni-based heat-resistant alloys having excellent strength and corrosion resistance at high temperatures have been used for members used at high temperatures such as rotors of expander turbines, and a typical example thereof is Waspaloy (trademark of United Technologies). Known alloys are used.

【0003】これらの高温で使用される部材のNi基耐熱
合金は、γ' 相と呼ばれる金属間化合物の析出強化によ
り高温での強度を得ている。γ' 相はNi3(Al,Ti)を基本
組成とするため、これらの合金には通常Al、Tiが添加さ
れている。
[0003] These Ni-based heat-resistant alloys used at high temperatures have obtained high-temperature strength by precipitation strengthening of an intermetallic compound called a γ 'phase. Since the γ 'phase has a basic composition of Ni 3 (Al, Ti), Al and Ti are usually added to these alloys.

【0004】一方、タービンあるいはボイラなどの燃焼
ガス雰囲気に曝される高温機器においては、硫酸塩、V
、Clなどを含む溶融塩が関与するいわゆる「ホットコ
ロージョン」と呼ばれる高温腐食が知られている。また
溶融塩の関与しないガスと金属の直接反応による硫化腐
食が、Ni基合金に関して約700 ℃以上で起こることが報
告されており、これは低融点のNi-Ni3S 2 共晶の生成が
一つの原因と言われている。
On the other hand, in high-temperature equipment exposed to a combustion gas atmosphere such as a turbine or a boiler, sulfate, V
High-temperature corrosion called “hot corrosion” involving a molten salt containing Cl, Cl and the like is known. In addition, it has been reported that sulfidation corrosion due to the direct reaction of gas and metal without the involvement of molten salt occurs at about 700 ° C or higher for Ni-based alloys, which is due to the formation of low melting point Ni-Ni 3 S 2 eutectic. It is said to be one of the causes.

【0005】ところで、石油精製プラントでの省エネル
ギー化を図るために、流動層接触分解装置から出る排ガ
スのエネルギーを回収するシステムが開発されている。
このような装置のガスエキスパンダータービン翼に、代
表的なNi基超耐熱合金であるワスパロイを用いたとこ
ろ、従来問題とされた温度より低い温度域での使用にも
かかわらず、動翼の付け根部分に硫化腐食が発生した。
[0005] In order to save energy in a petroleum refining plant, a system for recovering energy of exhaust gas discharged from a fluidized bed catalytic cracking apparatus has been developed.
When using Waspaloy, a typical Ni-based super heat-resistant alloy, for the gas expander turbine blades of such a device, the root portion of the rotor blade was used despite its use in a temperature range lower than the temperature at which the conventional problem was encountered. Sulfidation corrosion occurred on the steel.

【0006】この現象を詳細に観察した結果、腐食は結
晶粒界に沿って進行していたが、腐食箇所に溶融塩は存
在しておらず、金属とガスの直接反応によって生じたこ
とが明らかになった。Ni-Ni3S 2 共晶融点以下の温度域
における溶融塩の存在しない硫化ガス環境中におけるこ
のような粒界硫化腐食は殆ど観察された例がなかった。
As a result of observing this phenomenon in detail, it was found that although the corrosion proceeded along the crystal grain boundaries, no molten salt was present at the corrosion site, and the corrosion was caused by a direct reaction between the metal and the gas. Became. In the sulfide gas environment where no molten salt exists in the temperature range below the eutectic melting point of Ni-Ni 3 S 2, such intergranular sulfide corrosion was hardly observed.

【0007】この問題を解決するため、特開平9-227975
号の発明者等により、Ni-Ni3S2共晶融点以下の温度域の
硫化ガス環境中におけるワスパロイの硫化挙動に及ぼす
合金元素の影響が詳細に検討され、粒界を含めた合金内
部の硫化層には、合金中に含まれるTi、Al、Moが濃縮し
ていること、さらに合金のTiとAlの含有量が、合金の耐
高温硫化腐食性に大きな影響を与えることが解明され
た。
To solve this problem, Japanese Patent Application Laid-Open No. 9-227975
The issue of the inventors, the influence of alloying elements on sulfide behavior of Waspaloy in Ni-Ni 3 S 2 sulfide gas environment in the following temperature range eutectic is studied in detail, grain boundaries inside the alloy, including It was revealed that Ti, Al, and Mo contained in the alloy were concentrated in the sulfide layer, and that the content of Ti and Al in the alloy had a significant effect on the high-temperature sulfidation corrosion resistance of the alloy. .

【0008】その結果として、特開平9-227975号に開示
されている、Coを12〜15%、Crを18〜21%、Moを3.5 〜
5 %、C を0.02〜0.1 %、Tiを2.75%以下、Alを1.6 %
以上含み、残部は不純物を除き本質的にNiからなる耐高
温硫化腐食性Ni基合金が提案されている。
As a result, as disclosed in JP-A-9-227975, Co is 12 to 15%, Cr is 18 to 21% and Mo is 3.5 to 15%.
5%, C 0.02-0.1%, Ti 2.75% or less, Al 1.6%
A high-temperature sulfur-corrosion-resistant Ni-based alloy consisting essentially of Ni, excluding impurities and including the remainder, has been proposed.

【0009】[0009]

【発明が解決しようとする課題】上記特開平9-227975号
に開示されている合金は、Ni基耐熱合金の耐高温硫化腐
食性を改善した合金として、従来から知られているワス
パロイの添加元素のうち、特にAlとTiの比率を詳細に検
討した結果、Ti含有量を少なくし、Al含有量を多くする
ことによって、耐高温硫化腐食性を飛躍的に改善できる
ものとして注目を集めている。
The alloy disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 9-227975 is an alloy which has been known as an additive element of Waspaloy as an alloy having improved high-temperature sulfidation corrosion resistance of a Ni-base heat-resistant alloy. Among them, especially after examining the ratio of Al and Ti in detail, reducing the Ti content and increasing the Al content has attracted attention as a material that can dramatically improve high-temperature sulfidation corrosion resistance. .

【0010】しかしながら、このように、耐高温硫化腐
食性の改善された特開平9-227975号に開示されている合
金であっても、その製造方法が異なると、耐硫化腐食
性、特に、合金結晶粒界における耐食性、すなわち耐粒
界硫化腐食性が変化することが、本発明者等の検討によ
って明らかとなった。この知見は、従来知られているワ
スパロイにも当てはまる。
However, even if the alloy disclosed in Japanese Patent Application Laid-Open No. 9-227975 has an improved resistance to high-temperature sulfidation corrosion, if its production method is different, the resistance to sulfidation corrosion, especially It has been clarified by the present inventors that the corrosion resistance at the crystal grain boundaries, that is, the intergranular sulfide corrosion resistance, changes. This finding also applies to previously known Waspaloy.

【0011】これら、Ni基耐熱合金の熱処理条件は、主
に強度特性および熱間加工性に着眼して決められている
ことが多く、必ずしも耐高温硫化腐食性に最適とは限ら
ない。
[0011] The heat treatment conditions for these Ni-base heat-resistant alloys are often determined mainly from the viewpoint of strength characteristics and hot workability, and are not always optimal for high-temperature sulfidation corrosion resistance.

【0012】そこで、本発明の目的は、上記特開平9-22
7975号に開示されている耐高温硫化腐食性Ni基合金やワ
スパロイなどの耐食性高温装置部材に用いられるNi基合
金を、高温強度特性は従来と同等に維持しながら、耐高
温硫化腐食性を向上させる製造方法、特に仕上熱間加工
および熱処理方法を提供することである。
Therefore, an object of the present invention is to provide
Improves high-temperature sulfide corrosion resistance while maintaining high-temperature strength properties of conventional Ni-base alloys used for high-temperature sulfide corrosion-resistant Ni-base alloys disclosed in No. 7975 and materials for corrosion-resistant high-temperature equipment such as Waspaloy It is an object of the present invention to provide a manufacturing method, particularly a finish hot working and heat treatment method.

【0013】[0013]

【課題を解決するための手段】本発明者等は、種々の熱
処理を施した特開平9-227975号に開示されている耐高温
硫化腐食性Ni基合金およびワスパロイの粒界硫化腐食特
性を検討した結果、粒界が腐食されるのは粒界にCrを主
体とする炭化物が析出するために、粒界近傍からCrが拡
散し粒界に沿ってCr欠乏層が形成されるためであること
を見出した。従って、粒界へのCr欠乏層の形成を抑えれ
ば粒界の硫化腐食を抑えることができるものと判断し、
本発明に到達した。
Means for Solving the Problems The present inventors examined the intergranular sulfidation corrosion characteristics of high-temperature sulfidation-corrosion-resistant Ni-based alloy and Waspaloy disclosed in JP-A-9-227975 subjected to various heat treatments. As a result, the grain boundaries are corroded because carbides mainly composed of Cr precipitate at the grain boundaries, so that Cr diffuses from near the grain boundaries and forms a Cr-deficient layer along the grain boundaries. Was found. Therefore, it is determined that if the formation of the Cr-deficient layer at the grain boundaries can be suppressed, the sulfurization corrosion of the grain boundaries can be suppressed.
The present invention has been reached.

【0014】即ち本発明は、質量%で、C :0.005 〜0.
1 %、Cr:18〜21%、Co:12〜15%、Mo:3.5 〜5.0
%、Ti:3.25%以下、Al:1.2 〜4.0 %を含有し、残部
は実質的にNiからなるNi基合金の製造方法であって、仕
上熱間加工を炭化物固溶温度以下で行った後、炭化物固
溶温度以下で且つ再結晶温度以下での固溶化処理後、安
定化処理および時効処理を行う耐高温硫化腐食性に優れ
たNi基合金の製造方法である。
That is, according to the present invention, C: 0.005 to 0.5% by mass.
1%, Cr: 18-21%, Co: 12-15%, Mo: 3.5-5.0
%, Ti: 3.25% or less, Al: 1.2 to 4.0%, the balance being a Ni-based alloy substantially consisting of Ni, after finishing hot working at a carbide solid solution temperature or lower. The present invention provides a method for producing a Ni-based alloy having excellent resistance to high-temperature sulfidation corrosion, in which a solution treatment at a temperature equal to or lower than a carbide solid solution temperature and a temperature equal to or lower than a recrystallization temperature is performed, followed by stabilization treatment and aging treatment.

【0015】好ましくは、安定化処理は860 ℃以上920
℃以下で1時間〜16時間、時効処理は680 ℃以上760 ℃
以下で4 〜48時間の条件で行い、更に好ましくは、620
℃以上〜時効処理温度マイナス20℃の温度で8 時間以上
の二次時効処理を行う耐高温硫化腐食性に優れたNi基合
金の製造方法である。
Preferably, the stabilization treatment is 860 ° C. or more and 920 ° C.
1 hour to 16 hours at ℃ or lower, aging treatment is 680 to 760 ℃
The reaction is carried out under the following conditions for 4 to 48 hours, more preferably 620
This is a method for producing Ni-base alloys with excellent high-temperature sulfidation corrosion resistance, in which secondary aging treatment is performed for 8 hours or more at a temperature of -20 ° C or higher to -20 ° C or higher.

【0016】また、上述のNi基合金の好ましい合金組成
は、質量%で、Ti:2.75%以下、Al:1.6 〜4.0 %を含
み、更に好ましくは質量%で、B :0.01%以下、Zr:0.
1 %以下の何れか一種以上を含む耐高温硫化腐食性に優
れたNi基合金の製造方法である。
A preferable alloy composition of the above-mentioned Ni-based alloy includes, by mass%, Ti: 2.75% or less, and Al: 1.6 to 4.0%, more preferably, B: 0.01% or less, Zr: 0.
This is a method for producing a Ni-based alloy having excellent resistance to high-temperature sulfidation corrosion containing any one or more of 1% or less.

【0017】[0017]

【発明の実施の形態】本発明は、上述の通り、特開平9-
227975号に開示されている耐高温硫化腐食性Ni基合金お
よびワスパロイの粒界硫化腐食特性を検討した結果、粒
界が腐食されるのは粒界にCrを主体とする炭化物が析出
するために、粒界近傍からCrが拡散し粒界に沿ってCr欠
乏層が形成されることに起因したものであることを見出
し、粒界へのCr欠乏層の形成を抑えれば粒界の硫化腐食
を抑えることができるものと判断したものである。
BEST MODE FOR CARRYING OUT THE INVENTION As described above, the present invention
As a result of examining the intergranular sulfidation corrosion characteristics of Ni-base alloy and Waspaloy, which are resistant to high-temperature sulfidation corrosion disclosed in 227975, the grain boundaries are corroded because carbides mainly composed of Cr are precipitated at the grain boundaries. It was found that the diffusion of Cr from the vicinity of the grain boundary caused the formation of a Cr-deficient layer along the grain boundary. Is determined to be able to be suppressed.

【0018】本発明の要点の第一は、特定の組成を有す
るNi基合金において、その仕上熱間加工温度を炭化物固
溶温度以下とすることである。なお、本発明で言う炭化
物とは、Cr炭化物を指す。
The first point of the present invention is that in a Ni-based alloy having a specific composition, the finishing hot working temperature is set to be equal to or lower than the carbide solid solution temperature. Note that the carbide in the present invention refers to a Cr carbide.

【0019】これにより仕上熱間加工時には炭化物が存
在した鍛造組織を得ることができる。炭化物固溶温度以
下での仕上熱間加工では、すでに存在する未固溶のCr炭
化物が一部固溶すると同時に、仕上熱間加工中に新たに
Cr炭化物が粒界に析出する。従ってその周辺には当初Cr
欠乏層が形成されるが、仕上熱間加工中の高温保持によ
りCrの拡散が進むために仕上熱間加工中に存在するCr炭
化物近傍のCr欠乏層は回復する。なお、仕上熱間加工終
了後の冷却が遅い場合には粒界にCr炭化物が若干析出
し、Cr欠乏層が形成される可能性があるが、これは仕上
熱間加工後の固溶化処理中のCrの拡散により回復可能で
ある。
As a result, it is possible to obtain a forged structure in which carbides are present during the finishing hot working. In the finishing hot working at a temperature below the carbide solid solution temperature, some of the undissolved Cr carbides that are already present form a solid solution and at the same time a new
Cr carbide precipitates at the grain boundaries. Therefore, the surrounding area is initially Cr
Although a deficiency layer is formed, the diffusion of Cr progresses due to the high temperature maintained during the finishing hot working, so that the Cr deficient layer near the Cr carbide present during the finishing hot working recovers. If cooling after finishing hot working is slow, Cr carbide may precipitate a little at the grain boundaries and a Cr-deficient layer may be formed, but this may occur during the solution treatment after finishing hot working. Can be recovered by diffusion of Cr.

【0020】さらに炭化物固溶温度以下の比較的低温の
仕上熱間加工では仕上熱間加工による歪みが残存し、こ
れにより続く固溶化処理および安定化処理中のCrの拡散
が促進されCr欠乏層の回復に有利に働く。
Further, in the finishing hot working at a relatively low temperature lower than the carbide solid solution temperature, distortion due to the finishing hot working remains, and the diffusion of Cr during the subsequent solution treatment and stabilization is promoted, and the Cr-deficient layer is formed. It works favorably for recovery.

【0021】なお、熱間加工のうち、例えば熱間加工を
鍛造とした場合、鍛造は大きく分けて鋼塊( インゴッ
ト) から鋼片( ビレット、ブルーム等の中間形状) にす
る分解工程と、鋼片から更に最終形状に近い仕上鍛造に
分けることができ、本発明は、このように、最終形状に
近づけるような仕上熱間加工について規定するものであ
る。なお、本発明で言う熱間加工には、鍛造、圧延、引
抜き、押出し等種々の熱間加工を含むものであるが、本
発明で規定する合金組成では、例えば比較的大型のディ
スク等に適用される場合が多く、その場合、熱間加工さ
れる材料自体も大型となること、また、本発明で規定す
る比較的低温での仕上熱間加工では、変形抵抗が高くな
ることから、低温での仕上熱間加工時の温度を低温に保
ち易い、鍛造に最も適している。
In the case of hot working, for example, when hot working is forged, the forging is roughly divided into a steel ingot (an ingot) into a billet (an intermediate shape such as a billet or a bloom); From the piece, it can be further divided into a finish forging closer to the final shape, and the present invention thus defines a finish hot working that approaches the final shape. The hot working in the present invention includes various hot workings such as forging, rolling, drawing, and extrusion. However, the alloy composition specified in the present invention is applied to, for example, a relatively large disk or the like. In many cases, in that case, the material to be hot-worked is also large, and the finish at a relatively low temperature specified in the present invention has a high deformation resistance, so that the finish at a low temperature is required. It is most suitable for forging because the temperature during hot working is easily kept at a low temperature.

【0022】次に、上述の仕上熱間加工したNi基合金に
固溶化処理を行うが、本発明の第二の要点はこの固溶化
処理温度を炭化物固溶温度以下で且つ再結晶温度以下と
して固溶化処理を行うことである。この処理の目的は、
γ' 生成元素のTiやAlを固溶させる目的の他、最大の目
的は仕上熱間加工で得られたCr炭化物を残したまま(Cr
炭化物を完全に固溶させないまま) 再結晶による新しい
結晶粒界の形成を防ぐことであり、これによってこの固
溶化処理後に行う安定化処理及び時効処理での新規なCr
炭化物の析出を最小限度に抑制することができる。
Next, the solution treatment is performed on the Ni-base alloy that has been subjected to the finish hot working described above. The second essential point of the present invention is that the solution treatment temperature is set to be lower than the carbide solid solution temperature and lower than the recrystallization temperature. That is, a solution treatment is performed. The purpose of this process is
In addition to the purpose of dissolving the γ 'forming elements Ti and Al, the most important purpose is to leave the Cr carbide obtained by hot working (Cr
To prevent the formation of new grain boundaries due to recrystallization, so that the new Cr in the stabilization and aging treatments after this solution treatment is performed.
Precipitation of carbide can be suppressed to a minimum.

【0023】すなわち、後述するように続く安定化処理
および時効処理においては結晶粒界へのCr炭化物の析出
が避けられないが、固溶化処理中にCr炭化物が固溶する
とそれが安定化処理および時効処理中に再び析出しCr欠
乏層を形成する。一方、仕上熱間加工で得られたCr炭化
物が残存すると、安定化処理あるいは時効処理中の粒界
へのCr炭化物析出の量が少なくなり、ひいてはCr欠乏層
が少なくなる。
That is, in the subsequent stabilization treatment and aging treatment described below, precipitation of Cr carbide at the crystal grain boundaries is inevitable, but when the Cr carbide forms a solid solution during the solution treatment, the stabilization treatment and aging treatment are carried out. It precipitates again during the aging treatment and forms a Cr-deficient layer. On the other hand, when the Cr carbide obtained by the finishing hot working remains, the amount of precipitation of the Cr carbide on the grain boundaries during the stabilization treatment or the aging treatment decreases, and the Cr-deficient layer also decreases.

【0024】さらに、固溶化処理温度が炭化物固溶温度
以下であっても基地のオーステナイト結晶粒が再結晶を
して粒界が新規に形成されてしまうと、この粒界は炭化
物析出のない粒界となるために、この固溶化処理後に安
定化処理及び時効処理を行なうと、この粒界に多量の新
規Cr炭化物が析出し、その結果、大量のCr欠乏層が形成
されてしまい、この新規に形成されたCr欠乏層は相当長
時間の安定化処理及び時効処理を行わないと十分な回復
が望めないために、結果として製品は硫化腐食性の乏し
いものとなる。そこで、固溶化処理を再結晶温度以下と
して固溶化処理時に新たなオーステナイト結晶粒界を生
じさせないものである。
Further, even if the solution treatment temperature is lower than the carbide solid solution temperature, if the austenite crystal grains of the matrix are recrystallized to form new grain boundaries, the grain boundaries are formed without carbide precipitation. When a stabilization treatment and an aging treatment are performed after the solution treatment, a large amount of new Cr carbide precipitates at the grain boundaries, and as a result, a large amount of Cr-deficient layer is formed. Since the Cr-depleted layer formed in the steel cannot be sufficiently recovered without a stabilizing treatment and an aging treatment for a considerably long time, the product is poor in sulfurization corrosion. Therefore, the solution treatment is performed at a temperature lower than the recrystallization temperature to prevent the generation of new austenite crystal grain boundaries during the solution treatment.

【0025】加えて前述の低温での仕上熱間加工と再結
晶温度以下での固溶化処理による歪みの残存が、安定化
処理中のCrの拡散を促進しCr欠乏層の回復に有利に働
く。
In addition, the residual strain due to the finishing hot working at a low temperature and the solution treatment at a temperature lower than the recrystallization temperature promotes the diffusion of Cr during the stabilizing process and works advantageously for the recovery of the Cr-depleted layer. .

【0026】次に、本発明では上述の固溶化処理後に、
安定化処理及び時効処理を行う。安定化処理及び時効処
理の主たる目的は、合金の強度向上を目的とするが、本
発明で好ましい範囲として規定する安定化処理及び時効
処理の条件内で処理を行えば、強度向上に加えて、耐食
性の向上も兼備することが可能である。つまり、安定化
処理を従来行われていた条件( 例えば843 ℃×4h、 空
冷) よりもCr炭化物が析出し,かつCrの拡散が十分起こ
り得る高い温度と時間に設定することで、安定化処理中
に新規のCr炭化物を十分に析出させ、それと同時にCrの
拡散が可能であるためにCr炭化物の析出によるCr欠乏層
にCrが拡散していきCr欠乏層を回復させることができ
る。このようにして安定化処理中に再度Cr欠乏層の回復
が図られるとともに、この段階でよりCr炭化物を多く析
出させておくことで、続く時効( 硬化) 処理中における
新たなCr炭化物の析出とそれによるCr欠乏層の生成を最
小限に抑えることができる。
Next, in the present invention, after the solution treatment described above,
Perform stabilization processing and aging processing. The main purpose of the stabilization treatment and the aging treatment is to improve the strength of the alloy, but if the treatment is performed within the conditions of the stabilization treatment and the aging treatment defined as a preferable range in the present invention, in addition to the strength improvement, It is also possible to improve corrosion resistance. In other words, the stabilization process is performed by setting the temperature and time so that Cr carbide precipitates and Cr diffusion can sufficiently occur, compared to the conditions under which the stabilization process was conventionally performed (for example, 843 ° C x 4 hours, air cooling). A new Cr carbide is sufficiently precipitated therein, and at the same time, Cr can be diffused. Therefore, Cr diffuses into the Cr-deficient layer due to the precipitation of the Cr carbide, and the Cr-deficient layer can be recovered. In this way, the Cr-deficient layer is recovered again during the stabilization process, and by precipitating more Cr carbide at this stage, the precipitation of new Cr carbide during the subsequent aging (hardening) process and This can minimize the formation of a Cr-deficient layer.

【0027】しかしながら、上記の安定化処理を施した
としても続く時効( 硬化) 処理条件が適切でないと新た
なCr炭化物の析出とそれに伴うCr欠乏層の形成が起こ
り、合金の耐硫化腐食性を劣化させてしまう。そこで、
時効硬化処理条件は従来条件(例えば760 ℃×16h 、 空
冷) よりも低く設定することにより、Cr炭化物の析出を
抑えることが可能である。
However, even if the above stabilization treatment is performed, if the aging (hardening) treatment conditions are not appropriate, precipitation of new Cr carbide and formation of a Cr-depleted layer will occur, and the sulfide corrosion resistance of the alloy will be reduced. Will deteriorate. Therefore,
By setting the age hardening treatment conditions lower than the conventional conditions (for example, 760 ° C. × 16 h, air cooling), it is possible to suppress the precipitation of Cr carbide.

【0028】なお、安定化処理、時効( 硬化) 処理条件
は合金の強度特性に大きく影響するが、本発明の熱処理
条件は強度特性も十分得られることを前提にして設定し
ている。すなわち、従来の熱処理条件が強度面を重視し
て選定されたのに対し、上述の熱処理条件は合金の耐食
性を重視し、かつ強度も十分確保できる条件として詳細
な検討の結果得られたものである。
Although the stabilizing treatment and the aging (hardening) treatment conditions greatly affect the strength characteristics of the alloy, the heat treatment conditions of the present invention are set on the assumption that sufficient strength characteristics can be obtained. That is, while the conventional heat treatment conditions were selected with emphasis on strength, the heat treatment conditions described above were obtained as a result of detailed examination as conditions that emphasized the corrosion resistance of the alloy and that sufficient strength could be ensured. is there.

【0029】この安定化処理及び時効処理について、更
に詳しく説明する。
The stabilizing process and the aging process will be described in more detail.

【0030】合金結晶粒界へのCr炭化物析出によるCr欠
乏層の形成は、後述する実施例で述べるように760 ℃よ
り高く、860 ℃未満の温度域で著しく助長されること
が、本発明者らの検討で明らかとなった。従って、この
温度域よりも高温で安定化処理を施すことによってCr炭
化物をできるだけ多く粒界析出させるとともにCr欠乏層
を形成させず、この温度域より低温で時効( 硬化) 処理
を施すことによって、合金結晶粒界へのCr炭化物析出を
抑制しさらに耐高温硫化腐食性を向上させることができ
る。
The present inventors have found that the formation of a Cr-deficient layer by precipitation of Cr carbide at the crystal grain boundaries of the alloy is significantly promoted in a temperature range higher than 760 ° C. and lower than 860 ° C., as will be described in Examples described later. These studies have clarified this. Therefore, by performing the stabilization treatment at a temperature higher than this temperature range, the Cr carbide is precipitated as much as possible at the grain boundary and the Cr deficient layer is not formed, and by performing the aging (hardening) treatment at a temperature lower than this temperature range, Cr carbide precipitation at the alloy crystal grain boundary can be suppressed, and the resistance to high-temperature sulfidation corrosion can be improved.

【0031】一方で、安定化処理および時効( 硬化) 処
理は、合金の高温強度に寄与するγ' 相の析出および成
長を促進する役割を果たす。しかし、安定化処理温度が
920℃より高いとγ' 相の粗大化が著しく、高温強度が
低下する。また、860 ℃以上920 ℃以下であっても、1
時間未満ではγ' 相の析出および成長が不十分であり、
16時間より長いとγ' 相の粗大化が生じ高温強度が低下
する。従って、安定化処理条件は、860 ℃以上920 ℃以
下で1時間〜16時間に規定した。
On the other hand, the stabilizing treatment and the aging (hardening) treatment play a role in promoting the precipitation and growth of the γ ′ phase which contributes to the high-temperature strength of the alloy. However, the stabilization temperature
If the temperature is higher than 920 ° C., the γ ′ phase is remarkably coarsened, and the high-temperature strength decreases. Even if the temperature is between 860 ° C and 920 ° C,
If less than the time, the precipitation and growth of the γ 'phase are insufficient,
If it is longer than 16 hours, the γ 'phase becomes coarse and the high-temperature strength decreases. Therefore, the stabilization conditions were set at 860 ° C to 920 ° C for 1 hour to 16 hours.

【0032】時効( 硬化) 処理条件は、680 ℃より低い
温度域ではγ' 相の析出および成長が不十分であり高温
強度が不足する。また、680 ℃以上760 ℃以下の温度域
であっても、4 時間より短いとγ' 相の析出および成長
が不十分であり、48時間より長いと合金結晶粒界への炭
化物析出が助長される。従って、時効( 硬化) 処理条件
は、680 ℃以上760 ℃以下で4 〜48時間に規定した。
In the aging (hardening) treatment conditions, in a temperature range lower than 680 ° C., the precipitation and growth of the γ ′ phase are insufficient and the high-temperature strength is insufficient. Even in the temperature range of 680 ° C to 760 ° C, if the time is shorter than 4 hours, precipitation and growth of the γ 'phase are insufficient, and if the time is longer than 48 hours, carbide precipitation at the alloy crystal grain boundary is promoted. You. Therefore, the aging (hardening) treatment conditions were specified at 680 ° C. or more and 760 ° C. or less for 4 to 48 hours.

【0033】また本発明では、時効( 硬化) 処理温度マ
イナス20℃以下〜620 ℃以上の温度で8 時間以上の二次
時効処理を行うことがより好ましい。つまり、二次時効
( 硬化) 処理は、時効( 硬化) 処理温度より低い温度域
で処理するものである。この二次時効( 硬化) 処理によ
って、Cr炭化物を粒界に析出させずに微細なγ' 相によ
る析出強化をより促進させることができ、耐硫化性を損
なうことなく強度をより高めることが可能である。
In the present invention, it is more preferable to perform the secondary aging treatment at a temperature of aging (hardening) treatment minus 20 ° C. or less to 620 ° C. or more for 8 hours or more. In other words, secondary aging
(Curing) treatment is a treatment in a temperature range lower than the aging (curing) treatment temperature. By this secondary aging (hardening) treatment, precipitation strengthening by fine γ 'phase can be further promoted without precipitating Cr carbide at grain boundaries, and strength can be further increased without impairing sulfidation resistance It is.

【0034】この二次時効( 硬化) 処理の温度が620 ℃
より低いとγ' 相の析出はほとんど起こらず強度増加の
効果は見られず、二次時効( 硬化) 処理の温度が時効(
硬化) 処理温度マイナス20℃を超えると、時効( 硬化)
処理時に析出したγ' 相が粗大化し、微細γ' 相析出の
強化の効果に寄与しないため、二次時効( 硬化) 処理の
上限温度は時効( 硬化) 処理温度マイナス20℃とした。
また、この二次時効(硬化) 処理の処理時間が短いと、
析出強化に寄与する微細γ' 相の析出の効果が少なくな
るため、二次時効( 硬化) 処理の処理時間は8時間以上
とした。
The temperature of this secondary aging (curing) treatment is 620 ° C.
When the temperature is lower, the precipitation of the γ 'phase hardly occurs and the effect of increasing the strength is not seen, and the temperature of the secondary aging (hardening) treatment is increased.
(Curing) Aging (curing) when the processing temperature exceeds minus 20 ° C
Since the γ 'phase precipitated during the treatment is coarsened and does not contribute to the effect of strengthening the precipitation of the fine γ' phase, the upper limit temperature of the secondary aging (hardening) treatment was set to the aging (hardening) treatment temperature minus 20 ° C.
Also, if the processing time of this secondary aging (curing) treatment is short,
The treatment time of the secondary aging (hardening) treatment was set to 8 hours or more because the effect of the precipitation of the fine γ 'phase contributing to the precipitation strengthening was reduced.

【0035】以上、詳述したように、本発明の製造方法
を用いれば、耐高温硫化腐食性を向上させ、且つ高温で
の優れた強度を付与することができるが、その特性を十
分に発揮するためには、合金自体の耐高温硫化腐食性を
向上させるのに必要な合金組成の最適化も同時に図るこ
とも重要である。
As described in detail above, by using the manufacturing method of the present invention, it is possible to improve the high-temperature sulfidation corrosion resistance and to impart excellent strength at high temperatures, but the characteristics are sufficiently exhibited. In order to achieve this, it is also important to simultaneously optimize the alloy composition necessary for improving the high-temperature sulfidation corrosion resistance of the alloy itself.

【0036】以下に、本発明に用いるのに適した合金組
成について述べる。なお、本明細書では特に断りのない
限り質量%を用いる。
The alloy composition suitable for use in the present invention will be described below. In this specification, mass% is used unless otherwise specified.

【0037】C は、TiとTiC を形成し、Cr、MoとはM6C
、M7C3及びM23C6 タイプの炭化物を形成し、これらの
炭化物は結晶粒度の粗大化を抑える。更に、M6C やM23C
6 は粒界に適量析出させることで粒界を強化するため
に、本発明では必須の元素である。しかし、C が0.005
%以上含まれないと上記の効果が得られず、0.1 %を超
えると析出強化に必要なTi量が減少するだけでなく、安
定化処理時に粒界へ析出するCr炭化物が多くなりすぎて
粒界が弱くなり、また粒界へのCr炭化物析出及びCr欠乏
層の回復に長時間を要する。従ってC は0.005 〜0.1 %
に限定した。
C forms Ti and TiC, and Cr and Mo form M 6 C
, Forming a M 7 C 3 and M 23 C 6 type carbides, these carbides suppressing the coarsening of grain size. Furthermore, M 6 C and M 23 C
6 is an essential element in the present invention in order to strengthen the grain boundary by precipitating an appropriate amount at the grain boundary. But C is 0.005
If not more than 0.1%, the above effect cannot be obtained. If it exceeds 0.1%, not only the amount of Ti required for precipitation strengthening decreases, but also the amount of Cr carbide precipitated at the grain boundary during the stabilization treatment becomes too large. The boundaries become weak, and it takes a long time to precipitate Cr carbide at the grain boundaries and recover the Cr-depleted layer. Therefore, C is 0.005 to 0.1%
Limited to.

【0038】Crは、大気、酸化性の酸、高温酸化など酸
化作用が同時に働く腐蝕環境において安定緻密な酸化被
膜を形成し、耐酸化性を向上させる。また、C と結びつ
いてCr7C3 及びCr23C6等の炭化物を析出させ、高温強度
を高める効果を有する。しかし、Crが18%未満では上記
効果のうち、特に耐酸化性が不十分であり、21%を超え
て含有すれば、σ相などの有害な金属間化合物の生成を
助長する。従ってCrは18〜21%に限定した。
Cr forms a stable and dense oxide film in a corrosive environment in which an oxidizing action such as oxidizing acid and high-temperature oxidation works simultaneously in the atmosphere, and improves the oxidation resistance. In addition, it has an effect of increasing the high-temperature strength by precipitating carbides such as Cr 7 C 3 and Cr 23 C 6 in combination with C. However, if the Cr content is less than 18%, among the above effects, particularly the oxidation resistance is insufficient, and if the Cr content exceeds 21%, the formation of harmful intermetallic compounds such as the σ phase is promoted. Therefore, Cr was limited to 18-21%.

【0039】Coは、Ni基合金において主としてそれ自体
が固溶体としてマトリックス( 基地) の強化作用を奏す
るが、さらに、γ' 相のNi基マトリックスに対する固溶
量を減少させ、γ' の析出量を増加させることにより強
化作用の効果を奏する。しかし、Coが12%未満では上記
効果が不十分であり、15%を超えるとσ相などの有害な
金属間化合物を生成して、クリープ強度を低下させる。
従って、Coは12〜15%に限定した。
Co acts itself as a solid solution to strengthen the matrix (base) as a solid solution in the Ni-based alloy, but further reduces the solid solution amount of the γ ′ phase in the Ni-based matrix to reduce the amount of γ ′ precipitated. The effect of the strengthening action is exhibited by increasing. However, if the content of Co is less than 12%, the above effect is insufficient. If the content of Co exceeds 15%, harmful intermetallic compounds such as σ phase are generated, and the creep strength is reduced.
Therefore, Co was limited to 12-15%.

【0040】Moは、主にγ相およびγ' 相に固溶して高
温強度を高める。また、塩酸等に対する耐食性を改善す
る。しかし、Moが3.5 %未満では上記効果が不十分であ
り、5.0 %を超えると、マトリックスの組織を不安定化
させる。従って、Moは3.5 %〜5.0 %に限定した。
Mo mainly forms a solid solution in the γ phase and the γ ′ phase to increase the high temperature strength. It also improves the corrosion resistance to hydrochloric acid and the like. However, if the content of Mo is less than 3.5%, the above effect is insufficient. If the content of Mo exceeds 5.0%, the matrix structure is destabilized. Therefore, Mo was limited to 3.5% to 5.0%.

【0041】Ti及びAlは、主にNi3(Al,Ti)となってγ'
相を形成し、析出強化を与える重要な元素である。しか
し、Ti量が多いほど合金内部の硫化腐蝕を助長するの
で、Tiの上限を3.25%とした。硫化腐蝕の助長を抑制で
きるより好ましいTiの上限は2.75%である。一方、Ti含
有量が少な過ぎると、必要な高温強度を維持するのが困
難となることから0.5 %以上を含有すると良い。
Ti and Al are mainly converted into Ni 3 (Al, Ti) to form γ ′
It is an important element that forms a phase and provides precipitation strengthening. However, the higher the amount of Ti, the more sulfur corrosion inside the alloy is promoted. Therefore, the upper limit of Ti was set to 3.25%. The more preferable upper limit of Ti that can suppress the promotion of sulfide corrosion is 2.75%. On the other hand, if the Ti content is too small, it becomes difficult to maintain the required high-temperature strength, so it is preferable to contain 0.5% or more.

【0042】Tiを上述の範囲で含有させた場合、十分な
量のγ' 相を形成して高温強度を保持するためにはAl量
を1.2 %以上添加することが必要である。Al量の増加は
高温強度のみでなく耐硫化性向上にも有効である。しか
し、Alの過剰添加は高温での伸び、絞りの低下や熱間加
工性の低下を招くため、Alの上限は4.0 %とする。高温
強度、耐硫化性、高温延性、熱間加工性のバランスから
は、Al量の下限は1.6%とすることが望ましい。このよ
うにTiとAlの含有量を制御することで高温強度と耐高温
硫化腐食性の向上が図られる。
When Ti is contained in the above range, it is necessary to add 1.2% or more of Al in order to form a sufficient amount of γ 'phase and maintain high-temperature strength. An increase in the amount of Al is effective not only in high-temperature strength but also in improving sulfidation resistance. However, excessive addition of Al causes elongation at high temperatures, reduction in drawing, and reduction in hot workability. Therefore, the upper limit of Al is set to 4.0%. From the balance of high-temperature strength, sulfidation resistance, high-temperature ductility, and hot workability, the lower limit of the Al content is preferably 1.6%. By controlling the contents of Ti and Al in this manner, high-temperature strength and high-temperature sulfide corrosion resistance are improved.

【0043】また、本発明では必須の添加元素ではない
が、粒界強度を大きくし、粒界破壊を抑制できる元素と
して、B を0.01%以下、Zrを0.1 %以下の何れか若しく
は両方を含有することができる。しかしながら、B およ
びZrは、それぞれ0.01%および0.1 %を超えて添加する
と、粒界の融点を下げて溶融損傷を起こしやすくなるた
め、それぞれ0.01%以下および0.1 %以下に限定する。
Although not an essential element in the present invention, B or B contains 0.01% or less and Zr or 0.1% or less as an element capable of increasing grain boundary strength and suppressing grain boundary destruction. can do. However, if B and Zr are added in amounts exceeding 0.01% and 0.1%, respectively, the melting point of the grain boundaries is lowered and melting damage is likely to occur, so that the contents are limited to 0.01% or less and 0.1% or less, respectively.

【0044】更に、本発明では、上述のように仕上熱間
加工温度を若干低めにする必要があるため、熱間加工性
を向上させる元素として、Mgを最大で0.02% 添加しても
良い。しかし、0.02% を超えて添加すると、融点の低い
Mgの金属間化合物が粒界に形成され易く、熱間加工性を
阻害するので上限は0.02% とすると良い。同様の効果を
持つ元素としてCaを同じく0.02% 以下添加することもで
きる。
Further, in the present invention, since the finishing hot working temperature needs to be slightly lowered as described above, Mg may be added at a maximum of 0.02% as an element for improving hot workability. However, when added in excess of 0.02%, the melting point is low.
The upper limit is preferably set to 0.02% because Mg intermetallic compounds are easily formed at grain boundaries and hinder hot workability. As an element having the same effect, Ca can also be added in an amount of 0.02% or less.

【0045】なお以下の元素は示される範囲内で本発明
合金に含まれても良い。P ≦0.04% 、S ≦0.01% 、Cu≦
0.30% 、V ≦0.5%、Y ≦0.3%、希土類元素≦0.02% 、W
≦0.5%、Nb≦0.5%、Ta≦0.5%
The following elements may be included in the alloy of the present invention within the ranges shown. P ≤ 0.04%, S ≤ 0.01%, Cu ≤
0.30%, V ≤ 0.5%, Y ≤ 0.3%, rare earth element ≤ 0.02%, W
≦ 0.5%, Nb ≦ 0.5%, Ta ≦ 0.5%

【0046】[0046]

【実施例】以下に実施例として本発明を更に詳しく説明
する。
The present invention will be described below in more detail by way of examples.

【0047】不活性雰囲気の誘導加熱炉で溶製し、不活
性雰囲気で鋳造した後、熱間加工として、60×130 ×10
00mmの角柱状に鍛造したものおよびガスエキスパンダタ
ービンのディスクを模擬したφ500mm あるいはφ1400mm
の円盤状に鍛造したものを供試材として用いた。その化
学組成を表1に示す。合金A は、特開平9-227975号に開
示される合金であり、合金B は、ワスパロイとして従来
知られている合金である。
After being melted in an induction heating furnace in an inert atmosphere and cast in an inert atmosphere, 60 × 130 × 10
Φ500mm or φ1400mm simulating a 00mm prismatic forged disk and a gas expander turbine disk
The disk-shaped forging was used as a test material. The chemical composition is shown in Table 1. Alloy A is an alloy disclosed in JP-A-9-227975, and alloy B is an alloy conventionally known as Waspaloy.

【0048】[0048]

【表1】 [Table 1]

【0049】これらの合金A 、B に表2に示す鍛造と熱
処理を施した上で、強度特性および耐高温硫化腐食特性
評価をした。表2で「合金」欄に示してあるのは表1の
合金に対応する。「鍛造条件」欄に記号L で示されてい
るのは、鋼塊を分塊し、鍛造を繰返して1010℃で仕上鍛
造( 仕上熱間加工) したものであり、一方記号H で示さ
れているのは鋼塊を分塊し、鍛造を繰返して1080℃で仕
上鍛造( 仕上熱間加工) したものである。
These alloys A and B were subjected to forging and heat treatment shown in Table 2, and then evaluated for strength characteristics and resistance to high-temperature sulfide corrosion. What is shown in the “alloy” column in Table 2 corresponds to the alloy in Table 1. In the column of `` forging conditions '', the symbol L is obtained by dividing the steel ingot, repeating forging and finish forging (finish hot working) at 1010 ° C, while the symbol H indicates It is made by ingoting a steel ingot, repeatedly forging, and finish forging (finish hot working) at 1080 ° C.

【0050】[0050]

【表2】 [Table 2]

【0051】鍛造温度と炭化物固溶温度との関係を確認
した。確認のために、鍛造後の試料( 鍛造条件L)から、
20mmのブロックを切り出し、そのブロックを1010℃ある
いは1080℃の温度で4 時間加熱後、空冷したブロックを
走査型電子顕微鏡にてミクロ組織を調べた。ここで小さ
な試料を用いたのは冷却速度を早くして、冷却途中に新
たなCr炭化物の析出を避けるためである。電子顕微鏡で
ミクロ組織を調べた結果を図1に示す。1010℃加熱後で
は粒界に炭化物が存在している(図1(a))が、1080
℃加熱では殆ど固溶している(図1(b))ことが分か
る。従ってこの場合、鍛造条件L が炭化物の固溶温度以
下における鍛造という条件に相当する。
The relationship between the forging temperature and the carbide solid solution temperature was confirmed. For confirmation, from the sample after forging (forging condition L),
After cutting out a block of 20 mm, the block was heated at a temperature of 1010 ° C. or 1080 ° C. for 4 hours, and the microstructure of the air-cooled block was examined with a scanning electron microscope. The reason for using a small sample here is to increase the cooling rate and avoid precipitation of new Cr carbide during cooling. The result of examining the microstructure with an electron microscope is shown in FIG. After heating at 1010 ° C, carbides are present at the grain boundaries (Fig. 1 (a)).
It can be seen that the solid solution was almost completely formed by heating at a temperature of ° C. (FIG. 1B). Therefore, in this case, forging condition L corresponds to the condition of forging at a temperature equal to or lower than the solid solution temperature of carbide.

【0052】次に固溶化処理温度と再結晶温度との関係
を調べた。仕上鍛造後の試料( 鍛造条件L)を1010℃ある
いは1040℃の温度で4 時間加熱した後に上と同様にミク
ロ組織を調べ、その結果を図2に示す。加熱温度が1010
℃では再結晶は殆ど起こっていない(図2(a))が、
1040℃ではほぼ再結晶が起こっている(図2(b))の
で、再結晶温度は1010℃を超えて1040℃未満の温度領域
にあることを確認した。
Next, the relationship between the solution treatment temperature and the recrystallization temperature was examined. The sample after the forging (forging condition L) was heated at a temperature of 1010 ° C. or 1040 ° C. for 4 hours, and the microstructure was examined in the same manner as above. The result is shown in FIG. Heating temperature is 1010
At ℃, recrystallization hardly occurred (FIG. 2 (a)),
Since recrystallization almost occurred at 1040 ° C. (FIG. 2B), it was confirmed that the recrystallization temperature was in a temperature range of more than 1010 ° C. and less than 1040 ° C.

【0053】そして、次に、仕上鍛造をした合金A,B
の供試材から各種試験片を採取できる大きさのブロック
を切り出し、表2に示す種々の熱処理を施してから各種
試験片を作製しそれぞれの強度特性と耐高温硫化腐食特
性の評価をした。
Then, finish-forged alloys A and B
From the test material, blocks were cut out in a size sufficient to collect various test pieces, and subjected to various heat treatments shown in Table 2, and then various test pieces were prepared, and their strength characteristics and high-temperature sulfurization corrosion resistance were evaluated.

【0054】強度特性は、室温および538 ℃における引
張特性と、温度732 ℃,応力517MPaにおけるクリープ破
断特性で評価した。耐高温硫化腐食特性は、試験片を60
0 ℃におけるN2-3%H2-0.1%H2S 混合ガス雰囲気中で588M
Paの引張応力を負荷しながら96時間暴露し、破断の有無
および断面観察により発生した粒界硫化腐食の深さで評
価した。表3にそれぞれの試験片の強度特性ならびに耐
高温硫化腐食特性を示す。
The strength properties were evaluated based on the tensile properties at room temperature and 538 ° C. and the creep rupture properties at a temperature of 732 ° C. and a stress of 517 MPa. The test specimens have a high temperature sulfidation corrosion resistance of 60
N 2 -3% H 2 -0.1% H 2 S at 0 ℃ 588M in mixed gas atmosphere
Exposure was performed for 96 hours while applying a tensile stress of Pa, and evaluation was made based on the presence or absence of fracture and the depth of intergranular sulfide corrosion generated by observing the cross section. Table 3 shows the strength characteristics and the high-temperature sulfidation corrosion resistance of each test piece.

【0055】[0055]

【表3】 [Table 3]

【0056】表3の結果から、機械的特性に関しては、
従来合金( ワスパロイ) の値がNo.4及びNo.21 のレベル
であり、本発明の処理をしたものの機械的性質はそれと
比較してほぼ同等であり十分な強度が得られている。ま
た、本発明の鍛造、熱処理(条件No.1〜9 )を施した合
金A,Bは硫化腐食環境下での最大侵食深さが何れも30
μm以下と非常に小さい。これに対し、比較例の鍛造、
熱処理(条件No.20 、21)を施した合金A,Bは応力負
荷下で、合金内部に200 μm 以上の深い粒界侵食を発生
しているか、或いは96時間の暴露試験に耐えられず破断
してしまっている。
From the results in Table 3, regarding the mechanical properties,
The value of the conventional alloy (Waspalloy) is at the level of No. 4 and No. 21, and the mechanical properties of the treated alloy of the present invention are almost the same as those of the alloy and sufficient strength is obtained. In addition, the alloys A and B subjected to forging and heat treatment (conditions Nos. 1 to 9) of the present invention have a maximum pit depth of 30 in a sulfide corrosion environment.
Very small, less than μm. On the other hand, forging of the comparative example,
Alloys A and B that have been heat-treated (conditions Nos. 20 and 21) have deep grain boundary erosion of 200 μm or more inside the alloy under stress load, or cannot withstand a 96-hour exposure test and break. Has been done.

【0057】この破断した合金の断面を観察すると、図
3に示す通り、激しい粒界硫化腐食を伴っており、合金
の破断が、粒界硫化腐食に起因していることが伺える。
Observation of the cross section of the fractured alloy shows that, as shown in FIG. 3, severe intergranular sulfide corrosion is involved, and it is evident that the fracture of the alloy is caused by intergranular sulfide corrosion.

【0058】これは前述のように鍛造加熱温度は低いも
のの固溶化処理温度が高いために炭化物の固溶と再結晶
が進み、再結晶により新たに形成された結晶粒界に続く
安定化処理ならびに時効処理により炭化物が析出しその
周囲にCrの欠乏層が形成されるために耐硫化性が劣化し
たと考えられる。また比較例No.22 、23は固溶化処理温
度は低いものの鍛造加熱温度が高かったために耐高温硫
化腐食性が十分でなかった。
As described above, since the forging heating temperature is low but the solution treatment temperature is high, the solid solution and recrystallization of carbides proceed, and the stabilization treatment following the crystal grain boundaries newly formed by recrystallization and It is considered that carbides were precipitated by the aging treatment and a Cr-deficient layer was formed around the carbides, thereby deteriorating the sulfuration resistance. In Comparative Examples Nos. 22 and 23, the solution treatment temperature was low, but the forging heating temperature was high, so that the high-temperature sulfidation corrosion resistance was not sufficient.

【0059】更に本発明の中で、安定化処理を860 ℃以
上920 ℃以下、かつ時効処理を680℃以上760 ℃以下で
行なったNo.5〜9 の耐高温硫化腐食性は最大粒界侵食深
さが10μm以下であり、No.1〜4よりも一段と耐高温硫
化腐食特性が向上している。
Further, in the present invention, the high temperature sulfidation corrosion resistance of Nos. 5 to 9 in which the stabilizing treatment was performed at 860 ° C. to 920 ° C. and the aging treatment was performed at 680 ° C. to 760 ° C. The depth is 10 μm or less, and the high-temperature sulfidation corrosion resistance is further improved as compared with Nos. 1 to 4.

【0060】この理由は次のストライカ試験による粒界
腐食マップから理解することができる。このストライカ
試験は粒界炭化物の析出に起因するCr欠乏層生成の度合
い(粒界腐食感受性) を評価するものであり、上述した
ように、ここで問題とする高温硫化腐食は、粒界へのCr
炭化物析出による粒界近傍のCr欠乏層生成に起因するた
め、ストライカ試験により評価されたCr欠乏層の度合い
は、高温硫化腐食性に比例すると考えられる。このこと
はストライカ試験および高温硫化腐食試験の結果を比較
することにより確認した。
The reason can be understood from the intergranular corrosion map obtained by the following striker test. This striker test evaluates the degree of Cr deficiency layer formation (intergranular corrosion susceptibility) due to the precipitation of intergranular carbides. Cr
It is considered that the degree of the Cr-depleted layer evaluated by the striker test is proportional to the high-temperature sulfidation corrosion because the Cr-depleted layer is formed near the grain boundary due to carbide precipitation. This was confirmed by comparing the results of the striker test and the high-temperature sulfidation corrosion test.

【0061】表4 に、ストライカ試験に供試した試験片
の熱処理条件を示す。なお、試験片は、合金A の鍛造条
件L の供試材を用いた。また、図4には、それらのスト
ライカ試験の腐食重量減を温度と時間に対して図示し、
Cr欠乏層の生成領域を表した粒界腐食領域マップを示
す。
Table 4 shows the heat treatment conditions of the test pieces subjected to the striker test. As the test piece, a test material of forging condition L of alloy A was used. FIG. 4 shows the weight loss of corrosion in the striker test as a function of temperature and time.
4 shows a grain boundary corrosion region map showing a region where a Cr deficiency layer is formed.

【0062】[0062]

【表4】 [Table 4]

【0063】図4から、従来なされている843 ℃×4h空
冷の安定化処理および760 ℃×16h空冷の時効処理は、
最も粒界腐食感受性が高くなる熱処理条件の一つであ
り、耐高温硫化腐食性に関しては最適な条件とは言えな
いことが判る。一方、より高温域での安定化および低温
域での時効処理を施すと、粒界腐食感受性は低く、耐高
温硫化腐食性が向上することが判る。以上のように、固
溶化処理後の安定化処理を従来の条件よりも高温で施
し、かつ時効処理を従来の条件よりも低温で施すことに
よって、耐高温硫化腐食性を大きく向上させることがで
きると考えられ、本発明のNo.5〜9 の結果と一致してい
る。
From FIG. 4, the conventional stabilization process of 843 ° C. × 4 h air cooling and the aging process of 760 ° C. × 16 h air cooling are as follows.
It is one of the heat treatment conditions that gives the highest intergranular corrosion susceptibility, and it can be seen that it is not the optimum condition for the high-temperature sulfidation corrosion resistance. On the other hand, it is understood that when the stabilization in a higher temperature range and the aging treatment in a lower temperature range are performed, the intergranular corrosion susceptibility is low, and the high temperature sulfurization corrosion resistance is improved. As described above, the stabilization treatment after the solution treatment is performed at a higher temperature than the conventional condition, and the aging treatment is performed at a lower temperature than the conventional condition, whereby the high-temperature sulfidation corrosion resistance can be significantly improved. This is consistent with the results of Nos. 5 to 9 of the present invention.

【0064】以上の結果から、本発明の鍛造および熱処
理をNi基耐熱合金に施すことにより、従来と同程度の
高温強度特性を維持しながら耐高温硫化腐食性を著しく
改善することが可能である。
From the above results, by subjecting the Ni-based heat-resistant alloy to the forging and heat treatment of the present invention, it is possible to remarkably improve the high-temperature sulfide corrosion resistance while maintaining the same high-temperature strength characteristics as the conventional one. .

【0065】[0065]

【発明の効果】以上説明したように、本発明は従来の強
度のみを意識した製造方法と比較して、十分な高温強度
特性を維持しつつ、より耐高温硫化腐食性、特に耐粒界
腐食性を改善したNi基合金を提供するものであり、これ
により、高温の硫化腐食性環境において信頼性の高い装
置部材を提供することができる。
As described above, the present invention has a higher resistance to high-temperature sulfidation corrosion, particularly to intergranular corrosion, while maintaining sufficient high-temperature strength characteristics, as compared with the conventional production method only considering strength. It is intended to provide a Ni-based alloy having improved susceptibility, whereby a highly reliable device member can be provided in a high temperature sulfide corrosive environment.

【0066】今後、環境への負荷低減や省エネルギー化
に伴った化石燃料の質の低下、およびエネルギー装置の
高効率化などにより、タービンやボイラなどの高温機器
の使用環境は厳しくなる傾向にある。従って、本件のよ
うな装置部材の耐食性向上に関する発明は、今後重要な
意味を持つものと言える。
In the future, the use environment of high-temperature equipment such as turbines and boilers tends to be severer due to a decrease in the quality of fossil fuel due to a reduction in environmental load and energy saving, and an increase in the efficiency of energy devices. Therefore, the invention relating to the improvement of the corrosion resistance of the device member as in the present case can be said to have an important meaning in the future.

【図面の簡単な説明】[Brief description of the drawings]

【図1】各温度に加熱後の結晶粒界の電子顕微鏡写真で
ある。
FIG. 1 is an electron micrograph of a grain boundary after heating to each temperature.

【図2】各温度に加熱後の顕微鏡写真である。FIG. 2 is a micrograph after heating to each temperature.

【図3】応力負荷条件下で硫化腐食させた後の破断面の
電子顕微鏡写真である。
FIG. 3 is an electron micrograph of a fracture surface after sulfidation corrosion under stress loading conditions.

【図4】ストライカ試験による温度- 時間- 粒界腐食感
受性曲線である。
FIG. 4 is a temperature-time-intergranular corrosion susceptibility curve obtained by a striker test.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成13年6月12日(2001.6.1
2)
[Submission date] June 12, 2001 (2001.6.1)
2)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0021[Correction target item name] 0021

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0021】なお、熱間加工のうち、例えば熱間加工を
鍛造とした場合、鍛造は大きく分けて鋼塊( インゴッ
ト) から鋼片( ビレット、ブルーム等の中間形状) にす
分塊工程と、鋼片から更に最終形状に近い仕上鍛造に
分けることができ、本発明は、このように、最終形状に
近づけるような仕上熱間加工について規定するものであ
る。なお、本発明で言う熱間加工には、鍛造、圧延、引
抜き、押出し等種々の熱間加工を含むものであるが、本
発明で規定する合金組成では、例えば比較的大型のディ
スク等に適用される場合が多く、その場合、熱間加工さ
れる材料自体も大型となること、また、本発明で規定す
る比較的低温での仕上熱間加工では、変形抵抗が高くな
ることから、低温での仕上熱間加工時の温度を低温に保
ち易い、鍛造に最も適している。
In the case of hot working, for example, forging in hot working, the forging is roughly divided into an ingot- forming step of turning a steel ingot (ingot) into a steel slab (intermediate shape such as billet or bloom); The steel forging can be further divided into a finish forging having a shape close to the final shape, and the present invention thus defines a finish hot working that approximates the final shape. The hot working in the present invention includes various hot workings such as forging, rolling, drawing, and extrusion. However, the alloy composition specified in the present invention is applied to, for example, a relatively large disk or the like. In many cases, in that case, the material to be hot-worked is also large, and the finish at a relatively low temperature specified in the present invention has a high deformation resistance, so that the finish at a low temperature is required. It is most suitable for forging because the temperature during hot working is easily kept at a low temperature.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 682 C22F 1/00 682 683 683 691 691B 691C 694 694B (72)発明者 大野 丈博 島根県安来市安来町2107番地2 日立金属 株式会社安来工場内 (72)発明者 上原 利弘 島根県安来市安来町2107番地2 日立金属 株式会社冶金研究所内 (72)発明者 八鍬 浩 神奈川県藤沢市本藤沢四丁目2番1号 株 式会社荏原総合研究所内 (72)発明者 宮坂 松甫 神奈川県藤沢市本藤沢四丁目2番1号 株 式会社荏原総合研究所内 (72)発明者 中浜 修平 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 澤田 茂 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 Fターム(参考) 3G002 EA06 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) C22F 1/00 682 C22F 1/00 682 683 683 691 691B 691C 694 694B (72) Inventor Takehiro Ono Yasugi-cho, Yasugi-shi, Shimane 2107-2 Hitachi Metals Co., Ltd. Yasugi Plant (72) Inventor Toshihiro Uehara 2107-2 Yasugi-cho, Yasugi City, Shimane Prefecture Hitachi Metals Co., Ltd. No. 1 Inside Ebara Research Institute, Inc. (72) Inventor Shobo Miyasaka 4-2-1 Motofujisawa, Fujisawa-shi, Kanagawa Prefecture Inside Ebara Research Institute, Ltd. (72) Inventor Shuhei Nakahama Haneda, Ota-ku, Tokyo 11-1 Asahicho, Ebara Corporation (72) Inventor Shigeru Sawada 11-1, Haneda Asahimachi, Ota-ku, Tokyo F-term in Ebara Corporation 3G002 EA06

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、C :0.005 〜0.1 %、Cr:18
〜21%、Co:12〜15%、Mo:3.5 〜5.0 %、Ti:3.25%
以下、Al:1.2 〜4.0 %を含有し、残部は実質的にNiか
らなるNi基合金の製造方法であって、仕上熱間加工を炭
化物固溶温度以下で行った後、炭化物固溶温度以下で且
つ再結晶温度以下での固溶化処理後、安定化処理および
時効処理を行うことを特徴とする耐高温硫化腐食性に優
れたNi基合金の製造方法。
(1) C: 0.005 to 0.1%, Cr: 18% by mass
~ 21%, Co: 12 ~ 15%, Mo: 3.5 ~ 5.0%, Ti: 3.25%
The following is a method for producing a Ni-based alloy containing Al: 1.2 to 4.0%, with the balance substantially consisting of Ni, after finishing hot working at a carbide solid solution temperature or lower, and then at a carbide solid solution temperature or lower. A method for producing a Ni-base alloy having excellent resistance to high-temperature sulfidation corrosion, wherein a stabilization treatment and an aging treatment are performed after a solution treatment at a temperature below the recrystallization temperature.
【請求項2】 安定化処理は860 ℃以上920 ℃以下で1
時間〜16時間、時効処理は680 ℃以上760 ℃以下で4 〜
48時間の条件で行うことを特徴とする請求項1に記載の
耐高温硫化腐食性に優れたNi基合金の製造方法。
2. The stabilization treatment is performed at 860 ° C. or more and 920 ° C. or less.
Time to 16 hours, aging at 680 ° C to 760 ° C
The method for producing a Ni-based alloy excellent in high-temperature sulfidation corrosion resistance according to claim 1, wherein the method is performed under a condition of 48 hours.
【請求項3】 620 ℃以上〜前記時効処理温度マイナス
20℃の温度で8 時間以上の二次時効処理を行うことを特
徴とする請求項1 または2に記載の耐高温硫化腐食性に
優れたNi基合金の製造方法。
3. An aging treatment temperature minus 620 ° C. or more.
3. The method for producing a Ni-based alloy excellent in high-temperature sulfidation corrosion resistance according to claim 1 or 2, wherein a secondary aging treatment is performed at a temperature of 20 ° C for 8 hours or more.
【請求項4】 質量%で、Ti:2.75%以下、Al:1.6 〜
4.0 %を含むことを特徴とする請求項1 乃至3の何れか
に記載の耐高温硫化腐食性に優れたNi基合金の製造方
法。
4. In mass%, Ti: 2.75% or less, Al: 1.6 to
The method for producing a Ni-based alloy having excellent resistance to high-temperature sulfidation corrosion according to any one of claims 1 to 3, characterized by containing 4.0%.
【請求項5】 質量%で、B :0.01%以下、Zr:0.1 %
以下の何れか一種以上を含むことを特徴とする請求項1
乃至4の何れかに記載の耐高温硫化腐食性に優れたNi基
合金の製造方法。
5. B: 0.01% or less, Zr: 0.1% by mass%
Claim 1 characterized by including one or more of the following:
5. The method for producing a Ni-based alloy having excellent resistance to high-temperature sulfidation corrosion according to any one of claims 1 to 4.
JP2000278277A 2000-09-13 2000-09-13 Method for producing Ni-base alloy having excellent resistance to high-temperature sulfidation corrosion Expired - Lifetime JP4382269B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000278277A JP4382269B2 (en) 2000-09-13 2000-09-13 Method for producing Ni-base alloy having excellent resistance to high-temperature sulfidation corrosion
DE60100884T DE60100884T2 (en) 2000-09-13 2001-07-16 Process for producing a nickel-based alloy with improved high temperature sulfidation corrosion resistance
EP01116668A EP1191118B1 (en) 2000-09-13 2001-07-16 Manufacturing process of nickel-based alloy having improved high temperature sulfidation-corrosion resistance
US09/906,098 US6562157B2 (en) 2000-09-13 2001-07-17 Manufacturing process of nickel-based alloy having improved high temperature sulfidation-corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000278277A JP4382269B2 (en) 2000-09-13 2000-09-13 Method for producing Ni-base alloy having excellent resistance to high-temperature sulfidation corrosion

Publications (2)

Publication Number Publication Date
JP2002088455A true JP2002088455A (en) 2002-03-27
JP4382269B2 JP4382269B2 (en) 2009-12-09

Family

ID=18763467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000278277A Expired - Lifetime JP4382269B2 (en) 2000-09-13 2000-09-13 Method for producing Ni-base alloy having excellent resistance to high-temperature sulfidation corrosion

Country Status (4)

Country Link
US (1) US6562157B2 (en)
EP (1) EP1191118B1 (en)
JP (1) JP4382269B2 (en)
DE (1) DE60100884T2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009012877A1 (en) 2008-03-31 2009-10-15 Kabushiki Kaisha Toshiba Nickel-based alloy for a turbine rotor of a steam turbine and turbine rotor of a steam turbine
JP2010275597A (en) * 2009-05-29 2010-12-09 Toshiba Corp Nickel-based alloy for turbine rotor of steam turbine, and the turbine rotor of steam turbine
JP2011068919A (en) * 2009-09-24 2011-04-07 Hitachi Ltd Fe-ni based alloy with high-strength hydrogen embrittlement resistant
US8083874B2 (en) 2004-04-27 2011-12-27 Mitsubishi Heavy Industries, Ltd. Method for producing low thermal expansion Ni-base superalloy
CN103710656A (en) * 2013-12-28 2014-04-09 西安热工研究院有限公司 Deformation machining process for nickel based alloys and iron nickel based alloys
CN105925849A (en) * 2016-05-04 2016-09-07 中国第重型机械股份公司 Control method for nickel-based alloy forgings for 700-DEG C ultra-supercritical steam turbine rotor

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4830466B2 (en) * 2005-01-19 2011-12-07 大同特殊鋼株式会社 Heat-resistant alloy for exhaust valves that can withstand use at 900 ° C and exhaust valves using the alloys
US7708846B2 (en) * 2005-11-28 2010-05-04 United Technologies Corporation Superalloy stabilization
US8663404B2 (en) * 2007-01-08 2014-03-04 General Electric Company Heat treatment method and components treated according to the method
JP4982324B2 (en) 2007-10-19 2012-07-25 株式会社日立製作所 Ni-based forged alloy, forged parts for steam turbine plant, boiler tube for steam turbine plant, bolt for steam turbine plant, and steam turbine rotor
JP4987921B2 (en) * 2009-09-04 2012-08-01 株式会社日立製作所 Ni-based alloy and cast component for steam turbine using the same, steam turbine rotor, boiler tube for steam turbine plant, bolt for steam turbine plant, and nut for steam turbine plant
CN104988357A (en) * 2015-06-17 2015-10-21 上海大学兴化特种不锈钢研究院 Nickel base alloy material for ultra-supercritical steam turbine
CN104988442B (en) * 2015-07-10 2017-03-08 中南大学 A kind of thinning method of GH4169 alloy forged piece grain structure
JP6746457B2 (en) * 2016-10-07 2020-08-26 三菱日立パワーシステムズ株式会社 Turbine blade manufacturing method
DE102020116868A1 (en) 2019-07-05 2021-01-07 Vdm Metals International Gmbh Nickel-cobalt alloy powder and method of manufacturing the powder
CN113025837A (en) * 2019-12-25 2021-06-25 丹阳市海威电热合金有限公司 Wear-resistant high-temperature-resistant nickel-chromium alloy and manufacturing method thereof
CN113969380B (en) * 2020-07-23 2022-07-15 宝武特种冶金有限公司 Manufacturing method of nuclear-grade nickel-based alloy high-performance bar, bar and application
CN113560481B (en) * 2021-07-30 2023-07-18 内蒙古工业大学 Thermal processing technology of GH4738 nickel-based superalloy
CN115772617B (en) * 2021-09-07 2023-12-15 中国石油天然气集团有限公司 Nickel-based alloy coiled tubing for underground complex environment and manufacturing method
CN114085966B (en) * 2021-11-19 2023-03-10 华能国际电力股份有限公司 Under-aging heat treatment process for precipitation strengthening type high-temperature alloy
CN115233125B (en) * 2022-07-25 2023-03-10 华能国际电力股份有限公司 Heat treatment method of thick-wall high-temperature alloy part
CN116665800B (en) * 2023-04-07 2024-02-20 南京航空航天大学 Nickel-based superalloy corrosion creep behavior prediction method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2329755A1 (en) 1975-10-31 1977-05-27 Armines NICKEL-CHROME-COBALT ALLOY WITH ALUMINUM AND TITANIUM FOR FORGE PARTS
JPS58177445A (en) * 1982-04-12 1983-10-18 Sumitomo Metal Ind Ltd Heat treatment of ni-cr alloy
CH654593A5 (en) * 1983-09-28 1986-02-28 Bbc Brown Boveri & Cie METHOD FOR PRODUCING A FINE-GRAIN WORKPIECE FROM A NICKEL-BASED SUPER ALLOY.
JP2778705B2 (en) 1988-09-30 1998-07-23 日立金属株式会社 Ni-based super heat-resistant alloy and method for producing the same
JP3912815B2 (en) 1996-02-16 2007-05-09 株式会社荏原製作所 High temperature sulfidation corrosion resistant Ni-base alloy
JP4382244B2 (en) * 2000-04-11 2009-12-09 日立金属株式会社 Method for producing Ni-base alloy having excellent resistance to high-temperature sulfidation corrosion

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8083874B2 (en) 2004-04-27 2011-12-27 Mitsubishi Heavy Industries, Ltd. Method for producing low thermal expansion Ni-base superalloy
DE102009012877A1 (en) 2008-03-31 2009-10-15 Kabushiki Kaisha Toshiba Nickel-based alloy for a turbine rotor of a steam turbine and turbine rotor of a steam turbine
JP2010275597A (en) * 2009-05-29 2010-12-09 Toshiba Corp Nickel-based alloy for turbine rotor of steam turbine, and the turbine rotor of steam turbine
JP2011068919A (en) * 2009-09-24 2011-04-07 Hitachi Ltd Fe-ni based alloy with high-strength hydrogen embrittlement resistant
CN103710656A (en) * 2013-12-28 2014-04-09 西安热工研究院有限公司 Deformation machining process for nickel based alloys and iron nickel based alloys
CN105925849A (en) * 2016-05-04 2016-09-07 中国第重型机械股份公司 Control method for nickel-based alloy forgings for 700-DEG C ultra-supercritical steam turbine rotor

Also Published As

Publication number Publication date
DE60100884D1 (en) 2003-11-06
US20020053376A1 (en) 2002-05-09
EP1191118B1 (en) 2003-10-01
DE60100884T2 (en) 2004-07-22
US6562157B2 (en) 2003-05-13
EP1191118A1 (en) 2002-03-27
JP4382269B2 (en) 2009-12-09

Similar Documents

Publication Publication Date Title
JP4382269B2 (en) Method for producing Ni-base alloy having excellent resistance to high-temperature sulfidation corrosion
JP4382244B2 (en) Method for producing Ni-base alloy having excellent resistance to high-temperature sulfidation corrosion
JP4546318B2 (en) Ni-based alloy member and manufacturing method thereof, turbine engine component, welding material and manufacturing method thereof
JP6057363B1 (en) Method for producing Ni-base superalloy
JP5073905B2 (en) Nickel-base superalloy and turbine parts manufactured from the superalloy
JP2778705B2 (en) Ni-based super heat-resistant alloy and method for producing the same
US5779821A (en) Rotor for steam turbine and manufacturing method thereof
EP1591548A1 (en) Method for producing of a low thermal expansion Ni-base superalloy
KR102403029B1 (en) Precipitation hardenable cobalt-nickel based superalloys and articles made therefrom
JPWO2006059805A1 (en) Heat resistant superalloy
JP2003113434A (en) Superalloy excellent in high-temperature sulfur corrosion resistance and manufacturing method therefor
KR20190046729A (en) Low alloy steel for geothermal power generation turbine rotor, and low alloy material for geothermal power generation turbine rotor and method for manufacturing the same
JP2010215989A (en) Ni BASE ALLOY FOR TURBINE ROTOR OF STEAM TURBINE AND TURBINE ROTOR OF STEAM TURBINE USING THE SAME
WO2016052423A1 (en) Ni‑BASED SUPERHEAT-RESISTANT ALLOY
JP2006118016A (en) Ni-Fe-BASED SUPERALLOY, ITS PRODUCTION METHOD AND GAS TURBINE
JPH09272933A (en) High strength nickel-base superalloy for directional solidification
JP4387331B2 (en) Ni-Fe base alloy and method for producing Ni-Fe base alloy material
JP2014070230A (en) METHOD FOR PRODUCING Ni-BASED SUPERALLOY
JPS5834129A (en) Heat-resistant metallic material
JP2004256840A (en) COMPOSITE REINFORCED TYPE Ni BASED SUPERALLOY, AND PRODUCTION METHOD THEREFOR
JP4635065B2 (en) Ni-based alloy for steam turbine turbine rotor and steam turbine turbine rotor
JP4923996B2 (en) Heat-resistant spring and method for manufacturing the same
JP2002235134A (en) Heat resistant alloy having excellent strength and toughness and heat resistant alloy parts
JPH09227975A (en) High temperature sulfidation corrosion resistant nickel base alloy
JPH06287667A (en) Heat resistant cast co-base alloy

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20031205

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040308

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4382269

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term