JP5626920B2 - Nickel-base alloy castings, gas turbine blades and gas turbines - Google Patents

Nickel-base alloy castings, gas turbine blades and gas turbines Download PDF

Info

Publication number
JP5626920B2
JP5626920B2 JP2012068580A JP2012068580A JP5626920B2 JP 5626920 B2 JP5626920 B2 JP 5626920B2 JP 2012068580 A JP2012068580 A JP 2012068580A JP 2012068580 A JP2012068580 A JP 2012068580A JP 5626920 B2 JP5626920 B2 JP 5626920B2
Authority
JP
Japan
Prior art keywords
mass
alloy
strength
nickel
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012068580A
Other languages
Japanese (ja)
Other versions
JP2013199680A (en
Inventor
明 吉成
明 吉成
玉艇 王
玉艇 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2012068580A priority Critical patent/JP5626920B2/en
Publication of JP2013199680A publication Critical patent/JP2013199680A/en
Application granted granted Critical
Publication of JP5626920B2 publication Critical patent/JP5626920B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Description

本発明は、高温における強度、耐食性及び耐酸化特性に優れたニッケル基合金、このニッケル基合金を用いた鋳造品及びガスタービン用ブレードに関する。   The present invention relates to a nickel-base alloy having excellent strength, corrosion resistance and oxidation resistance at high temperatures, a cast product using the nickel-base alloy, and a blade for a gas turbine.

近年、ジェットエンジンやガスタービンなどの動力機関においては、その高性能化および高効率化などのために、タービン入口温度の高温化が必要不可欠である。このような高温化に耐えうるタービンブレード材料では、高温での遠心力に耐えうる優れたクリープ破断強度、靭性、および高温燃焼ガス雰囲気に対する優れた耐酸化性、及び耐食性が要求される。この要求特性を満たすため、現在ではニッケル基合金が使用されている。Ni基合金には、等軸晶からなる普通鋳造合金、柱状晶からなる一方向凝固合金及び一つの結晶からなる単結晶合金がある。   In recent years, in a power engine such as a jet engine or a gas turbine, it is indispensable to increase the turbine inlet temperature in order to improve the performance and efficiency. Turbine blade materials that can withstand such high temperatures are required to have excellent creep rupture strength and toughness that can withstand centrifugal force at high temperatures, and excellent oxidation resistance and corrosion resistance to high-temperature combustion gas atmospheres. In order to satisfy this required characteristic, nickel-based alloys are currently used. Ni-based alloys include normal cast alloys made of equiaxed crystals, unidirectionally solidified alloys made of columnar crystals, and single crystal alloys made of one crystal.

不純物の多い燃料を使用するランド用ガスタービン(地面に固定されて発電用に使用されるガスタービン)には、耐食性及びコストを考慮して、高Crの普通鋳造ニッケル基合金が用いられている。耐食性を重視した合金として例えば、特開昭51−34819号公報(特許文献1)や、特開2004−197131号公報(特許文献2)米国特許第3459545号(特許文献3)、特開2010−084166号公報(特許文献4)に示される普通鋳造合金がある。また、ラウンド用ガスタービンを対象とした普通鋳造合金でも、特公昭46−27144号公報(特許文献5)や、特開平6−57359号公報(特許文献6)に示される合金のように、耐食性を犠牲にして強度を高めた合金もある。   High-Cr ordinary cast nickel base alloy is used for land gas turbines (fuel gas turbines fixed to the ground and used for power generation) that use fuel with a lot of impurities in consideration of corrosion resistance and cost. . For example, Japanese Patent Laid-Open No. 51-34819 (Patent Document 1), Japanese Patent Application Laid-Open No. 2004-197131 (Patent Document 2), US Pat. There is a common casting alloy disclosed in Japanese Patent No. 084166 (Patent Document 4). Moreover, even with a normal casting alloy for a round gas turbine, the corrosion resistance is similar to the alloys disclosed in Japanese Patent Publication No. 46-27144 (Patent Document 5) and Japanese Patent Laid-Open No. 6-57359 (Patent Document 6). Some alloys have increased strength at the expense of.

特開昭51−34819号公報JP 51-34819 A 特開2004−197131号公報Japanese Patent Laid-Open No. 2004-197131 米国特許第3459545号U.S. Pat. No. 3,449,545 特開2010−084166号公報JP 2010-084166 A 特公昭46−27144号公報Japanese Patent Publication No.46-27144 特開平6−57359号公報JP-A-6-57359

ガスタービン用の普通鋳造合金では、一方向凝固合金及び単結晶合金に比べると強度が低いため、更なる強度特性の改善が求められている。また、ガスタービン用の翼では、ジェットエンジンの動静翼に比べて形状が大きいことから、鋳造での凝固速度が遅くなり、結晶粒の粗大化、炭化物の粗大化が起こりやすくなる等の問題があった。   Since a normal casting alloy for a gas turbine has a lower strength than a unidirectionally solidified alloy and a single crystal alloy, further improvement in strength characteristics is required. In addition, since the blades for gas turbines are larger in shape than the moving and stationary blades of a jet engine, there are problems such as the solidification rate in casting becomes slow, and the coarsening of crystal grains and the coarsening of carbides are likely to occur. there were.

また、一方向凝固合金や単結晶合金では、主にジェットエンジンの動静翼に使用されている。このようなジェットエンジン用の動静翼では、強度を重視してCr含有量を少なくし、固溶強化度の高いWやTaを多量に添加して、クリープ破断強度を高めている。その結果、クリープ破断強度は高いものの、高温での耐食性が十分でないため、不純物の多い燃料を使用するランド用ガスタービンに対しては不適である。   Further, unidirectionally solidified alloys and single crystal alloys are mainly used for the moving and stationary blades of jet engines. In such a moving vane for a jet engine, the Cr content is reduced with emphasis on strength, and a large amount of W or Ta having a high degree of solid solution strengthening is added to increase the creep rupture strength. As a result, although the creep rupture strength is high, the corrosion resistance at high temperatures is not sufficient, so that it is unsuitable for a land gas turbine using a fuel with many impurities.

一方、ガスタービン用の動翼においても強度向上の面から、一方向凝固鋳造して使用する必要があり、普通鋳造合金を一方向凝固鋳造して使用している。そのため、凝固速度が更に遅くなり、粗大な炭化物が生じることで、加工性や亀裂の原因になっていた。   On the other hand, a moving blade for a gas turbine also needs to be used by unidirectional solidification casting from the viewpoint of improving the strength, and a normal casting alloy is used by unidirectional solidification casting. For this reason, the solidification rate is further slowed down and coarse carbides are generated, which causes workability and cracks.

そこで、本発明の目的は、鋳造組織安定性、耐食性、耐酸化性に優れ、かつ強度の高いNi基の合金で、普通鋳造及び一方向凝固鋳造に適する合金を提供することにある。   Accordingly, an object of the present invention is to provide a Ni-based alloy having excellent cast structure stability, corrosion resistance, oxidation resistance, and high strength, and suitable for ordinary casting and unidirectional solidification casting.

ニッケル基合金は、Cr、Co、Al、Ti、Ta、W、Mo、Nb、C、B及び不可避不純物を含み、残部がNiよりなるニッケル基合金であって、Cr:12.1〜15.0質量%、Co:1.0〜6.8質量%、Al:3.4〜4.6質量%、Ti:2.8〜3.9質量%、Ta:1.5〜3.0質量%、W:4.55〜8.0質量%、Mo:0.5〜2.5質量%、Nb:0.4質量%以下、C:0.01〜0.20質量%、B:0.005〜0.03質量%の合金組成であることを特徴とする。   The nickel-base alloy is a nickel-base alloy containing Cr, Co, Al, Ti, Ta, W, Mo, Nb, C, B and unavoidable impurities and the balance being Ni, and Cr: 12.1 to 15. 0% by mass, Co: 1.0 to 6.8% by mass, Al: 3.4 to 4.6% by mass, Ti: 2.8 to 3.9% by mass, Ta: 1.5 to 3.0% by mass %, W: 4.55-8.0 mass%, Mo: 0.5-2.5 mass%, Nb: 0.4 mass% or less, C: 0.01-0.20 mass%, B: 0 The alloy composition is 0.005 to 0.03 mass%.

上記構成によれば、鋳造時の炭化物の粗大化が抑制され、高温での耐食性、耐酸化性、及びクリープ破断強度が高く、バランスの取れたNi基合金を提供できる。また、Ni基合金をガスタービンの翼に適用することで、不純物の多い燃料を用いるガスタービンなどであって、耐久性の高い製品が提供できる。   According to the above configuration, it is possible to provide a balanced Ni-based alloy in which coarsening of carbides during casting is suppressed, corrosion resistance at high temperatures, oxidation resistance, and creep rupture strength are high. Further, by applying the Ni-based alloy to the blades of the gas turbine, it is possible to provide a highly durable product such as a gas turbine using a fuel with a large amount of impurities.

合金試験片に対するクリープ破断時間を示すグラフである。It is a graph which shows the creep rupture time with respect to an alloy test piece. 合金試験片に対する高温酸化試験での酸化減量を示すグラフである。It is a graph which shows the oxidation weight loss in the high temperature oxidation test with respect to an alloy test piece. 合金試験片に対する溶融塩浸漬腐食試験での腐食減量を示すグラフである。It is a graph which shows the corrosion weight loss in the molten salt immersion corrosion test with respect to an alloy test piece. ガスタービンの動翼形状の一例を示す図である。It is a figure which shows an example of the moving blade shape of a gas turbine.

上記課題を解決する本願発明の特徴は、Cr、Tiの量を高くすることで高温耐食性を向上させていることである。更に、Tiを高くすると耐酸化性が著しく低下することから、耐酸化性の向上に効果の大きいAl量を、異相が析出しない限界まで高め、更には耐酸化性を低下させるMo量を少なくすることで、耐酸化性の向上を図っている。一方、Mo量を少なくすると高温でのクリープ強度が低下することから、Co量を少なくし、その分W、Taを添加し高めることで、高温でのクリープ強度を維持している。また、粗大な炭化物が生成しないようにするため、Nb量を少なくしている。   The feature of the present invention that solves the above problems is that the high-temperature corrosion resistance is improved by increasing the amounts of Cr and Ti. Further, when Ti is increased, the oxidation resistance is remarkably lowered. Therefore, the amount of Al, which is highly effective in improving the oxidation resistance, is increased to the limit at which no foreign phase is precipitated, and further, the amount of Mo that lowers the oxidation resistance is reduced. In this way, the oxidation resistance is improved. On the other hand, since the creep strength at high temperature decreases when the amount of Mo is reduced, the amount of Co is reduced, and by adding W and Ta correspondingly, the creep strength at high temperature is maintained. Further, the amount of Nb is reduced in order to prevent generation of coarse carbides.

具体的には、Cr:12.1〜15.0質量%、Co:1.0〜6.8質量%、Al:3.4〜4.6質量%、Ti:2.8〜3.9質量%、Ta:1.5〜3.0質量%、W:4.55〜8.0質量%、Mo:0.5〜2.5質量%、Nb:0.4質量%以下、C:0.01〜0.20質量%、B:0.005〜0.03質量%を含み、残部がNi及びその他不可避不純物からなるニッケル基合金である。   Specifically, Cr: 12.1 to 15.0 mass%, Co: 1.0 to 6.8 mass%, Al: 3.4 to 4.6 mass%, Ti: 2.8 to 3.9 % By mass, Ta: 1.5 to 3.0% by mass, W: 4.55 to 8.0% by mass, Mo: 0.5 to 2.5% by mass, Nb: 0.4% by mass or less, C: A nickel-base alloy containing 0.01 to 0.20% by mass, B: 0.005 to 0.03% by mass, the balance being Ni and other inevitable impurities.

上記のように成分を調整することにより、鋳造組織安定性に優れ。強度が高く、耐食、耐酸化性に優れる合金を提供でき、ガスタービン翼などの高温下で使用する部材の材料として好適である。   By adjusting the components as described above, the cast structure stability is excellent. An alloy having high strength and excellent corrosion resistance and oxidation resistance can be provided, and is suitable as a material for members used at high temperatures such as gas turbine blades.

また、本発明に係わる強度および耐食・耐酸化特性に優れたニッケル基合金は、Cr:13.1〜15.0質量%、Co:1.0〜6.8質量%、Al:3.4〜4.6質量%、Ti:3.05〜3.9質量%、Ta:1.5〜3.0質量%、W:4.55〜8.0質量%、Mo:0.5〜2.5質量%、Nb:0.4質量%以下、C:0.01〜0.20質量%、B:0.005〜0.03質量%残部Ni及びその他不可避不純物からなるものである。   Further, the nickel-base alloy having excellent strength and corrosion / oxidation resistance according to the present invention is Cr: 13.1 to 15.0 mass%, Co: 1.0 to 6.8 mass%, Al: 3.4. To 4.6% by mass, Ti: 3.05 to 3.9% by mass, Ta: 1.5 to 3.0% by mass, W: 4.55 to 8.0% by mass, Mo: 0.5 to 2 0.5% by mass, Nb: 0.4% by mass or less, C: 0.01 to 0.20% by mass, B: 0.005 to 0.03% by mass and the balance Ni and other inevitable impurities.

また、好ましい本発明に係わる強度および耐食・耐酸化特性に優れたニッケル基合金は、Cr:13.1〜15.0質量%、Co:1.0〜6.8質量%、Al:3.4〜4.6質量%、Ti:3.05〜3.9質量%、Ta:1.5〜2.9質量%、W:4.55〜8.0質量%、Mo:1.5〜2.0質量%、Nb:0.4質量%以下、C:0.01〜0.20質量%、B:0.005〜0.03質量%、残部Ni及びその他不可避不純物からなるものである。   Further, preferred nickel-base alloys having excellent strength and corrosion / oxidation resistance according to the present invention are Cr: 13.1 to 15.0 mass%, Co: 1.0 to 6.8 mass%, Al: 3. 4 to 4.6% by mass, Ti: 3.05 to 3.9% by mass, Ta: 1.5 to 2.9% by mass, W: 4.55 to 8.0% by mass, Mo: 1.5 to 2.0% by mass, Nb: 0.4% by mass or less, C: 0.01 to 0.20% by mass, B: 0.005 to 0.03% by mass, the balance Ni and other inevitable impurities. .

また、更に好ましい本発明に係わる強度および耐食・耐酸化特性に優れたニッケル基合金は、Cr:13.1〜14.5質量%、Co:5.0〜6.8質量%、Al:3.6〜4.4質量%、Ti:3.05〜3.6質量%、Ta:1.5〜2.9質量%、W:4.55〜7.0質量%、Mo:0.5〜2.5質量%、Nb:0.1質量%未満、C:0.05〜0.12質量%、B:0.01〜0.02質量%、残部Ni及びその他不可避不純物からなるものである。   Further, a nickel-based alloy excellent in strength, corrosion resistance and oxidation resistance according to the present invention is preferably Cr: 13.1 to 14.5% by mass, Co: 5.0 to 6.8% by mass, Al: 3 0.6 to 4.4 mass%, Ti: 3.05 to 3.6 mass%, Ta: 1.5 to 2.9 mass%, W: 4.55 to 7.0 mass%, Mo: 0.5 ~ 2.5 mass%, Nb: less than 0.1 mass%, C: 0.05-0.12 mass%, B: 0.01-0.02 mass%, the balance Ni and other inevitable impurities is there.

このような範囲とすることにより、鋳造組織に優れ、材料の引張り強度、クリープ強度、耐食・耐酸化性等での安定した特性が得られ、製品のバラツキが少なくなる。その結果、製品の信頼性が向上する。また、バラツキ範囲を小さく見積もることができるため、例えば許容応力を高くした設計が出来、製品の性能が向上する。   By setting it in such a range, the cast structure is excellent, stable characteristics such as the tensile strength, creep strength, corrosion resistance and oxidation resistance of the material can be obtained, and the variation of the product is reduced. As a result, the reliability of the product is improved. Moreover, since the variation range can be estimated small, for example, a design with a high allowable stress can be performed, and the performance of the product is improved.

上記の合金組成には、Hf、Re、Zr、を添加してもよい。その場合の添加量は、Hf:0〜2.0質量%以下、Re:0〜0.5質量%以下、Zr:0〜0.05質量%以下である。更に不純物として、O、Nが不可避量以上に増加しても良く、その場合の増加量は、O:0〜0.005質量%以下、N:0〜0.005質量%以下である。添加物を加えた場合には、Ni及び不可避不純物の組成により合金の成分量を調整する。   Hf, Re, Zr may be added to the above alloy composition. In this case, the addition amounts are Hf: 0 to 2.0 mass%, Re: 0 to 0.5 mass%, and Zr: 0 to 0.05 mass%. Further, as impurities, O and N may be increased beyond the unavoidable amount. In this case, the increase amounts are O: 0 to 0.005% by mass and N: 0 to 0.005% by mass. When an additive is added, the component amount of the alloy is adjusted by the composition of Ni and inevitable impurities.

上記のNi基合金を鋳造品、特に動翼、静翼、シュラウド等、ガスタービン用高温部品に適用することができる。ガスタービン動翼または静翼は、特に高温における強度、耐食性、耐酸化性に優れている。従って、耐久性に優れたガスタービンを提供でき、特に不純物を含む燃料を使用するランド用ガスタービンに好適である。   The above Ni-based alloy can be applied to cast products, particularly high-temperature components for gas turbines such as moving blades, stationary blades, and shrouds. Gas turbine blades or stationary blades are particularly excellent in strength, corrosion resistance, and oxidation resistance at high temperatures. Therefore, a gas turbine excellent in durability can be provided, and is particularly suitable for a land gas turbine using a fuel containing impurities.

以下、図面を参照して説明する。   Hereinafter, description will be given with reference to the drawings.

図4(A)に航空機用ガスタービンの動翼形状、図4(B)にランド用発電ガスタービンの動翼形状の一例を示す。ランド用翼と航空機用翼とは、形状、大きさが異なる。ランド用は、翼部とシャンク部とルート部(ダブティル部)から成り、大きさは、10〜100cm、重量で1〜10kg程度である。一方、航空機用は、翼部とルート部(ダブティル部)よりなり、大きさは、3〜20cm、重量で0.1〜1kg程度と、ランド用に対し、小型、軽量で、細長い形状を有する。ガスタービンの動静翼材には、種々の特性が要求され、使用環境によっても重要性は異なっている。特に、基本的な材料特性として、室温引張り強度、高温引張り強度、クリープ強度、耐食性、耐酸化特性がある。これらの特性に著しく劣る特性のないバランスの取れた特性の鋳造用合金組成の開発は重要視されている。本願発明者らは、普通鋳造合金であって、クリープ強度を維持しながら、耐食性及び耐酸化性を同時に改善しうる合金を検討した結果、上記本発明に至ったものである。   FIG. 4A shows an example of a moving blade shape of an aircraft gas turbine, and FIG. 4B shows an example of a moving blade shape of a land power generation gas turbine. Land wings and aircraft wings differ in shape and size. The land is composed of a wing part, a shank part, and a root part (dovetil part), and the size is about 10 to 100 cm and the weight is about 1 to 10 kg. On the other hand, for aircraft, it consists of a wing part and a root part (dovetil part), and the size is about 3 to 20 cm and the weight is about 0.1 to 1 kg. . Various characteristics are required for the moving and stationary blade material of the gas turbine, and the importance varies depending on the use environment. In particular, basic material properties include room temperature tensile strength, high temperature tensile strength, creep strength, corrosion resistance, and oxidation resistance. Development of a cast alloy composition having a balanced characteristic without significantly inferior to these characteristics is regarded as important. The inventors of the present application have reached the present invention as a result of studying an alloy that is a normal cast alloy and can simultaneously improve the corrosion resistance and oxidation resistance while maintaining the creep strength.

従来、強度向上の手段として、一方向凝固合金や単結晶合金とする手法がある。一方向凝固合金や単結晶合金は、主に小型で軽量なジェットエンジン(航空用ガスタービン)の動静翼に使用されている。Cr含有量を少なくし、高温での耐食性を犠牲にして、固溶強化度の高いWやTaを多量に添加して、クリープ破断強度を高めるものである。そのため、高温での耐食・耐酸化特性が十分でなく、不純物の多い燃料を使用するランド用ガスタービンに対しては不適な材料となっている。   Conventionally, as a means for improving strength, there is a technique of using a unidirectionally solidified alloy or a single crystal alloy. Unidirectionally solidified alloys and single crystal alloys are mainly used for the moving and stationary blades of small and lightweight jet engines (aviation gas turbines). By reducing the Cr content and sacrificing corrosion resistance at high temperatures, a large amount of W or Ta having a high degree of solid solution strengthening is added to increase the creep rupture strength. For this reason, the corrosion resistance and oxidation resistance characteristics at high temperatures are not sufficient, and it is an unsuitable material for a land gas turbine using a fuel with many impurities.

更に一方向凝固合金や単結晶合金を用いた翼は、鋳造プロセスが複雑であるため、翼を鋳造した時の鋳造歩留まりが悪くなる。特にランド用ガスタービンの翼では形状が大きく形も複雑であることから、鋳造歩留まりが非常に低く、そのため非常に高価な製品になってしまうという欠点をもっている。   Furthermore, since the wing using a unidirectionally solidified alloy or a single crystal alloy has a complicated casting process, the casting yield when the wing is cast deteriorates. In particular, the blades of land gas turbines have a large shape and a complicated shape, so that the casting yield is very low, resulting in a very expensive product.

ランド用ガスタービンは、軽量であることはそれほど重要ではないが、コストと信頼性が要求される。ジェットエンジンは、短期で点検、オーバーホールが実施されるのに対し、発電用ガスタービンでは、最低でも2、3年は連続使用される。   Although it is not so important for a land gas turbine to be lightweight, cost and reliability are required. Jet engines are inspected and overhauled in a short period of time, while gas turbines for power generation are used continuously for at least a few years.

従って、従来の普通鋳造のニッケル基合金では、耐食性を重視しているため高温での強度が十分でなく、また強度を重視した合金では耐食・耐酸化特性が十分でないという、相反する特性を持っていた。本発明は、上述した従来の実情に鑑みてなされたものであり、ニッケル基の普通鋳造合金の高温でのクリ−プ破断強度、及び耐酸化性を犠牲にすることなく、高温における耐食性を向上させている。   Therefore, conventional conventional nickel-base alloys have a conflicting characteristic that the strength at high temperatures is insufficient because corrosion resistance is important, and that the corrosion resistance and oxidation resistance characteristics are not sufficient in alloys that emphasize strength. It was. The present invention has been made in view of the above-described conventional circumstances, and improves the corrosion resistance at high temperatures without sacrificing the creep rupture strength and oxidation resistance of nickel-based ordinary cast alloys at high temperatures. I am letting.

本発明の合金組成は上述の通りであるが、以下、ニッケル基合金の各成分の働き、及び好ましい組成範囲について説明する。   Although the alloy composition of this invention is as above-mentioned, below, the function of each component of a nickel base alloy and a preferable composition range are demonstrated.

Cr:12.1〜15.0質量%
Crは合金の高温における耐食性を改善するのに有効な元素であり、特に溶融塩腐食に対する耐食性を向上させるためには、Cr含有量をより増加させるほど効果は大きくなる。そして、その効果がより顕著に現れるのは13.1質量%以上からである。しかし本発明の合金では、Ti、W、Ta等が多く添加されているため、Cr量が多くなりすぎると、脆化相であるTCP相が析出して高温強度や高温耐食性を著しく害するようになるため、他の合金元素とのバランスをとって、その上限を15.0質量%とする必要がある。この組成範囲に於いて、強度と耐食性のバランスを考慮した場合、好ましくは13.1〜14.5質量%の範囲である。
Cr: 12.1 to 15.0 mass%
Cr is an element effective for improving the corrosion resistance of the alloy at a high temperature. In particular, in order to improve the corrosion resistance against molten salt corrosion, the effect increases as the Cr content is further increased. And the effect appears more remarkably from 13.1% by mass or more. However, in the alloy of the present invention, since Ti, W, Ta, etc. are added in a large amount, if the amount of Cr is excessively large, the TCP phase which is an embrittlement phase is precipitated, so that the high temperature strength and the high temperature corrosion resistance are remarkably impaired. Therefore, it is necessary to balance with other alloy elements and to set the upper limit to 15.0 mass%. In this composition range, when considering the balance between strength and corrosion resistance, it is preferably in the range of 13.1 to 14.5% by mass.

Co:1.0〜6.8質量%
Coは、γ′相(NiとAlの金属間化合物Ni3Al)の固溶温度を低下させて溶体化処理を容易にするほか、γ相を固溶強化すると共に高温耐食性を向上させる効果を有する。そのような効果が現れるのは、Coの含有量が1.0質量%以上である。一方、本発明の合金では、Ti、W、Ta等が添加されているため、Coの含有量が6.8質量%を越えると、他の合金元素とのバランスがくずれ、γ′相の析出を抑制し高温強度を低下させてしまうため、6.8質量%以下にする必要がある。本発明の組成範囲に於いて、溶体化熱処理の容易性と強度とのバランスを考慮した場合、好ましくは5.0〜6.5質量%の範囲である。
Co: 1.0 to 6.8% by mass
Co lowers the solid solution temperature of the γ 'phase (Ni 3 Al intermetallic compound of Ni and Al) to facilitate solution treatment, and also has the effect of strengthening the γ phase by solid solution strengthening and improving high-temperature corrosion resistance. Have. Such an effect appears when the Co content is 1.0 mass% or more. On the other hand, since Ti, W, Ta, etc. are added to the alloy of the present invention, if the Co content exceeds 6.8% by mass, the balance with other alloy elements is lost, and the precipitation of the γ ′ phase occurs. Is suppressed and the high-temperature strength is lowered, so that it is necessary to make it 6.8% by mass or less. In the composition range of the present invention, when considering the balance between the ease of solution heat treatment and the strength, it is preferably in the range of 5.0 to 6.5% by mass.

W:4.55〜8.0質量%
Wはマトリックスであるγ相と析出相であるγ′相に固溶し、固溶強化によりクリープ強度を高めるのに有効な元素である。そして、このような効果を十分に得るためには4.55質量%以上の含有量が必要である。しかし、Wは比重が大きく、合金の質量を増大するばかりでなく、合金の高温における耐食性を低下させる。また、本発明合金のようにTiとCr量の多い合金では、8.0質量%を越えると針状のα−Wが析出し、クリープ強度、高温耐食性および靭性を低下させるため、その上限を8.0質量%にする必要がある。
W: 4.55-8.0 mass%
W is an element effective for increasing the creep strength by solid solution strengthening by forming a solid solution in the matrix γ phase and the precipitation γ ′ phase. And in order to acquire such an effect sufficiently, content of 4.55 mass% or more is required. However, W has a large specific gravity and not only increases the mass of the alloy, but also reduces the corrosion resistance of the alloy at high temperatures. Further, in the case of an alloy having a large amount of Ti and Cr such as the alloy of the present invention, when it exceeds 8.0% by mass, acicular α-W precipitates, and the creep strength, high temperature corrosion resistance and toughness are lowered. It is necessary to make it 8.0 mass%.

本発明の組成範囲に於いて、高温における強度、耐食性及び高温での組織安定性のバランスを考慮した場合、好ましくは4.55〜7.0質量%の範囲である。   In the composition range of the present invention, when considering the balance of strength at high temperature, corrosion resistance, and structure stability at high temperature, it is preferably in the range of 4.55 to 7.0% by mass.

Ta:1.5〜3.0質量%
Taはγ′相に[Ni3(Al、Ta)]の形で固溶し、固溶強化する。これによりクリープ強度が向上する。この効果を十分に得るためには、1.0質量%以上の含有量が必要であり、3.0質量%以上になると過飽和になって針状のδ相[Ni、Ta]が析出し、クリープ強度を低下させる。したがって、その上限を3.0質量%とする必要がある。この組成範囲に於いて、高温における強度と組織安定性のバランスを考慮した場合、好ましくは、2.0〜2.9質量%の範囲である。
Ta: 1.5-3.0 mass%
Ta forms a solid solution in the form of [Ni 3 (Al, Ta)] in the γ ′ phase and strengthens the solution. This improves the creep strength. In order to sufficiently obtain this effect, a content of 1.0% by mass or more is necessary. When the content is 3.0% by mass or more, supersaturation occurs and acicular δ phase [Ni, Ta] precipitates, Reduce creep strength. Therefore, the upper limit needs to be 3.0 mass%. In this composition range, when considering the balance between strength and structure stability at high temperature, the range is preferably 2.0 to 2.9% by mass.

なお、Wはマトリックスであるγ相と析出相であるγ′相に固溶し、固溶強化によりクリープ強度を高め、一方、Taは析出相であるγ′相に固溶し、固溶強化によりクリープ強度を高める。従って、それぞれ単独の添加より、2つの元素を同時に添加するほうが相乗効果として、クリープ強度を高める効果が大きくなる。従って、TaとWについては、(Ta+W)の総量での組成範囲を規定するのが有効である。この相乗効果を十分に得るためには、(Ta+W)が、6.0質量%以上の含有量が必要である。しかし、(Ta+W)の添加量が10.0質量%以上になると過飽和になって、針状のα−Wが析出し、クリープ強度を低下させる。したがって、その上限を10.0質量%とする必要がある。この組成範囲に於いて、高温における強度と組織安定性のバランスを考慮した場合、好ましくは、7.0〜9.0質量%の範囲より好ましくは、7.5〜8.5質量%の範囲である。   W is solid-solved in the matrix γ phase and the precipitated γ ′ phase, and the creep strength is increased by solid solution strengthening, while Ta is dissolved in the precipitated γ ′ phase and solid solution strengthened. Increases the creep strength. Therefore, the effect of increasing the creep strength is greater as a synergistic effect when the two elements are added simultaneously than when they are added individually. Therefore, for Ta and W, it is effective to define the composition range in the total amount of (Ta + W). In order to sufficiently obtain this synergistic effect, a content of (Ta + W) of 6.0% by mass or more is necessary. However, when the added amount of (Ta + W) is 10.0% by mass or more, supersaturation occurs, and acicular α-W precipitates, and the creep strength is lowered. Therefore, the upper limit needs to be 10.0 mass%. In this composition range, when considering the balance between strength and structure stability at high temperatures, it is preferably in the range of 7.0 to 9.0% by mass, more preferably in the range of 7.5 to 8.5% by mass. It is.

Mo:0.5〜2.5質量%
MoはWと同様の効果を有するため、必要に応じてWの一部と代替えすることが可能である。また、γ′相の固溶温度をあげるため、Wほどでは無いがクリープ強度を向上させる効果がある。そして、このような効果を得るためには0.5質量%以上の含有量が必要である。また、MoはWに比べて比重が小さいため合金の軽量化が図れる。一方、Moは合金の耐酸化特性および耐食性を低下させるため、添加するとしてもその上限を2.5質量%とする必要がある。この組成範囲に於いて、高温における強度、耐食性及び高温での耐酸化特性のバランスを考慮した場合、好ましくは1.5〜2.5質量%の範囲であり、より好ましくは1.58〜2.0質量%の範囲である。
Mo: 0.5 to 2.5% by mass
Since Mo has the same effect as W, it can be replaced with a part of W if necessary. Moreover, since the solid solution temperature of the γ ′ phase is increased, the creep strength is improved although not as high as W. And in order to acquire such an effect, content of 0.5 mass% or more is required. Moreover, since Mo has a smaller specific gravity than W, the weight of the alloy can be reduced. On the other hand, Mo decreases the oxidation resistance and corrosion resistance of the alloy, so even if it is added, the upper limit thereof needs to be 2.5% by mass. In this composition range, when considering the balance of strength at high temperature, corrosion resistance and oxidation resistance at high temperature, the range is preferably 1.5 to 2.5% by mass, more preferably 1.58 to 2%. The range is 0.0 mass%.

Ti:2.8〜3.9質量%
TiはTaと同様にγ′相に[Ni3(Al、Ta、Ti)]の形で固溶強化するが、Taほどの効果はない。むしろ、Tiは合金の高温における耐食性を著しく改善する効果がある。特に溶融塩腐食に対する耐食性に効果が現れるためには、2.8質量%以上の含有量が必要である。しかし、3.9質量%を越えて添加すると、耐酸化特性が著しく劣化し、更に脆化相のη相が析出してくるため、その上限を3.9質量%とする必要がある。本発明合金のようにCrを13.1〜16.0質量%含む合金に於いて、高温における強度と耐食性、耐酸化特性のバランスを考慮した場合、好ましくは3.05〜3.9質量%の範囲であり、より好ましくは3.05〜3.6質量%の範囲である。
Ti: 2.8 to 3.9% by mass
Ti, like Ta, strengthens the γ ′ phase in the form of [Ni 3 (Al, Ta, Ti)], but is not as effective as Ta. Rather, Ti has the effect of significantly improving the corrosion resistance of the alloy at high temperatures. In particular, in order to have an effect on the corrosion resistance against molten salt corrosion, a content of 2.8% by mass or more is necessary. However, if added over 3.9% by mass, the oxidation resistance is remarkably deteriorated, and the embrittled η phase is precipitated, so the upper limit must be 3.9% by mass. In an alloy containing 13.1 to 16.0% by mass of Cr as in the case of the present invention alloy, it is preferably 3.05 to 3.9% by mass in consideration of the balance between strength, corrosion resistance and oxidation resistance at high temperatures. More preferably, it is the range of 3.05-3.6 mass%.

Al:3.4〜4.6質量%
Alは析出強化相であるγ′相[Ni3Al]の主構成元素であり、これによりクリープ強度が向上する。また、耐酸化特性の向上にも大きく寄与する。それらの効果を十分得るためには、3.4質量%以上の含有量が必要である。本発明合金ではCr、Ti、及びTaの含有量が高いことから、4.6質量%を越えると、γ′相[Ni3(Al、Ta、Ti)]が過大に析出し、かえって強度を低下させると共に、クロムと複合酸化物を形成し、耐食性を低下させることから、3.4〜4.6質量%の範囲とすることが必要である。この組成範囲に於いて、高温における強度と耐酸化特性、耐食性のバランスを考慮した場合、好ましくは3.6〜4.4質量%の範囲である。
Al: 3.4 to 4.6% by mass
Al is a main constituent element of the γ ′ phase [Ni 3 Al] which is a precipitation strengthening phase, and thereby the creep strength is improved. It also greatly contributes to the improvement of oxidation resistance. In order to sufficiently obtain these effects, a content of 3.4% by mass or more is necessary. Since the alloy of the present invention has a high content of Cr, Ti, and Ta, when it exceeds 4.6% by mass, the γ ′ phase [Ni 3 (Al, Ta, Ti)] is excessively precipitated, on the contrary, the strength is increased. In addition to lowering, forming a complex oxide with chromium and lowering the corrosion resistance, it is necessary to set the range of 3.4 to 4.6% by mass. In this composition range, when considering the balance between strength at high temperature, oxidation resistance, and corrosion resistance, the range is preferably 3.6 to 4.4% by mass.

Nb:0〜0.4質量%
NbはTiと同様にγ′相に[Ni3(Al、Nb、Ti)]の形で固溶強化し、固溶強化はTiより効果が大きい。また、Tiほどの著しい効果は無いが、高温における耐食性を改善する効果がある。しかし、凝固速度が遅くなる発電用ガスタービンの動静翼では、Cと結合したNb炭化物が粗大化し、鋳造性や加工性等の特性を悪くする。鋳造性や加工性等を改善するには、粗大なNb炭化物の析出を押さえる事が必要であることから、本発明の合金では上限を0.4質量%とする必要がある。本発明合金に於いて、一方向凝固鋳造で使用する場合には、0.01質量%未満とすることが望ましく、実質的には添加しないことである。
Nb: 0 to 0.4% by mass
Nb, like Ti, is solid solution strengthened in the form of [Ni 3 (Al, Nb, Ti)] in the γ ′ phase, and solid solution strengthening is more effective than Ti. Moreover, although there is no remarkable effect like Ti, there exists an effect which improves the corrosion resistance in high temperature. However, in the moving and stationary blades of the gas turbine for power generation where the solidification rate is slow, Nb carbides combined with C are coarsened, and characteristics such as castability and workability are deteriorated. In order to improve castability, workability, etc., it is necessary to suppress the precipitation of coarse Nb carbides, so the upper limit of the alloy of the present invention needs to be 0.4% by mass. In the alloy of the present invention, when used in unidirectional solidification casting, the content is preferably less than 0.01% by mass, and is substantially not added.

従って、上記の各成分(Cr:12.1〜15.0質量%、Co:1.0〜6.8質量%、Al:3.4〜4.6質量%、Ti:2.8〜3.9質量%、Ta:1.5〜3.0質量%、W:4.55〜8.0質量%、Mo:0.2〜2.5質量%、Nb:0.4質量%以下、C:0.05〜0.20質量%、B:0.005〜0.03質量%)と、不可避不純物および残部のNiよりなるNi基合金は、鋳造組織、高温強度、耐酸化特性、耐食性に優れる。このNi基合金は、高温での耐食性、耐酸化性、及びクリープ破断強度においてバランスがとれた特性を有する。従って、不純物量の多い燃料を用いるガスタービンなどの動力機関において、それらの使用環境に十分対応しうるものであり、耐食性及び耐酸化性に優れた効果がもたらされる。また、不純物の多い燃料を使用するランド用ガスタービンで、燃焼ガス温度の高温化による熱効率向上を達成できる。   Accordingly, the above components (Cr: 12.1 to 15.0% by mass, Co: 1.0 to 6.8% by mass, Al: 3.4 to 4.6% by mass, Ti: 2.8 to 3) 9.9% by mass, Ta: 1.5 to 3.0% by mass, W: 4.55 to 8.0% by mass, Mo: 0.2 to 2.5% by mass, Nb: 0.4% by mass or less, C: 0.05 to 0.20% by mass, B: 0.005 to 0.03% by mass), and Ni-based alloy composed of inevitable impurities and the balance Ni is a cast structure, high temperature strength, oxidation resistance, corrosion resistance. Excellent. This Ni-based alloy has characteristics that are balanced in corrosion resistance at high temperature, oxidation resistance, and creep rupture strength. Therefore, in a power engine such as a gas turbine using a fuel with a large amount of impurities, it can sufficiently cope with the use environment thereof, and an effect excellent in corrosion resistance and oxidation resistance is brought about. Further, in a land gas turbine using a fuel with a large amount of impurities, it is possible to achieve an improvement in thermal efficiency by increasing the combustion gas temperature.

さらに、上記組成範囲の成分を含むNi基合金であって、Hf、Re、C、B、Zr、Oを適宜含有するものとすることも可能である。好ましい範囲は、上述の成分の他、各種の追加成分をHf:0〜2.0質量%以下、Re:0〜0.5質量%以下、Zr:0〜0.05質量%以下、O:0〜0.005質量%以下、N:0〜0.005質量%以下の制限内において含み、残部をNi及びその他の不可避不純物からなる合金である。   Further, the Ni-based alloy containing the components in the above composition range may contain Hf, Re, C, B, Zr, and O as appropriate. In addition to the above-described components, the preferred range is that Hf: 0 to 2.0 mass%, Re: 0 to 0.5 mass%, Zr: 0 to 0.05 mass%, O: It is an alloy comprising Ni and other inevitable impurities with the balance being within the limits of 0 to 0.005 mass% or less, N: 0 to 0.005 mass% or less.

Hf:0〜2.0質量%
Hfは強度の向上にはほとんど寄与しないが、合金表面に形成される保護皮膜(例えば、Cr23、Al23)の密着性を向上させることで、高温での耐食、耐酸化性を向上させ、Hfの添加量が多くなると保護皮膜の密着性は向上する。しかし、本発明合金においては、Hfの添加量が2.0質量%を越えると多量の[Ni3(Hf、Ti)]の共晶を作り、ニッケル基合金の融点を著しく下げてしまい、溶体化熱処理を困難にするため、その上限を2.0質量%にすることが必要である。本発明合金において、好ましくは0.1質量%以下とし、実質的に添加しないことである。
Hf: 0 to 2.0% by mass
Although Hf hardly contributes to the improvement of strength, it improves corrosion resistance and oxidation resistance at high temperatures by improving the adhesion of a protective film (for example, Cr 2 O 3 , Al 2 O 3 ) formed on the alloy surface. When the amount of Hf added is increased, the adhesion of the protective film is improved. However, in the alloy of the present invention, if the amount of Hf added exceeds 2.0% by mass, a large amount of [Ni 3 (Hf, Ti)] eutectic is formed, and the melting point of the nickel-base alloy is remarkably lowered. In order to make the heat treatment difficult, it is necessary to set the upper limit to 2.0 mass%. In the alloy of the present invention, it is preferably 0.1% by mass or less, and is not substantially added.

Re:0〜0.5質量%
Reは必要に応じてWの一部と代替えすることが可能であり、マトリックスであるγ相に固溶し、固溶強化によってクリープ強度を高めるとともに、合金の耐食性を改善するのに有効な元素である。しかし、Reは高価であると共に、比重が大きく合金の比重を増大する。また、本発明合金の様なCrを12.1〜16.0質量%含む合金では、0.5質量%を越えると針状のα−Wまたはα−Re(Mo)の析出を助長し、クリープ強度および靭性を低下させるため、その上限を0.5質量%とする必要がある。本発明合金において、好ましくは0.1質量%以下であり、より好ましくは実質的に添加しないことである。
Re: 0 to 0.5% by mass
Re can be replaced with part of W if necessary, and is an element effective for improving the corrosion resistance of the alloy while increasing the creep strength by solid solution strengthening in the γ phase as a matrix. It is. However, Re is expensive and has a large specific gravity and increases the specific gravity of the alloy. In addition, in an alloy containing 12.1 to 16.0% by mass of Cr, such as an alloy of the present invention, if it exceeds 0.5% by mass, it promotes precipitation of acicular α-W or α-Re (Mo), In order to reduce the creep strength and toughness, the upper limit needs to be 0.5 mass%. In the alloy of the present invention, the content is preferably 0.1% by mass or less, and more preferably substantially not added.

C:0.01〜0.2質量%
Cは結晶粒界に偏析し、結晶粒界の強度を向上させると共に、一部は炭化物(TiC、TaC等)を形成し塊状に析出する。結晶粒界に偏析し、粒界強度を上げるには、0.01質量%以上の添加が必要であるが、0.2質量%を越えて添加すると過剰の炭化物を形成し、高温でのクリープ強度や延性を低下させ、更に耐食性も低下させるので、上限を0.2質量%とする必要がある。この組成範囲に於いて、強度、延性及び耐食性のバランスを考慮した場合、好ましくは0.05〜0.12質量%の範囲である。
C: 0.01-0.2 mass%
C segregates at the crystal grain boundaries to improve the strength of the crystal grain boundaries, and partly forms carbides (TiC, TaC, etc.) and precipitates in a lump shape. In order to segregate at the grain boundaries and increase the grain boundary strength, addition of 0.01% by mass or more is necessary, but if added over 0.2% by mass, excessive carbides are formed and creep at a high temperature. Since the strength and ductility are lowered and the corrosion resistance is also lowered, the upper limit needs to be 0.2% by mass. In this composition range, considering the balance of strength, ductility and corrosion resistance, the range is preferably 0.05 to 0.12% by mass.

B:0.005〜0.03質量%
Bは結晶粒界に偏析し、結晶粒界の強度を向上させると共に、一部は硼化物[(Cr、Ni、Ti、Mo)32]を形成し、合金の粒界に析出する。結晶粒界に偏析し粒界強度を上げるには、0.005質量%以上の添加が必要であるが、この硼化物は合金の融点に比べ低融点であるため、合金の溶融温度を著しく低下させ、溶体化処理温度を困難にすることから、上限を0.03質量%とした。この組成範囲に於いて、強度及び溶体化熱処理性のバランスを考慮した場合、好ましくは0.01〜0.02質量%の範囲である。
B: 0.005 to 0.03 mass%
B segregates at the grain boundaries to improve the strength of the grain boundaries and partly forms boride [(Cr, Ni, Ti, Mo) 3 B 2 ] and precipitates at the grain boundaries of the alloy. In order to increase the grain boundary strength by segregating at the grain boundaries, addition of 0.005% by mass or more is necessary. However, since this boride has a lower melting point than the melting point of the alloy, the melting temperature of the alloy is significantly reduced. Therefore, the upper limit is set to 0.03 mass%. In this composition range, considering the balance between strength and solution heat treatment property, the range is preferably 0.01 to 0.02 mass%.

Zr:0〜0.05質量%
Zrは結晶粒界に偏析し結晶粒界の強度を向上させる効果があるが、ほとんどは合金の主成分であるニッケルと金属間化合物[Ni3Zr]を結晶粒界に形成する。この金属間化合物は合金の延性を低下させ、また著しく低融点であるため、合金の溶融温度を低下させ、溶体化処理温度を困難にするなど、有害な作用が多いことから、上限を0.05質量%以下にする必要がある。本発明合金において、好ましくは0.03質量%以下であり、より好ましくは0.01質量%以下として実質的に添加しないことである。
Zr: 0 to 0.05% by mass
Zr segregates at the grain boundaries and has the effect of improving the strength of the grain boundaries, but most of them form nickel and an intermetallic compound [Ni 3 Zr], which are the main components of the alloy, at the grain boundaries. Since this intermetallic compound lowers the ductility of the alloy and has a remarkably low melting point, it has many harmful effects such as lowering the melting temperature of the alloy and making the solution treatment temperature difficult. It is necessary to make it 05% by mass or less. In the alloy of the present invention, it is preferably 0.03% by mass or less, more preferably 0.01% by mass or less and substantially not added.

O:0〜0.005質量%以下、N:0〜0.005質量%以下
これらの元素は不純物であり、いずれも合金原料から持ち込まれることが多く、Oはるつぼからも入り、合金中には酸化物(Al23)や窒化物(TiNあるいはAlN)として塊状に存在する。鋳物中にこれらが存在すると、クリープ変形中のクラックの起点となり、クリープ破断寿命を低下させたり、疲労亀裂発生の起点となって疲労寿命を低下させたりする。特にOは、鋳物表面に酸化物として現れることで、鋳物の表面欠陥となり、鋳造品の歩留まりを低下させる原因となる。従って、これら元素の含有量は少ないほど良いが、実際のインゴットを作る場合に0には出来ないことから、特性を大きく劣化させない範囲として、両元素の上限をいずれも0.005質量%とした。
O: 0 to 0.005 mass% or less, N: 0 to 0.005 mass% or less These elements are impurities, all of which are often brought from the alloy raw material, and O also enters from the crucible, Exists in a lump as an oxide (Al 2 O 3 ) or a nitride (TiN or AlN). If these are present in the casting, it becomes the starting point of cracks during creep deformation, which lowers the creep rupture life or decreases the fatigue life as the starting point of fatigue crack generation. In particular, O appears as an oxide on the surface of the casting, thereby causing a surface defect of the casting and causing a reduction in the yield of the casting. Accordingly, the lower the content of these elements, the better. However, since it cannot be reduced to 0 when an actual ingot is made, the upper limit of both elements is set to 0.005% by mass as a range in which the characteristics are not greatly deteriorated. .

表1に、本発明実施例合金(A1〜A12)を、表2に比較例合金(H1〜H8)、及び既存合金(C1〜C5)の化学組成を示す。なお、既存合金C1は特開2004−197131号公報に、C2は特公昭46−27144号公報に、C3は特開2010−084166号公報に、C4は特開昭51−34819号公報に、C5は特開平6−57359号公報に示されている合金である。   Table 1 shows the chemical compositions of the inventive alloys (A1 to A12), and Table 2 shows the chemical compositions of the comparative alloys (H1 to H8) and the existing alloys (C1 to C5). The existing alloy C1 is disclosed in JP-A-2004-197131, C2 is disclosed in JP-B-46-27144, C3 is disclosed in JP-A-2010-084166, and C4 is disclosed in JP-A-51-34819. Is an alloy disclosed in JP-A-6-57359.

各合金は、容量12kgの耐火るつぼを用いた真空誘導炉を使用して溶製し、それぞれ直径80mm、長さ300mmのインゴットにした。次に溶製したインゴットをアルミナるつぼで真空溶解し、1000℃に加熱したセラミック鋳型に鋳込み、直径20mm、長さ150mmの試験片を鋳造した。鋳造後、試験片には、表3に示す溶体化熱処理および時効熱処理を行った。   Each alloy was melted using a vacuum induction furnace using a refractory crucible having a capacity of 12 kg, and each alloy was formed into an ingot having a diameter of 80 mm and a length of 300 mm. Next, the melted ingot was vacuum melted with an alumina crucible and cast into a ceramic mold heated to 1000 ° C. to cast a test piece having a diameter of 20 mm and a length of 150 mm. After casting, the test piece was subjected to solution heat treatment and aging heat treatment shown in Table 3.

熱処理した試験片から機械加工により、平行部直径6.0mm、平行部長さ30mmのクリープ試験片と、長さ25mm、幅10mm、厚さ1.5mmの高温酸化試験片、及び15mm×15mm×15mmの立方体形状の高温腐食試験片を切り出すと共に、走査型電子顕微鏡でミクロ組織を調査し、合金の組織安定性を評価した。   The heat-treated test piece is machined to produce a creep test piece having a parallel part diameter of 6.0 mm and a parallel part length of 30 mm, a high-temperature oxidation test piece having a length of 25 mm, a width of 10 mm, and a thickness of 1.5 mm, and 15 mm × 15 mm × 15 mm. A high temperature corrosion test piece having a cubic shape was cut out and the microstructure was examined with a scanning electron microscope to evaluate the structural stability of the alloy.

表4に本発明合金試験片に行った特性評価試験条件を示す。クリープ破断試験は、1255K−138MPaの条件で行った。高温酸化試験は、1423K−20時間保持の酸化試験を10回繰返し行い、それぞれ質量の変化を測定した。また、高温腐食試験は、850℃の溶融塩(組成は、Na2SO4:75%、NaCl:25%)中に20時間浸漬する試験を3回(計60時間)行い質量変化を測定した。 Table 4 shows the characteristic evaluation test conditions performed on the alloy specimens of the present invention. The creep rupture test was performed under the condition of 1255K-138 MPa. In the high-temperature oxidation test, the oxidation test held for 1423 K-20 hours was repeated 10 times, and the change in mass was measured for each. Further, the high temperature corrosion test, 850 ° C. molten salt (composition, Na 2 SO 4: 75% , NaCl: 25%) 3 times a test of immersing for 20 hours in a (total 60 hours) was measured conducted mass change .

表5、図1、図2、図3に本実施例に示した合金の特性評価試験結果を示す。表5は結果の一覧である。図1は1255K−138MPaでのクリープ破断時間、図2は高温酸化試験での酸化減量、図3は溶融塩浸漬腐食試験での腐食減量を棒グラフにしたものである。   Table 5, FIG. 1, FIG. 2, and FIG. 3 show the property evaluation test results of the alloys shown in this example. Table 5 lists the results. FIG. 1 is a graph showing the creep rupture time at 1255 K-138 MPa, FIG. 2 is a bar graph of the oxidation weight loss in the high temperature oxidation test, and FIG. 3 is the corrosion weight loss in the molten salt immersion corrosion test.

表5に示す結果より明らかなように、本発明実施例合金A1〜A12では、耐酸化性がやや劣るが、クリープ破断時間は既存合金C1よりやや優れたクリープ破断強度を有し、更に腐食減量は大幅に低減し耐食性が大幅向上している。本発明合金の特徴は、先願のC1に対して、Nb量を低下させることで、鋳造性や加工性を改善し、更にNbを低下させた分Wを高めにすることで、高温でのクリープ強度を高めている。また、Ti量とAl量をバランスさせることで、耐食性、耐酸化性を高めている。
別な既存合金C2と比較すると、本発明実施例合金A1〜A12では、耐食性をほぼ同じとしながら、クリープ強度、耐酸化性を向上させている。特に耐酸化性の向上が著しい。本発明合金では、C2に対して、Mo量を大幅に少なくし更にTi量を少なくする事で、耐酸化性の大幅向上を図っている。一方、Mo量の低減により高温でのクリープ強度が著しく低下するため、WとTaの添加量を増加させ、更にCo量を少なくすることで高温でのクリープ強度を高めた。
As is apparent from the results shown in Table 5, the inventive alloys A1 to A12 have slightly inferior oxidation resistance, but the creep rupture time has a slightly superior creep rupture strength than that of the existing alloy C1, and the corrosion weight loss. Is greatly reduced and the corrosion resistance is greatly improved. The feature of the alloy of the present invention is that the Nb amount is reduced with respect to C1 of the prior application, thereby improving the castability and workability, and further increasing the amount W by which Nb is reduced, at a high temperature. Increases creep strength. Moreover, the corrosion resistance and the oxidation resistance are enhanced by balancing the Ti amount and the Al amount.
Compared with another existing alloy C2, the alloy examples A1 to A12 of the present invention have improved creep strength and oxidation resistance while maintaining substantially the same corrosion resistance. In particular, the improvement in oxidation resistance is remarkable. In the alloy of the present invention, the oxidation resistance is greatly improved by significantly reducing the amount of Mo and further reducing the amount of Ti with respect to C2. On the other hand, since the creep strength at high temperature is remarkably lowered by reducing the amount of Mo, the amount of addition of W and Ta is increased, and the amount of Co is further reduced to increase the creep strength at high temperature.

また、既存合金C3と比較すると、本発明実施例合金は、耐食性はやや劣るものの、クリープ強度、耐酸化性を向上させており、更にクリープ破断時間も大きく改善している。本発明合金では、C3に対して、Ti量、Nb量を少なくし、その分Moの添加量を多くすることで高温でのクリープ強度を高めている。Moを多くすると耐酸化性が悪くなるが、本発明合金では、Al量を限界まで高めることで、耐酸化性の向上も達成している。   Moreover, compared with the existing alloy C3, although the alloy of the present invention is slightly inferior in corrosion resistance, the creep strength and oxidation resistance are improved, and the creep rupture time is also greatly improved. In the alloy of the present invention, the creep strength at high temperature is increased by decreasing the Ti amount and Nb amount relative to C3 and increasing the amount of Mo added accordingly. When the amount of Mo is increased, the oxidation resistance is deteriorated. However, in the alloy of the present invention, the oxidation resistance is improved by increasing the Al content to the limit.

また、既存合金C4と比較すると、本発明実施例合金は、耐食性はほぼ同じでありながらクリープ強度、耐酸化性を向上しており、特にクリープ破断時間は2倍以上になっている。本発明合金では、C4に対して、Ti量を少なくし、Al量を高くすることで、耐酸化性を向上させている。更に、Co量を少なくし、その分Wの添加量を多くすることで高温でのクリープ強度を高めている。   In addition, compared with the existing alloy C4, the alloy according to the present invention has almost the same corrosion resistance but improved creep strength and oxidation resistance, and in particular, the creep rupture time is more than doubled. In the alloy of the present invention, the oxidation resistance is improved by reducing the Ti content and increasing the Al content relative to C4. Furthermore, the creep strength at high temperature is increased by reducing the amount of Co and increasing the amount of W added accordingly.

また、別な既存合金C5と比較すると、クリープ破断時間はほぼ同じで、耐酸化特性はほぼ同じでありながら、溶融塩に対する耐食性が著しく向上していることがわかる。本発明合金では、C5に対しては、Ti量を高め、溶融塩に対する耐食性を向上させた。C5の合金でTi量を単純に高くすると合金のバランスが大きく崩れ、異相が著しく析出してしまう。そこで、Ta、Coの量を少なくし、合金全体としてのバランスを取った。   Moreover, when compared with another existing alloy C5, it can be seen that the creep rupture time is substantially the same and the oxidation resistance is substantially the same, but the corrosion resistance to the molten salt is remarkably improved. In the alloy of the present invention, for C5, the amount of Ti was increased and the corrosion resistance against the molten salt was improved. If the Ti amount is simply increased in a C5 alloy, the balance of the alloy is greatly lost, and the heterogeneous phase is significantly precipitated. Therefore, the amount of Ta and Co was reduced to balance the entire alloy.

すなわち、本発明合金は、高温クリープ破断寿命を犠牲にすることなく、高温での溶融塩に対する耐食性、耐酸化特性を著しく向上させたものであり、クリープ強度、耐酸化特性、耐食性のバランスの取れた合金であることが認められた。   In other words, the alloy according to the present invention has significantly improved the corrosion resistance and oxidation resistance to molten salt at high temperature without sacrificing the high temperature creep rupture life, and the balance of creep strength, oxidation resistance and corrosion resistance is balanced. It was found to be an alloy.

これに対して、比較例合金H1〜H8は、本発明合金とほぼ同じ組成でありながら、成分範囲を満足していないため、クリープ破断強度、耐酸化特性、或いは耐食性のいずれかの特性が劣っており、すべての特性を満足していない。   On the other hand, Comparative Alloys H1 to H8 have almost the same composition as the alloys of the present invention, but do not satisfy the component range, and therefore are inferior in creep rupture strength, oxidation resistance characteristics, or corrosion resistance characteristics. And do not satisfy all the characteristics.

以上の事から、本発明合金はクリープ破断強度、耐酸化特性、耐食性の全ての点でバランスがとれており、特に既存合金より実用性に優れていることは明らかである。ガスタービンの動翼は、内部を空気で冷却しながら、1300℃以上の高温ガス中で使用される。   From the above, it is clear that the alloy of the present invention is balanced in all the points of creep rupture strength, oxidation resistance, and corrosion resistance, and is more practical than existing alloys. A moving blade of a gas turbine is used in a high-temperature gas of 1300 ° C. or higher while the inside is cooled with air.

そのため、動翼には優れたクリープ強度、耐食性、耐酸化性が必要となる。動翼は、回転による遠心力を受けるため、それに耐えうるクリープ強度が必要となるが、クリープ強度が高いほど、内部冷却空気量を削減でき、熱効率の向上を図ることができる。   Therefore, the moving blades must have excellent creep strength, corrosion resistance, and oxidation resistance. Since the moving blade receives a centrifugal force due to rotation, it needs a creep strength that can withstand it. However, as the creep strength is higher, the amount of internal cooling air can be reduced and the thermal efficiency can be improved.

一方、翼の寿命(使用期間)は、クリープ強度で決まる事は殆どなく、酸化や腐食による局部損傷で決まることが多い。動翼の平均メタル温度は、クリープ強度の面から800〜900℃と抑えられているが、冷却の悪い部分、例えば翼の先端部分や、翼の表面では局所的に温度が上昇し、酸化による損傷を受け、翼の寿命を著しく短くしてしまうことから、翼を設計寿命まで使用するためには、優れた耐酸化特性が必要である。また、動翼のダブティル部は、ディスクに埋め込まれているが、ダブティル部の温度は、一般的には500℃以下である。そのため、翼はダブティル部に向かって温度が低くなり、溶融塩腐食が生じる温度(850〜900℃)の翼表面が現れてくる。この場合、LNGのようなクリーンな燃料を使用するガスタービンでは溶融塩腐食を殆ど生じないが、不純物量の多い燃料を使用するガスタービンでは、腐食損傷を受け、翼の寿命を著しく短くしてしまう。極端な場合には、腐食損傷を受けた部分を起点に翼が破損する事故が起こることもあり、翼を設計寿命まで使用するためには、優れた耐食性が必要である。   On the other hand, the blade life (use period) is hardly determined by the creep strength, and is often determined by local damage due to oxidation or corrosion. The average metal temperature of the rotor blade is suppressed to 800 to 900 ° C. from the viewpoint of creep strength, but the temperature rises locally at the poorly cooled part, for example, the tip part of the blade or the blade surface, and due to oxidation Since the blade life is significantly shortened due to damage, excellent oxidation resistance is required to use the blade until its design life. Further, the dovetail portion of the moving blade is embedded in the disk, but the temperature of the dovetail portion is generally 500 ° C. or less. Therefore, the temperature of the blade decreases toward the dovetail portion, and the blade surface at a temperature (850 to 900 ° C.) at which molten salt corrosion occurs appears. In this case, a gas turbine using a clean fuel such as LNG hardly causes molten salt corrosion. However, a gas turbine using a fuel with a large amount of impurities suffers corrosion damage and significantly shortens the blade life. End up. In extreme cases, there may occur an accident in which the blade is damaged starting from the part that has been damaged by corrosion. In order to use the blade until its design life, excellent corrosion resistance is required.

一方、ガスタービンは、ガスから液体までの幅広い燃料に対応して運転できるのが大きな特徴である。例えば、ガス燃料としてはLNGやオフガスがある。LNGを使うようなガスタービンでは、耐酸化性に優れた合金が適しているが、不純物の多いオフガスを使用するガスタービンでは、耐酸化性と共に耐食性にも優れていることが必要である。一方、液体燃料には軽油や重油などがあり、これらは腐食成分であるSやNa等を含んでいることから、これらの燃料を使用するガスタービンでは、耐酸化性と共に耐食性に優れていることが必要である。また、ガスタービンは、設置場所や運転条件、燃料が一台毎に異なることから、それらに対応するためには、動静翼の材料には、クリープ強度共に、耐食・耐酸化特性に優れている事が必要である。このように、ガスタービンの動静翼に要求される特性から本発明の合金は、クリープ強度、耐食性、耐酸化特性のいずれにも優れており、ガスから液体までの幅広い燃料に対応して運転できるガスタービンに適した材料である。   On the other hand, a major feature of gas turbines is that they can be operated in response to a wide range of fuels from gas to liquid. For example, the gas fuel includes LNG and off-gas. In a gas turbine using LNG, an alloy excellent in oxidation resistance is suitable. However, in a gas turbine using off-gas having many impurities, it is necessary to have excellent oxidation resistance and corrosion resistance. On the other hand, liquid fuel includes light oil and heavy oil, and these contain corrosive components such as S and Na. Therefore, gas turbines using these fuels have excellent oxidation resistance and corrosion resistance. is necessary. In addition, since gas turbines have different installation locations, operating conditions, and fuels for each unit, the moving and stationary blade materials are excellent in both corrosion resistance and oxidation resistance characteristics in order to cope with them. Things are necessary. As described above, the alloy of the present invention is excellent in all of the creep strength, corrosion resistance, and oxidation resistance characteristics from the characteristics required for the moving and stationary blades of the gas turbine, and can be operated corresponding to a wide range of fuels from gas to liquid. It is a material suitable for gas turbines.

実施例においては、普通鋳造材としての効果を説明したが、本発明の合金を一方向凝固させた一方向凝固翼として使用することも非常に有効である。特に本発明合金は、一方向凝固しても炭化物が粗大化しない組成としていることから、一方向凝固させることにより、耐食性、耐酸化特性を維持しながら、クリープ破断強度を大幅に向上できることが出来る。更に、本発明合金には結晶粒界強化に効果のあるC、Bを含み、更に必要に応じて、鋳造時の結晶粒界割れの抑制に効果のあるHfを添加することが可能であることから、一方向凝固材として使用するに当たっても適した合金組成となっている。   In the examples, the effect as a normal cast material has been described, but it is also very effective to use it as a unidirectionally solidified blade obtained by unidirectionally solidifying the alloy of the present invention. In particular, the alloy of the present invention has a composition in which carbides do not coarsen even when unidirectionally solidified, and thus, by unidirectionally solidifying, the creep rupture strength can be significantly improved while maintaining corrosion resistance and oxidation resistance characteristics. . Furthermore, the alloy of the present invention contains C and B which are effective for strengthening grain boundaries, and it is possible to add Hf which is effective for suppressing grain boundary cracking during casting, if necessary. Therefore, the alloy composition is suitable for use as a unidirectional solidified material.

Claims (8)

ニッケル基合金を用いた等軸晶からなる普通鋳造品であって、
前記ニッケル基合金は、Cr:12.1〜15.0質量%、Co:1.0〜6.8質量%、Al:3.4〜4.6質量%、Ti:2.8〜3.9質量%、Ta:1.5〜3.0質量%、W:4.55〜8.0質量%、Mo:0.5〜2.5質量%、Nb:0.4質量%以下、C:0.01〜0.20質量%、B:0.005〜0.03質量%及び不可避不純物を含み、残部がNiであり、TaとWとの合計含有量が6.0〜10.0質量%であることを特徴とするニッケル基合金の普通鋳造品
It is a normal casting made of equiaxed crystals using a nickel-based alloy,
The nickel-base alloy is Cr: 12.1 to 15.0 mass%, Co: 1.0 to 6.8 mass%, Al: 3.4 to 4.6 mass%, Ti: 2.8 to 3. 9% by mass, Ta: 1.5 to 3.0% by mass, W: 4.55 to 8.0% by mass, Mo: 0.5 to 2.5% by mass, Nb: 0.4% by mass or less, C 0.01 to 0.20 mass%, B: 0.005 to 0.03 include mass% and unavoidable impurities, Ri balance Ni der, the total content of Ta and W 6.0-10. A nickel-base alloy normal casting characterized by 0% by mass .
請求項1において、Cr:13.1〜15.0質量%、Ti:3.05〜3.9質量%であることを特徴とするニッケル基合金の普通鋳造品2. A nickel-base alloy ordinary cast product according to claim 1, wherein Cr: 13.1 to 15.0 mass% and Ti: 3.05 to 3.9 mass%. 請求項1において、Cr:13.1〜15.0質量%、Ti:3.05〜3.9質量%、Ta:1.5〜2.9質量%、Mo:1.5〜2.0質量%であることを特徴とするニッケル基合金の普通鋳造品In Claim 1, Cr: 13.1-15.0 mass%, Ti: 3.05-3.9 mass%, Ta: 1.5-2.9 mass%, Mo: 1.5-2.0. A nickel-base alloy normal casting characterized by a mass%. 請求項1において、Cr:13.1〜14.5質量%、Co:5.0〜6.8質量%、Al:3.6〜4.4質量%、Ti:3.05〜3.6質量%、Ta:1.5〜2.9質量%、W:4.55〜7.0質量%、Nb:0.1質量%未満、C:0.05〜0.12質量%、B:0.01〜0.02質量%であることを特徴とするニッケル基合金の普通鋳造品In Claim 1, Cr: 13.1-14.5 mass%, Co: 5.0-6.8 mass%, Al: 3.6-4.4 mass%, Ti: 3.05-3.6 % By mass, Ta: 1.5 to 2.9% by mass, W: 4.55 to 7.0% by mass, Nb: less than 0.1% by mass, C: 0.05 to 0.12% by mass, B: A nickel-base alloy ordinary cast product characterized by being 0.01 to 0.02 mass%. 請求項1ないし4のいずれかにおいて、さらに、Hf:0〜0.1質量%以下、Re:0〜0.1質量%以下、Zr:0〜0.03質量%以下、O:0〜0.005質量%以下、N:0〜0.005質量%以下を含むことを特徴とするニッケル基合金の普通鋳造品5. The method according to claim 1, further comprising: Hf: 0 to 0.1 mass% or less, Re: 0 to 0.1 mass% or less, Zr: 0 to 0.03 mass% or less, O: 0 to 0 A nickel-base alloy ordinary cast product characterized by containing 0.005 mass% or less and N: 0 to 0.005 mass% or less. 請求項1ないし5のいずれかに記載されたニッケル基合金の普通鋳造品から構成されることを特徴とするガスタービン翼。 A gas turbine blade comprising a nickel-base alloy ordinary cast product according to any one of claims 1 to 5. 請求項記載のガスタービン翼を備えたことを特徴とするガスタービン。 A gas turbine comprising the gas turbine blade according to claim 6 . 請求項において、前記ガスタービンの燃料が、腐食成分を含む軽油、重油もしくはオフガスであることを特徴とするガスタービン。 8. The gas turbine according to claim 7 , wherein the fuel of the gas turbine is light oil, heavy oil, or off-gas containing a corrosive component.
JP2012068580A 2012-03-26 2012-03-26 Nickel-base alloy castings, gas turbine blades and gas turbines Active JP5626920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012068580A JP5626920B2 (en) 2012-03-26 2012-03-26 Nickel-base alloy castings, gas turbine blades and gas turbines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012068580A JP5626920B2 (en) 2012-03-26 2012-03-26 Nickel-base alloy castings, gas turbine blades and gas turbines

Publications (2)

Publication Number Publication Date
JP2013199680A JP2013199680A (en) 2013-10-03
JP5626920B2 true JP5626920B2 (en) 2014-11-19

Family

ID=49520138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012068580A Active JP5626920B2 (en) 2012-03-26 2012-03-26 Nickel-base alloy castings, gas turbine blades and gas turbines

Country Status (1)

Country Link
JP (1) JP5626920B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104454029A (en) * 2014-12-23 2015-03-25 常熟市凯波冶金建材机械设备厂 Combustion gas turbine power turbine guide blade
CN104454040A (en) * 2014-12-23 2015-03-25 常熟市凯波冶金建材机械设备厂 350,000 KW air-cooling steam turbine internal machine base
JP6793689B2 (en) * 2017-08-10 2020-12-02 三菱パワー株式会社 Manufacturing method of Ni-based alloy member
EP3778943A4 (en) 2018-04-02 2021-10-20 Mitsubishi Power, Ltd. Ni group superalloy casting material and ni group superalloy product using same
EP3867416A4 (en) * 2019-11-22 2022-11-23 Raytheon Technologies Corporation Metallic alloy
JP7341969B2 (en) 2020-09-30 2023-09-11 三菱重工業株式会社 Turbine design and manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11310839A (en) * 1998-04-28 1999-11-09 Hitachi Ltd Grain-oriented solidification casting of high strength nickel-base superalloy
JP4449337B2 (en) * 2003-05-09 2010-04-14 株式会社日立製作所 High oxidation resistance Ni-base superalloy castings and gas turbine parts

Also Published As

Publication number Publication date
JP2013199680A (en) 2013-10-03

Similar Documents

Publication Publication Date Title
JP5296046B2 (en) Ni-based alloy and turbine moving / stator blade of gas turbine using the same
JP4885530B2 (en) High strength and high ductility Ni-base superalloy, member using the same, and manufacturing method
JP5696995B2 (en) Heat resistant superalloy
JP4036091B2 (en) Nickel-base heat-resistant alloy and gas turbine blade
JP5626920B2 (en) Nickel-base alloy castings, gas turbine blades and gas turbines
JPWO2006059805A1 (en) Heat resistant superalloy
KR101687320B1 (en) Ni-BASED SINGLE CRYSTAL SUPERALLOY
JP5186215B2 (en) Nickel-based superalloy
JP5526223B2 (en) Ni-based alloy, gas turbine rotor blade and stator blade using the same
JP5063550B2 (en) Nickel-based alloy and gas turbine blade using the same
US20080271822A1 (en) Heat resistant super alloy and its use
JP4266196B2 (en) Nickel-base superalloy with excellent strength, corrosion resistance and oxidation resistance
JP5597598B2 (en) Ni-base superalloy and gas turbine using it
JP6970438B2 (en) Ni-based superalloy
JP5427642B2 (en) Nickel-based alloy and land gas turbine parts using the same
JP5787535B2 (en) Nickel-base superalloy with improved degradation behavior
JP6084802B2 (en) High-strength Ni-base superalloy and gas turbine using the same
JP4773303B2 (en) Nickel-based single crystal superalloy excellent in strength, corrosion resistance, and oxidation resistance and method for producing the same
JPWO2005064027A1 (en) Ni-base superalloy and gas turbine component using the same
CN108504903B (en) Ni-based superalloy
KR20110114928A (en) Ni base single crystal superalloy with good creep property
JP5396445B2 (en) gas turbine
JP2013185210A (en) Nickel-based alloy and gas turbine blade using the same
JP6045857B2 (en) High-strength Ni-base superalloy and gas turbine turbine blade using the same
EP3565914B1 (en) High-temperature nickel-based alloys

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130829

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140123

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140224

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140225

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140925

R150 Certificate of patent or registration of utility model

Ref document number: 5626920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250