JP2007162041A - Ni-BASE SUPERALLOY WITH HIGH STRENGTH AND HIGH DUCTILITY, MEMBER USING THE SAME, AND MANUFACTURING METHOD OF THE MEMBER - Google Patents

Ni-BASE SUPERALLOY WITH HIGH STRENGTH AND HIGH DUCTILITY, MEMBER USING THE SAME, AND MANUFACTURING METHOD OF THE MEMBER Download PDF

Info

Publication number
JP2007162041A
JP2007162041A JP2005356445A JP2005356445A JP2007162041A JP 2007162041 A JP2007162041 A JP 2007162041A JP 2005356445 A JP2005356445 A JP 2005356445A JP 2005356445 A JP2005356445 A JP 2005356445A JP 2007162041 A JP2007162041 A JP 2007162041A
Authority
JP
Japan
Prior art keywords
strength
base superalloy
alloy
ductility
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005356445A
Other languages
Japanese (ja)
Other versions
JP4885530B2 (en
Inventor
Hideki Tamaoki
英樹 玉置
Akira Yoshinari
明 吉成
Akira Okayama
昭 岡山
Hiroyuki Doi
裕之 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005356445A priority Critical patent/JP4885530B2/en
Priority to DE200660017028 priority patent/DE602006017028D1/en
Priority to EP20060025253 priority patent/EP1795621B1/en
Publication of JP2007162041A publication Critical patent/JP2007162041A/en
Application granted granted Critical
Publication of JP4885530B2 publication Critical patent/JP4885530B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Supercharger (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an Ni-base superalloy which can provide high high-temperature strength and excellent ductility in the form of both a directionally solidified material and an ordinary casting and is suitable for application to industrial gas turbines and centrifugal wheels for turbochargers or microturbines. <P>SOLUTION: The Ni-base superalloy has a composition containing, by weight, 0.06 to 0.3% C, 0.01 to 0.05% B, 0.5 to 3.0% Hf, 10.2 to 25% Co, 1 to 12% Ta, 1.5 to 16% Cr, 2 to 15% W, 3.5 to 6.5% Al, 0.5 to 9% Re and 0.2 to 2% Nb. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高温強度及び延性の優れたNi基超合金に係り、特に普通鋳造材あるいは一方向凝固材のいずれであっても高い強度と優れた延性を有するNi基超合金に関する。また、本発明はNi基超合金の鋳造物によって製造されたターボチャージャー又はマイクロタービン用の遠心式ホイール、或いは軸流式ガスタービンの動翼又は静翼に関する。   The present invention relates to a Ni-base superalloy excellent in high-temperature strength and ductility, and more particularly, to a Ni-base superalloy having high strength and excellent ductility, regardless of whether it is a normal cast material or a unidirectionally solidified material. The present invention also relates to a centrifugal wheel for a turbocharger or a microturbine manufactured by a casting of a Ni-base superalloy, or a moving blade or a stationary blade of an axial flow gas turbine.

航空機エンジン用ガスタービン或いは産業用ガスタービンにおいて、高温に加熱される部品、例えば動翼や静翼には、Ni基超合金が用いられている。また、ターボチャージャー又はマイクロタービン用の遠心式ホイールにも、Ni基超合金が用いられている。   In an aircraft engine gas turbine or an industrial gas turbine, a Ni-base superalloy is used for a part heated to a high temperature, for example, a moving blade or a stationary blade. Ni-based superalloys are also used in centrifugal wheels for turbochargers or microturbines.

ガスタービンの燃焼ガス温度は、熱効率向上の観点から年々上昇する傾向にあり、これに合わせて、動翼或いは静翼には、従来使用されてきた普通鋳造材に代わって、一方向凝固材が使用されるようになった。また、ガスタービンのなかでも、比較的小型の航空機エンジン用ガスタービンでは、より高温強度の優れた単結晶翼が実用化されている。   Combustion gas temperatures of gas turbines tend to increase year by year from the viewpoint of improving thermal efficiency, and in accordance with this, unidirectionally solidified materials are used for moving blades or stationary blades instead of conventional cast materials that have been used conventionally. Came to be used. Among gas turbines, single-crystal wings with higher high-temperature strength have been put to practical use in relatively small aircraft engine gas turbines.

一方向凝固材用に開発されたNi基超合金には、Tiを強化元素として含む合金が多く見られる(例えば特許文献1参照)。   Many Ni-base superalloys developed for unidirectionally solidified materials contain Ti as a strengthening element (see, for example, Patent Document 1).

単結晶材用に開発された合金の多くは結晶粒界強化元素を含んでいないので、鋳造中に結晶粒界が発生しやすい大型品、例えば産業用ガスタービンへの適用は困難である。単結晶材を大型品に適用できるようにするために、単結晶材にC,B,Hf,Zrなどの結晶粒界強化元素を添加した合金が開発されている(例えば、特許文献2参照)。しかし、産業用ガスタービンの翼は大型で、さらに内部の冷却構造も複雑であるため、鋳造中に結晶粒界が発生しやすく、単結晶翼の歩留まりは航空機エンジン用ガスタービン翼に比べると著しく低い。従って、高強度を有する一方向凝固材用Ni基超合金が開発されることが望まれる。   Since many of the alloys developed for single crystal materials do not contain grain boundary strengthening elements, it is difficult to apply them to large-sized products that easily generate grain boundaries during casting, such as industrial gas turbines. In order to make it possible to apply the single crystal material to a large product, an alloy in which a grain boundary strengthening element such as C, B, Hf, or Zr is added to the single crystal material has been developed (for example, refer to Patent Document 2). . However, industrial gas turbine blades are large and the internal cooling structure is complex, so that grain boundaries are likely to occur during casting, and the yield of single crystal blades is significantly higher than that of aircraft engine gas turbine blades. Low. Therefore, it is desired to develop a Ni-base superalloy for unidirectionally solidified material having high strength.

一方、遠心応力方向と平行方向の一方向凝固が難しいターボチャージャー又はマイクロタービンの遠心式ホイールには、普通鋳造材が用いられている(例えば、特許文献3参照)。これは、方向性凝固を前提に開発された高強度Ni基超合金で鋳造した普通鋳造品は、結晶粒界強度が低いため延性が極端に低く、遠心式ホイールに適用することができないためである。   On the other hand, a normal cast material is used for a centrifugal charger of a turbocharger or a micro turbine in which unidirectional solidification in a direction parallel to the centrifugal stress direction is difficult (see, for example, Patent Document 3). This is because ordinary cast products cast with high-strength Ni-base superalloys developed on the premise of directional solidification have extremely low ductility due to low crystal grain boundary strength and cannot be applied to centrifugal wheels. is there.

USP5069873号明細書USP 5069873 Specification USP6051083号明細書USP 6051083 Specification USP3720509号明細書USP 3720509 specification

単結晶材用に開発された合金は、結晶粒界強化元素を含んでいる合金であっても、非常に高い結晶粒内強度に比べて結晶粒界発生時の強度が低く、鋳造中に結晶粒界が発生しやすい大型の複雑形状翼には適用しにくい。   Alloys developed for single crystal materials, even those containing grain boundary strengthening elements, have lower strength at the time of grain boundary generation compared to very high intra-grain strength, and crystallized during casting. It is difficult to apply to large complex wings where grain boundaries are likely to occur.

一方向凝固材用に開発された合金は、析出強化相であるγ’相の体積率及びW,Re,Ta等の耐火金属元素の添加量を増やすことで、凝固方向の強度を向上させることができるが、一方で結晶粒界の強度が相対的に低下してしまう。凝固方向の強度を高めた合金は、凝固方向に直角方向の強度、つまり結晶粒界の強度が著しく低くなってしまうという問題がある。   Alloys developed for unidirectionally solidified materials can improve the strength in the solidification direction by increasing the volume fraction of the γ 'phase, which is the precipitation strengthening phase, and increasing the amount of refractory metal elements such as W, Re, and Ta. On the other hand, the strength of the grain boundary is relatively lowered. An alloy having an increased strength in the solidification direction has a problem that the strength in the direction perpendicular to the solidification direction, that is, the strength of the crystal grain boundary is significantly reduced.

特許文献2に示される合金は、単結晶翼の鋳造歩留まりを向上させるために十分な結晶粒界強度を有しているが、大型複雑形状の産業用ガスタービン用の一方向凝固翼に適用するためには、結晶粒界強度がやや不足している。特許文献1に示される一方向凝固材用合金は、結晶粒界強度はほぼ十分であるが、凝固方向の強度が低い。   The alloy shown in Patent Document 2 has sufficient grain boundary strength to improve the casting yield of a single crystal blade, but is applied to a unidirectionally solidified blade for an industrial gas turbine having a large complex shape. Therefore, the grain boundary strength is slightly insufficient. The alloy for unidirectionally solidified material disclosed in Patent Document 1 has almost sufficient grain boundary strength, but has low strength in the solidification direction.

特許文献3に示される普通鋳造材用合金は、適度な延性を有しているが高温強度が低く、ターボチャージャー又はマイクロタービンの遠心式ホイールに適用するには、高温化に対応した強度向上が要求される。   The alloy for ordinary casting material shown in Patent Document 3 has moderate ductility but low strength at high temperature, and for application to a turbocharger or a centrifugal wheel of a micro turbine, strength improvement corresponding to higher temperatures is required. Required.

本発明の目的は、一方向凝固材及び普通鋳造材のいずれにおいても、高い高温強度と優れた延性が得られ、産業用ガスタービンや、ターボチャージャー又はマイクロタービンの遠心式ホイールに適用するのに適したNi基超合金を提供することにある。   The object of the present invention is to obtain high high-temperature strength and excellent ductility in both unidirectionally solidified materials and ordinary cast materials, and to be applied to industrial gas turbines, centrifugal chargers for turbochargers or microturbines. It is to provide a suitable Ni-base superalloy.

本発明の第一は、重量%で、C:0.06〜0.3%、B:0.01〜0.05%、Hf:0.2〜3.0%、Co:10.2〜25%、Ta:1〜12%、Cr:1.5〜16%、Mo:0〜0.95%、W:2〜15%、Al:3.5〜6.5%、Re:0.5〜9%、Nb:0.2〜2%、V:0〜1%、Zr:0〜0.02%、白金族元素から選ばれた少なくとも1種:0〜2%、希土類元素から選ばれた少なくとも1種:0〜2%、アルカリ土類金属及びSiから選ばれた少なくとも1種:0〜0.1%、FeとGa及びGeから選ばれた少なくとも1種:0〜5%、残部がNiと不可避不純物よりなるNi基超合金にある。この合金は、一方向凝固材および普通鋳造材のいずれであっても、高い高温強度と優れた延性を有する。なお、不可避不純物とは、例えばCrを添加するときに、Cr原料に含まれている不純物のように、原料に同伴して混入する不純物を云う。このような不純物としては、Si,S,O,N,P,Mn,Cuなどがある。   The first of the present invention is by weight, C: 0.06 to 0.3%, B: 0.01 to 0.05%, Hf: 0.2 to 3.0%, Co: 10.2 to 25%, Ta: 1 to 12%, Cr: 1.5 to 16%, Mo: 0 to 0.95%, W: 2 to 15%, Al: 3.5 to 6.5%, Re: 0.00. 5-9%, Nb: 0.2-2%, V: 0-1%, Zr: 0-0.02%, at least one selected from platinum group elements: 0-2%, selected from rare earth elements At least one selected from 0 to 2%, at least one selected from alkaline earth metals and Si: 0 to 0.1%, at least one selected from Fe, Ga and Ge: 0 to 5%, The balance is Ni-based superalloy made of Ni and inevitable impurities. This alloy has high high-temperature strength and excellent ductility regardless of whether it is a unidirectionally solidified material or a normal cast material. Note that the inevitable impurities refer to impurities mixed with the raw material, such as impurities contained in the Cr raw material, when adding Cr, for example. Examples of such impurities include Si, S, O, N, P, Mn, and Cu.

前述の成分組成を有するNi基超合金は、単結晶材にしても高い高温強度を有する。また、Hfを重量%で1.1〜3.0%含むようにしたものは、極めて優れた延性を有する。   The Ni-base superalloy having the above-described component composition has high high-temperature strength even if it is a single crystal material. Moreover, what contains 1.1 to 3.0% of Hf by weight% has very excellent ductility.

本発明の第二は、重量%で、C:0.16〜0.3%、B:0.016〜0.05%、Hf:1.4〜3.0%、Co:10.2〜25%、Ta:1〜4.9%、Cr:1.5〜8%、Mo:0〜0.95%、W:7.2〜15%、Al:3.5〜6.5%、Re:1.1〜9%、Nb:0.2〜2%、V:0〜1%、Zr:0〜0.02%、白金族元素の少なくとも1種:0〜2%、希土類元素の少なくとも1種:0〜2%、アルカリ土類金属及びSiの少なくとも1種:0〜0.1%、FeとGa及びGeから選ばれた少なくとも1種:0〜5%、残部がNiと不可避不純物からなるNi基超合金にある。この合金は、特に普通鋳造材で使用するのに適する。   In the second aspect of the present invention, by weight, C: 0.16 to 0.3%, B: 0.016 to 0.05%, Hf: 1.4 to 3.0%, Co: 10.2 to 25%, Ta: 1 to 4.9%, Cr: 1.5 to 8%, Mo: 0 to 0.95%, W: 7.2 to 15%, Al: 3.5 to 6.5%, Re: 1.1 to 9%, Nb: 0.2 to 2%, V: 0 to 1%, Zr: 0 to 0.02%, at least one platinum group element: 0 to 2%, rare earth element At least one kind: 0 to 2%, at least one kind of alkaline earth metal and Si: 0 to 0.1%, at least one kind selected from Fe, Ga and Ge: 0 to 5%, the balance being inevitable with Ni It is a Ni-base superalloy made of impurities. This alloy is particularly suitable for use with ordinary castings.

第二の発明に係るNi基超合金において、重量%でCrを1.5〜7%、Wを9〜15%としたときには、優れた延性を維持しつつ、高温強度の向上を図ることができる。高温強度の更なる向上を図りたい場合には、重量%でCrを1.5〜7%、Wを11.2〜15%含むようにすることが望ましい。第二の発明に係る普通鋳造材用Ni基超合金において、重量%で、Cを0.18〜0.3%、Hfを1.8〜3.0%、Crを1.5〜7%、Wを11.2〜15%としたものは、強度及び延性がいずれも極めて優れている。   In the Ni-base superalloy according to the second invention, when Cr is 1.5 to 7% by weight and W is 9 to 15%, the high temperature strength can be improved while maintaining excellent ductility. it can. In order to further improve the high-temperature strength, it is desirable to contain 1.5 to 7% Cr and 11.2 to 15% W by weight%. In the Ni-based superalloy for ordinary castings according to the second invention, C is 0.18 to 0.3%, Hf is 1.8 to 3.0%, and Cr is 1.5 to 7% by weight. , W is 11.2-15%, both strength and ductility are extremely excellent.

本発明の第三は、重量%で、C:0.06〜0.3%、B:0.01〜0.05%、Hf:1.4〜3.0%、Co:10.2〜25%、Ta:1〜12%、Cr:1.5〜16%、Mo:0〜0.95%、W:7.2〜15%、Al:3.5〜6.5%、Re:1.1〜9%、Nb:0.2〜2%、V:0〜1%、Zr:0〜0.02%、白金族元素の少なくとも1種:0〜2%、希土類元素の少なくとも1種:0〜2%、アルカリ土類金属及びSiの少なくとも1種:0〜0.1%、FeとGa及びGeから選ばれた少なくとも1種:0〜5%、残部がNiと不可避不純物からなるNi基超合金にある。この合金は特に一方向凝固材で使用するのに適する。   The third of the present invention is weight percent, C: 0.06 to 0.3%, B: 0.01 to 0.05%, Hf: 1.4 to 3.0%, Co: 10.2 to 25%, Ta: 1 to 12%, Cr: 1.5 to 16%, Mo: 0 to 0.95%, W: 7.2 to 15%, Al: 3.5 to 6.5%, Re: 1.1-9%, Nb: 0.2-2%, V: 0-1%, Zr: 0-0.02%, at least one platinum group element: 0-2%, at least one rare earth element Species: 0 to 2%, alkaline earth metal and at least one of Si: 0 to 0.1%, at least one selected from Fe, Ga and Ge: 0 to 5%, the balance being Ni and inevitable impurities This is a Ni-base superalloy. This alloy is particularly suitable for use with unidirectionally solidified materials.

第三の発明に係るNi基超合金において、重量%で、Taを1〜6.5%、Wを9〜15%としたものは、高温強度と共に耐酸化性も優れる。Taを1〜6.5%、Wを10.5〜5%にしたものは、特に高温強度が優れる。一方向凝固材において、耐酸化性を維持しつつ、更なる高温強度向上を図る場合には、重量%で、Taを1〜4.9%、Wを11.2〜15%含むようにすることが望ましい。また、TaとWの合計量を15〜17%にし、W/W+Taの比率を0.6〜0.8にすることが極めて望ましい。   In the Ni-base superalloy according to the third aspect of the present invention, those having Ta in the range of 1 to 6.5% and W in the range of 9 to 15% are excellent in high temperature strength and oxidation resistance. Those having Ta of 1 to 6.5% and W of 10.5 to 5% are particularly excellent in high temperature strength. In a unidirectionally solidified material, in order to further improve high-temperature strength while maintaining oxidation resistance, Ta is included in an amount of 1 to 4.9% and W is included in an amount of 11.2 to 15%. It is desirable. Further, it is extremely desirable that the total amount of Ta and W is 15 to 17% and the ratio of W / W + Ta is 0.6 to 0.8.

本発明のNi基超合金は、溶体化熱処理と時効熱処理を施すことによって、高い高温強度と延性が得られる。本発明のNi基超合金のソルバス(solvus)温度は1240℃以下であり、部分溶融温度は1260℃以上である。ここで、ソルバス温度は、デンドライトコア部で、析出強化相であるγ’相がγ相中に固溶する温度と定義する。部分溶融温度とは、鋳造中に融点の低い元素が偏析した共晶部の溶融が始まる温度のことであり、合金の強度を最大にする溶体化熱処理はソルバス温度以上、部分溶融温度以下で行われる。ソルバス温度と部分溶融温度の間隔は20℃以上であることが好ましく、本発明の合金はこの点からも好ましい。   The Ni-base superalloy of the present invention can have high high-temperature strength and ductility by performing solution heat treatment and aging heat treatment. The solvus temperature of the Ni-base superalloy of the present invention is 1240 ° C. or lower, and the partial melting temperature is 1260 ° C. or higher. Here, the solvus temperature is defined as a temperature at which the γ ′ phase, which is a precipitation strengthening phase, is dissolved in the γ phase in the dendrite core portion. The partial melting temperature is the temperature at which the eutectic part where elements with low melting points segregate during casting begins, and the solution heat treatment that maximizes the strength of the alloy is performed at a temperature above the solvus temperature and below the partial melting temperature. Is called. The interval between the solvus temperature and the partial melting temperature is preferably 20 ° C. or more, and the alloy of the present invention is also preferable from this point.

本発明のNi基超合金による鋳造物は、軸流式産業用ガスタービンの翼、或いは、ターボチャージャー又はマイクロタービンの遠心式ホイールに用いるのに適する。一方向凝固法で鋳造された一方向凝固鋳造物あるいは一方向凝固法で鋳造された単結晶鋳造物は、特に軸流式ガスタービンの翼の中でも大型で形状が複雑な翼用として好適である。翼とは、動翼又は静翼を指す。本発明のNi基超合金を用いて、セレクタ法又は種結晶法で鋳造を行い、鋳造物の重要部のみを単結晶とし、その他の比較的重要度が低い部位には結晶粒界が存在するようにすることもできる。本発明の合金は、優れた凝固方向強度(結晶粒内の強度)と結晶粒界強度を併せ持っているため、重要部は単結晶にし、その他の部位には結晶粒界を存在させても良いという用途には好適である。   The castings of the Ni-base superalloy of the present invention are suitable for use in axial-flow industrial gas turbine blades or centrifugal chargers or micro-turbine centrifugal wheels. Unidirectionally solidified castings cast by the unidirectional solidification method or single crystal castings cast by the unidirectional solidification method are particularly suitable for blades of large size and complicated shape among the blades of axial flow gas turbines. . Wings refer to moving or stationary blades. Using the Ni-base superalloy of the present invention, casting is performed by the selector method or the seed crystal method, and only the important part of the casting is made a single crystal, and there are grain boundaries in other relatively less important parts. It can also be done. Since the alloy of the present invention has both excellent solidification direction strength (strength in crystal grains) and grain boundary strength, the important part may be a single crystal and grain boundaries may exist in other parts. It is suitable for such applications.

本発明の合金は、マスターインゴットとして成分調整され、その後、適当なサイズに分割され、鋳造に供される。   The alloy of the present invention is subjected to component adjustment as a master ingot, then divided into appropriate sizes and subjected to casting.

本発明のNi基超合金によりターボチャージャー又はマイクロタービン用の遠心式ホイールを製造する場合には、翼部表面が微細結晶、翼部からハブ部へ向けた部分が翼部からハブ部へ向けた凝固方向の柱状晶、ハブ部が結晶粒径5mm以上の粗大結晶となるように、鋳造することが望ましい。これにより、低コストで、欠陥の少ない鋳物が製造可能である。なお、鋳造に際しては、製品部の全ての部位で、凝固前面と接する溶湯が必ず湯口まで連続している凝固形態にすることが好ましい。また、鋳造後、溶体化熱処理の前に、温度1185〜1285℃以上、圧力120〜185MPaの条件で、2時間以上のHIP処理を施すことが望ましく、これにより、欠陥を減らすことが可能である。微細結晶とは、結晶粒径が1mm以下のものを云い、チル晶も含む。   When a centrifugal wheel for a turbocharger or a micro turbine is manufactured using the Ni-base superalloy of the present invention, the surface of the wing part is fine crystal, and the part from the wing part to the hub part is directed from the wing part to the hub part. It is desirable to cast so that the columnar crystals in the solidification direction and the hub portion are coarse crystals having a crystal grain size of 5 mm or more. Thereby, it is possible to manufacture a casting with low costs and few defects. In casting, it is preferable that the molten metal that is in contact with the solidification front face is always solidified to the pouring gate in all parts of the product portion. In addition, it is desirable to perform HIP treatment for 2 hours or more under conditions of a temperature of 1185 to 1285 ° C. and a pressure of 120 to 185 MPa after casting and before solution heat treatment, which can reduce defects. . The fine crystal means a crystal grain size of 1 mm or less, and includes chill crystals.

本発明により、一方向凝固材及び普通鋳造材のいずれであっても、高い高温強度と延性を有するNi基超合金を得ることができた。本発明のNi基超合金よりなり、一方向凝固法で鋳造されたガスタービンは、低コストで大幅な熱効率向上が期待される。また、形状上の理由から、一方向凝固材が適用できず、普通鋳造材で製造されたターボチャージャー又はマイクロタービン用の遠心式ホイールでは、高強度化、高温化が図れる。   According to the present invention, it was possible to obtain a Ni-base superalloy having high high-temperature strength and ductility regardless of whether it was a unidirectionally solidified material or a normal cast material. A gas turbine made of the Ni-base superalloy of the present invention and cast by the unidirectional solidification method is expected to greatly improve thermal efficiency at low cost. In addition, unidirectionally solidified material cannot be applied for reasons of shape, and a turbocharger or a micro-turbine centrifugal wheel manufactured from a normal cast material can achieve high strength and high temperature.

本発明のNi基超合金における個々の元素の効果及び適正含有量について述べる。   The effects and appropriate contents of the individual elements in the Ni-base superalloy of the present invention will be described.

Cは、Hf,Ta,Nb等とMC型炭化物、Cr,W,Mo等とM23及びMC型炭化物を形成し、高温で結晶粒界が移動するのを阻止することで結晶粒界を強化する効果があり、本発明において特に重要な役割を果たす元素である。この効果を発揮させるためには最低でも0.06%以上添加する必要がある。普通鋳造材で、より高い粒界強度が要求される場合には0.09%以上、より好ましくは0.16%以上添加するのがよい。普通鋳造材において、強度と延性をいずれも増大させたい場合には、0.18%以上添加することが好ましい。炭素が0.18%以上添加されると、全ての結晶粒界に炭化物が晶出又は析出し、HIP処理あるいは溶体化熱処理中及び変形中に結晶粒界が移動するのを防止し、高温強度及び延性向上に著しい効果がある。しかし、C量を多くしすぎると、γ相及びγ’相の固溶強化に有効な元素が炭化物にとられることで、かえって高温強度が低下するようになる。また、過剰の炭化物は疲労強度を低下させる。従って、Cの上限は0.3%に規制する必要がある。 C forms Mf carbides with Hf, Ta, Nb, etc., M 23 C 6 and M 6 C carbides with Cr, W, Mo, etc., and prevents crystal grain boundaries from moving at high temperatures. It is an element that has an effect of strengthening grain boundaries and plays a particularly important role in the present invention. In order to exert this effect, it is necessary to add at least 0.06% or more. In the case of a normal cast material, when higher grain boundary strength is required, 0.09% or more, more preferably 0.16% or more is added. When it is desired to increase both strength and ductility in a normal cast material, it is preferable to add 0.18% or more. When 0.18% or more of carbon is added, carbides are crystallized or precipitated at all crystal grain boundaries, preventing the grain boundaries from moving during HIP treatment or solution heat treatment and deformation, and high temperature strength In addition, there is a significant effect on ductility improvement. However, if the amount of C is excessively increased, elements effective for solid solution strengthening of the γ phase and the γ ′ phase are taken into the carbide, so that the high-temperature strength is lowered. Excess carbides also reduce fatigue strength. Therefore, the upper limit of C needs to be regulated to 0.3%.

Bは結晶粒界の非整合部を埋め、結晶粒界の結合力を増加させる効果がある。本発明の合金においては、最低でも0.01%のBの添加が必要である。普通鋳造材として、より高い粒界強度が要求される場合には0.016%以上添加することが望ましい。しかし、BはNi基超合金の融点を著しく低下させるため、最大でも0.05%とする必要がある。   B has an effect of filling non-matching portions of the crystal grain boundaries and increasing the bond strength of the crystal grain boundaries. In the alloy of the present invention, at least 0.01% of B must be added. When a higher grain boundary strength is required as a normal cast material, it is desirable to add 0.016% or more. However, since B significantly lowers the melting point of the Ni-base superalloy, it is necessary to make it 0.05% at the maximum.

Hfは結晶粒界に偏析して結晶粒界の延性を向上させる。合金の凝固方向強度の向上は、合金の結晶粒内の強度が向上することにより達成される。しかし、合金の結晶粒内の強度が向上し、結晶粒界の強度を大幅に上回ると、相対的に結晶粒界の強度が低下し、結晶粒界に対して直角方向となる凝固直角方向の延性が著しく低下し、結果として凝固直角方向の強度が低下する。また、普通鋳造材の場合、結晶粒界の強度が低く、延性も低いと、結晶粒内をいくら強化しても、鋳物としての強度は向上しない。Hfは、このような現象を防止するための必須元素であり、最低でも0.2%以上、特に0.5%以上添加することが好ましい。延性を重視する場合には、普通鋳造材或いは一方向凝固材のいずれにおいても1.1%以上添加するのがよく、高い粒界強度が要求される場合には1.4%以上にするのがよい。Hfを1.8%以上添加すると、共晶組織の面積率が増加し、炭化物と同様に結晶粒界の移動を防止する効果が高まり、結晶粒界の強度が向上する。これは、特に普通鋳造材の場合に有効である。しかし、過度の添加はBと同様に合金の融点を低下させるため、3.0%以下の添加量に抑える必要がある。   Hf segregates at the grain boundaries and improves the ductility of the grain boundaries. Improvement in the solidification direction strength of the alloy is achieved by improving the strength in the crystal grains of the alloy. However, when the strength in the crystal grains of the alloy is improved and significantly exceeds the strength of the grain boundaries, the strength of the grain boundaries is relatively lowered, and the solidification perpendicular direction is perpendicular to the grain boundaries. The ductility is significantly reduced, and as a result, the strength in the direction perpendicular to solidification is reduced. In the case of a normal cast material, if the strength of the crystal grain boundary is low and the ductility is low, the strength as a casting is not improved no matter how much the crystal grains are strengthened. Hf is an essential element for preventing such a phenomenon, and it is preferably added at least 0.2% or more, particularly 0.5% or more. When considering ductility, it is recommended to add 1.1% or more in either a normal cast material or a unidirectional solidified material, and if high grain boundary strength is required, it should be 1.4% or more. Is good. When Hf is added in an amount of 1.8% or more, the area ratio of the eutectic structure is increased, and the effect of preventing the movement of the crystal grain boundary is increased like the carbide, and the strength of the crystal grain boundary is improved. This is particularly effective for ordinary cast materials. However, excessive addition lowers the melting point of the alloy in the same manner as B, so it is necessary to suppress the addition amount to 3.0% or less.

Coはγ’相の固溶温度を低下させ、溶体化熱処理を容易にする効果があり、特に本発明合金のように、部分溶体化で使用される場合には低い熱処理温度でも溶体化率を大きくすることが可能となる。その効果を得るためには、最低でも10.2%以上の添加が必要である。しかし、Coの過度の添加は、γ’相を不安定化し、むしろ強度低下につながる。従って、Coは最大でも25%にする必要がある。   Co has the effect of lowering the solid solution temperature of the γ 'phase and facilitating solution heat treatment. Especially when used in partial solution formation, as in the case of the alloy of the present invention, the solution rate can be reduced even at a low heat treatment temperature. It becomes possible to enlarge. In order to obtain the effect, addition of at least 10.2% is necessary. However, excessive addition of Co destabilizes the γ 'phase and rather leads to a decrease in strength. Therefore, Co must be at most 25%.

Taはγ’相の固溶強化元素として、Ti,Nbより優れるので、非常に有効な元素である。凝固方向強度を向上させるためには、その添加量は多いほど良く、最低でも1%の添加が必要である。しかし、過度の添加は合金の相安定性を悪化させ、かえって強度低下につながるため、最大でも12%に規制する必要がある。また、本発明のポイントとして、W量を多くし、相対的にTa量を減らすことで、鋳物の延性が向上することが明らかになった。合金の強度を向上させるためには、WとTaの合計量は多いほど良いが、一方で、その合計量が或るレベルを超えると、TCP相が析出し、かえって強度が低下する。従って、高強度高延性を実現するためには、W量を高め、その分だけTa量を下げた組成にするのが好ましく、Taは6.5%以下、特に4.9%以下にすることが好ましい。   Ta is a very effective element because it is superior to Ti and Nb as a solid solution strengthening element of the γ 'phase. In order to improve the strength in the direction of solidification, the larger the amount added, the better, and at least 1% addition is necessary. However, excessive addition deteriorates the phase stability of the alloy and leads to a decrease in strength. Therefore, it is necessary to regulate the maximum to 12%. Further, as a point of the present invention, it has been clarified that the ductility of the casting is improved by increasing the amount of W and relatively decreasing the amount of Ta. In order to improve the strength of the alloy, the larger the total amount of W and Ta, the better. On the other hand, when the total amount exceeds a certain level, the TCP phase precipitates and the strength is lowered. Therefore, in order to achieve high strength and high ductility, it is preferable to increase the W content and lower the Ta amount accordingly, and Ta should be 6.5% or less, especially 4.9% or less. Is preferred.

WはTaと反対に主にγ相を固溶強化する元素である。従って、凝固方向強度を向上させるためには、その添加量は多いほど良く、最低でも2%以上添加する必要がある。さらに、前述のように高強度と高延性を両立させるためには、TaよりWを高めた組成が適当であり、Wは7.2%以上、より好ましくは9%以上、さらに好ましくは11.5%以上とすることが適当である。しかし、Taと同様に、Wも過度の添加は合金の相安定性を悪化させTCP相等の有害相の析出につながり、かつ耐食性を著しく低下させるため、最大でも15%に規制する必要がある。   W is an element that mainly strengthens the γ phase in solid solution, contrary to Ta. Therefore, in order to improve the strength in the direction of solidification, the larger the amount added, the better, and it is necessary to add at least 2%. Furthermore, as described above, in order to achieve both high strength and high ductility, a composition in which W is higher than Ta is appropriate, and W is 7.2% or more, more preferably 9% or more, and even more preferably 11. 5% or more is appropriate. However, like Ta, excessive addition of W deteriorates the phase stability of the alloy, leads to the precipitation of harmful phases such as the TCP phase, and remarkably lowers the corrosion resistance. Therefore, it is necessary to regulate the maximum to 15%.

なお、WとTaは質量数がほぼ同じであるため、合金の特性を表すのに重要な原子%比と重量%比はほぼ同じになる。W/W+Taで表される比が0.6〜0.8の範囲にある時に、特に強度と延性が優れた合金が得られた。また、TaとWの合計量が15〜17%であるときに、非常に高い強度が得られた。   Since W and Ta have substantially the same mass number, the atomic% ratio and weight% ratio, which are important for expressing the characteristics of the alloy, are almost the same. When the ratio represented by W / W + Ta is in the range of 0.6 to 0.8, an alloy having particularly excellent strength and ductility was obtained. Further, when the total amount of Ta and W was 15 to 17%, very high strength was obtained.

MoはWと同属であり、Ni基超合金の様々な特性に対する効果もWとほぼ同様である。しかしながら、本発明者らは、MoはWと比べて、燃焼環境中の耐食性を著しく悪化させることを見出した。従って、本発明合金では0〜0.95%とする。   Mo has the same genus as W, and the effect on various properties of the Ni-base superalloy is almost the same as W. However, the present inventors have found that Mo significantly deteriorates the corrosion resistance in the combustion environment as compared with W. Therefore, it is 0 to 0.95% in the alloy of the present invention.

ReもW及びMoと同様に主にγ相を固溶強化する元素である。MoやWと比べ、燃焼環境中の耐食性を悪化させないことから、耐食性と高温強度を両立させるためには非常に有効な元素であり、WあるいはMoと置き換えることで、耐食性を改善すると同時に合金を強化することができる。この効果を得るためには、最低でも0.5%以上、好ましくは1.1%以上添加することが必要である。しかし、Reはγ’相側への分配率が著しく低いため、相安定性に影響を及ぼす。従って、添加量は最大でも9%に押さえる必要がある。   Re, like W and Mo, is an element that mainly strengthens the γ phase by solid solution strengthening. Compared to Mo and W, it does not deteriorate the corrosion resistance in the combustion environment, so it is a very effective element to achieve both corrosion resistance and high-temperature strength. Can be strengthened. In order to obtain this effect, it is necessary to add at least 0.5%, preferably 1.1% or more. However, since Re has a remarkably low distribution rate to the γ ′ phase, it affects the phase stability. Therefore, it is necessary to keep the addition amount at 9% at the maximum.

CrはCrの保護皮膜を形成し、Ni基超合金の耐食性を維持するための必須元素である。従って、最低でも1.5%以上の添加が必要である。しかし、過度の添加は、Wと同様に合金の相安定性を悪化させ、TCP相等の有害相の析出につながるため、16%以下に規制する必要がある。さらに高温強度を重視し、WやReの添加量を増やす必要がある場合はCrの添加量を8%以下とし、より高温強度を重視する場合は7%以下とすることが好ましい。 Cr is an essential element for forming a protective film of Cr 2 O 3 and maintaining the corrosion resistance of the Ni-base superalloy. Therefore, at least 1.5% addition is necessary. However, excessive addition deteriorates the phase stability of the alloy as in the case of W and leads to precipitation of harmful phases such as the TCP phase, so it is necessary to regulate it to 16% or less. Further, when the high temperature strength is emphasized and the addition amount of W or Re needs to be increased, the addition amount of Cr is preferably 8% or less, and when the high temperature strength is more important, it is preferably 7% or less.

Alはγ’相(NiAl)を形成するために必須の元素であり、最低でも3.5%以上の添加が必要である。γ’相の体積率を高くし、凝固方向強度を重視する場合には5%以上にすることが好ましい。また、AlはAl保護皮膜を形成することで、耐酸化性及び耐食性を向上させる。しかし、過度に添加するとγ’相の固溶強化度が低下し、かえって高温強度が低下することから、添加量は最大でも6.5%にする必要がある。 Al is an essential element for forming the γ ′ phase (Ni 3 Al), and it is necessary to add at least 3.5% or more. When the volume fraction of the γ ′ phase is increased and importance is given to the strength in the solidification direction, it is preferably 5% or more. Moreover, Al improves oxidation resistance and corrosion resistance by forming an Al 2 O 3 protective film. However, if added excessively, the solid solution strengthening degree of the γ ′ phase is lowered and the high-temperature strength is lowered. Therefore, the addition amount needs to be 6.5% at the maximum.

NbはTiより効果は小さいが、CrとAlの複合酸化物の形成を防止し、合金の耐食性を改善する効果がある。一方、Taより効果は小さいが、γ’相を固溶強化する効果はTiより高い。従って、Nbは高温強度を落とさずに耐食性を改善できる有効な元素であり、0.2%以上添加する必要がある。しかしながら、γ’相の相安定性を保つためには、Nbの添加量は2%以下とする必要がある。耐食性を特に重視する場合は、0.5%以上の添加が好ましい。   Nb is less effective than Ti, but has the effect of preventing the formation of a complex oxide of Cr and Al and improving the corrosion resistance of the alloy. On the other hand, the effect is smaller than that of Ta, but the effect of solid solution strengthening of the γ 'phase is higher than that of Ti. Therefore, Nb is an effective element that can improve the corrosion resistance without reducing the high-temperature strength, and it is necessary to add 0.2% or more. However, in order to maintain the phase stability of the γ ′ phase, the amount of Nb added needs to be 2% or less. When the corrosion resistance is particularly important, addition of 0.5% or more is preferable.

TiはCrとAlの複合酸化物の形成を防止し、合金の耐食性を向上させる効果がある。しかし、本合金系のように、TaとNbの両方の元素を添加している場合、そこに、さらにTiを添加するとγ’相の安定性を阻害してしまう。また、強度と耐食性及び耐酸化性のバランスを考えた場合、TiよりもNbあるいはTaを添加した方がよい。さらに、本発明合金のように、結晶粒界強化元素を含むため、合金の部分溶融温度が低くなる傾向がある合金系にとって、合金元素のバランスを最適化し、合金の部分溶融温度をできるだけ高くすることが、溶体化熱処理性を改善するために有効であり、結果として、強度向上につながる。TaとNbとTiを比較した場合、合金の部分溶融温度低下に及ぼす1原子%当たりの効果は、Ta<Nb<Tiであり、合金の部分溶融温度を向上させるためにもTiの添加は好ましくない。従って、本発明合金ではTiは無添加とした。前述のように、本発明合金ではγ相側に入るWと、γ’相側に入るTaのバランスを制御することで、優れた特性を得ることが可能となり、γ’相側に入るTaの比率が小さいところで優れた特性を得た。従って、同じくγ’相側に入るTiを添加すると、もともと低く抑えられているγ’相側に入る元素の中で、高温強度向上に最も有効なTaの添加量をさらに低下させなくてはならなくなってしまう。このことからも、本発明合金においてはTiを無添加とすることが重要である。   Ti has the effect of preventing the formation of a complex oxide of Cr and Al and improving the corrosion resistance of the alloy. However, when both elements of Ta and Nb are added as in the present alloy system, if Ti is further added thereto, the stability of the γ ′ phase is inhibited. Also, when considering the balance between strength, corrosion resistance and oxidation resistance, it is better to add Nb or Ta than Ti. Furthermore, for alloy systems that contain grain boundary strengthening elements, such as the present invention alloy, and tend to lower the partial melting temperature of the alloy, the balance of the alloy elements is optimized and the partial melting temperature of the alloy is made as high as possible. Is effective for improving the solution heat treatment property, and as a result, the strength is improved. When Ta, Nb, and Ti are compared, the effect per atomic percent on the partial melting temperature reduction of the alloy is Ta <Nb <Ti, and addition of Ti is preferable in order to improve the partial melting temperature of the alloy. Absent. Therefore, Ti was not added in the alloy of the present invention. As described above, in the alloy of the present invention, it is possible to obtain excellent characteristics by controlling the balance between W entering the γ phase side and Ta entering the γ ′ phase side. Excellent characteristics were obtained where the ratio was small. Therefore, when Ti entering the γ ′ phase side is added, among the elements entering the γ ′ phase side, which is originally kept low, the amount of Ta added, which is most effective for improving the high temperature strength, must be further reduced. It will disappear. From this fact, it is important that Ti is not added in the alloy of the present invention.

Zrは、従来はHfと同様に、結晶粒界の強度を向上させる効果があると考えられてきたが、本発明者らの研究により、結晶粒界強度向上に及ぼす効果はHfに比べて著しく小さいことがわかった。更に、前述のTa,NbとTiの関係と同様に、Zrの部分溶融温度低下に及ぼす効果はHfより大きい。従って、結晶粒界の強度向上に及ぼす効果がHfより小さい上に、部分溶融温度低下に及ぼす効果がHfより大きいZrは、合金に添加する効果が見出せない。Zrを添加すると、本発明合金における重要な元素の一つであるHfの添加量を大幅に少なくしなくてはならない。従って、本発明合金ではZrを不純物レベルの0〜0.02%に規制した。これによりHfの添加量を増やすことができ、結晶粒界強度の向上を図ることが可能となった。   Conventionally, Zr has been considered to have an effect of improving the strength of the crystal grain boundary as in the case of Hf. However, according to the study by the present inventors, the effect on the improvement of the crystal grain boundary strength is remarkably higher than that of Hf. I found it small. Further, like the relationship between Ta, Nb and Ti described above, the effect of Zr on lowering the partial melting temperature is greater than Hf. Therefore, Zr, which has an effect on improving the grain boundary strength smaller than Hf and has an effect on lowering the partial melting temperature, which is larger than Hf, cannot be added to the alloy. When Zr is added, the amount of Hf, which is one of important elements in the alloy of the present invention, must be greatly reduced. Therefore, in the alloy of the present invention, Zr is restricted to 0 to 0.02% of the impurity level. As a result, the amount of Hf added can be increased, and the crystal grain boundary strength can be improved.

Vを添加するとTa及びNbの固溶限度が低下し、高温強度の低下につながる。また、耐食性を著しく低下させることから、本発明合金では不純物レベルの0〜1%とした。   When V is added, the solid solubility limit of Ta and Nb decreases, leading to a decrease in high temperature strength. Further, since the corrosion resistance is remarkably lowered, the alloy of the present invention is made 0 to 1% of the impurity level.

Y等の希土類元素は、Al保護皮膜の密着性を改善し、耐酸化性を大幅に改善する。しかし、Ni基超合金の融点を著しく低下させることから、添加量は0〜2%とすることが好ましい。希土類元素は、周期律表の3A族に属する元素で、Yの他に、Sc及びLa,Ce等のランタノイド、Ac等のアクチノイドが含まれる。これらの元素の効果はほぼ同じであり、単独又は2種以上の混合物を添加しても、その効果はほぼ同等であることから、これらの元素の総量を0〜2%とした。 Rare earth elements such as Y improve the adhesion of the Al 2 O 3 protective film and greatly improve the oxidation resistance. However, since the melting point of the Ni-base superalloy is remarkably lowered, the addition amount is preferably 0 to 2%. The rare earth element is an element belonging to Group 3A of the periodic table, and includes Y, lanthanoids such as Sc and La, Ce, and actinoids such as Ac. The effects of these elements are almost the same, and even if one or a mixture of two or more kinds is added, the effects are almost the same. Therefore, the total amount of these elements is set to 0 to 2%.

アルカリ土類金属及びSiは酸化皮膜の密着性を向上させる効果があるが、過度の添加は結晶粒界の延性を低下させる。従って、その総量は0〜0.1%とすることが好ましい。   Alkaline earth metals and Si have the effect of improving the adhesion of the oxide film, but excessive addition reduces the ductility of the grain boundaries. Therefore, the total amount is preferably 0 to 0.1%.

Pt及びRu等の白金族元素は、高温強度向上に有効な元素であるW,Re等の固溶限度を広げる作用があるが、非常に高価な元素であるので、添加量は0〜2%とする。   Platinum group elements such as Pt and Ru have the effect of extending the solid solution limit of W, Re, etc., which are effective elements for improving the high-temperature strength, but are very expensive elements, so the addition amount is 0 to 2%. And

Fe,Ga及びGeは酸化皮膜の密着性向上の効果がある。また、Ga及びGeはNiと金属間化合物を形成して高温強度を向上する効果がある。しかし、何れも過度の添加は結晶粒界の延性を低下させる。従って、その総量は0〜5%とする。   Fe, Ga and Ge have the effect of improving the adhesion of the oxide film. Ga and Ge have an effect of improving the high temperature strength by forming an intermetallic compound with Ni. However, excessive addition of both decreases the ductility of the grain boundaries. Therefore, the total amount is 0 to 5%.

以下、一方向凝固鋳物及び普通鋳造鋳物を製造し、試験片を切り出して、強度及び延性を測定した結果について説明する。実験に使用したNi基超合金の成分組成を表1に示す。alloy1061はUSP6051083の組成範囲に含まれる合金である。本発明の実施例は、alloy1064〜1066、1071〜1073、1077、1079〜1081、1086〜1104である。   Hereinafter, the results of producing unidirectionally solidified castings and ordinary castings, cutting out test pieces, and measuring the strength and ductility will be described. Table 1 shows the component composition of the Ni-base superalloy used in the experiment. alloy1061 is an alloy included in the composition range of USP 6051083. Examples of the present invention are alloys 1064 to 1066, 1071 to 1073, 1077, 1079 to 1081, 1086 to 1104.

Figure 2007162041
Figure 2007162041

評価に用いた鋳物は100mm×15mm×230mmの平板で、普通鋳造(CC)と一方向凝固(DS)の一方または両方の鋳物を製造した。表1記載の組成に予め調整したマスターインゴットを用い、CC平板は一般的な真空鋳造法で、DS平板は鋳型引出し式一方向凝固法で鋳造した。鋳造後、溶体化熱処理と時効熱処理を施し、その後に、各々の評価用試験片を機械加工で採取した。なお、CC材には、溶体化熱処理に先立ち、HIP処理を施した。HIP処理はAr中で、温度1200℃,圧力150MPaの条件で4時間行った。溶体化熱処理(ST)条件は、ソルバス以上の温度で、かつ部分溶融温度以下であることを標準とした。溶体化熱処理後はガス吹付けの急冷を行った。ソルバス温度と部分溶融温度の間の温度差が大きい合金の一部は、数種類のST温度の試験片を用意したものもある。時効熱処理は、いずれの合金とも、1080℃で4時間加熱後、室温まで急冷し、その後、871℃で20時間加熱後、室温まで急冷する2段熱処理とした。   The casting used for the evaluation was a flat plate of 100 mm × 15 mm × 230 mm, and one or both castings of normal casting (CC) and unidirectional solidification (DS) were produced. A master ingot adjusted in advance to the composition shown in Table 1 was used, the CC flat plate was cast by a general vacuum casting method, and the DS flat plate was cast by a mold drawing type unidirectional solidification method. After casting, solution heat treatment and aging heat treatment were performed, and then each test specimen for evaluation was collected by machining. The CC material was subjected to HIP treatment prior to solution heat treatment. The HIP treatment was performed in Ar for 4 hours under conditions of a temperature of 1200 ° C. and a pressure of 150 MPa. The standard solution heat treatment (ST) condition was that the temperature was above the solvus and below the partial melting temperature. After solution heat treatment, gas spray was rapidly cooled. Some of the alloys having a large temperature difference between the solvus temperature and the partial melting temperature have prepared test pieces having several types of ST temperatures. The aging heat treatment was a two-stage heat treatment in which all alloys were heated at 1080 ° C. for 4 hours, then rapidly cooled to room temperature, then heated at 871 ° C. for 20 hours, and then rapidly cooled to room temperature.

図1にDS平板の金属組織を示した。図1中には、凝固方向、結晶粒界、凝固直角方向を記載した。DS材は、凝固(DS−L)方向と凝固直角(DS−T)方向のクリープ破断強度を測定した。DS−L方向のクリープ破断強度は、850℃−40kgf/mm又は1040℃−14kgf/mmの条件で、クリープ破断時間を測定することにより評価した。DS−T方向のクリープ破断強度は、982℃−14kgf/mmの条件で、クリープ破断時間を測定することにより評価した。CC平板は等軸晶であるので、試験片の採取方向は特に規定せず、任意の場所から試験片を採取した。クリープ破断強度は、982℃−14kgf/mmの条件で、クリープ破断時間を測定することにより評価した。なお、クリープ試験及び引張試験の試験片形状及び条件はASTM又はJIS規格準拠とした。耐食性はDS材及びCC材共に900℃のバーナリグ試験で評価した。腐食重量変化量が20mg/cmに到達する時間の長短で耐食性の優劣を判断した。試験は1サイクル10時間とし、1サイクル毎に重量変化量を測定した。燃料には硫黄を0.06mass%含む重油を用い、腐食を加速するために0.1mass%NaCl溶液を30cc/minで燃焼ガス中に噴霧した。耐酸化性の評価にはDS材及びCC材のいずれも、縦10mm、横15mm、厚さ3mmの平板を用いた。これらを大気中で、1サイクル当たり1100℃で100時間加熱し、1サイクル毎に重量変化量を測定し、その絶対値の大小で耐酸化性の優劣を判断した。試験は最大10サイクル、合計1000時間とした。 FIG. 1 shows the metal structure of the DS flat plate. In FIG. 1, the solidification direction, the grain boundary, and the direction perpendicular to solidification are shown. For the DS material, the creep rupture strength in the solidification (DS-L) direction and the solidification right angle (DS-T) direction was measured. The creep rupture strength in the DS-L direction was evaluated by measuring the creep rupture time under the conditions of 850 ° C.-40 kgf / mm 2 or 1040 ° C.-14 kgf / mm 2 . The creep rupture strength in the DS-T direction was evaluated by measuring the creep rupture time under the condition of 982 ° C.-14 kgf / mm 2 . Since the CC flat plate is equiaxed, the sampling direction of the test piece is not particularly defined, and the test piece was collected from an arbitrary place. The creep rupture strength was evaluated by measuring the creep rupture time under the condition of 982 ° C.-14 kgf / mm 2 . In addition, the test piece shape and conditions of the creep test and the tensile test were set to conform to ASTM or JIS standards. Corrosion resistance was evaluated by a burner rig test at 900 ° C. for both DS and CC materials. The superiority or inferiority of the corrosion resistance was determined by the length of time for the change in corrosion weight to reach 20 mg / cm 2 . The test was performed for 10 hours per cycle, and the weight change was measured every cycle. A heavy oil containing 0.06 mass% of sulfur was used as the fuel, and a 0.1 mass% NaCl solution was sprayed into the combustion gas at 30 cc / min in order to accelerate corrosion. For evaluation of oxidation resistance, a flat plate having a length of 10 mm, a width of 15 mm, and a thickness of 3 mm was used for both the DS material and the CC material. These were heated in the atmosphere at 1100 ° C. per cycle for 100 hours, the amount of weight change was measured for each cycle, and the superiority or inferiority of oxidation resistance was judged by the magnitude of the absolute value. The test was performed for a maximum of 10 cycles for a total of 1000 hours.

まず、DS材の評価結果について説明する。   First, the evaluation results of the DS material will be described.

表2に、alloy1061〜1063のDS−L方向のクリープ破断時間を示した。また、図2に、これらの合金について、DS−L方向のクリープ破断時間とCo量の関係を示した。クリープ破断時間が長いほど、クリープ破断強度は高いことを示す。alloy1061は単結晶(SC)材として開発されたものであり、DS材にした場合にはDS−L方向のクリープ破断強度が低い。alloy1061に対し、Co量を増やしたものは、DS−L方向のクリープ破断強度が高い。Coを約10%含有するalloy1063は、alloy1061に比べてクリープ破断時間が4倍以上長いことが確認された。   Table 2 shows the creep rupture time in the DS-L direction of alloys 1061 to 1063. FIG. 2 shows the relationship between the creep rupture time in the DS-L direction and the Co content for these alloys. The longer the creep rupture time, the higher the creep rupture strength. Alloy 1061 was developed as a single crystal (SC) material, and when it is made of DS material, the creep rupture strength in the DS-L direction is low. As compared with alloy 1061, the one with the increased amount of Co has a high creep rupture strength in the DS-L direction. It was confirmed that the alloy 1063 containing about 10% Co has a creep rupture time four times or longer than the alloy 1061.

表3に、alloy1063と、alloy1063に比べてCo、Hf量を増加したalloy1064〜1066のDS−T方向のクリープ破断時間を示した。また、図3に、これらの合金について、DS−T方向のクリープ寿命とHf量の関係を示した。alloy1063は、DS−L方向のクリープ破断強度は高いが、DS−T方向、つまり結晶粒界の強度が低い。alloy1063に対し、Co量を若干多くし、更にHf量を多くすることで、DS−T方向のクリープ破断強度が大幅に向上することがわかった。   Table 3 shows the creep rupture time in the DS-T direction of alloy 1063 and alloys 1064 to 1066 in which the amounts of Co and Hf were increased as compared to alloy 1063. FIG. 3 shows the relationship between the creep life in the DS-T direction and the Hf amount for these alloys. Although alloy 1063 has a high creep rupture strength in the DS-L direction, it has a low strength in the DS-T direction, that is, a grain boundary. It was found that the creep rupture strength in the DS-T direction was significantly improved by slightly increasing the Co amount and further increasing the Hf amount relative to the alloy 1063.

以上により、alloy1061に対し、Co量とHf量をいずれも増やし、Coは10.2%以上、Hfは0.5%以上、好ましくは1.1%以上にすることにより、DS−L方向及びDS−T方向のクリープ破断強度がいずれも高くなることが確認された。   As described above, the amount of Co and the amount of Hf are both increased with respect to the alloy 1061, and Co is set to 10.2% or more, and Hf is set to 0.5% or more, preferably 1.1% or more. It was confirmed that the creep rupture strength in the DS-T direction was high.

Figure 2007162041
Figure 2007162041

Figure 2007162041
Figure 2007162041

Co及びHfを多く含むNi基超合金のDS材は、DS−L方向及びDS−T方向の強度がいずれも高いことが分かったので、次に、W量とTa量について検討を行った。   Since it was found that the DS material of the Ni-base superalloy containing a large amount of Co and Hf has high strength in the DS-L direction and the DS-T direction, next, the amount of W and the amount of Ta were examined.

Wはγ相側に主に入る元素で、反対にTaは析出相であるγ’相側に主に入る元素である。W量が多い合金はγ相側の格子定数が大きくなり、一般に(γ’相の格子定数−γ相の格子定数)/(両相の格子定数平均)で定義される格子定数ミスマッチが小さくなる。格子定数ミスマッチはNi基超合金の変形機構に大きな影響を及ぼす重要な因子である。   W is an element that mainly enters the γ phase side, and conversely, Ta is an element that mainly enters the γ ′ phase side, which is a precipitated phase. An alloy having a large amount of W has a larger lattice constant on the γ phase side, and generally a smaller lattice constant mismatch defined by (lattice constant of γ ′ phase−lattice constant of γ phase) / (average of lattice constants of both phases). . Lattice mismatch is an important factor that greatly affects the deformation mechanism of Ni-base superalloys.

表4に、表3に示した結果より、DS−T方向のクリープ破断強度が高いことが確認されたalloy1065と、alloy1071〜1073について、DS−L方向の850℃−40kgf/mmクリープ破断時間を示した。また、図4に、これらの合金について、W/W+Taの重量%における比と、DS−L方向の850℃−40kgf/mmクリープ破断時間の関係を示した。更に、表5に、これらの合金について、DS−T方向の982℃−14kgf/mmクリープ破断時間を示し、図5にW/W+Taの比とDS−T方向の982℃−14kgf/mmクリープ破断時間の関係を示した。 Table 4 shows that the alloy 1065 and the alloys 1071 to 1073 confirmed to have a high creep rupture strength in the DS-T direction from the results shown in Table 3 are 850 ° C.-40 kgf / mm 2 creep rupture time in the DS-L direction. showed that. FIG. 4 shows the relationship between the ratio of W / W + Ta in% by weight and the 850 ° C.-40 kgf / mm 2 creep rupture time in the DS-L direction for these alloys. Further, Table 5 shows 982 ° C.-14 kgf / mm 2 creep rupture time in the DS-T direction for these alloys, and FIG. 5 shows the ratio of W / W + Ta and 982 ° C.-14 kgf / mm 2 in the DS-T direction. The relationship of creep rupture time was shown.

この結果、W/W+Taの比が大きくなるほど、DS−L方向のクリープ破断強度及びDS−T方向のクリープ破断強度が向上することが分かった。alloy1073のDS−L方向の850℃−40kgf/mmにおけるクリープ破断時間2654時間は、同条件におけるalloy1061の単結晶(SC)材のクリープ破断時間2470時間をも上回る。 As a result, it was found that the creep rupture strength in the DS-L direction and the creep rupture strength in the DS-T direction were improved as the ratio of W / W + Ta was increased. The creep rupture time 2654 hours at 850 ° C.-40 kgf / mm 2 in the DS-L direction of alloy 1073 exceeds the creep rupture time 2470 hours of the single crystal (SC) material of alloy 1061 under the same conditions.

以上より、alloy1061に対し、CoとHfの量を多くし、更にW/W+Taの重量比が0.6〜0.8の範囲に入るようにした合金は、alloy1061のSC材と同等のDS−L方向のクリープ破断強度を有しながら、優れた結晶粒界強度(DS−T方向強度)を有し、大型の複雑形状翼に好適であることが確認された。特にalloy1073のクリープ特性から明らかなように、W量が11%を超え、Ta量が4%を下回るようにしたものは、DS−L方向とDS−T方向の強度がいずれも極めて高く、最上の特性を有することがわかった。   From the above, the alloy in which the amount of Co and Hf is increased with respect to the alloy 1061 and the weight ratio of W / W + Ta is in the range of 0.6 to 0.8 is DS-equivalent to the SC material of the alloy 1061. It has been confirmed that it has excellent crystal grain boundary strength (DS-T direction strength) while having creep rupture strength in the L direction, and is suitable for a large wing having a complex shape. In particular, as is apparent from the creep characteristics of alloy 1073, when the W amount exceeds 11% and the Ta amount falls below 4%, the strength in both the DS-L direction and the DS-T direction is extremely high. It was found to have the following characteristics.

alloy1065とalloy1071〜1073のDS−T方向の室温引張伸びを表6に示した。また、図6に、これらの合金について、DS−T方向の室温引張伸びとW/W+Taの比の関係を示した。いずれの合金も室温引張伸びは3%以上が得られており、高延性を有することが実証された。W/W+Taの比が0.65付近で最も室温の延性が優れており、延性向上の点からもW/W+Taの重量比は0.6〜0.8にすることが好ましいことが分かった。   Table 6 shows room temperature tensile elongations of alloy 1065 and alloy 1071 to 1073 in the DS-T direction. FIG. 6 shows the relationship between the room temperature tensile elongation in the DS-T direction and the ratio of W / W + Ta for these alloys. All the alloys had a room temperature tensile elongation of 3% or more, and were proved to have high ductility. It was found that the ductility at room temperature was most excellent when the ratio of W / W + Ta was around 0.65, and the weight ratio of W / W + Ta was preferably 0.6 to 0.8 from the viewpoint of improving ductility.

Figure 2007162041
Figure 2007162041

Figure 2007162041
Figure 2007162041

Figure 2007162041
Figure 2007162041

次に、W/W+Taの重量比が0.6〜0.8の範囲内にある数種のNi基超合金について、DS−L方向及びDS−T方向のクリープ破断強度を評価した。DS−L方向のクリープ破断強度は、850℃−40kgf/mmと1040℃―14kgf/mmの二つの条件で測定した。表7に、alloy1072,1073,1086〜1098についての評価結果を示す。また、図7に、これらの合金について、DS−L方向の1040℃−14kgf/mmクリープ破断時間とW/W+Taの重量比の関係を示す。表7及び図7の結果から、alloy1072,1073をベースにCo量を増加して14%以上含有させたalloy1091,1097を除いて、いずれの合金においても強度増大が認められた。この結果より、Co量はむしろ14%以下に抑えた方が良いことがわかる。Re量が1.4%台の合金では、alloy1073にくらべてWとTa増量したalloy1093が、クリープ破断強度が最も高い。しかし、長時間の組織安定性を考えると、alloy1073からWを増加させたalloy1092の方が適当と考えられる。WやTaと比べると著しく高価な元素であるReを増量したalloy1090,1096,1098は、クリープ破断強度が非常に高く、高価格にはなっても、高温強度向上を図りたい場合には、Re量の増加は有効であることがわかった。また、Hfについては、alloy1088のDS−T方向のクリープ破断時間が他の合金と比べ著しく短いことから、DS−T方向の強度を重視する場合は、1.5%までの添加が好ましいと考えられる。 Next, the creep rupture strength in the DS-L direction and the DS-T direction was evaluated for several Ni-base superalloys having a weight ratio of W / W + Ta in the range of 0.6 to 0.8. The creep rupture strength in the DS-L direction was measured under two conditions of 850 ° C.-40 kgf / mm 2 and 1040 ° C.-14 kgf / mm 2 . Table 7 shows the evaluation results for alloys 1072, 1073, 1086 to 1098. FIG. 7 shows the relationship between the DS / L direction 1040 ° C.-14 kgf / mm 2 creep rupture time and the weight ratio of W / W + Ta for these alloys. From the results shown in Table 7 and FIG. 7, an increase in strength was observed in all alloys except for alloys 1091 and 1097 in which the amount of Co was increased to 14% or more based on alloys 1072 and 1073. From this result, it can be seen that it is better to suppress the Co content to 14% or less. For alloys with an amount of Re in the 1.4% range, alloy 1093 with increased amounts of W and Ta compared to alloy 1073 has the highest creep rupture strength. However, considering long-term tissue stability, alloy 1092 in which W is increased from alloy 1073 is considered appropriate. Alloy 1090, 1096, 1098 with increased amount of Re, which is a remarkably expensive element compared with W or Ta, has extremely high creep rupture strength. Increasing the amount proved to be effective. In addition, with regard to Hf, since the creep rupture time of alloy 1088 in the DS-T direction is significantly shorter than that of other alloys, it is considered preferable to add up to 1.5% when emphasizing the strength in the DS-T direction. It is done.

図16に、alloy1072,1073及び1086〜1098について、Ta量及びW量とDS−L方向のクリープ破断時間の関係を示した。W/W+Taの重量%比が0.6〜0.8、W量が10.5〜15%、Ta量が1〜6.5%のときに、クリープ破断強度が高く、特にWとTaの合計量が15〜17%のときに、極めて高い強度が得られることが分かる。   FIG. 16 shows the relationship between the Ta amount and W amount and the creep rupture time in the DS-L direction for alloys 1072, 1073, and 1086 to 1098. When the weight percentage ratio of W / W + Ta is 0.6 to 0.8, W amount is 10.5 to 15%, and Ta amount is 1 to 6.5%, the creep rupture strength is high. It can be seen that extremely high strength is obtained when the total amount is 15 to 17%.

Figure 2007162041
Figure 2007162041

図8にalloy1092のDS材及び比較材の耐酸化性試験結果を示した。alloy1061の単結晶(SC)材及び産業用ガスタービンで実績のある14%Cr合金(CC材)の何れと比べても、耐酸化性は向上している。図9に、alloy1092のDS材及び比較材のバーナリグによる耐食性の試験結果を示した。alloy1061のSC材、USP5069873に示されるDS材及び産業用ガスタービンで実績のある14%Cr合金(CC材)の何れと比べても耐食性が向上している。   FIG. 8 shows the oxidation resistance test results of the alloy 1092 DS material and the comparative material. The oxidation resistance is improved as compared with either the single crystal (SC) material of alloy 1061 or the 14% Cr alloy (CC material) that has been proven in industrial gas turbines. FIG. 9 shows the corrosion resistance test results of the alloy 1092 DS material and the comparative material by the burner rig. Corrosion resistance is improved compared to any of SC material of alloy 1061, DS material shown in USP 5069873, and 14% Cr alloy (CC material) that has been proven in industrial gas turbines.

次に、CC材の評価結果について説明する。   Next, the evaluation result of CC material is demonstrated.

ターボチャージャーやマイクロタービンの遠心式ホイールには、CC材が適用される。表8に、alloy1061,1077,1079のCC材について、クリープ破断試験結果を示した。また、図10に、これらの合金のCC材について、クリープ破断時間とHf量の関係を示した。alloy1061のCC材をベースにHf量を増加したものは、クリープ破断強度が高いことが確認された。   CC materials are used for centrifugal wheels of turbochargers and microturbines. Table 8 shows the creep rupture test results for the alloy materials 1061, 1077, and 1079. FIG. 10 shows the relationship between the creep rupture time and the Hf amount for the CC materials of these alloys. It was confirmed that the creep rupture strength was high when the Hf content was increased based on the alloy 1061 CC material.

そこで、Hf量を増加してクリープ破断強度を向上させたalloy1079のCC材をベースに、クリープ破断強度に及ぼすC量の影響を検討した。表9に、alloy1079〜1081及び1201のCC材のクリープ破断時間を示し、図11にクリープ破断時間とC量の関係を示した。alloy1079をベースにC量を増やすことで、クリープ破断強度はさらに向上することが確認された。   Therefore, the influence of the C amount on the creep rupture strength was examined based on the alloy 1079 CC material in which the Hf amount was increased to improve the creep rupture strength. Table 9 shows the creep rupture time of CC materials of alloys 1079 to 1081 and 1201, and FIG. 11 shows the relationship between the creep rupture time and the C content. It was confirmed that the creep rupture strength was further improved by increasing the amount of C based on the alloy 1079.

表9に示した合金のうちで、最も強度が高かったC量0.2%のalloy1081について、ST温度を1260℃と20℃高くして評価した。その結果、982℃−14kgf/mmのクリープ破断時間は2164hであった。これは、応力14kgf/mmにおける10時間耐用温度に直すと898℃に相当する。この耐用温度は、USP5069873など、いわゆる第2世代DS合金(Reを3%含むグループ)の耐用温度に匹敵する。CC材でありながら第2世代DS合金に匹敵する強度を有することから、alloy1081に匹敵する組成の合金よりなるCC材は、DS合金の適用が困難なターボチャージャーやマイクロタービン用の遠心式ホイールに極めて好適であることがわかった。また、従来はDS材を使用していた軸流タービンの翼をCC材で置き換えることが可能となり、コストの面でも大きな効果が得られることがわかった。alloy1081のST温度1260℃での室温引張延性を評価した結果、室温の破断伸びは5.3%であり、高い高温強度を有していながら、延性も十分であることが確認された。alloy1081は、CとHfを除く元素の量がDS材のalloy1092とほぼ同等である。このことから、高温強度はalloy1092と同様にCo量やW/Ta比の適正化などで達成され、さらにHf量とC量を最適化することで、結晶粒界強度も向上した、ターボチャージャーやマイクロタービンの遠心式ホイールに最適な合金が得られたと考えられる。 Among the alloys shown in Table 9, the alloy 1081 with the highest C content of 0.2% was evaluated by increasing the ST temperature by 1260 ° C. and 20 ° C. As a result, the creep rupture time at 982 ° C.-14 kgf / mm 2 was 2164 h. This corresponds to fix the 898 ° C. to 105 hours tolerable temperature in stress 14 kgf / mm 2. This service temperature is comparable to that of a so-called second generation DS alloy (group containing 3% Re) such as USP 5069873. Although it is a CC material, it has a strength comparable to that of the second-generation DS alloy. Therefore, a CC material made of an alloy comparable to the alloy 1081 can be used as a centrifugal wheel for a turbocharger or a microturbine for which a DS alloy is difficult to apply. It turned out to be very suitable. In addition, it has become possible to replace the blades of an axial turbine that previously used a DS material with a CC material, and it has been found that a significant effect can be obtained in terms of cost. As a result of evaluating the room temperature tensile ductility of the alloy 1081 at an ST temperature of 1260 ° C., the elongation at break at room temperature was 5.3%, and it was confirmed that the ductility was sufficient while having high high-temperature strength. The alloy 1081 has almost the same amount of elements except C and Hf as the alloy 1092 of the DS material. From this, high-temperature strength is achieved by optimizing the Co amount and W / Ta ratio as in the case of the alloy 1092, and further by optimizing the Hf amount and the C amount, the grain boundary strength is also improved. It is thought that the optimal alloy was obtained for the centrifugal wheel of the microturbine.

図12にalloy1081のCC材及び比較材の耐酸化性試験結果を示す。alloy1061のSC材及び産業用ガスタービンで実績のある14%Cr合金(CC材)の何れと比べても耐酸化性は向上している。図13に、alloy1081のCC材及び比較材のバーナリグによる耐食性の試験結果を示す。alloy1061のSC材、USP5069873に示されるDS材及び産業用ガスタービンで実績のある14%Cr合金(CC材)の何れと比べても、alloy1081のCC材は耐食性が向上している。   FIG. 12 shows the oxidation resistance test results of the alloy 1081 CC material and the comparative material. Compared to any of the SC material of alloy 1061 and the 14% Cr alloy (CC material) that has been proven in industrial gas turbines, the oxidation resistance is improved. FIG. 13 shows the corrosion resistance test results of the alloy 1081 CC material and the comparative material burner rig. Compared to any of SC material of alloy 1061, DS material shown in US Pat. No. 5,069,873 and 14% Cr alloy (CC material) proven in industrial gas turbines, CC material of alloy 1081 has improved corrosion resistance.

表10に、alloy1081に近い組成の合金、具体的にはalloy1099〜1104について、982℃−14kgf/mmのクリープ破断試験結果を示した。また、比較のためにUSP3720509に該当する合金のクリープ破断試験結果を示した。これらの合金の中ではalloy1101が、クリープ破断時間が最も長い。C量0.15〜0.2%、Hf量1.50〜2.04%の範囲では、C量とHf量を共に多くした組成がクリープ破断強度の上で優れていることがわかった。alloy1104はWの量がalloy1099〜1103にくらべて少なく、ST温度も低いため、alloy1099〜1103にくらべるとクリープ破断強度は低いが、室温の引張破断伸びを測定した結果では6.4%と高く、結晶粒界の強度を重視する場合には優れた合金であることがわかった。alloy1104のクリープ破断強度は、ターボチャージャーやマイクロタービンの遠心式ホイールで広く用いられているUSP3720509に示される合金に比べれば著しく高い。 Table 10 shows the creep rupture test results of 982 ° C.-14 kgf / mm 2 for alloys having a composition close to alloy 1081, specifically, alloys 1099 to 1104. Moreover, the creep rupture test result of the alloy corresponding to USP 3720509 is shown for comparison. Among these alloys, alloy 1101 has the longest creep rupture time. It was found that the composition in which both the C content and the Hf content were increased was excellent in terms of creep rupture strength in the range of the C content of 0.15 to 0.2% and the Hf content of 1.50 to 2.04%. Because alloy 1104 has a lower amount of W than alloy 1099 to 1103 and ST temperature is lower, the creep rupture strength is lower than that of alloy 1099 to 1103, but as a result of measuring the tensile elongation at break at room temperature, it is as high as 6.4%. It turned out to be an excellent alloy when emphasizing the strength of the grain boundaries. The creep rupture strength of alloy 1104 is significantly higher than the alloy shown in USP 3720509, which is widely used in centrifugal chargers of turbochargers and microturbines.

Figure 2007162041
Figure 2007162041

Figure 2007162041
Figure 2007162041

Figure 2007162041
Figure 2007162041

alloy1077,1079,1099〜1103のCC材について、Hf量及びC量と982℃―14kgf/mmクリープ破断時間の関係を図17に示す。Hf量が1.4〜3%の範囲内にあり、しかも、Hf量が(−10C+3.4)よりも多く、(−10C+4.4)よりも少ないときに、極めて高いクリープ破断強度が得られた。 FIG. 17 shows the relationship between Hf content and C content and 982 ° C.-14 kgf / mm 2 creep rupture time for CC materials of alloys 1077, 1079, 1099 to 1103. When the Hf content is in the range of 1.4 to 3%, and the Hf content is greater than (-10C + 3.4) and less than (-10C + 4.4), extremely high creep rupture strength is obtained. It was.

alloy1092の組成で150kgのマスターインゴットを鋳造し、大型マスターインゴットの鋳造性を評価した結果、問題の無いことが確認された。また、そのマスターインゴットを用い、図14に示す製品部全長230mmの産業用軸流ガスタービン用動翼1を鋳型引出し式一方向凝固法で鋳造した。この一方向凝固翼のマクロ組織とミクロ組織を検査し、更に蛍光浸透探傷検査及びX線検査を行った結果、この合金の鋳造性に問題の無いことを確認した。また、別の一方向凝固翼に対し、真空中で、1260℃で4時間加熱後、Arガスを吹き付けて急冷する溶体化熱処理を施し、その後、同じく真空中で、1080℃で4時間加熱後、室温まで急冷し、更に871℃で20時間加熱後、室温まで急冷する2段時効処理を施して、この翼から試験片を採取し、クリープ破断試験を行った。その結果、850℃−40kgf/mmの条件でのDS−L方向のクリープ破断時間は2400時間であり、alloy1061の単結晶(SC)試験片のクリープ破断時間2470時間に匹敵する良好な結果を有していた。 As a result of casting a 150 kg master ingot with the composition of alloy 1092 and evaluating the castability of the large master ingot, it was confirmed that there was no problem. Further, using the master ingot, the industrial axial flow gas turbine rotor blade 1 having a total product length of 230 mm shown in FIG. 14 was cast by a mold drawing type unidirectional solidification method. As a result of inspecting the macrostructure and microstructure of this unidirectionally solidified blade, and further conducting fluorescence penetrant inspection and X-ray inspection, it was confirmed that there was no problem in the castability of this alloy. Further, another unidirectionally solidified blade was heated in vacuum at 1260 ° C. for 4 hours, and then subjected to solution heat treatment by quenching by blowing Ar gas, and then heated in the same vacuum at 1080 ° C. for 4 hours. Then, after quenching to room temperature, heating at 871 ° C. for 20 hours, and then quenching to room temperature, a two-stage aging treatment was performed. As a result, the creep rupture time in the DS-L direction under the condition of 850 ° C.-40 kgf / mm 2 is 2400 hours, and a good result comparable to the creep rupture time 2470 hours of the single crystal (SC) specimen of alloy 1061 is obtained. Had.

また、alloy1101の組成で150kgのマスターインゴットを鋳造し、大型マスターインゴットの鋳造性を評価し、問題の無いことを確認した。さらに、そのマスターインゴットを用い、図15に示す翼最大径がφ230mmのマイクロタービン用遠心式ホイールを真空中普通鋳造法にて鋳造した。このホイールのマクロ組織とミクロ組織を検査し、更に蛍光浸透探傷検査とX線検査を行った結果、この合金の鋳造性に問題の無いことが確認された。また、別のホイールを鋳造し、Ar中で、温度1200℃,圧力150MPaの条件で4時間のHIP処理を施した後、真空中で、1240℃で4時間加熱後、Arガスを吹き付けて急冷する溶体化熱処理と、その後、同じく真空中で、1080℃で4時間加熱後、室温まで急冷し、更に871℃で20時間加熱後、室温まで急冷する2段時効処理を施した。この翼の中心の最大径部から遠心応力方向に試験片を採取し、982℃−14kgf/mmの条件でクリープ破断強度を評価した。 Further, a 150 kg master ingot was cast with the composition of alloy 1101, and the castability of the large master ingot was evaluated, and it was confirmed that there was no problem. Further, using the master ingot, a centrifugal turbine for micro turbine having a blade maximum diameter of φ230 mm shown in FIG. 15 was cast by a normal casting method in a vacuum. As a result of inspecting the macro structure and micro structure of the wheel and further conducting the fluorescent penetrant inspection and X-ray inspection, it was confirmed that there was no problem in the castability of the alloy. In addition, another wheel was cast and subjected to HIP treatment in Ar at a temperature of 1200 ° C. and a pressure of 150 MPa for 4 hours, then heated in vacuum at 1240 ° C. for 4 hours, and then rapidly cooled by blowing Ar gas. Then, a solution heat treatment was performed, followed by heating in 1080 ° C. for 4 hours, followed by rapid cooling to room temperature, further heating at 871 ° C. for 20 hours, and then rapid cooling to room temperature. Test specimens were collected in the direction of centrifugal stress from the maximum diameter portion at the center of the blade, and the creep rupture strength was evaluated under the condition of 982 ° C.-14 kgf / mm 2 .

USP3720509に示される合金についても、同形のマイクロタービン用遠心式ホイールを真空中普通鋳造法にて鋳造した。鋳造後、本発明の実施例と同様の条件でHIP処理、溶体化熱処理及び2段時効処理を施した。このホイールからもalloy1101からなるホイールと同様の方法で試験片を採取し、982℃−14kgf/mmの条件でクリープ破断強度を評価した。 For the alloy shown in US Pat. No. 3,720,509, a centrifugal wheel for a microturbine having the same shape was cast by a normal casting method in a vacuum. After casting, HIP treatment, solution heat treatment, and two-stage aging treatment were performed under the same conditions as in the examples of the present invention. Also from this wheel, a test piece was collected in the same manner as the wheel made of alloy 1101, and the creep rupture strength was evaluated under the condition of 982 ° C.-14 kgf / mm 2 .

その結果、USP3720509に示される合金からなるホイールから採取した試験片の破断時間は450時間であったのに対し、alloy1101からなるホイールから採取した試験片の破断時間は1800時間であり、USP3720509に示される合金の約4倍も長いことが確認された。   As a result, the rupture time of the test piece collected from the wheel made of the alloy shown in USP 3720509 was 450 hours, whereas the rupture time of the test piece taken from the wheel made of alloy 1101 was 1800 hours, which is shown in USP 3720509. It has been confirmed that it is about 4 times longer than the alloy to be manufactured.

DS平板の金属組織を表す。Represents the metal structure of the DS flat plate. DS材の凝固方向のクリープ破断時間とCo量の関係を示した図。The figure which showed the relationship between the creep rupture time of the solidification direction of DS material, and Co amount. DS材の凝固直角方向のクリープ破断時間とHf量の関係を示した図。The figure which showed the relationship between the creep rupture time of the solidification perpendicular direction of DS material, and Hf amount. DS材の凝固方向のクリ−プ破断時間とW/W+Ta比の関係を示した図。The figure which showed the relationship between the creep rupture time of the solidification direction of DS material, and W / W + Ta ratio. DS材の凝固直角方向のクリープ破断時間とW/W+Ta比の関係を示した図。The figure which showed the relationship between the creep rupture time of the solidification perpendicular direction of DS material, and W / W + Ta ratio. DS材の凝固直角方向の室温引張伸びとW/W+Ta比の関係を示した図。The figure which showed the relationship between room temperature tensile elongation of the solidification direction of DS material, and W / W + Ta ratio. DS材の凝固方向のクリープ破断時間に及ぼすW/W+Ta比の影響を示した図。The figure which showed the influence of W / W + Ta ratio which acts on the creep rupture time of the solidification direction of DS material. alloy1092のDS材と比較材の酸化試験結果を示した図。The figure which showed the oxidation test result of DS material and alloy material of alloy1092. alloy1092のDS材と比較材の腐食試験結果を示した図。The figure which showed the corrosion test result of DS material and alloy material of alloy1092. CC材のクリープ破断時間とHf量の関係を示した図。The figure which showed the relationship between the creep rupture time of CC material, and Hf amount. CC材のクリープ破断時間とC量の関係を示した図。The figure which showed the relationship between the creep rupture time of CC material, and C amount. alloy1081のCC材と比較材の酸化試験結果を示した図。The figure which showed the oxidation test result of CC material and the comparative material of alloy1081. alloy1081のCC材と比較材の腐食試験結果を示した図。The figure which showed the corrosion test result of CC material and the comparative material of alloy1081. 産業用軸流ガスタービン用動翼の外観図。The external view of the industrial axial flow gas turbine rotor blade. マイクロタービン用遠心式ホイールの断面金属組織を表す図。The figure showing the cross-sectional metal structure of the centrifugal wheel for micro turbines. DS材について、Ta量及びW量とDS−L方向のクリープ破断時間の関係を示した図。The figure which showed the relationship of the amount of Ta and W, and the creep rupture time of DS-L direction about DS material. CC材について、Hf量及びC量とクリープ破断時間の関係を示した図。The figure which showed the relationship between the amount of Hf and C, and the creep rupture time about CC material.

符号の説明Explanation of symbols

1…産業用軸流ガスタービン用動翼。   1 ... Industrial axial flow turbine blades.

Claims (24)

重量%で、C:0.06〜0.3%、B:0.01〜0.05%、Hf:0.2〜3.0%、Co:10.2〜25%、Ta:1〜12%、Cr:1.5〜16%、Mo:0〜0.95%、W:2〜15%、Al:3.5〜6.5%、Re:0.5〜9%、Nb:0.2〜2%、V:0〜1%、Zr:0〜0.02%、白金族元素の少なくとも1種:0〜2%、希土類元素の少なくとも1種:0〜2%、アルカリ土類金属及びSiの少なくとも1種:0〜0.1%、FeとGa及びGeから選ばれた少なくとも1種:0〜5%、残部がNiと不可避不純物よりなることを特徴とする高強度高延性Ni基超合金。   By weight, C: 0.06-0.3%, B: 0.01-0.05%, Hf: 0.2-3.0%, Co: 10.2-25%, Ta: 1 12%, Cr: 1.5 to 16%, Mo: 0 to 0.95%, W: 2 to 15%, Al: 3.5 to 6.5%, Re: 0.5 to 9%, Nb: 0.2 to 2%, V: 0 to 1%, Zr: 0 to 0.02%, at least one platinum group element: 0 to 2%, at least one rare earth element: 0 to 2%, alkaline earth At least one selected from the group of metals and Si: 0 to 0.1%, at least one selected from Fe, Ga and Ge: 0 to 5%, the balance being made of Ni and inevitable impurities, high strength and high Ductile Ni-base superalloy. Hfを重量%で1.1〜3.0%含むことを特徴とする請求項1に記載の高強度高延性Ni基超合金。   The high-strength and high-ductility Ni-base superalloy according to claim 1, wherein Hf is included in an amount of 1.1 to 3.0% by weight. 普通鋳造法によって製造され、等軸晶組織を有するNi基超合金であって、重量%で、C:0.16〜0.3%、B:0.016〜0.05%、Hf:1.4〜3.0%、Co:10.2〜25%、Ta:1〜4.9%、Cr:1.5〜8%、Mo:0〜0.95%、W:7.2〜15%、Al:3.5〜6.5%、Re:1.1〜9%、Nb:0.2〜2%、V:0〜1%、Zr:0〜0.02%、白金族元素の少なくとも1種:0〜2%、希土類元素の少なくとも1種:0〜2%、アルカリ土類金属及びSiの少なくとも1種:0〜0.1%、FeとGa及びGeから選ばれた少なくとも1種:0〜5%、残部がNiと不可避不純物よりなることを特徴とする高強度高延性Ni基超合金。   A Ni-based superalloy having an equiaxed crystal structure manufactured by a normal casting method, and in terms of% by weight, C: 0.16-0.3%, B: 0.016-0.05%, Hf: 1 .4 to 3.0%, Co: 10.2 to 25%, Ta: 1 to 4.9%, Cr: 1.5 to 8%, Mo: 0 to 0.95%, W: 7.2 15%, Al: 3.5 to 6.5%, Re: 1.1 to 9%, Nb: 0.2 to 2%, V: 0 to 1%, Zr: 0 to 0.02%, platinum group At least one element: 0-2%, at least one rare earth element: 0-2%, at least one alkaline earth metal and Si: 0-0.1%, selected from Fe, Ga and Ge A high-strength, high-ductility Ni-base superalloy characterized by comprising at least one type: 0 to 5%, and the balance being Ni and inevitable impurities. 重量%で、Cr:1.5〜7%、W:9〜15%を含むことを特徴とする請求項3に記載の高強度高延性Ni基超合金。   The high-strength, high-ductility Ni-base superalloy according to claim 3, which contains Cr: 1.5-7% and W: 9-15% by weight. 重量%で、Cr:1.5〜7%、W:11.2〜15%を含むことを特徴とする請求項3に記載の高強度高延性Ni基超合金。   The high-strength, high-ductility Ni-base superalloy according to claim 3, which contains Cr: 1.5-7% and W: 11.2-15% by weight. 重量%で、C:0.18〜0.3%、Hf:1.8〜3.0%、Cr:1.5〜7%、W:11.2〜15%を含むことを特徴とする請求項3に記載の高強度高延性Ni基超合金。   C: 0.18-0.3%, Hf: 1.8-3.0%, Cr: 1.5-7%, W: 11.2-15% The high strength and high ductility Ni-base superalloy according to claim 3. W/W+Taの比率が0.6〜0.8よりなることを特徴とする請求項3に記載の高強度高延性Ni基超合金。   The high strength and high ductility Ni-base superalloy according to claim 3, wherein the ratio of W / W + Ta is 0.6 to 0.8. 一方向凝固法によって鋳造されるNi基超合金であって、重量%で、C:0.06〜0.3%、B:0.01〜0.05%、Hf:1.4〜3.0%、Co:10.2〜25%、Ta:1〜12%、Cr:1.5〜16%、Mo:0〜0.95%、W:7.2〜15%、Al:3.5〜6.5%、Re:1.1〜9%、Nb:0.2〜2%、V:0〜1%、Zr:0〜0.02%、白金族元素の少なくとも1種:0〜2%、希土類元素の少なくとも1種:0〜2%、アルカリ土類金属及びSiの少なくとも1種:0〜0.1%、FeとGa及びGeから選ばれた少なくとも1種:0〜5%、残部がNiと不可避不純物よりなることを特徴とする高強度高延性Ni基超合金。   A Ni-base superalloy cast by a unidirectional solidification method, wherein C: 0.06-0.3%, B: 0.01-0.05%, Hf: 1.4-3. 0%, Co: 10.2 to 25%, Ta: 1 to 12%, Cr: 1.5 to 16%, Mo: 0 to 0.95%, W: 7.2 to 15%, Al: 3. 5 to 6.5%, Re: 1.1 to 9%, Nb: 0.2 to 2%, V: 0 to 1%, Zr: 0 to 0.02%, at least one platinum group element: 0 ~ 2%, at least one rare earth element: 0-2%, at least one alkaline earth metal and Si: 0-0.1%, at least one selected from Fe, Ga and Ge: 0-5 %, A high strength and high ductility Ni-base superalloy characterized in that the balance consists of Ni and inevitable impurities. 重量%で、Ta:1〜6.5%、W:9〜15%を含むことを特徴とする請求項8に記載の高強度高延性Ni基超合金。   The high-strength and highly ductile Ni-base superalloy according to claim 8, characterized by containing Ta: 1 to 6.5% and W: 9 to 15% by weight. 重量%で、Ta:1〜6.5%、W:10.5〜15%を含むことを特徴とする請求項8に記載の高強度高延性Ni基超合金。   The high-strength, high-ductility Ni-base superalloy according to claim 8, characterized by containing Ta: 1-6.5% and W: 10.5-15% by weight. 重量%で、Ta:1〜4.9%、W:11.2〜15%を含むことを特徴とする請求項8に記載の高強度高延性Ni基超合金。   The high-strength and highly ductile Ni-based superalloy according to claim 8, characterized by containing Ta: 1 to 4.9% and W: 11.2 to 15% by weight. W/W+Taの比率が0.6〜0.8よりなることを特徴とする請求項8に記載の高強度高延性Ni基超合金。   The ratio of W / W + Ta is 0.6 to 0.8, and the high strength and high ductility Ni-base superalloy according to claim 8. 重量%で、Ta:1〜6.5%、W:10.5〜15%、TaとWの合計量が15〜17%、W/W+Taの比率が0.6〜0.8よりなることを特徴とする請求項8に記載の高強度高延性Ni基超合金。   In weight%, Ta: 1 to 6.5%, W: 10.5 to 15%, the total amount of Ta and W is 15 to 17%, and the ratio of W / W + Ta is 0.6 to 0.8. The high-strength and high-ductility Ni-base superalloy according to claim 8. 重量%で、Ta:1〜4.9%、W:11.2〜15%、TaとWの合計量が15〜17%、W/W+Taの比率が0.6〜0.8よりなることを特徴とする請求項8に記載の高強度高延性Ni基超合金。   In weight percent, Ta: 1 to 4.9%, W: 11.2 to 15%, the total amount of Ta and W is 15 to 17%, and the ratio of W / W + Ta is 0.6 to 0.8. The high-strength and high-ductility Ni-base superalloy according to claim 8. 請求項1に記載の組成を有するNi基超合金鋳造物。   A Ni-base superalloy casting having the composition according to claim 1. 一方向凝固法あるいは普通鋳造法によって鋳造され、単結晶組織、柱状晶組織或いは等軸晶組織を有することを特徴とする請求項15に記載のNi基超合金鋳造物。   The Ni-base superalloy casting according to claim 15, which is cast by a unidirectional solidification method or a normal casting method and has a single crystal structure, a columnar crystal structure, or an equiaxed crystal structure. 請求項1に記載の組成を有する、Ni基超合金鋳造物鋳造用のマスターインゴット。   A master ingot for casting a Ni-base superalloy casting having the composition according to claim 1. 請求項1に記載の組成を有するNi基超合金鋳造物により形成されたターボチャージャー又はマイクロタービン用の遠心式ホイール。   A centrifugal wheel for a turbocharger or a microturbine formed by a Ni-base superalloy casting having the composition according to claim 1. ホイールの翼部表面が微細結晶、翼部からハブ部へ向けた部分が翼部からハブ部へ向けた凝固方向の柱状晶、ハブ部が結晶粒径5mm以上の粗大結晶よりなることを特徴とする請求項18に記載の遠心式ホイール。   The wing surface of the wheel is composed of fine crystals, the portion from the wing portion toward the hub portion is a columnar crystal in the solidification direction from the wing portion to the hub portion, and the hub portion is composed of coarse crystals having a crystal grain size of 5 mm or more. The centrifugal wheel according to claim 18. ホイールの翼部表面と、翼部からハブ部へ向けた部分、及びハブ部の全ての部分で、凝固前面と接する溶湯が湯口まで連続している凝固形態を有することを特徴とする請求項19に記載の遠心式ホイール。   20. The solidified form in which the molten metal in contact with the solidification front surface continues to the gate at the blade surface of the wheel, the portion from the blade portion toward the hub portion, and all portions of the hub portion. A centrifugal wheel as described in 1. 請求項1に記載の組成を有するNi基超合金を鋳造してターボチャージャー又はマイクロタービン用の遠心式ホイールを製造し、その際に翼部表面が微細結晶、翼部からハブ部へ向けた部分が翼部からハブ部へ向けた凝固方向の柱状晶、ハブ部が結晶粒径5mm以上の粗大結晶となるように鋳造し、鋳造後、温度1185〜1285℃,圧力100〜185MPaの条件で2時間以上のHIP処理を行い、その後、溶体化熱処理を施すことを特徴とする遠心式ホイールの製造方法。   A Ni-base superalloy having the composition according to claim 1 is cast to produce a centrifugal wheel for a turbocharger or a microturbine, wherein the blade surface is a fine crystal and the portion from the blade portion toward the hub portion Is cast in a solidified columnar crystal from the wing portion toward the hub portion, and the hub portion is a coarse crystal having a crystal grain size of 5 mm or more. After casting, the temperature is 1185 to 1285 ° C. and the pressure is 100 to 185 MPa. A method for producing a centrifugal wheel, characterized by performing a HIP treatment for more than an hour and then performing a solution heat treatment. 請求項1に記載の組成を有するNi基超合金を鋳造してターボチャージャー又はマイクロタービン用の遠心式ホイールを製造し、その際に翼部表面が微細結晶、翼部からハブ部へ向けた部分が翼部からハブ部へ向けた凝固方向の柱状晶、ハブ部が結晶粒径5mm以上の粗大結晶となり、製品部の全ての部位で凝固前面と接する溶湯が湯口まで連続している凝固形態となるように鋳造を行い、鋳造後、温度1185〜1285℃,圧力100〜185MPaの条件で2時間以上のHIP処理を行い、その後、溶体化熱処理を施すことを特徴とする遠心式ホイールの製造方法。   A Ni-base superalloy having the composition according to claim 1 is cast to produce a centrifugal wheel for a turbocharger or a microturbine, wherein the blade surface is a fine crystal and the portion from the blade portion toward the hub portion Is a solidified columnar crystal in the solidification direction from the wing part to the hub part, the hub part is a coarse crystal with a crystal grain size of 5 mm or more, and the molten metal in contact with the solidification front surface in all parts of the product part continues to the pouring gate. A method for producing a centrifugal wheel, characterized in that after casting, HIP treatment is performed for 2 hours or more under conditions of a temperature of 1185 to 1285 ° C. and a pressure of 100 to 185 MPa, followed by solution heat treatment. . 請求項1に記載の組成を有するNi基超合金鋳造物により形成された軸流式ガスタービン用の翼。   A blade for an axial-flow gas turbine formed by a Ni-base superalloy casting having the composition according to claim 1. 一方向凝固法によって鋳造され、単結晶組織、柱状晶組織を有することを特徴とする請求項23に記載の軸流式ガスタービン用の翼。   The blade for an axial flow type gas turbine according to claim 23, which is cast by a unidirectional solidification method and has a single crystal structure and a columnar crystal structure.
JP2005356445A 2005-12-09 2005-12-09 High strength and high ductility Ni-base superalloy, member using the same, and manufacturing method Expired - Fee Related JP4885530B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005356445A JP4885530B2 (en) 2005-12-09 2005-12-09 High strength and high ductility Ni-base superalloy, member using the same, and manufacturing method
DE200660017028 DE602006017028D1 (en) 2005-12-09 2006-12-06 High-strength and high-formable nickel-base superalloy, components and processes for their production
EP20060025253 EP1795621B1 (en) 2005-12-09 2006-12-06 High-strength and high-ductility ni-base superalloys, parts using them, and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005356445A JP4885530B2 (en) 2005-12-09 2005-12-09 High strength and high ductility Ni-base superalloy, member using the same, and manufacturing method

Publications (2)

Publication Number Publication Date
JP2007162041A true JP2007162041A (en) 2007-06-28
JP4885530B2 JP4885530B2 (en) 2012-02-29

Family

ID=37695978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005356445A Expired - Fee Related JP4885530B2 (en) 2005-12-09 2005-12-09 High strength and high ductility Ni-base superalloy, member using the same, and manufacturing method

Country Status (3)

Country Link
EP (1) EP1795621B1 (en)
JP (1) JP4885530B2 (en)
DE (1) DE602006017028D1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010037658A (en) * 2008-08-06 2010-02-18 General Electric Co <Ge> Nickel-base superalloy, unidirectional solidification process therefor, and obtained casting
JP2011074492A (en) * 2009-09-30 2011-04-14 General Electric Co <Ge> Nickel-based superalloy and article
JP2012012705A (en) * 2010-06-30 2012-01-19 Alstom Technology Ltd Producing method of single-crystal component made of nickel-based superalloy
JP2013522475A (en) * 2010-03-23 2013-06-13 シーメンス アクティエンゲゼルシャフト Metal bond coat and parts with high γ / γ ′ transition temperature
JP2014113599A (en) * 2012-12-06 2014-06-26 Nippon Chuzo Co Ltd Component for precision instrument, and method of manufacturing the same
WO2017006927A1 (en) * 2015-07-09 2017-01-12 三菱日立パワーシステムズ株式会社 HIGH-STRENGTH, HEAT-RESISTANT Ni-BASE ALLOY MEMBER, METHOD FOR PRODUCING SAME, AND GAS TURBINE
JP2017031974A (en) * 2015-07-29 2017-02-09 日立金属株式会社 Cast impeller and process of manufacture thereof
JP2020070487A (en) * 2018-10-29 2020-05-07 リバーディ エンジニアリング リミティド High gamma prime nickel based superalloy, its use, and method of manufacturing turbine engine components
KR20200086725A (en) * 2017-11-24 2020-07-17 지멘스 악티엔게젤샤프트 Alloys with excellent oxidation resistance for gas turbine applications
WO2020203868A1 (en) * 2019-04-01 2020-10-08 株式会社Ihi Turbine wheel and manufacturing method therefor

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH702642A1 (en) 2010-02-05 2011-08-15 Alstom Technology Ltd Nickel-base superalloy with improved degradation.
US8708659B2 (en) 2010-09-24 2014-04-29 United Technologies Corporation Turbine engine component having protective coating
CN103952595A (en) * 2014-05-15 2014-07-30 中国人民解放军第五七一九工厂 Laser-cladding powder for repairing directional solidified nickel-based high-temperature alloy blade
RU2564653C1 (en) * 2014-08-08 2015-10-10 Общество с ограниченной ответственностью "Научно-производственное объединение "Защитные покрытия" Nickel-based heat resisting alloy for fabrication and repair of gas-turbine unit blades
DE102015223198A1 (en) * 2015-11-24 2017-05-24 Siemens Aktiengesellschaft Nickel-based alloy with improved properties for additive manufacturing processes and component
JP6769341B2 (en) * 2017-02-24 2020-10-14 大同特殊鋼株式会社 Ni-based superalloy
CN112760525B (en) * 2019-11-01 2022-06-03 利宝地工程有限公司 High gamma prime nickel-based superalloy, use thereof and method of manufacturing a turbine engine component
CN113373520B (en) * 2021-04-28 2023-12-15 潍坊科技学院 Wide-temperature, high-strength, high-plasticity and oxidation-resistant single crystal high-entropy alloy and preparation method thereof
CN114293068B (en) * 2021-12-27 2023-06-27 上海康晟航材科技股份有限公司 Nickel-based wrought superalloy for coke reactor and preparation method thereof
CN114737145B (en) * 2022-04-01 2022-09-27 哈尔滨工业大学 Orientation and cyclic orientation heat treatment method for optimizing large-size columnar crystals

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07145703A (en) * 1993-08-06 1995-06-06 Hitachi Ltd Moving blade for gas turbine, manufacture thereof, and gas turbine using same
JPH09272933A (en) * 1996-02-09 1997-10-21 Hitachi Ltd High strength nickel-base superalloy for directional solidification
JPH10317080A (en) * 1997-05-22 1998-12-02 Toshiba Corp Ni(nickel)-base superalloy, production of ni-base superalloy, and ni-base superalloy parts

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU630623B2 (en) 1988-10-03 1992-11-05 General Electric Company An improved article and alloy therefor
US5270123A (en) 1992-03-05 1993-12-14 General Electric Company Nickel-base superalloy and article with high temperature strength and improved stability
EP0560296B1 (en) * 1992-03-09 1998-01-14 Hitachi Metals, Ltd. Highly hot corrosion resistant and high-strength superalloy, highly hot corrosion resistant and high-strength casting having single crystal structure, gas turbine and combined cycle power generation system
US5482789A (en) * 1994-01-03 1996-01-09 General Electric Company Nickel base superalloy and article
US5783318A (en) * 1994-06-22 1998-07-21 United Technologies Corporation Repaired nickel based superalloy
DE69701900T2 (en) 1996-02-09 2000-12-07 Hitachi Ltd High-strength nickel-based superalloy for directionally solidified castings
JP2905473B1 (en) * 1998-03-02 1999-06-14 科学技術庁金属材料技術研究所長 Method for producing Ni-based directionally solidified alloy
US6096141A (en) * 1998-08-03 2000-08-01 General Electric Co. Nickel-based superalloys exhibiting minimal grain defects
US6444057B1 (en) * 1999-05-26 2002-09-03 General Electric Company Compositions and single-crystal articles of hafnium-modified and/or zirconium-modified nickel-base superalloys

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07145703A (en) * 1993-08-06 1995-06-06 Hitachi Ltd Moving blade for gas turbine, manufacture thereof, and gas turbine using same
JPH09272933A (en) * 1996-02-09 1997-10-21 Hitachi Ltd High strength nickel-base superalloy for directional solidification
JPH10317080A (en) * 1997-05-22 1998-12-02 Toshiba Corp Ni(nickel)-base superalloy, production of ni-base superalloy, and ni-base superalloy parts

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010037658A (en) * 2008-08-06 2010-02-18 General Electric Co <Ge> Nickel-base superalloy, unidirectional solidification process therefor, and obtained casting
JP2011074492A (en) * 2009-09-30 2011-04-14 General Electric Co <Ge> Nickel-based superalloy and article
JP2013522475A (en) * 2010-03-23 2013-06-13 シーメンス アクティエンゲゼルシャフト Metal bond coat and parts with high γ / γ ′ transition temperature
US9074268B2 (en) 2010-03-23 2015-07-07 Siemens Aktiengesellschaft Metallic bondcoat with a high gamma/gamma' transition temperature and a component
JP2012012705A (en) * 2010-06-30 2012-01-19 Alstom Technology Ltd Producing method of single-crystal component made of nickel-based superalloy
JP2014113599A (en) * 2012-12-06 2014-06-26 Nippon Chuzo Co Ltd Component for precision instrument, and method of manufacturing the same
WO2017006927A1 (en) * 2015-07-09 2017-01-12 三菱日立パワーシステムズ株式会社 HIGH-STRENGTH, HEAT-RESISTANT Ni-BASE ALLOY MEMBER, METHOD FOR PRODUCING SAME, AND GAS TURBINE
JP2017020066A (en) * 2015-07-09 2017-01-26 三菱日立パワーシステムズ株式会社 Ni-BASED HIGH STRENGTH HEAT RESISTANT ALLOY MEMBER, MANUFACTURING METHOD THEREFOR AND GAS TURBINE WING
US11155910B2 (en) 2015-07-09 2021-10-26 Mitsubishi Power, Ltd. High-strength, heat-resistant Ni-base alloy, method for producing same, and gas turbine blade
KR20180005247A (en) 2015-07-09 2018-01-15 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Ni-based high strength heat resistant alloy member, method of manufacturing the same, and gas turbine blade
JP2017031974A (en) * 2015-07-29 2017-02-09 日立金属株式会社 Cast impeller and process of manufacture thereof
KR20200086725A (en) * 2017-11-24 2020-07-17 지멘스 악티엔게젤샤프트 Alloys with excellent oxidation resistance for gas turbine applications
JP7233422B2 (en) 2017-11-24 2023-03-06 シーメンス・エナジー・グローバル・ゲーエムベーハー・ウント・コ・カーゲー Highly oxidation resistant alloy for gas turbine applications
JP2021504564A (en) * 2017-11-24 2021-02-15 シーメンス アクティエンゲゼルシャフト Highly oxidation resistant alloys for gas turbine applications
US11427892B2 (en) 2017-11-24 2022-08-30 Siemens Energy Global GmbH & Co. KG Alloy for gas turbine applications with high oxidation resistance
KR102414975B1 (en) 2017-11-24 2022-07-01 지멘스 에너지 글로벌 게엠베하 운트 코. 카게 Alloys with good oxidation resistance for gas turbine applications
JP2020070487A (en) * 2018-10-29 2020-05-07 リバーディ エンジニアリング リミティド High gamma prime nickel based superalloy, its use, and method of manufacturing turbine engine components
KR102228130B1 (en) * 2018-10-29 2021-03-16 리버디 엔지니어링 리미티드 High gamma prime nickel based superalloy and method of manufacturing of turbine engine components
KR20210022599A (en) * 2018-10-29 2021-03-03 리버디 엔지니어링 리미티드 High gamma prime nickel based superalloy and method of manufacturing of turbine engine components
JPWO2020203868A1 (en) * 2019-04-01 2021-11-25 株式会社Ihi Turbine wheel and its manufacturing method
JP7156509B2 (en) 2019-04-01 2022-10-19 株式会社Ihi Turbine wheel manufacturing method
WO2020203868A1 (en) * 2019-04-01 2020-10-08 株式会社Ihi Turbine wheel and manufacturing method therefor

Also Published As

Publication number Publication date
EP1795621A1 (en) 2007-06-13
DE602006017028D1 (en) 2010-11-04
EP1795621B1 (en) 2010-09-22
JP4885530B2 (en) 2012-02-29

Similar Documents

Publication Publication Date Title
JP4885530B2 (en) High strength and high ductility Ni-base superalloy, member using the same, and manufacturing method
US10767246B2 (en) Enhanced superalloys by zirconium addition
RU2433197C2 (en) Heat-resistant nickel-based alloy, part manufacturing method, and turbomachine part
WO2013089218A1 (en) Heat-resistant nickel-based superalloy
JP4036091B2 (en) Nickel-base heat-resistant alloy and gas turbine blade
CA2586974C (en) Nickel-base superalloy
JP2004332061A (en) HIGHLY OXIDATION RESISTANT Ni BASED SUPERALLOY, AND GAS TURBINE COMPONENT
JP5418589B2 (en) Ni-based single crystal superalloy and turbine blade using the same
US8852500B2 (en) Ni-base superalloy, method for producing the same, and turbine blade or turbine vane components
JP5235383B2 (en) Ni-based single crystal alloy and casting
US8858874B2 (en) Ternary nickel eutectic alloy
JP4266196B2 (en) Nickel-base superalloy with excellent strength, corrosion resistance and oxidation resistance
JP3559670B2 (en) High-strength Ni-base superalloy for directional solidification
JP5626920B2 (en) Nickel-base alloy castings, gas turbine blades and gas turbines
JP5063550B2 (en) Nickel-based alloy and gas turbine blade using the same
US20170058383A1 (en) Rhenium-free nickel base superalloy of low density
JP2012255196A (en) Ni-BASED SUPERALLOY, AND TURBINE ROTOR AND STATOR BLADE FOR GAS TURBINE USING THE SAME
JP4230970B2 (en) Ni-base superalloys for unidirectional solidification with excellent solidification direction strength and grain boundary strength, castings and high-temperature parts for gas turbines
JP5427642B2 (en) Nickel-based alloy and land gas turbine parts using the same
JP4773303B2 (en) Nickel-based single crystal superalloy excellent in strength, corrosion resistance, and oxidation resistance and method for producing the same
JP6095237B2 (en) Ni-base alloy having excellent high-temperature creep characteristics and gas turbine member using this Ni-base alloy
JP4184648B2 (en) Ni-based single crystal alloy excellent in strength and corrosion resistance and its manufacturing method
US20050000603A1 (en) Nickel base superalloy and single crystal castings
JP5396445B2 (en) gas turbine
JP2013185210A (en) Nickel-based alloy and gas turbine blade using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4885530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees