JP2017137534A - Nickel-based alloy - Google Patents
Nickel-based alloy Download PDFInfo
- Publication number
- JP2017137534A JP2017137534A JP2016019723A JP2016019723A JP2017137534A JP 2017137534 A JP2017137534 A JP 2017137534A JP 2016019723 A JP2016019723 A JP 2016019723A JP 2016019723 A JP2016019723 A JP 2016019723A JP 2017137534 A JP2017137534 A JP 2017137534A
- Authority
- JP
- Japan
- Prior art keywords
- nickel
- weight
- content
- based alloy
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
本発明は、自動車用エンジン部品、特に排気バルブ等の高温雰囲気下で用いられるニッケル基合金に関する。 The present invention relates to an automotive engine component, particularly a nickel-base alloy used in a high temperature atmosphere such as an exhaust valve.
近年、自動車の燃費向上の進展には目覚しいものがあり、例えば自動車エンジンを従来よりも一回り小型化かつ軽量化し、不足する出力はターボチャージャーを組み合わせることで、その不足分の出力を補う省燃費ターボが主流になりつつある。 In recent years, there has been remarkable progress in improving the fuel efficiency of automobiles. For example, the automobile engine has been made smaller and lighter than before, and the shortage of output is combined with a turbocharger to compensate for the shortage of output. Turbo is becoming mainstream.
そのような自動車用エンジン部品に用いられる材料として、例えば特許文献1では重量%で0.01〜0.1%C、0〜0.5%Si、0〜0.5%Mn、23%を超えて25%以下のCr、0.5〜1.5%Nb、2.0〜3.0%Ti、1.0〜2.0%Al、45%を超えて50%以下のNi、0.1〜1.2%Cu、0.3〜2.0%W等から構成されるニッケル基合金が開示されている。当該ニッケル基合金は、900℃における高温引張強度に優れていること、および800℃での長時間時効処理後でも高硬度が得られることから弁用耐熱合金として有用であることが説明されている。 As materials used for such automobile engine parts, for example, in Patent Document 1, 0.01 to 0.1% C, 0 to 0.5% Si, 0 to 0.5% Mn, and 23% in weight percent are used. More than 25% Cr, 0.5 to 1.5% Nb, 2.0 to 3.0% Ti, 1.0 to 2.0% Al, more than 45% to 50% Ni, 0 A nickel-base alloy composed of 0.1 to 1.2% Cu, 0.3 to 2.0% W, etc. is disclosed. The nickel-base alloy is described as being useful as a heat-resistant alloy for valves because it has excellent high-temperature tensile strength at 900 ° C. and high hardness even after prolonged aging treatment at 800 ° C. .
また、特許文献2には、重量%で40〜49%Ni、1.2〜1.8%Al、2.0〜3.0%Ti、0.9〜7.8%Nb、1%以下のMo等から構成されるニッケル基合金が開示されている。当該ニッケル基合金は、耐食性および耐摩耗性に優れていることから ディーゼルエンジン部品(特に排気バルブ部品)として有用であることが説明されている。 Patent Document 2 discloses that 40 to 49% Ni, 1.2 to 1.8% Al, 2.0 to 3.0% Ti, 0.9 to 7.8% Nb, 1% or less by weight. A nickel-base alloy composed of Mo or the like is disclosed. The nickel-base alloy is described as being useful as a diesel engine component (particularly an exhaust valve component) because of its excellent corrosion resistance and wear resistance.
しかし、特許文献1のニッケル基合金では800℃雰囲気下で300時間という長時間の時効処理後でも一定の高硬度(例えば、ロックウェルのCスケールでHRC38〜39)を保持していることは説明されているが、その高硬度が得られるまでに必要な時効処理の時間が比較的に長くなるという問題があった。 However, it is explained that the nickel-base alloy of Patent Document 1 maintains a certain high hardness (for example, HRC38-39 on the Rockwell C scale) even after an aging treatment of 300 hours in an atmosphere of 800 ° C. However, there is a problem that the aging treatment time required until the high hardness is obtained is relatively long.
また、特許文献2のニッケル基合金も同様に800℃近傍の時効処理を行うことでも高硬度(例えば、ロックウェルのCスケールでHRC27〜28)が得られることが説明されているが、その高硬度が得られるまでに必要な時効処理の時間が比較的に長いという問題があった。 Similarly, it is described that the nickel base alloy of Patent Document 2 can also obtain high hardness (for example, HRC27 to 28 on the Rockwell C scale) by performing an aging treatment in the vicinity of 800 ° C. There was a problem that the aging treatment time required until the hardness was obtained was relatively long.
さらに、上述したように自動車エンジンの小型化、軽量化に伴い、自動車用エンジンの排気ガス温度が900〜1000℃近傍に達する場合もあり、特許文献1および2に記載のニッケル基合金では高温強度や高温クリープ特性が不足するという問題があった。 Furthermore, as described above, the exhaust gas temperature of the automobile engine may reach around 900 to 1000 ° C. with the miniaturization and weight reduction of the automobile engine. In the nickel-base alloys described in Patent Documents 1 and 2, the high temperature strength is high. In addition, there is a problem that the high temperature creep characteristics are insufficient.
そこで、本発明においては従来のニッケル基合金に比べて、900℃以上の温度域における高温強度に優れたニッケル基合金を提供することを課題とする。 Accordingly, an object of the present invention is to provide a nickel-base alloy that is superior in high-temperature strength in a temperature range of 900 ° C. or higher as compared with conventional nickel-base alloys.
前述した課題を解決するために、本発明に係るニッケル基合金は、重量%で、0.01〜0.05%C、0.1〜0.5%Si、0.1〜0.5%Mn、0.001〜0.01%B、20.0〜23.5%Cr、0.7〜1.3%Nb、2.0〜3.2%Ti、1.2〜2.2%Al、50〜53%Ni、0.3〜1.0%Cu、1.5〜3.0%Mo、1.0〜2.0%Wを含有し、残部がFeおよび不可避不純物からなるニッケル基合金とした。 In order to solve the above-described problems, the nickel-base alloy according to the present invention is 0.01 to 0.05% C, 0.1 to 0.5% Si, 0.1 to 0.5% by weight. Mn, 0.001 to 0.01% B, 20.0 to 23.5% Cr, 0.7 to 1.3% Nb, 2.0 to 3.2% Ti, 1.2 to 2.2% Nickel containing Al, 50-53% Ni, 0.3-1.0% Cu, 1.5-3.0% Mo, 1.0-2.0% W, the balance being Fe and inevitable impurities A base alloy was used.
また、請求項2に係るニッケル基合金は、Tiの含有量とAlの含有量との総和が、重量%で4.0%以上であるニッケル基合金とした。 The nickel-base alloy according to claim 2 is a nickel-base alloy in which the sum of the Ti content and the Al content is 4.0% by weight or more.
本発明に係るニッケル基合金は、前述した従来のニッケル基合金に比べて、900℃以上の高温雰囲気における引張強度が向上するという効果を奏する。また、請求項2に係るニッケル基合金においては、優れた高温クリープ特性を有することができる。したがって、本発明に係るニッケル基合金は900℃以上の高温雰囲気下に長時間晒される自動車用排気バルブ部品には好適である。 The nickel base alloy according to the present invention has an effect that the tensile strength in a high temperature atmosphere of 900 ° C. or higher is improved as compared with the above-described conventional nickel base alloy. Further, the nickel-base alloy according to claim 2 can have excellent high temperature creep characteristics. Therefore, the nickel-base alloy according to the present invention is suitable for an automobile exhaust valve part that is exposed to a high temperature atmosphere of 900 ° C. or higher for a long time.
本発明の実施の形態の一例について説明する。本発明に係るニッケル基合金を構成する成分およびその成分範囲を限定した理由について、以下に詳しく説明する。 An example of an embodiment of the present invention will be described. The components constituting the nickel-base alloy according to the present invention and the reasons for limiting the component ranges will be described in detail below.
C(炭素)の含有量は、0.01〜0.05重量%とする。Cは、Ti、Nb及びCrと結合して炭化物を形成し、高温強度を改善する。このような効果を得るためには、少なくとも、0.01重量%以上の添加が必要である。しかし、過剰に添加すると、MC炭化物を多量に生成して、熱間加工性を低下させるため、上限を0.05重量%とした。 The C (carbon) content is 0.01 to 0.05% by weight. C combines with Ti, Nb and Cr to form carbides and improves high temperature strength. In order to obtain such an effect, at least 0.01% by weight or more must be added. However, when added excessively, a large amount of MC carbide is generated to reduce hot workability, so the upper limit was made 0.05% by weight.
Si(ケイ素)の含有量は、0.1〜0.5重量%とする。Siは、脱酸元素として添加される。また、適量の添加は耐酸化性を改善する。しかし、過剰に添加すると延性の低下をきたすため、上限を0.5重量%とした。 The content of Si (silicon) is 0.1 to 0.5% by weight. Si is added as a deoxidizing element. Moreover, the addition of an appropriate amount improves the oxidation resistance. However, if added excessively, ductility is lowered, so the upper limit was made 0.5 wt%.
Mn(マンガン)の含有量は、0.1〜0.5重量%とする。MnもSiと同様に脱酸元素として添加されるが、過剰に添加すると高温強度の低下をきたすため、上限を0.5重量%とした。 The content of Mn (manganese) is 0.1 to 0.5% by weight. Mn is also added as a deoxidizing element in the same manner as Si. However, if added excessively, the high temperature strength is lowered, so the upper limit was made 0.5% by weight.
B(ホウ素)の含有量は、0.001〜0.01重量%とする。Bは、結晶粒界を強化してクリープ強度を高めるほか、熱間加工性を改善する効果を持つ。このため、0.001重量%以上の添加が必要である。しかし、過剰に添加すると結晶粒界に低融点化合物を生成して熱間加工性を害するため、上限を0.01重量%とした。 The content of B (boron) is 0.001 to 0.01% by weight. B enhances the crystal grain boundary to increase the creep strength and has the effect of improving hot workability. For this reason, addition of 0.001% by weight or more is necessary. However, if added excessively, a low melting point compound is formed at the grain boundary and hot workability is impaired, so the upper limit was made 0.01 wt%.
Cr(クロム)の含有量は、20.0〜23.5重量%とする。Crは、耐酸化性および耐食性を向上するのに不可欠な元素である。また、ある程度添加した場合は、針状組織が成長して耐クリープ特性の向上が認められる。しかし、過剰添加した場合、針状組織が粗大化して性能劣化を招くため、20.0〜23.5重量%とした。 The content of Cr (chromium) is 20.0 to 23.5% by weight. Cr is an essential element for improving oxidation resistance and corrosion resistance. Further, when added to some extent, an acicular structure grows and an improvement in creep resistance is recognized. However, when excessively added, the acicular structure becomes coarse and causes performance deterioration, so the content was made 20.0 to 23.5% by weight.
Nb(ニオブ)の含有量は、0.7〜1.3重量%とする。Nbは、Ni3(Al,Ti,Nb)などの金属間化合物相を析出し、高温強度を向上する。また、Cと結合して炭化物NbCを生成し、高温硬さおよび強度の向上に寄与する。ただし、過剰添加すると材料を脆化させるので、0.7〜1.3重量%とした。 The content of Nb (niobium) is 0.7 to 1.3% by weight. Nb precipitates an intermetallic compound phase such as Ni 3 (Al, Ti, Nb) and improves high-temperature strength. Moreover, it combines with C to produce carbide NbC, which contributes to improvement in high temperature hardness and strength. However, if added excessively, the material becomes brittle, so the content was made 0.7 to 1.3% by weight.
Ti(チタン)の含有量は、2.0〜3.2重量%とする。Tiは、Niと結合して金属間化合物γ’相を形成し、オーステナイト相を強化する。Tiを増量すれば強化相であるγ’相の量は増加し、高温強度は向上する。しかし、過剰に添加すると、脆化相の析出をまねいてしまい、素材の熱間成形性を阻害するので、その添加範囲を2.0〜3.2重量%に限定した。 The content of Ti (titanium) is 2.0 to 3.2% by weight. Ti combines with Ni to form an intermetallic compound γ ′ phase and strengthens the austenite phase. Increasing the amount of Ti increases the amount of γ ′ phase, which is a strengthening phase, and improves the high-temperature strength. However, if added excessively, the embrittlement phase precipitates and the hot formability of the material is impaired, so the range of addition was limited to 2.0 to 3.2 wt%.
Al(アルミニウム)の含有量は、1.2〜2.2重量%とする。Alは、Niと結合して金属間化合物γ’相を形成し、オーステナイト相を強化する重要な元素である。Alを増量すれば強化相であるγ’相の量は増加し、高温強度は向上する。しかし、過剰に添加すると、強化相が不安定となり脆化相の析出をまねく。このため、素材の熱間成形性を阻害するので、その添加範囲を1.2〜2.2重量%に限定した。 The content of Al (aluminum) is 1.2 to 2.2% by weight. Al is an important element that combines with Ni to form an intermetallic compound γ ′ phase and strengthens the austenite phase. Increasing the amount of Al increases the amount of γ ′ phase, which is a strengthening phase, and improves the high-temperature strength. However, if added excessively, the strengthening phase becomes unstable, leading to the precipitation of the embrittlement phase. For this reason, since the hot formability of a raw material is inhibited, the addition range was limited to 1.2 to 2.2% by weight.
Ni(ニッケル)の含有量は、50〜53重量%とする。Niは、マトリックスであるオーステナイト基地を形成するため不可欠である。また、析出強化相であるγ’相を形成し、高温強度を向上させる。強化元素を固溶させるため、ある程度の量が必要であり、添加量の下限は50重量%以上とした。ただし、過剰添加した場合、合金のコスト上昇を招き、また耐硫化腐食性が悪化するので、上限を53重量%とした。 The content of Ni (nickel) is 50 to 53% by weight. Ni is indispensable for forming an austenite base that is a matrix. Further, a γ 'phase that is a precipitation strengthening phase is formed, and the high temperature strength is improved. In order to dissolve the strengthening element, a certain amount is necessary, and the lower limit of the addition amount is set to 50% by weight or more. However, when excessively added, the cost of the alloy increases, and the resistance to sulfidation corrosion deteriorates, so the upper limit was made 53 wt%.
Cu(銅)の含有量は、0.3〜1.0重量%とする。Cuは、硫化物系腐食の改善を目的として添加する。過剰添加した場合は熱間脆化を生じるため、その含有量を0.3〜1.0重量%に限定した。 The content of Cu (copper) is 0.3 to 1.0% by weight. Cu is added for the purpose of improving sulfide corrosion. When excessively added, hot embrittlement occurs, so the content was limited to 0.3 to 1.0% by weight.
Mo(モリブデン)の含有量は、1.5〜3.0重量%とする。Moは、熱間強度を達成する析出強化相が固溶する温度範囲において、固溶強化により高温強度および高温クリープ特性を向上させる元素である。1.5重量%未満の含有量では高温強度および高温クリープ特性を向上させる効果が発現せず、3.0重量%を超える含有量では熱間加工性に有害となるために含有量を限定した。 The content of Mo (molybdenum) is 1.5 to 3.0% by weight. Mo is an element that improves high-temperature strength and high-temperature creep characteristics by solid solution strengthening in a temperature range in which a precipitation strengthening phase that achieves hot strength is dissolved. If the content is less than 1.5% by weight, the effect of improving the high-temperature strength and high-temperature creep properties is not manifested. If the content exceeds 3.0% by weight, the hot workability is detrimental, so the content is limited. .
W(タングステン)の含有量は、1.0〜2.0重量%とする。Wは、熱間強度を達成する析出強化相が固溶する温度範囲において、固溶強化により高温強度および高温クリープ特性を向上させる元素である。1.0重量%未満の含有量では高温強度および高温クリープ特性を向上させる効果が発現せず、2.0重量%を超える含有量では熱間加工性に有害となるために含有量の上限を限定した。 The content of W (tungsten) is 1.0 to 2.0% by weight. W is an element that improves high-temperature strength and high-temperature creep characteristics by solid solution strengthening in a temperature range in which a precipitation strengthening phase that achieves hot strength is dissolved. If the content is less than 1.0% by weight, the effect of improving the high-temperature strength and the high-temperature creep property is not manifested, and if the content exceeds 2.0% by weight, the hot workability is harmful. Limited.
本発明に係るニッケル基合金(以下、本発明材という)および従来のニッケル基合金(以下、従来材という)を用いて、高温における引張試験を行ったので、その試験結果について説明する。本試験において、本発明材および従来材共に真空溶解炉で原材料を溶解させて鋼塊を作製し、1050℃で1時間の溶体化処理した後、水冷したものを用いた。試験片については、その鋼塊から直径16mm、高さ15mmの円柱状の試験片を作製して、時効処理を行った。 A tensile test at a high temperature was performed using a nickel-based alloy according to the present invention (hereinafter referred to as the present invention material) and a conventional nickel-based alloy (hereinafter referred to as a conventional material), and the test results will be described. In this test, the steel of the present invention and the conventional material were both melted in a vacuum melting furnace to produce a steel ingot, subjected to solution treatment at 1050 ° C. for 1 hour, and then water-cooled. About the test piece, the column-shaped test piece of diameter 16mm and height 15mm was produced from the steel ingot, and the aging treatment was performed.
時効処理の条件については、時効温度は750℃、時効時間については4時間として行った。本実施例の本発明材および従来材の化学組成を表1に示す。 Regarding the aging treatment conditions, the aging temperature was 750 ° C., and the aging time was 4 hours. Table 1 shows the chemical compositions of the inventive material and the conventional material of this example.
使用した試験片は、平行部が直径6mm、長さ25mmとなるように、前述の鋼塊から作製した直径16mmの圧延材より切削加工して製作した。試験条件は、室温、800℃および900℃の計3水準の雰囲気に試験片を20分間均熱保持した後、引張速度2mm/minで引張試験を行い、試験片が破断する際の強度(引張強度:単位MPa)、0.2%耐力(単位:MPa)、伸び(単位:%)および絞り(単位:%)をそれぞれ測定した。本発明材および従来材の室温、800℃および900℃における引張強度などの諸特性を表2〜4に示す。 The test piece used was manufactured by cutting from a rolled material having a diameter of 16 mm prepared from the steel ingot so that the parallel part had a diameter of 6 mm and a length of 25 mm. The test conditions were as follows: the test piece was kept soaked for 20 minutes in a total of three atmospheres: room temperature, 800 ° C., and 900 ° C., followed by a tensile test at a tensile speed of 2 mm / min. Strength: unit MPa), 0.2% proof stress (unit: MPa), elongation (unit:%), and drawing (unit:%) were measured. Tables 2 to 4 show various properties such as the tensile strength at room temperature, 800 ° C. and 900 ° C. of the material of the present invention and the conventional material.
室温での引張強度は、表2に示すように本発明材は従来材に比べて引張強度および0.2%耐力ともにやや低い値となった。しかし、伸びおよび絞りについては本発明材の方が従来材に比べて、約4〜8倍の値を示す結果となった。 As shown in Table 2, the tensile strength and the 0.2% proof stress of the present invention materials were slightly lower than those of the conventional materials as shown in Table 2. However, with regard to elongation and drawing, the inventive material showed a value about 4 to 8 times that of the conventional material.
次に、800℃における引張強度は、表3に示すように従来材が669MPaであるのに対して、本発明材は689MPaであり、本発明材は従来材と同等以上の引張強度であった。 Next, as shown in Table 3, the tensile strength at 800 ° C. of the conventional material is 669 MPa, while the material of the present invention is 689 MPa, and the material of the present invention has a tensile strength equal to or higher than that of the conventional material. .
また、0.2%耐力については、本発明材が645MPaであるのに対して、従来材は590MPaであった。このことから、800℃における本発明材の引張強度および0.2%耐力はともに従来材と同等以上の特性を有することがわかった。 Moreover, about 0.2% yield strength, this invention material was 645 MPa, while the conventional material was 590 MPa. From this, it was found that the tensile strength and 0.2% proof stress of the material of the present invention at 800 ° C. have the same or better properties than the conventional material.
また、900℃における引張強度も表4に示すように従来材は336MPaであったのに対して、本発明材は394MPaであった。さらに、0.2%耐力については、本発明材が394MPaであるのに対して、従来材は261MPaであった。したがって、本発明材は、従来材に比べて800〜900℃までの高温雰囲気において優れた引張強度および0.2%耐力を示すことがわかった。 Also, as shown in Table 4, the tensile strength at 900 ° C. was 336 MPa for the conventional material, whereas it was 394 MPa for the material of the present invention. Furthermore, regarding the 0.2% proof stress, the material of the present invention was 394 MPa, whereas the conventional material was 261 MPa. Therefore, it was found that the material of the present invention exhibits excellent tensile strength and 0.2% proof stress in a high temperature atmosphere up to 800 to 900 ° C. as compared with the conventional material.
次に、表1に示す本発明材および従来材を用いて高温におけるクリープ試験を行い、試験片が破断するまでの時間を測定したので、その結果について説明する。使用した試験片は、前述の鋼塊を1050℃で溶体化処理して、引き続き750℃で4時間の条件で時効処理を施して、冷却後に試験片を作製した。 Next, a creep test at a high temperature was performed using the material of the present invention and the conventional material shown in Table 1, and the time until the test piece broke was measured. The results will be described. The test piece used was a solution treatment of the steel ingot described above at 1050 ° C., followed by aging treatment at 750 ° C. for 4 hours, and a test piece was prepared after cooling.
試験片は、平行部の直径が6.4mmになるように製作した。クリープ試験は、900℃の高温雰囲気にて試験片に70MPaを負荷した状態で行い、試験片が破断するまでの時間を測定した。本発明材および従来材を用いて作製した試験片がクリープ破断するまでの時間(破断時間)、試験片の伸び(単位:%)および絞り(単位:%)を表5に示す。 The test piece was manufactured so that the parallel part had a diameter of 6.4 mm. The creep test was performed in a state where 70 MPa was applied to the test piece in a high temperature atmosphere of 900 ° C., and the time until the test piece broke was measured. Table 5 shows the time (break time) until the specimens made of the present invention and the conventional specimens creep rupture, the elongation (unit:%) of the specimen and the drawing (unit:%).
本発明材および従来材のクリープ破断時間は、表5に示すように従来材が160時間で破断したことに対して、本発明材の破断時間は206時間であり、従来材よりも約1.3倍のクリープ特性が得られた。また、試験片の伸びや絞りも同様に、従来材の伸びが28%であるのに対して、本発明材の伸びは36%であった。絞りは従来材が59%であるのに対して、本発明材は32%であった。以上の結果から、本発明材は、従来材よりも高温雰囲気で優れたクリープ特性を有していることがわかった。 As shown in Table 5, the creep rupture time of the inventive material and the conventional material was that the conventional material broke in 160 hours, whereas the inventive material had a rupture time of 206 hours, approximately 1. Three times the creep characteristics were obtained. Similarly, the elongation of the test piece and the drawing were 28%, while the elongation of the material of the present invention was 36%. The diaphragm is 59% of the conventional material, whereas the invention material is 32%. From the above results, it was found that the material of the present invention has excellent creep characteristics in a high temperature atmosphere as compared with the conventional material.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016019723A JP6738010B2 (en) | 2016-02-04 | 2016-02-04 | Nickel-based alloy with excellent high-temperature strength and high-temperature creep properties |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016019723A JP6738010B2 (en) | 2016-02-04 | 2016-02-04 | Nickel-based alloy with excellent high-temperature strength and high-temperature creep properties |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017137534A true JP2017137534A (en) | 2017-08-10 |
JP6738010B2 JP6738010B2 (en) | 2020-08-12 |
Family
ID=59566451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016019723A Active JP6738010B2 (en) | 2016-02-04 | 2016-02-04 | Nickel-based alloy with excellent high-temperature strength and high-temperature creep properties |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6738010B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109136472A (en) * | 2018-10-10 | 2019-01-04 | 四川六合锻造股份有限公司 | A kind of high temperature turbine blade and its production method |
JP2020132919A (en) * | 2019-02-14 | 2020-08-31 | 日本製鉄株式会社 | Heat-resistant alloy and method for producing the same |
-
2016
- 2016-02-04 JP JP2016019723A patent/JP6738010B2/en active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109136472A (en) * | 2018-10-10 | 2019-01-04 | 四川六合锻造股份有限公司 | A kind of high temperature turbine blade and its production method |
JP2020132919A (en) * | 2019-02-14 | 2020-08-31 | 日本製鉄株式会社 | Heat-resistant alloy and method for producing the same |
JP7205277B2 (en) | 2019-02-14 | 2023-01-17 | 日本製鉄株式会社 | Heat-resistant alloy and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP6738010B2 (en) | 2020-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4277113B2 (en) | Ni-base alloy for heat-resistant springs | |
US20130206287A1 (en) | Co-based alloy | |
JP2015129341A (en) | Ni-BASED SUPERALLOY CAPABLE OF HOT FORGING EXCELLENT IN HIGH TEMPERATURE STRENGTH | |
JP6733210B2 (en) | Ni-based superalloy for hot forging | |
JP2011219864A (en) | Heat resistant steel for exhaust valve | |
JP6741876B2 (en) | Alloy plate and gasket | |
JP6733211B2 (en) | Ni-based superalloy for hot forging | |
WO2012132679A1 (en) | Cast austenitic stainless steel | |
KR20120053645A (en) | Polycrystal ni base superalloy with good mechanical properties at high temperature | |
JP6293682B2 (en) | High strength Ni-base superalloy | |
US9994938B2 (en) | Fe-Ni-based alloy having excellent high-temperature characteristics and hydrogen embrittlement resistance characteristics, and method for producing the same | |
JP2010280950A (en) | Heat resistant steel for exhaust valve and method for producing the same | |
JP5553636B2 (en) | Weld filler | |
JP6738010B2 (en) | Nickel-based alloy with excellent high-temperature strength and high-temperature creep properties | |
JP5880836B2 (en) | Precipitation strengthened heat resistant steel and processing method thereof | |
JP2004256840A (en) | COMPOSITE REINFORCED TYPE Ni BASED SUPERALLOY, AND PRODUCTION METHOD THEREFOR | |
JP5599850B2 (en) | Ni-base alloy excellent in hydrogen embrittlement resistance and method for producing Ni-base alloy material excellent in hydrogen embrittlement resistance | |
JP6095237B2 (en) | Ni-base alloy having excellent high-temperature creep characteristics and gas turbine member using this Ni-base alloy | |
JP6745050B2 (en) | Ni-based alloy and heat-resistant plate material using the same | |
JP6787246B2 (en) | Alloy original plate for heat-resistant parts, alloy plate for heat-resistant parts, and gasket for exhaust system parts of engine | |
JP2018048367A (en) | Ni-based heat-resistant alloy member | |
JP2015108177A (en) | Nickel-based alloy | |
JP2015004125A (en) | PRECIPITATION HARDENED Fe-Ni ALLOY | |
JP2015120956A (en) | Austenitic heat resistant casting alloy | |
RU2807233C2 (en) | Heat-resistant nickel-based alloy and product made from it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181219 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200203 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200225 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200616 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200629 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6738010 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |