JP2002235134A - Heat resistant alloy having excellent strength and toughness and heat resistant alloy parts - Google Patents

Heat resistant alloy having excellent strength and toughness and heat resistant alloy parts

Info

Publication number
JP2002235134A
JP2002235134A JP2001029406A JP2001029406A JP2002235134A JP 2002235134 A JP2002235134 A JP 2002235134A JP 2001029406 A JP2001029406 A JP 2001029406A JP 2001029406 A JP2001029406 A JP 2001029406A JP 2002235134 A JP2002235134 A JP 2002235134A
Authority
JP
Japan
Prior art keywords
resistant alloy
heat
heat treatment
less
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001029406A
Other languages
Japanese (ja)
Inventor
Ryuichi Ishii
井 龍 一 石
Motoji Tsubota
田 基 司 坪
Yoichi Tsuda
田 陽 一 津
Masayuki Yamada
田 政 之 山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001029406A priority Critical patent/JP2002235134A/en
Publication of JP2002235134A publication Critical patent/JP2002235134A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a heat resistant alloy which has excellent strength and toughness, and can exhibit excellent characteristics over a long period even in a severe vapor environment where temperature and pressure are increased, and heat resistant alloy parts. SOLUTION: The heat resistant alloy having excellent strength and toughness has a composition containing, by weight, 50-55% Ni, 17 to 21% Cr, Nb or Nb and Ta by 4.75 to 5.5% in total, 2.8 to 3.3% Mo, 0.65 to 1.15% Ti, 0.2 to 0.8% Al, <=1.0% Co, <=0.08% C, <=0.35% Mn, <=0.35% Si, <=0.015% P, <=0.006% B and <=0.3% Cu, and the balance Fe with inevitable impurities. Its 0.2% cold proof stress at normal temperature after solution heat treatment and subsequent aging heat treatment is >=1,034 MPa, and Charpy impact value is >=50 J/cm2. The heat resistant alloy parts use this alloy.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高温で長期間使用
される耐熱合金および耐熱合金部品に関するものであ
る。さらに詳しくは、本発明は、締結部品用として好適
な耐熱合金およびこの素材からなる締結部品に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant alloy and a heat-resistant alloy part used for a long time at a high temperature. More specifically, the present invention relates to a heat-resistant alloy suitable for fastening parts and a fastening part made of this material.

【0002】[0002]

【従来の技術】従来、蒸気タービン高温部におけるボル
ト等の締結部品には、物理的性質が被締結部品と同等で
高温特性が優れたフェライト系耐熱鋼が使用されてき
た。しかし、近年は、環境保全を背景とした火力発電プ
ラントの高効率化が積極的に進められ、600℃程度の
高温蒸気を利用した蒸気タービンが運転されている。こ
のようなタービンにおいてはフェライト系耐熱鋼では締
結部品としての要求特性を満足できず、より高温特性に
優れた鍛造用耐熱合金が使用される傾向にある。
2. Description of the Related Art Conventionally, ferrite heat-resistant steels having the same physical properties as parts to be fastened and excellent in high-temperature properties have been used for fastening parts such as bolts in a high temperature portion of a steam turbine. However, in recent years, the efficiency of thermal power plants has been actively promoted against the background of environmental protection, and steam turbines using high-temperature steam at about 600 ° C. have been operated. In such a turbine, a heat-resistant ferritic steel cannot satisfy the required characteristics as a fastening part, and a heat-resistant alloy for forging having more excellent high-temperature characteristics tends to be used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、これら
の合金は、高温特性は優れているものの600℃程度で
の加熱による脆化が著しく、例えば数万時間の長期間に
わたる信頼性の高い運用が難しい。また、靭性が低い素
材からなる部品は、一定期間毎にこれを取り外す場合に
不可避的に生じる衝撃力に対する抵抗力も低く、割れ、
破壊などの機械的損傷が発生し易い。
However, although these alloys have excellent high-temperature properties, they are significantly embrittled by heating at about 600 ° C., making it difficult to operate them reliably for a long period of time, for example, tens of thousands of hours. . In addition, parts made of a material with low toughness have a low resistance to the impact force inevitably generated when they are removed at regular intervals, cracking,
Mechanical damage such as destruction is likely to occur.

【0004】本発明はこのような課題に対処するために
なされたもので、高強度かつ高靭性を有し、高温で長期
間にわたって脆化を抑制することにより安定な運用が可
能な耐熱合金及び当該合金部品を提供することを目的と
する。
SUMMARY OF THE INVENTION The present invention has been made to address such a problem, and is intended to provide a heat-resistant alloy having high strength and high toughness and capable of stable operation by suppressing embrittlement at high temperatures for a long period of time. The purpose is to provide the alloy component.

【0005】[0005]

【課題を解決するための手段】本発明者らは、当該合金
において、優れた延性、靭性を付与し、高温長時間での
脆化を抑制することが可能な熱処理方法を開発すべく研
究を行った結果、本発明に至ったものである。
Means for Solving the Problems The present inventors have studied to develop a heat treatment method capable of imparting excellent ductility and toughness to the alloy and suppressing embrittlement at a high temperature for a long time. As a result, the present invention has been accomplished.

【0006】即ち、本発明の第1の発明は、重量%で、
Ni:50〜55、Cr:17〜21、NbもしくはN
bとTaの合計:4.75〜5.5、Mo:2.8〜
3.3、Ti:0.65〜1.15、Al:0.2〜
0.8、Co:1.0以下、C:0.08以下、Mn:
0.35以下、Si:0.35以下、P:0.015以
下、B:0.006以下、Cu:0.3以下を含有し、
残部はFe及び不可避的不純物からなり、溶体化熱処理
及びそれに続く時効熱処理後の常温0.2%耐力が1,
034MPa以上でかつシャルピー衝撃値が50J/c
以上であることを特徴とする、強度と靭性に優れた
耐熱合金である。
That is, the first invention of the present invention relates to
Ni: 50 to 55, Cr: 17 to 21, Nb or N
sum of b and Ta: 4.75 to 5.5, Mo: 2.8 to
3.3, Ti: 0.65 to 1.15, Al: 0.2 to
0.8, Co: 1.0 or less, C: 0.08 or less, Mn:
0.35 or less, Si: 0.35 or less, P: 0.015 or less, B: 0.006 or less, Cu: 0.3 or less,
The balance consists of Fe and unavoidable impurities, and has a normal temperature 0.2% proof stress of 1, after solution heat treatment and subsequent aging heat treatment.
034MPa or more and Charpy impact value is 50J / c
characterized in that m 2 or more, an excellent heat-resistant alloy strength and toughness.

【0007】また、第2の発明は、1,010〜1,0
30℃の温度範囲で溶体化熱処理することを特徴とす
る、第1の発明の強度と靭性に優れた耐熱合金である。
[0007] Further, the second invention is characterized in that 1,010 to 1,0
A heat-resistant alloy according to the first invention, which is characterized by being subjected to a solution heat treatment in a temperature range of 30 ° C. and having excellent strength and toughness.

【0008】また、第3の発明は、第2の発明の溶体化
熱処理後に760±8℃で時効熱処理を行い、当該温度
から50℃/hの冷却速度で704±8℃Cまで冷却
し、続いて704±8℃にて時効熱処理を行い、当該温
度から空冷することによって製造されものであることを
特徴とする、第1の発明の強度と靭性に優れた耐熱合金
である。
In a third aspect of the present invention, an aging heat treatment is performed at 760 ± 8 ° C. after the solution heat treatment of the second aspect, and the temperature is reduced from the temperature to 704 ± 8 ° C. at a cooling rate of 50 ° C./h. Subsequently, the heat-resistant alloy according to the first aspect of the invention is characterized by being manufactured by performing an aging heat treatment at 704 ± 8 ° C. and air-cooling from the temperature.

【0009】また、第4の発明は、素材表層の結晶粒度
が、ASTM粒度番号で6以上であることを特徴とす
る、第3の発明の強度と靭性に優れた耐熱合金である。
A fourth invention is the heat-resistant alloy according to the third invention, which is characterized in that the material has a surface grain size of 6 or more in ASTM grain size number, and has excellent strength and toughness.

【0010】また、第5の発明は、素材中心の結晶粒度
が、ASTM粒度番号で4以上であることを特徴とす
る、第3の発明の強度と靭性に優れた耐熱合金である。
A fifth invention is the heat-resistant alloy having excellent strength and toughness according to the third invention, wherein the crystal grain size at the center of the material is 4 or more in ASTM grain size number.

【0011】また、第6の発明は、定常的に566℃以
上649℃以下の温度に晒され、30,000時間後の
シャルピー衝撃値と時効熱処理後のそれとの比が0.8
以上に維持されていることを特徴とする、第1〜第5の
発明の強度と靭性に優れた耐熱合金である。
[0011] The sixth invention is characterized in that the ratio of the Charpy impact value after 30,000 hours to that after the aging heat treatment is 0.8 to 0.8%.
A heat-resistant alloy having excellent strength and toughness according to the first to fifth aspects of the present invention, which is maintained as described above.

【0012】また、第7の発明は、第2の発明または第
3の発明の溶体化熱処理の前後での収縮率が0.08%
以上であることを特徴とする、第1〜第6の発明の強度
と靭性に優れた耐熱合金である。
In a seventh aspect, the shrinkage ratio before and after the solution heat treatment of the second or third aspect is 0.08%.
The heat-resistant alloy according to the first to sixth aspects of the invention is excellent in strength and toughness.

【0013】また、第8の発明は、第1〜第7の発明の
耐熱合金からなる耐熱合金部品であって、定常的に56
6℃以上649℃以下の温度に晒されることを特徴とす
る、強度と靭性に優れた耐熱合金部品である。
According to an eighth aspect of the present invention, there is provided a heat-resistant alloy part comprising the heat-resistant alloy according to any one of the first to seventh aspects.
A heat-resistant alloy part excellent in strength and toughness, characterized by being exposed to a temperature of 6 ° C. or more and 649 ° C. or less.

【0014】また、第9の発明は、定常的に566℃以
上649℃以下に晒され、使用中の収縮率が0.01%
以下であることを特徴とする、第8の発明の強度と靭性
に優れた耐熱合金部品である。
According to a ninth aspect of the present invention, the shrinkage rate during use is 0.01% to 566 ° C.
An eighth aspect of the present invention is a heat-resistant alloy part excellent in strength and toughness, characterized in that:

【0015】また、第10の発明は、時効熱処理後にシ
ョットピーニングを実施し、表層の残留応力を圧縮応力
にすることによって製造されたことを特徴とする、第8
〜第9の発明の強度と靭性に優れた耐熱合金部品であ
る。
A tenth invention is characterized in that the ninth invention is manufactured by performing shot peening after aging heat treatment to reduce residual stress of the surface layer to compressive stress.
A heat-resistant alloy part having excellent strength and toughness according to the ninth invention.

【0016】上記の本発明によれば、優れた靭性を有
し、高温長期間運用中の脆化が小さい当該合金及び当該
合金製締結部品が得られる。
According to the present invention, there can be obtained the alloy having excellent toughness and less embrittlement during long-term operation at a high temperature and a fastening part made of the alloy.

【0017】[0017]

【発明の実施の形態】まず、本発明に係わる合金の化学
組成について説明する。本発明に係わる合金の好ましい
化学組成は表1に記載された元素及び範囲からなる。ま
た残部には不可避的に混入する微量元素が含まれる場合
がある。これらから構成される合金は、AMS566
2、ASTM B670、JIS G4901等で規定
される材料と同種のものであり、主として微細なγ”相
(NiNb)を析出させることにより強化されたNi
基合金である。本合金は当業者に知られている溶解法、
鋳造法、再溶解法及び鍛造法あるいは圧延法を用いて、
丸棒に製造することができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the chemical composition of the alloy according to the present invention will be described. The preferred chemical composition of the alloy according to the invention comprises the elements and ranges given in Table 1. In addition, the remainder may include trace elements that are inevitably mixed. The alloy composed of these is AMS566
2. Ni, which is the same kind of material as specified in ASTM B670, JIS G4901, etc., and is strengthened mainly by precipitating a fine γ ″ phase (Ni 3 Nb).
It is a base alloy. The alloy is prepared by a melting method known to those skilled in the art,
Using casting method, remelting method and forging method or rolling method,
Can be manufactured into round bars.

【0018】本発明において、各成分を上記範囲内に限
定した理由は下記の通りである。
In the present invention, the reasons for limiting each component to the above range are as follows.

【0019】(a) Ni Niは、本合金の母相の主構成元素であるとともに、
γ”相およびγ’相の構成元素として析出強化にも寄与
する。50%未満および55%を超えると相対的にFe
の含有率が増加し、母相組成の安定性が低下するため、
その含有量を50〜55%とした。
(A) Ni Ni is a main constituent element of the parent phase of the present alloy.
As a constituent element of the γ ″ phase and the γ ′ phase, it also contributes to precipitation strengthening.
Increases, the stability of the matrix phase composition decreases,
The content was 50 to 55%.

【0020】(b) Cr Crは、主に耐食性、耐酸化性に寄与する。17%未満
ではその効果が十分でなく、21%を超えると高温長時
間加熱にともなうαCr相の析出量が増加し、靱性およ
び耐食性、耐酸化性が低下するため、その含有量を17
〜21%とした。
(B) Cr Cr mainly contributes to corrosion resistance and oxidation resistance. If it is less than 17%, the effect is not sufficient, and if it exceeds 21%, the precipitation amount of the αCr phase increases with high temperature and long time heating, and the toughness, corrosion resistance, and oxidation resistance decrease.
2121%.

【0021】(c) Nb Nbは、固溶強化に寄与するとともに、本合金の主強化
相である微細なγ”相(NiNb)の構成元素であ
り、析出強化に寄与する。4.75%未満ではその析出
量が十分確保できず、5.5%を超えると未固溶の粗大
なNbCの形成量が増加するため、その含有量を4.7
5〜5.5%としてある。なお、Nbの一部をTaに置
換し、NbとTaの合計量を4.75〜5.5%に制限
しγ”相の構成を(Ni(Nb,Ta))とした場合
でも同等の効果を期待できる。
(C) Nb Nb contributes to solid solution strengthening and is a constituent element of the fine γ ″ phase (Ni 3 Nb), which is the main strengthening phase of the present alloy, and contributes to precipitation strengthening. If it is less than 75%, the amount of precipitation cannot be sufficiently ensured, and if it exceeds 5.5%, the amount of undissolved coarse NbC increases, so that the content is 4.7.
It is set as 5 to 5.5%. The same applies to the case where a part of Nb is replaced with Ta, the total amount of Nb and Ta is limited to 4.75 to 5.5%, and the configuration of the γ ″ phase is (Ni 3 (Nb, Ta)). The effect of can be expected.

【0022】(d) Mo Moは、固溶強化に寄与する。2.8%未満ではその強
化量が低く、3.3%を超えると高温長時間加熱にとも
なうMC型炭化物の析出量が増加し脆化が激しくなる
ため、その含有量を2.8〜3.3%としてある。
(D) Mo Mo contributes to solid solution strengthening. If it is less than 2.8%, the strengthening amount is low, and if it exceeds 3.3%, the amount of precipitation of M 6 C-type carbide due to high-temperature and long-time heating increases and embrittlement becomes severe. 33.3%.

【0023】(e) Ti 本合金系においては、TiはAlとともに微細なγ’相
(Ni(Al,Ti))を形成し、析出強化に僅かに
寄与する。0.65%未満ではその析出量が十分確保で
きず、1.15%を超えると未固溶の粗大なTiCを形
成したり、AlとNbの濃度との関連でγ”相の析出温
度域を低下させるため、その含有量を0.65〜1.1
5%としてある。
(E) Ti In the present alloy system, Ti forms a fine γ 'phase (Ni 3 (Al, Ti)) together with Al and slightly contributes to precipitation strengthening. If it is less than 0.65%, the amount of precipitation cannot be sufficiently ensured. If it exceeds 1.15%, undissolved coarse TiC is formed, or the precipitation temperature range of the γ ″ phase in relation to the concentrations of Al and Nb. In order to reduce the content of 0.65-1.1
It is set as 5%.

【0024】(f) Al 本合金系においては、AlはTiとともに微細なγ’相
(Ni(Al,Ti))を形成し、析出強化に僅かに
寄与する。0.2%未満ではその析出量が十分確保でき
ず、0.8%を超えるとTiとNbの濃度との関連で
γ”相の析出温度域を上昇させるため、その含有量を
0.2〜0.8%としてある。
(F) Al In the present alloy system, Al forms a fine γ 'phase (Ni 3 (Al, Ti)) together with Ti, and slightly contributes to precipitation strengthening. If it is less than 0.2%, the amount of precipitation cannot be sufficiently ensured. If it exceeds 0.8%, the precipitation temperature range of the γ ″ phase is increased in relation to the concentrations of Ti and Nb. 0.80.8%.

【0025】本発明に係わる耐熱合金においては、脱酸
剤としてSi、脱硫剤としてMnを添加し、また、析出
物の安定化を目的としてBを添加するが、上記成分
(a)〜(f)ならびに主成分であるFeを添加する際
に付随的に混入する不純物は極力低減することが望まし
く、最終的に合金中に残存する元素量としては、C:
0.08%以下、Co:1.0%以下、Mn:0.35
%以下、P:0.015%以下、B:0.006%以
下、Cu:0.3%以下に設定してある。
In the heat-resistant alloy according to the present invention, Si is added as a deoxidizing agent, Mn is added as a desulfurizing agent, and B is added for the purpose of stabilizing precipitates. ) And impurities incidentally added when adding Fe as a main component are desirably reduced as much as possible. Finally, the amount of elements remaining in the alloy is C:
0.08% or less, Co: 1.0% or less, Mn: 0.35
%, P: 0.015% or less, B: 0.006% or less, Cu: 0.3% or less.

【0026】次に、本発明における当該合金が常温0.
2%耐力が1,034MPa以上、50J/cm以上
のシャルピー衝撃値を有する理由を説明する。当該合金
はAMS5662等において常温0.2%耐力が1,0
34MPa以上と規定されているが、この値を満足する
当該合金では50J/cm以上の衝撃値の確保は難し
い。この理由は、当該規定においては溶体化熱処理後に
もδ相を残存させるためである。一方、衝撃値を高く調
整するには一例としてAMS5596に記載されている
ように、溶体化熱処理温度を1,040〜1,065℃
に高温化した上で時効熱処理を施すことからなる方法が
あるが、この場合所定の耐力の低下、疲労強度や切欠ク
リープ破断特性の低下を招くことがある。この理由は溶
体化熱処理温度の高温化で結晶粒の粗大化が著しくなっ
たためである。すなわち、0.2%耐力と衝撃値の双方
を上記の値以上にすることは当該合金における既存の熱
処理では困難である。そこで、高強度と高靭性を両立さ
せ、その他の特性を既存の当該合金より低下させない合
金として、0.2%耐力と衝撃値に制限を設けた。
Next, the alloy according to the present invention is used at room temperature.
The reason why the 2% proof stress has a Charpy impact value of 1,034 MPa or more and 50 J / cm 2 or more will be described. The alloy has an ordinary temperature 0.2% proof stress of 1.0 in AMS5662 or the like.
Although it is specified as 34 MPa or more, it is difficult to secure an impact value of 50 J / cm 2 or more with the alloy satisfying this value. The reason for this is that the δ phase remains even after the solution heat treatment in the above definition. On the other hand, in order to adjust the impact value to be high, as described in AMS5596 as an example, the solution heat treatment temperature is set to 1,040 to 1,065 ° C.
There is a method of performing aging heat treatment after the temperature is raised to a high temperature. However, in this case, a decrease in a predetermined proof stress, a decrease in fatigue strength, and a decrease in notch creep rupture characteristics may be caused. The reason for this is that the crystal grain coarsening became remarkable as the solution heat treatment temperature was increased. That is, it is difficult to increase both the 0.2% proof stress and the impact value to the above values by the existing heat treatment for the alloy. Therefore, as an alloy that achieves both high strength and high toughness and does not lower other properties than the existing alloy, the 0.2% proof stress and the impact value are limited.

【0027】次に、本発明において表層および中心の結
晶粒径をそれぞれASTM粒度番号6以上及び4以上と
した理由を説明する。当業者に知られる溶解法及び鍛造
法あるいは圧延法を用いて溶体化熱処理前の状態まで成
形すると、成形法や成形の度合いにより結晶粒径が異な
る素材となる。本発明においては好ましくは1,010
〜1,030℃での溶体化熱処理でδ相の大半を消滅さ
せることが特徴のひとつであるため、δ相が粒界上に連
続的に存在する場合よりも結晶粒の成長はより加速され
る。粗粒材では前述のようにいくつかの機械的性質が細
粒材に比べ低下するが、粒度番号6以上では全粒界面積
中に占めるδ相の割合が小さくなるため、衝撃値の向上
や脆化の抑制に効果的である。一方、中心部においては
靭性よりむしろクリープ破断強度が確保されていること
が必要であり、この観点からは粗粒材が望ましいが、前
述の1,040〜1,065℃での溶体化熱処理によっ
て得られる粒径では疲労強度や破壊靭性が低下するため
4以上とした。
Next, the reason why the grain sizes of the surface layer and the center in the present invention are set to ASTM grain size numbers of 6 or more and 4 or more, respectively, will be described. Forming to a state before solution heat treatment using a melting method, a forging method or a rolling method known to those skilled in the art results in a material having a different crystal grain size depending on the forming method and the degree of forming. In the present invention, preferably 1,010
One of the characteristics is that most of the δ phase is eliminated by solution heat treatment at 〜1,030 ° C., so that the growth of crystal grains is accelerated more than when the δ phase is continuously present on the grain boundaries. You. As described above, some mechanical properties of the coarse-grained material are lower than those of the fine-grained material. However, when the particle size is 6 or more, the proportion of the δ phase in the total grain boundary area becomes small, so that the impact value can be improved. It is effective in suppressing embrittlement. On the other hand, it is necessary that the creep rupture strength, rather than the toughness, is secured in the central portion. From this viewpoint, a coarse-grained material is desirable, but the solution heat treatment at 1,040 to 1,065 ° C. The obtained particle size is set to 4 or more because the fatigue strength and the fracture toughness decrease.

【0028】次に、本発明において1,010〜1,0
30℃で溶体化熱処理を行う理由を説明する。当該合金
に優れた高温特性を発揮させるには927〜1,010
℃での溶体化熱処理が好適とされ、工業的には950〜
980℃で処理される場合が多い。この結果、溶体化熱
処理前に生成した板状のδ相が結晶粒界(以後、粒界)
上に残存した組織を呈する。このような組織は粒界破壊
やき裂の進展を促進し、衝撃性質、破壊靭性を低下させ
る。そこで、δ相が溶解する1,010℃以上に加熱し
てこれらを消滅させることとした。なお、本合金に優れ
た延靭性を付与するには1,040〜1,065℃での
溶体化熱処理が好適とされるが、本発明では1,030
℃を上限とすることで結晶粒径(以後、粒径)の粗大化
を抑制するとともに疲労特性や引張性質の低下を抑制で
きる。
Next, in the present invention, 1,010 to 1,0
The reason for performing the solution heat treatment at 30 ° C. will be described. In order to make the alloy exhibit excellent high-temperature properties,
Solution heat treatment at ℃ is suitable, industrially 950 ~
It is often processed at 980 ° C. As a result, the plate-like δ phase generated before the solution heat treatment is formed at the crystal grain boundary (hereinafter, the grain boundary).
Presents the remaining tissue on top. Such a structure promotes intergranular fracture and crack propagation, and reduces impact properties and fracture toughness. Therefore, it was decided to heat them to 1,010 ° C. or higher at which the δ phase was dissolved to make them disappear. In order to impart excellent ductility to the present alloy, a solution heat treatment at 1,040 to 1,065 ° C. is considered to be suitable. However, in the present invention, 1,030
By setting the upper limit to ° C., it is possible to suppress the crystal grain size (hereinafter, the grain size) from being coarsened and to suppress the deterioration of the fatigue properties and the tensile properties.

【0029】次に、本発明において1,010〜1,0
30℃で溶体化熱処理を行った後、760±8℃で時効
熱処理を行い、さらに704±8℃で時効熱処理を行う
理由を説明する。760℃近傍は当該合金の主強化相で
あるγ”相が最も活発に析出する温度域であり、溶体化
熱処理後に母相に固溶しているNbの大半をγ”相とし
て主に結晶粒内(以後、粒内)に高密度に析出させるこ
とができる。本発明においては、溶体化熱処理でδ相の
大半を溶解するため通常よりも溶体化熱処理後の固溶N
b量が多く、優れた強度を確保する場合はこの温度で十
分なγ”相の析出量を確保する必要がある。760℃よ
り高温側ではγ”相の粗大化が加速され、一方低温側で
は十分なγ”相の析出量が確保できず、いずれも強度の
低下を招くため、この温度を中心として工業的に施工可
能な温度範囲として±8℃を設定した。続いて704℃
近傍での熱処理を行うことにより、γ”相の一部を比較
的大きく成長させるとともに固溶状態で存在する過飽和
なNb量をさらに低減させることが可能となる。このよ
うな組織に調整した場合、強度に優れ、さらに使用中の
γ”相の新たな析出を抑制することが可能となる。ただ
し、最終の熱処理温度を704℃より高温にするとγ”
相の粗大化が加速されるため強度低下を招き、一方低温
側では固溶Nb量が低減できないため、704℃を中心
として、工業的に施工可能な温度範囲として各々±8℃
を設定した。上記2温度の間の冷却速度を50℃/hと
設定した理由は、この冷却速度以下では冷却中のγ”相
の粗大化が進行し、この冷却速度がとくに大径の素材に
おいては工業的に可能な最速の冷却速度であるためであ
る。
Next, in the present invention, 1,010 to 1,0
The reason why the solution heat treatment is performed at 30 ° C., the aging heat treatment is performed at 760 ± 8 ° C., and the aging heat treatment is further performed at 704 ± 8 ° C. will be described. A temperature around 760 ° C. is a temperature range in which the γ ″ phase, which is the main strengthening phase of the alloy, is most actively precipitated, and most of the Nb dissolved in the parent phase after the solution heat treatment is mainly used as the γ ″ phase as crystal grains. It can be deposited at a high density inside (hereinafter, within the grains). In the present invention, since most of the δ phase is dissolved by the solution heat treatment, the solid solution N after the solution heat treatment is more than usual.
In the case where the amount of b is large and excellent strength is secured, it is necessary to secure a sufficient amount of precipitation of the γ ″ phase at this temperature. At a temperature higher than 760 ° C., the coarsening of the γ ″ phase is accelerated, and on the other hand, at a lower temperature side In this case, a sufficient amount of the γ ″ phase cannot be secured, and the strength is lowered in any case. Therefore, ± 8 ° C. is set as a temperature range that can be industrially applied centering on this temperature.
By performing the heat treatment in the vicinity, it becomes possible to grow a relatively large part of the γ ″ phase and to further reduce the amount of supersaturated Nb existing in a solid solution state. It is excellent in strength, and can suppress new precipitation of a γ ″ phase during use. However, when the final heat treatment temperature is higher than 704 ° C., γ ″
Since the phase coarsening is accelerated, the strength is reduced. On the other hand, the amount of solid-dissolved Nb cannot be reduced on the low-temperature side.
It was set. The reason why the cooling rate between the above two temperatures is set to 50 ° C./h is that the cooling rate is lower than this, the γ ″ phase becomes coarse during cooling, and this cooling rate is particularly industrial for large diameter materials. This is because the cooling speed is the fastest possible.

【0030】次に、溶体化及び時効熱処理の前後での収
縮率が0.08%以上であること、及び定常運用時の収
縮率が0.01%以下であることの理由を説明する。当
該合金は時効熱処理によって母相のNiと母相に固溶し
ているNbを結合させ、Ni Nbを基本構造とする
γ”相を粒内に析出させることで高強度を得ているが、
γ”相は原子密度が高い析出物であり、この析出によっ
て材料が収縮することが知られている。当該合金に従来
の熱処理を施した場合、収縮率は0.08%未満で十分
な強度を得るためのγ”相が確保できる。しかし、溶体
化熱処理温度を1,010〜1,030℃に高め、δ相
を溶解させた本発明の溶体化熱処理後には、固溶Nb量
が増加するため析出するγ”相の総量は多くなる。一
方、γ”相は566〜649℃程度で加熱されることに
より母相中のNbが枯渇するまで析出が継続するもので
ある。したがって、566〜649℃程度での使用中に
γ”相の析出による素材の収縮を抑制し、安定な運用を
可能にするためには、溶体化及び時効熱処理が完了した
時点で母相のNbをほぼ枯渇させて最大限の収縮を実現
させる必要があり、また、566〜649℃程度での加
熱中のγ”相の析出量を最小化する必要がある。
Next, the yield before and after the solution heat treatment and the aging heat treatment are described.
Reduction rate of 0.08% or more, and
The reason that the shrinkage ratio is 0.01% or less will be described. This
The alloy dissolves in the matrix Ni and the matrix by aging heat treatment.
Nb is combined with Ni 3Nb as the basic structure
High strength is obtained by precipitating the γ ”phase in the grains,
The γ ”phase is a precipitate with a high atomic density,
It is known that the material shrinks. Conventional to this alloy
When the heat treatment is performed, the shrinkage is less than 0.08%.
Phase can be secured to obtain high strength.
Temperature to 1,010 to 1,030 ° C, δ phase
After the solution heat treatment of the present invention in which
Increases, so that the total amount of the precipitated γ ″ phase increases.
On the other hand, the γ ″ phase is heated at about 566 to 649 ° C.
Precipitation continues until Nb in the parent phase is depleted.
is there. Therefore, during use at about 566-649 ° C
Suppresses material shrinkage due to precipitation of γ ”phase for stable operation
Solution enabled and aging heat treatment completed to enable
At the moment, the matrix phase is almost depleted of Nb to achieve maximum contraction
And heating at about 566-649 ° C.
It is necessary to minimize the amount of the γ ″ phase precipitated during heating.

【0031】本発明では、時効熱処理後にショットピー
ニングを実施し、表層の残留応力を圧縮応力にすること
ができる。本発明において行われるショットピーニング
は、微少硬球を高速で当該合金製部品に衝突させる方法
である。以下に、熱処理後にショットピーニングを行う
理由を説明する。機器において素材が使用される際に
は、作用応力が発生し、場合によっては熱応力が発生す
る。これらは特に素材表面においては引張応力となるこ
とが多く、割れ等の機械的損傷を想定以上に促進する場
合もある。しかし、ショットピーニングを行い素材の表
面に圧縮応力を発生させることにより引張応力の相殺が
可能となり、引張応力下であっても通常より安定な運用
が可能となる。
In the present invention, after the aging heat treatment, shot peening can be performed to reduce the residual stress in the surface layer to a compressive stress. The shot peening performed in the present invention is a method in which minute hard spheres collide with the alloy component at high speed. The reason for performing shot peening after the heat treatment will be described below. When a material is used in a device, an acting stress is generated, and in some cases, a thermal stress is generated. These often cause tensile stress especially on the surface of the material, and may accelerate mechanical damage such as cracking more than expected. However, tensile stress can be canceled out by generating compressive stress on the surface of the material by performing shot peening, and stable operation can be performed even under tensile stress.

【0032】次に、本発明の熱処理を施した合金が定常
的に566℃以上649℃以下で使用される耐熱合金部
品、特に締結部品、例えばボルトあるいはナット等、に
好適な理由を説明する。当該合金に従来の熱処理を施
し、566℃を上回る温度で長期間使用すると、γ”相
の粗大化及び粒界近傍での組織変化が著しく脆化する。
しかし、1,010〜1,030℃、760±8℃、7
04±8℃で順次熱処理を行い、粒界上に析出物がない
組織を形成することにより、使用中のとくに粒界近傍で
の組織変化が生じにくく、566℃を上回る温度で長期
間使用しても脆化が抑制される。ただし、粒内のγ”相
の析出量が多くなるため、649℃を上回る温度で長期
間使用するとγ”相の粗大化及びαCr相等への変態と
ともに、γ”相のδ相への変態が促進されるので定常的
な使用温度の上限を設けた。
Next, the reason why the alloy subjected to the heat treatment of the present invention is suitable for a heat-resistant alloy part, particularly a fastening part, such as a bolt or a nut, which is constantly used at a temperature of 566 ° C. or more and 649 ° C. or less will be described. If the alloy is subjected to a conventional heat treatment and used at a temperature exceeding 566 ° C. for a long time, the γ ″ phase becomes coarse and the structure change near the grain boundary becomes remarkably embrittled.
However, 1,010 to 1,030 ° C, 760 ± 8 ° C, 7
Heat treatment is performed sequentially at 04 ± 8 ° C to form a structure with no precipitates on the grain boundaries, so that the structure does not easily change during use, especially near the grain boundaries. However, embrittlement is suppressed. However, since the precipitation amount of the γ ″ phase in the grains increases, when the γ ″ phase is used for a long time at a temperature exceeding 649 ° C., the γ ″ phase is transformed into the αCr phase and the γ ″ phase is transformed into the δ phase. As it is accelerated, a steady upper limit for the operating temperature is set.

【0033】[0033]

【実施例】次に、本発明の実施例を説明する。 [実施例1]この実施例では、本発明の当該合金が0.
2%耐力が1,034MPa以上でかつシャルピー衝撃
値が50J/cm以上であることについて説明する。
表1の化学組成範囲にある表2に示す合金を表3に示す
5条件で熱処理した。
Next, embodiments of the present invention will be described. [Example 1] In this example, the alloy of the present invention was used in an amount of 0.1%.
The fact that the 2% proof stress is not less than 1,034 MPa and the Charpy impact value is not less than 50 J / cm 2 will be described.
The alloys shown in Table 2 in the chemical composition range of Table 1 were heat-treated under the five conditions shown in Table 3.

【0034】熱処理後の本合金について、JIS 4号
2mmVノッチシャルピー試験片を用いて20℃での
シャルピー衝撃試験、及び直径6mm、標点間距離30
mmのつば付き試験片を用いて常温での引張試験を行っ
た(以後の衝撃及び引張試験条件は同上)。その結果を
表4に示す。H2〜H4の熱処理を施した実施例は0.
2%耐力と衝撃値双方が高い値を示したが、H1の熱処
理を施した比較例は、高い0.2%耐力を有するが衝撃
値が低く、H5の熱処理を施した比較例は、高い衝撃値
を有するが0.2%耐力が規格値を満足しなかった。以
上のことから、本発明に係わる耐熱合金は、0.2%耐
力の規格値を満足するとともに優れた衝撃値を有するこ
とがわかる。
The heat-treated alloy was subjected to a Charpy impact test at 20 ° C. using a JIS No. 4 2 mm V-notch Charpy test piece, a diameter of 6 mm, and a distance between gauges of 30.
A tensile test was performed at room temperature using a mm-sized test piece with a collar (the conditions of the subsequent impact and tensile tests were the same). Table 4 shows the results. The example in which the heat treatment of H2 to H4 is performed is 0.1 mm.
Although the 2% proof stress and the impact value both showed high values, the comparative example subjected to the heat treatment of H1 had a high 0.2% proof stress but had a low impact value, and the comparative example subjected to the heat treatment of H5 exhibited a high value. Although it has an impact value, the 0.2% proof stress did not satisfy the standard value. From the above, it can be seen that the heat-resistant alloy according to the present invention satisfies the standard value of 0.2% proof stress and has an excellent impact value.

【0035】[実施例2]この実施例では、表層の結晶
粒径をASTM粒度番号で6以上、中心部の結晶粒径を
ASTM粒度番号で4以上にした場合の効果について説
明する。
[Embodiment 2] In this embodiment, the effect when the crystal grain size of the surface layer is 6 or more by ASTM grain size number and the crystal grain size of the central part is 4 or more by ASTM grain size number will be described.

【0036】表2に示す合金を、表3に示す条件のうち
H3、H4およびH5で熱処理し、当該合金を広い範囲
の結晶粒径に調整した。最終的な結晶粒径は溶体化熱処
理前の素材の結晶粒径にも依存するため同一の熱処理を
施してあっても異なる粒度番号を得ることができる。こ
れらの熱処理材の結晶粒度番号に対する20℃衝撃値、
破壊靭性値および650℃−686MPaにおけるクリ
ープ破断伸びを表5に示す。
The alloys shown in Table 2 were heat-treated under the conditions shown in Table 3 under H3, H4 and H5 to adjust the alloys to have a wide range of crystal grain sizes. Since the final crystal grain size also depends on the crystal grain size of the material before the solution heat treatment, different grain size numbers can be obtained even if the same heat treatment is performed. 20 ° C impact value for the grain size number of these heat-treated materials,
Table 5 shows the fracture toughness and the creep rupture elongation at 650 ° C.-686 MPa.

【0037】表層を想定した粒度番号6以上の場合、H
3とH4の熱処理を施した試料では100J/cm
上の衝撃値を示し、かつ破壊靭性値も高かった。なお、
H5の熱処理を施した試料では粒度番号4を超えるもの
は作製できなかった。
If the particle size is 6 or more assuming the surface layer, H
The samples subjected to the heat treatments Nos. 3 and H4 exhibited an impact value of 100 J / cm 2 or more, and also had a high fracture toughness value. In addition,
Samples having a particle size number of more than 4 could not be prepared in the sample subjected to the heat treatment of H5.

【0038】一方、中心部を想定した粒度番号4以上の
場合、H3とH4の熱処理を施した試料ではクリープ破
断伸び高く、H5の熱処理を施した試料ではクリープ破
断伸びが低かった。なお、H5の熱処理を施した粒度番
号2の試料ではクリープ破断伸びが大きいが、この試料
では結晶粒のマクロ変形が大きく変形抵抗が低かった。
On the other hand, when the particle size was 4 or more assuming the central portion, the sample subjected to the heat treatment of H3 and H4 had a high creep rupture elongation, and the sample subjected to the heat treatment of H5 had a low creep rupture elongation. In addition, the creep rupture elongation was large in the sample of the grain size number 2 subjected to the heat treatment of H5, but in this sample, the macro deformation of the crystal grains was large and the deformation resistance was low.

【0039】以上のことから、本発明に係わる結晶粒度
に調整した場合は、表層を想定した場合は衝撃値と破壊
靭性値に優れ、中心部を想定した場合にはクリープ破断
伸びに優れた当該合金が得られることがわかる。
From the above, when the crystal grain size according to the present invention is adjusted, the impact value and the fracture toughness value are excellent when the surface layer is assumed, and the creep rupture elongation is excellent when the center part is assumed. It can be seen that an alloy is obtained.

【0040】[実施例3]この実施例では、1,010
〜1,030℃で溶体化熱処理を行った場合の効果につ
いて説明する。表2に示す合金を、表6に示す条件で熱
処理した。熱処理後の本合金について、20℃でのシャ
ルピー衝撃試験及び600℃−3万時間の加熱を行い、
その後20℃でのシャルピー衝撃試験を行った。その結
果を表7に示す。H2、H4およびH7の熱処理を施し
た試料の衝撃値(表中A欄)は50J/cm以上であ
り、かつ600℃−3万時間の加熱後の衝撃値(表中B
欄)との比(B/A)が0.8以上であった。H1およ
びH6の熱処理材は表中Aが50J/cm以下で、か
つ表中B/Aが低かった。H8の熱処理材は表中Aおよ
び表中B/Aとも高いが、実施例2におけるH5の熱処
理材と同様の特徴があった。
[Embodiment 3] In this embodiment, 1,010
The effect when the solution heat treatment is performed at 1,1,030 ° C. will be described. The alloys shown in Table 2 were heat-treated under the conditions shown in Table 6. This alloy after the heat treatment was subjected to a Charpy impact test at 20 ° C and heating at 600 ° C for 30,000 hours.
Thereafter, a Charpy impact test at 20 ° C. was performed. Table 7 shows the results. The impact value (column A in the table) of the sample subjected to the heat treatment of H2, H4 and H7 is 50 J / cm 2 or more, and the impact value after heating at 600 ° C. for 30,000 hours (B in the table).
Column) was 0.8 or more. In the heat-treated materials of H1 and H6, A in the table was 50 J / cm 2 or less, and B / A in the table was low. The heat-treated material of H8 was high in both A in the table and B / A in the table, but had the same characteristics as the heat-treated material of H5 in Example 2.

【0041】以上のことから、1,010〜1,030
℃で溶体化熱処理により衝撃値が高く、かつ高温長時間
加熱後の脆化が小さい当該合金が得られることがわか
る。
From the above, 1,010 to 1,030
It can be seen that the alloy having a high impact value and low embrittlement after heating at a high temperature for a long time at a high temperature can be obtained by the solution heat treatment at ℃.

【0042】[実施例4]この実施例では、1,010
〜1,030℃で溶体化熱処理を行った後、760℃±
8で熱処理を行い、さらに704℃±8で熱処理を行っ
た場合の効果について説明する。表2に示す合金を、表
8に示す条件で熱処理した。熱処理後の本合金につい
て、常温での引張試験及び20℃でのシャルピー衝撃試
験を行った。その結果を表9に示す。衝撃値はいずれの
熱処理材も良好であった。0.2%耐力は、H4の熱処
理材は当該合金の規格値を満足したが、時効温度が高い
H10、同低いH11及び1段目と2段目の時効温度間
の冷却速度が小さいH9はいずれも規格値を下回った。
[Embodiment 4] In this embodiment, 1,010
After performing solution heat treatment at ~ 1,030 ° C, 760 ° C ±
The effect when the heat treatment is performed at 704 ° C. and further at 704 ° C. ± 8 will be described. The alloys shown in Table 2 were heat-treated under the conditions shown in Table 8. The heat-treated alloy was subjected to a tensile test at room temperature and a Charpy impact test at 20 ° C. Table 9 shows the results. The impact value of each heat-treated material was good. The 0.2% proof stress of the heat-treated material of H4 satisfies the standard value of the alloy, but H10 having a high aging temperature, H11 having the same low aging temperature, and H9 having a low cooling rate between the first and second aging temperatures are as follows. Both were below the standard value.

【0043】以上のことから、本発明に係わる時効熱処
理及び時効熱処理間の冷却速度の設定により、良好な衝
撃値を確保した上で十分な耐力を当該合金に付与できる
ことがわかる。
From the above, it can be seen that by setting the aging heat treatment and the cooling rate between the aging heat treatments according to the present invention, it is possible to impart sufficient proof stress to the alloy while securing a good impact value.

【0044】[実施例5]この実施例では、時効熱処理
前後及び長期間使用中の収縮率が所定の数値範囲である
ことの効果について説明する。表2に示す合金を、表3
中のH1及びH4に示す条件で熱処理した。熱処理材は
直径30mm、厚さ10mmの円盤であり、収縮率の測
定は、各5個の試験体について厚さ方向の寸法変化から
算出した。その結果を表10に示す。H1の熱処理材は
時効熱処理後の収縮率が0.08%以下と小さいが、6
00℃−1,000時間の加熱後にはさらに0.02〜
0.03%の収縮が生じ、これに対応して100MPa
以上の耐力の上昇が生じた。一方、H4の熱処理材では
時効熱処理後の収縮率はH1より大きいものの、600
℃−1,000時間の加熱後の収縮率はH1より一桁小
さく、耐力の上昇も小さかった。
[Embodiment 5] In this embodiment, the effect of the shrinkage ratio before and after aging heat treatment and during long-term use within a predetermined numerical range will be described. The alloys shown in Table 2 were used in Table 3
Heat treatment was performed under the conditions indicated by H1 and H4. The heat-treated material was a disk having a diameter of 30 mm and a thickness of 10 mm, and the measurement of the shrinkage was calculated from the dimensional change in the thickness direction for each of five test specimens. Table 10 shows the results. The heat-treated material of H1 has a small shrinkage ratio after aging heat treatment of 0.08% or less,
After heating at 00 ° C. for 1,000 hours,
0.03% shrinkage occurs, corresponding to 100 MPa
The above increase in proof stress occurred. On the other hand, in the case of the H4 heat-treated material, although the shrinkage ratio after the aging heat treatment is larger than H1,
The shrinkage ratio after heating at 1,000 ° C. for 1,000 hours was one order of magnitude lower than that of H1, and the increase in proof stress was also small.

【0045】以上のことから、本発明に係わる収縮率の
範囲に調整された当該合金は、高温使用中の強度変化が
小さく、安定した運用が可能であることがわかる。
From the above, it can be seen that the alloy adjusted to the range of the shrinkage according to the present invention has a small change in strength during high-temperature use, and can be stably operated.

【0046】[実施例6]この実施例では、熱処理後に
ショットピーニングを行うことの効果を説明する。
[Embodiment 6] In this embodiment, the effect of performing shot peening after heat treatment will be described.

【0047】表2に示す合金にH7の熱処理を施し、そ
の後にショットピーニングを実施した。その際の残留応
力をショットピーニングを実施しない場合(表中H7
F)と併せて表11に示す。H7Fの表面の残留応力は
引張応力(+)であったが、ショットピーニングを実施
したH7Sの表面の残留応力は圧縮応力(−)であっ
た。これらを600℃で数条件の引張応力下に晒した後
の残留応力を表11に併せて示す。H7Fの残留応力は
いずれの条件でも引張応力であるが、H7Sでは圧縮応
力あるいは±0を示した。
The alloys shown in Table 2 were subjected to a heat treatment of H7, and thereafter, were subjected to shot peening. When shot peening is not performed for the residual stress at that time (H7 in the table)
The results are shown in Table 11 together with F). The residual stress on the surface of H7F was tensile stress (+), but the residual stress on the surface of shot-peened H7S was compressive stress (-). Table 11 also shows the residual stresses after exposing these to several conditions of tensile stress at 600 ° C. The residual stress of H7F was a tensile stress under any conditions, but H7S showed a compressive stress or ± 0.

【0048】以上のことから、熱処理後にショットピー
ニングを行い素材の残留応力を圧縮応力にすることで過
剰な応力の発生を抑制でき、より安定な機器の運用が可
能であることがわかる。
From the above, it can be understood that the occurrence of excessive stress can be suppressed by performing shot peening after the heat treatment to reduce the residual stress of the material to the compressive stress, thereby enabling more stable equipment operation.

【0049】[0049]

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【表4】 [Table 4]

【表5】 [Table 5]

【表6】 [Table 6]

【表7】 [Table 7]

【表8】 [Table 8]

【表9】 [Table 9]

【表10】 [Table 10]

【表11】 [Table 11]

【0050】[0050]

【発明の効果】以上のように、本発明の強度と靭性に優
れた耐熱合金は、高温高圧化した過酷な蒸気環境下にお
いても、優れた特性を長期間にわたり発揮することがで
きる。従って本発明の耐熱合金からなる締結部品を用い
ることにより、機器の運用性、信頼性の向上に貢献でき
る等、産業上有益な効果がもたらされる。
As described above, the heat-resistant alloy having excellent strength and toughness of the present invention can exhibit excellent properties for a long period of time even under a severe steam environment at high temperature and high pressure. Therefore, the use of the fastening part made of the heat-resistant alloy of the present invention brings about an industrially useful effect such as an improvement in operability and reliability of equipment.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01D 25/00 F01D 25/00 L // C22F 1/00 602 C22F 1/00 602 604 604 630 630A 630B 650 650A 651 651B 682 682 691 691B 692 692A 692B (72)発明者 津 田 陽 一 神奈川県横浜市鶴見区末広町2丁目4番地 株式会社東芝京浜事業所内 (72)発明者 山 田 政 之 神奈川県横浜市鶴見区末広町2丁目4番地 株式会社東芝京浜事業所内 Fターム(参考) 3G002 EA04 EA06 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F01D 25/00 F01D 25/00 L // C22F 1/00 602 C22F 1/00 602 604 604 630 630A 630B 650 650A 651 651B 682 682 691 691B 692 692A 692B (72) Inventor Yoichi Tsuda 2-4, Suehirocho, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture Inside Keihin Plant, Toshiba Corporation (72) Inventor Masayuki Yamada, Yokohama-shi, Kanagawa 2-4, Suehirocho, Tsurumi-ku F-term in Toshiba Keihin Works (reference) 3G002 EA04 EA06

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】重量%で、Ni:50〜55、Cr:17
〜21、NbもしくはNbとTaの合計:4.75〜
5.5、Mo:2.8〜3.3、Ti:0.65〜1.
15、Al:0.2〜0.8、Co:1.0以下、C:
0.08以下、Mn:0.35以下、Si:0.35以
下、P:0.015以下、B:0.006以下、Cu:
0.3以下を含有し、残部はFe及び不可避的不純物か
らなり、溶体化熱処理及びそれに続く時効熱処理後の常
温0.2%耐力が1,034MPa以上でかつシャルピ
ー衝撃値が50J/cm以上であることを特徴とす
る、強度と靭性に優れた耐熱合金。
(1) Ni: 50 to 55, Cr: 17 by weight%
~ 21, Nb or the sum of Nb and Ta: 4.75 ~
5.5, Mo: 2.8 to 3.3, Ti: 0.65 to 1.
15, Al: 0.2 to 0.8, Co: 1.0 or less, C:
0.08 or less, Mn: 0.35 or less, Si: 0.35 or less, P: 0.015 or less, B: 0.006 or less, Cu:
0.3% or less, with the balance being Fe and unavoidable impurities, a 0.2% proof stress at room temperature after solution heat treatment and subsequent aging heat treatment of not less than 1,034 MPa and a Charpy impact value of not less than 50 J / cm 2. A heat-resistant alloy having excellent strength and toughness.
【請求項2】1,010〜1,030℃の温度範囲で溶
体化熱処理することを特徴とする、請求項1に記載の強
度と靭性に優れた耐熱合金。
2. The heat-resistant alloy having excellent strength and toughness according to claim 1, wherein solution heat treatment is performed in a temperature range of 1,010 to 1,030 ° C.
【請求項3】請求項2に記載の溶体化熱処理後に、76
0±8℃の温度で時効熱処理を行い、当該温度から50
℃/hの冷却速度で704±8℃まで冷却し、続いて7
04±8℃にて時効熱処理を行い、当該温度から空冷す
ることによって製造されたものであることを特徴とす
る、請求項1に記載の強度と靭性に優れた耐熱合金。
3. After the solution heat treatment according to claim 2, 76
Perform aging heat treatment at a temperature of 0 ± 8 ° C.
At a cooling rate of 70 ° C./h to 704 ± 8 ° C.
The heat-resistant alloy having excellent strength and toughness according to claim 1, wherein the heat-resistant alloy is manufactured by performing an aging heat treatment at 04 ± 8 ° C and air-cooling from the temperature.
【請求項4】素材表層の結晶粒度が、ASTM粒度番号
で6以上であることを特徴とする、請求項3に記載の強
度と靭性に優れた耐熱合金。
4. The heat-resistant alloy having excellent strength and toughness according to claim 3, wherein the crystal grain size of the material surface layer is 6 or more in ASTM grain size number.
【請求項5】素材中心の結晶粒度が、ASTM粒度番号
で4以上であることを特徴とする、請求項3に記載の強
度と靭性に優れた耐熱合金。
5. The heat-resistant alloy having excellent strength and toughness according to claim 3, wherein the crystal grain size at the center of the material is 4 or more in ASTM grain size number.
【請求項6】定常的に566℃以上649℃以下の温度
に晒され、30,000時間後のシャルピー衝撃値と時
効熱処理後のシャルピー衝撃値との比が0.8以上に維
持されていることを特徴とする、請求項1〜請求項5の
いずれか1項に記載の強度と靭性に優れた耐熱合金。
6. A constant exposure to a temperature of 566.degree. C. to 649.degree. C., and the ratio of the Charpy impact value after 30,000 hours to the Charpy impact value after aging heat treatment is maintained at 0.8 or more. The heat-resistant alloy excellent in strength and toughness according to any one of claims 1 to 5, characterized in that:
【請求項7】請求項2または請求項3に記載の溶体化熱
処理の前後での収縮率が0.08%以上であることを特
徴とする、請求項1〜請求項6のいずれか1項に記載の
強度と靭性に優れた耐熱合金。
7. The shrinkage ratio before and after the solution heat treatment according to claim 2 or 3, wherein the shrinkage ratio is 0.08% or more. A heat-resistant alloy with excellent strength and toughness described in 1.
【請求項8】請求項1〜請求項7のいずれか1項に記載
の耐熱合金からなる耐熱合金部品であって、定常的に5
66℃以上649℃以下の温度に晒されることを特徴と
する、強度と靭性に優れた耐熱合金部品。
8. A heat-resistant alloy part comprising the heat-resistant alloy according to any one of claims 1 to 7, wherein
A heat-resistant alloy part excellent in strength and toughness, characterized by being exposed to a temperature of 66 ° C or more and 649 ° C or less.
【請求項9】定常的に566℃以上649℃以下の温度
に晒され、使用中の収縮率が0.01%以下であること
を特徴とする、請求項8に記載の強度と靭性に優れた耐
熱合金部品。
9. Excellent strength and toughness according to claim 8, characterized by being constantly exposed to a temperature of 566 ° C. or more and 649 ° C. or less and having a shrinkage rate of 0.01% or less during use. Heat resistant alloy parts.
【請求項10】時効熱処理後にショットピーニングを実
施し、表層の残留応力を圧縮応力にすることによって製
造されたことを特徴とする、請求項8または請求項9に
記載の強度と靭性に優れた耐熱合金部品。
10. An excellent strength and toughness according to claim 8 or 9, characterized in that it is manufactured by performing shot peening after aging heat treatment to reduce residual stress in the surface layer to compressive stress. Heat resistant alloy parts.
JP2001029406A 2001-02-06 2001-02-06 Heat resistant alloy having excellent strength and toughness and heat resistant alloy parts Pending JP2002235134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001029406A JP2002235134A (en) 2001-02-06 2001-02-06 Heat resistant alloy having excellent strength and toughness and heat resistant alloy parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001029406A JP2002235134A (en) 2001-02-06 2001-02-06 Heat resistant alloy having excellent strength and toughness and heat resistant alloy parts

Publications (1)

Publication Number Publication Date
JP2002235134A true JP2002235134A (en) 2002-08-23

Family

ID=18893760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001029406A Pending JP2002235134A (en) 2001-02-06 2001-02-06 Heat resistant alloy having excellent strength and toughness and heat resistant alloy parts

Country Status (1)

Country Link
JP (1) JP2002235134A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004232484A (en) * 2003-01-28 2004-08-19 Toshiba Corp Steam valve and manufacturing method for the steam valve
US7238005B2 (en) 2003-07-30 2007-07-03 Kabushiki Kaisha Toshiba Steam turbine power plant
JP2014156628A (en) * 2013-02-15 2014-08-28 Nippon Steel & Sumitomo Metal Ni-BASED HEAT RESISTANT ALLOY MEMBER, AND Ni-BASED HEAT RESISTANT ALLOY RAW MATERIAL
JP2015058496A (en) * 2013-09-18 2015-03-30 川崎重工業株式会社 Method of manufacturing corrosion-resistant member, and boiler
JP2015117413A (en) * 2013-12-19 2015-06-25 新日鐵住金株式会社 Ni-BASED HEAT RESISTANT ALLOY MEMBER AND Ni-BASED HEAT RESISTANT ALLOY BASE MATERIAL
JP2017503911A (en) * 2013-10-22 2017-02-02 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Fatigue resistant turbine through bolt
US9618121B2 (en) 2007-03-09 2017-04-11 Federal-Mogul Corporation Metal gasket
JP2022526758A (en) * 2019-03-18 2022-05-26 ファオデーエム メタルズ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Nickel alloy with good corrosion resistance and high tensile strength, and semi-finished manufacturing method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004232484A (en) * 2003-01-28 2004-08-19 Toshiba Corp Steam valve and manufacturing method for the steam valve
US7238005B2 (en) 2003-07-30 2007-07-03 Kabushiki Kaisha Toshiba Steam turbine power plant
CN100494641C (en) * 2003-07-30 2009-06-03 株式会社东芝 Steam turbine power plant
US7850424B2 (en) 2003-07-30 2010-12-14 Kabushiki Kaisha Toshiba Steam turbine power plant
US9618121B2 (en) 2007-03-09 2017-04-11 Federal-Mogul Corporation Metal gasket
JP2014156628A (en) * 2013-02-15 2014-08-28 Nippon Steel & Sumitomo Metal Ni-BASED HEAT RESISTANT ALLOY MEMBER, AND Ni-BASED HEAT RESISTANT ALLOY RAW MATERIAL
JP2015058496A (en) * 2013-09-18 2015-03-30 川崎重工業株式会社 Method of manufacturing corrosion-resistant member, and boiler
JP2017503911A (en) * 2013-10-22 2017-02-02 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Fatigue resistant turbine through bolt
JP2015117413A (en) * 2013-12-19 2015-06-25 新日鐵住金株式会社 Ni-BASED HEAT RESISTANT ALLOY MEMBER AND Ni-BASED HEAT RESISTANT ALLOY BASE MATERIAL
JP2022526758A (en) * 2019-03-18 2022-05-26 ファオデーエム メタルズ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Nickel alloy with good corrosion resistance and high tensile strength, and semi-finished manufacturing method
JP7422781B2 (en) 2019-03-18 2024-01-26 ファオデーエム メタルズ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Nickel alloy with good corrosion resistance and high tensile strength, and method for producing semi-finished products

Similar Documents

Publication Publication Date Title
JP5270123B2 (en) Nitride reinforced cobalt-chromium-iron-nickel alloy
EP3587606A1 (en) Ni-based super heat-resistant alloy and method for manufacturing same
EP2860272B1 (en) Ni-BASED ALLOY
JP5988008B2 (en) Austenitic stainless steel sheet
WO2018151222A1 (en) Ni-BASED HEAT-RESISTANT ALLOY AND METHOD FOR MANUFACTURING SAME
EP3202931B1 (en) Ni BASED SUPERHEAT-RESISTANT ALLOY
WO2016129666A1 (en) Method for manufacturing austenitic heat-resistant alloy welded joint, and welded joint obtained using same
JP6201724B2 (en) Ni-base heat-resistant alloy member and Ni-base heat-resistant alloy material
JP6315319B2 (en) Method for producing Fe-Ni base superalloy
EP3115472B1 (en) Method for producing two-phase ni-cr-mo alloys
JP3781402B2 (en) Low thermal expansion Ni-base superalloy
JP2002088455A (en) METHOD FOR MANUFACTURING Ni-BASE ALLOY HAVING EXCELLENT HIGH TEMPERATURE SULFIDATION CORROSION RESISTANCE
JPH086164B2 (en) Method for enhancing crevice and pitting corrosion resistance of nickel-base alloys
JP2003113434A (en) Superalloy excellent in high-temperature sulfur corrosion resistance and manufacturing method therefor
JP2007009279A (en) Ni-Fe-BASE ALLOY, AND METHOD FOR MANUFACTURING Ni-Fe-BASE ALLOY MATERIAL
JP2002235134A (en) Heat resistant alloy having excellent strength and toughness and heat resistant alloy parts
JPH07138719A (en) Method for forging ni-based superalloy forged part
JP6772735B2 (en) Ni-based heat-resistant alloy member and its manufacturing method
JP4315582B2 (en) Co-Ni base heat-resistant alloy and method for producing the same
JP2004107777A (en) Austenitic heat resistant alloy, production method therefor and steam turbine parts
JP4575111B2 (en) Heat-resistant alloy and method for producing heat-resistant alloy
JPH10298682A (en) Heat resistant alloy, production of heat resistant alloy, and heat resistant alloy parts
US11441217B2 (en) Method for producing semi-finished products from a nickel-based alloy
JP3250263B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
RU2808314C2 (en) Method for producing nickel alloy powder with good corrosion resistance and high tensile strength and its application (options)