JP6769341B2 - Ni-based superalloy - Google Patents

Ni-based superalloy Download PDF

Info

Publication number
JP6769341B2
JP6769341B2 JP2017033971A JP2017033971A JP6769341B2 JP 6769341 B2 JP6769341 B2 JP 6769341B2 JP 2017033971 A JP2017033971 A JP 2017033971A JP 2017033971 A JP2017033971 A JP 2017033971A JP 6769341 B2 JP6769341 B2 JP 6769341B2
Authority
JP
Japan
Prior art keywords
phase
present
specific gravity
amount
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017033971A
Other languages
Japanese (ja)
Other versions
JP2018138690A (en
Inventor
恭平 横田
恭平 横田
芳紀 鷲見
芳紀 鷲見
禎彦 小柳
禎彦 小柳
宏之 高林
宏之 高林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2017033971A priority Critical patent/JP6769341B2/en
Priority to EP18157015.1A priority patent/EP3366794B1/en
Priority to US15/900,460 priority patent/US10385426B2/en
Priority to CN201810156719.2A priority patent/CN108504903B/en
Publication of JP2018138690A publication Critical patent/JP2018138690A/en
Application granted granted Critical
Publication of JP6769341B2 publication Critical patent/JP6769341B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

この発明は、タービンホイール等の高温部品の材料に適用して好適なNi基超合金に関する。 The present invention relates to a Ni-based superalloy suitable for use as a material for high temperature parts such as turbine wheels.

例えば、エンジンからの排気を受けて回転するタービンホイールは、高温下(例えば950℃程度の高温下)で高速回転するため(例えば毎分の回転数が数十万回)、高温強度特性に優れたものであることが求められる。
このため、タービンホイールの材料として高温強度特性に優れたNi基超合金,特にインコネル713C、MAR−M246を代表とするNi基の鋳造合金が主として用いられてきた。
For example, a turbine wheel that rotates by receiving exhaust gas from an engine rotates at high speed at a high temperature (for example, at a high temperature of about 950 ° C.) (for example, the number of revolutions per minute is several hundred thousand times), and therefore has excellent high temperature strength characteristics. It is required to be a product.
For this reason, Ni-based superalloys having excellent high-temperature strength characteristics, particularly Ni-based cast alloys typified by Inconel 713C and MAR-M246, have been mainly used as materials for turbine wheels.

Ni基超合金における高温強度の強化機構としては、固溶強化と、γ′相(ガンマプライム相)の析出強化が用いられている。強化相として析出するγ′相(金属間化合物のNi3(Al,Ti,Nb)の相)は高温まで安定であるため、鍛造によりタービンホイールを製造することが難しく、通常は主としてNi基の鋳造合金を用いてタービンホイールを鋳造し、且つ鋳造まま(As cast状態)で使用している。 As a mechanism for strengthening high-temperature strength in Ni-based superalloys, solid solution strengthening and precipitation strengthening of the γ'phase (gamma prime phase) are used. Since the γ'phase (the phase of the intermetallic compound Ni 3 (Al, Ti, Nb)) precipitated as the strengthening phase is stable up to high temperatures, it is difficult to manufacture a turbine wheel by forging, and it is usually mainly Ni-based. The turbine wheel is cast using a cast alloy and is used as cast (As cast state).

ところで、タービンホイールのような回転体にあっては、部品の重量が大きくなると慣性重量が大きくなり、例えば、回転の立ち上がりのレスポンスが遅くなるため、軽量であること、即ち低比重であることが求められている。
上述のように強化機構として、固溶強化と、γ′相の析出強化とを用いるNi基の合金にあっては、固溶強化元素の添加量が多いほど高温強度は向上するが、比重が大きくなってしまうため低比重化の要請に応えることが難しい。
また、固溶強化元素の添加量を少なくする一方、γ′相の生成元素の添加量を多くすることで、高温強度を維持しつつ比重を小さくすることも考えられるが、γ′相の析出量を増加させた場合には、鋳込時の凝固過程で鋳造割れが生じやすくなり、製造性が悪化してしまう問題があった。
By the way, in a rotating body such as a turbine wheel, when the weight of a part increases, the inertial weight increases, and for example, the response at the start of rotation becomes slow, so that the weight is light, that is, the specific gravity is low. It has been demanded.
As described above, in a Ni-based alloy that uses solid solution strengthening and precipitation strengthening of the γ'phase as a strengthening mechanism, the higher the amount of the solid solution strengthening element added, the higher the high temperature strength, but the specific gravity increases. It is difficult to meet the demand for lower specific gravity because it becomes large.
Further, it is conceivable to reduce the specific gravity while maintaining the high temperature strength by increasing the addition amount of the γ'phase-forming element while reducing the addition amount of the solid solution strengthening element, but the precipitation of the γ'phase When the amount is increased, there is a problem that casting cracks are likely to occur in the solidification process at the time of casting, and the manufacturability is deteriorated.

以上のように、タービンホイール等の高温部品の材料に用いられる合金にあっては、高温強度特性のほか、比重が小さいこと、鋳造性に優れていることが求められるが、これらの要求を十分に満たすNi基合金は提供されていなかった。 As described above, alloys used as materials for high-temperature parts such as turbine wheels are required to have low specific gravity and excellent castability in addition to high-temperature strength characteristics, but these requirements are sufficient. No Ni-based alloy that meets the requirements has been provided.

尚、本発明に対する先行技術として、下記特許文献1には「ニッケル基合金」についての発明が示され、そこにおいて重量%で、Co:14〜19%、Cr:10〜15%、C:0.05〜0.2%、Mo:0〜3%、Ti:0.5〜3.0%で、残部Niからなる組成を有し、Ti/Al比を0.85以下としたニッケル基合金が開示されている。しかしながらこの特許文献1には、鋳造性を向上させるための具体的な手段についての記載はなく、また、各実施例における成分組成は、いずれも本願発明のものとは異なっている。 As a prior art to the present invention, the following Patent Document 1 shows an invention relating to a "nickel-based alloy", wherein Co: 14 to 19%, Cr: 10 to 15%, C: 0 by weight. .05-0.2%, Mo: 0-3%, Ti: 0.5-3.0%, nickel-based alloy having a composition consisting of the balance Ni and a Ti / Al ratio of 0.85 or less. Is disclosed. However, this Patent Document 1 does not describe a specific means for improving castability, and the component compositions in each of the examples are different from those of the present invention.

特開2015−101753号公報JP 2015-101753

本発明は以上のような事情を背景とし、比重が小さく、高温強度特性および鋳造性に優れたNi基超合金を提供することを目的としてなされたものである。 Against the background of the above circumstances, the present invention has been made for the purpose of providing a Ni-based superalloy having a small specific gravity and excellent high-temperature strength characteristics and castability.

而して請求項1に記載のものは、質量%で、C:0.1〜0.3%、Cr:8.0〜12.0%、Mo:1.0〜5.0%、Co:10〜20%、Ta:0.01〜1.50%、Ti:2.0〜4.2%、Al:5.0〜8.0%、V:0〜1.5%、B:0.005〜0.030%、Zr:0.05〜0.15%を満たし、更に原子%で、Ti+Al:16.0〜20.3%、Ti/Al:0.3以下、残部がNi及び不可避的不純物の組成を有することを特徴とする。 The one according to claim 1 is by mass%, C: 0.1 to 0.3%, Cr: 8.0 to 12.0%, Mo: 1.0 to 5.0%, Co. : 10 to 20%, Ta: 0.01 to 1.50%, Ti: 2.0 to 4.2%, Al: 5.0 to 8.0%, V: 0 to 1.5%, B: Satisfying 0.005 to 0.030%, Zr: 0.05 to 0.15%, and further in atomic%, Ti + Al: 16.0 to 20.3%, Ti / Al: 0.3 or less, the balance is Ni. And have a composition of unavoidable impurities.

請求項2のものは、請求項1において、比重が7.9g/cm3以下であることを特徴とする。 The second aspect of the present invention is characterized in that, in the first aspect, the specific gravity is 7.9 g / cm 3 or less.

請求項3のものは、請求項1,2の何れかにおいて、前記Taが0.3〜0.8質量%であることを特徴とする。 The third aspect is characterized in that, in any one of the first and second aspects, the Ta is 0.3 to 0.8% by mass.

γ′相を強化相とするNi基超合金では、γ′相の生成元素であるAl及びTiの添加量を多くすることでγ′相の析出量が多くなること、更にこれとともにγ′相の析出温度が上昇することが知られている。
本発明者らは、Al+Tiの総量を高く維持したうえで、γ′相の析出温度を低下させる可能性を追求したところ、TiとAlとの比率であるTi/Al比を小さくすることでγ′相の析出温度が低下すること、更にTi/Al比を0.3以下とすれば、鋳造の際に延性不足による割れが発生する温度領域でのγ′相の析出を抑制して、鋳造割れを防止することができることを見出した。
In a Ni-based superalloy having a γ'phase as a strengthening phase, the amount of precipitation of the γ'phase increases by increasing the amount of Al and Ti, which are the elements produced by the γ'phase, and the γ'phase is also increased. It is known that the precipitation temperature of aluminum increases.
The present inventors pursued the possibility of lowering the precipitation temperature of the γ'phase while maintaining a high total amount of Al + Ti, and found that by reducing the Ti / Al ratio, which is the ratio of Ti to Al, γ If the precipitation temperature of the'phase is lowered and the Ti / Al ratio is 0.3 or less, the precipitation of the γ'phase is suppressed in the temperature range where cracks occur due to insufficient ductility during casting, and casting is performed. We have found that cracking can be prevented.

本発明は、このような知見に基づいてなされたもので、固溶強化元素の添加量を少とする一方、γ′相を生成する元素であるTi+Alの総量を16.0%以上、且つTi/Al比を0.3以下としたことを特徴としたものである。
本発明では、固溶強化元素の添加量を少とすることで、合金の低比重化を図る一方、γ′相を生成する元素であるTi及びAlの添加量を増やすことで高温強度特性の確保を図っている。Ti及びAlの添加量を増やせば鋳造割れが生じやすくなり、鋳造性の悪化を招く虞もあるが、本発明ではTi/Al比を0.3以下とすることでγ′相の析出温度の上昇を抑制し、凝固過程での鋳造割れの発生を抑えて鋳造性を確保している。
このように本発明のNi基超合金は、比重が小さく、また高温強度特性および鋳造性に優れており、タービンホイール等の高温部品の材料として好適に用いることができる。
The present invention has been made based on such findings, and while the amount of the solid solution strengthening element added is small, the total amount of Ti + Al, which is an element that produces the γ'phase, is 16.0% or more, and Ti. The feature is that the / Al ratio is 0.3 or less.
In the present invention, the addition amount of the solid solution strengthening element is reduced to reduce the specific gravity of the alloy, while the addition amount of Ti and Al, which are elements that generate the γ'phase, is increased to obtain high-temperature strength characteristics. We are trying to secure it. If the amount of Ti and Al added is increased, casting cracks are likely to occur, which may lead to deterioration of castability. However, in the present invention, by setting the Ti / Al ratio to 0.3 or less, the precipitation temperature of the γ'phase is raised. Castability is ensured by suppressing the rise and suppressing the occurrence of casting cracks during the solidification process.
As described above, the Ni-based superalloy of the present invention has a small specific gravity, is excellent in high-temperature strength characteristics and castability, and can be suitably used as a material for high-temperature parts such as turbine wheels.

次に本発明におけるNi基超合金の各成分の限定理由を以下に述べる。
C:0.1〜0.3%
Cは、炭化物を形成することで粒界強度を向上させる。十分な高温強度を得るには0.1%以上の添加を必要とする。但し、過剰な添加は粗大な共晶炭化物を形成し靭延性の低下を引き起こす為、上限を0.3%とする。
Next, the reasons for limiting each component of the Ni-based superalloy in the present invention will be described below.
C: 0.1 to 0.3%
C improves the grain boundary strength by forming carbides. Addition of 0.1% or more is required to obtain sufficient high temperature strength. However, excessive addition forms coarse eutectic carbides and causes a decrease in toughness, so the upper limit is set to 0.3%.

Cr:8.0〜12.0%
Crは、表面にCr23からなる緻密な酸化皮膜を形成して耐酸化性,高温耐食性を向上させる。このような特性を発揮させるには8.0%以上含有させることが必要である。
Crはその含有量が多いほど耐酸化性,高温耐食性に優れるものの、過剰な添加は相安定性を低下させ、延性,靭性が悪化するため、12.0%を上限とする。より好ましい含有量は9.0〜10.0%である。
Cr: 8.0-12.0%
Cr forms a dense oxide film made of Cr 2 O 3 on the surface to improve oxidation resistance and high temperature corrosion resistance. In order to exhibit such characteristics, it is necessary to contain 8.0% or more.
The higher the content of Cr, the better the oxidation resistance and high temperature corrosion resistance, but excessive addition lowers the phase stability and deteriorates the ductility and toughness, so the upper limit is 12.0%. A more preferable content is 9.0 to 10.0%.

Mo:1.0〜5.0%
Moは、オーステナイト相に固溶して固溶強化により母相を強化する効果がある。このためには、少なくとも1.0%以上含有させる必要がある。より好ましくは3.1%以上である。ただし、過剰な添加は相安定性を低下させ、延性,靭性が悪化するため、5.0%を上限とする。
Mo: 1.0-5.0%
Mo has the effect of solidifying in the austenite phase and strengthening the solid solution to strengthen the matrix phase. For this purpose, it is necessary to contain at least 1.0% or more. More preferably, it is 3.1% or more. However, excessive addition lowers phase stability and deteriorates ductility and toughness, so the upper limit is 5.0%.

Co:10.0〜20.0%
Coは、オーステナイト相を固溶強化するとともに、γ′相にも固溶してγ′相をも強化する効果がある。このためには、少なくとも10.0%以上含有させる必要がある。より好ましくは12.0%以上である。ただし、Coは高価な材料であるため多量に添加することはコスト的に不利となるため、20.0%を上限とする。
Co: 10.0-20.0%
Co has the effect of solid-solving and strengthening the austenite phase and also solid-solving the γ'phase to strengthen the γ'phase. For this purpose, it is necessary to contain at least 10.0% or more. More preferably, it is 12.0% or more. However, since Co is an expensive material, adding a large amount of it is disadvantageous in terms of cost, so the upper limit is 20.0%.

Ta:0.01〜1.50%
Taは、Cと結合して炭化物を形成するだけでなく、γ′相に固溶してγ′相を強化する効果がある。このためには、少なくとも0.01%以上含有させる必要がある。ただし、多量の添加は比重が重くなるため上限を1.50%とする。より好ましい含有量は0.3〜0.8%である。
Ta: 0.01 to 1.50%
Ta not only combines with C to form carbides, but also has the effect of dissolving in the γ'phase to strengthen the γ'phase. For this purpose, it is necessary to contain at least 0.01% or more. However, since the specific gravity becomes heavy when a large amount is added, the upper limit is set to 1.50%. A more preferable content is 0.3 to 0.8%.

Ti:2.0〜4.2%
Tiは、Niと結合して強度の向上に有効なγ′相(Ni3(Al,Ti)金属間化合物)を形成して合金を析出強化する。このためには、少なくとも2.0%以上含有させる必要がある。ただし、多量の添加は共晶炭化物を増加させて延性を低下させるため上限を4.2%とする。好ましくは3.0%以下である。
Ti: 2.0-4.2%
Ti combines with Ni to form a γ'phase (Ni 3 (Al, Ti) intermetallic compound) that is effective in improving strength, and precipitates and strengthens the alloy. For this purpose, it is necessary to contain at least 2.0% or more. However, since adding a large amount increases eutectic carbides and reduces ductility, the upper limit is set to 4.2%. It is preferably 3.0% or less.

Al:5.0〜8.0%
Alは、γ′相(Ni3Al金属間化合物)を形成する成分であり、十分な高温強度を得るには5.0%以上含有させる必要がある。ただし過度にAlの添加量を増加させるとクリープ強度が低下する為、上限を8.0%とする。より好ましい含有量は6.8〜7.5%である。
Al: 5.0-8.0%
Al is a component that forms a γ'phase (Ni 3 Al intermetallic compound), and needs to be contained in an amount of 5.0% or more in order to obtain sufficient high-temperature strength. However, if the amount of Al added is excessively increased, the creep strength decreases, so the upper limit is set to 8.0%. A more preferable content is 6.8 to 7.5%.

V:0〜1.5%
Vは、γ′相に固溶して固溶強化する。ただし、過剰な添加は高温強度を低下させるため1.5%を上限とする。本発明においてはVを含有しない場合もある。
V: 0-1.5%
V dissolves in the γ'phase to strengthen the solid solution. However, excessive addition reduces the high temperature strength, so the upper limit is 1.5%. In the present invention, V may not be contained.

B:0.005〜0.030%
Bは粒界を強化するため、0.005%以上添加する。ただし、Bの過剰な添加はホウ化物を形成して特性を低下させるため、上限を0.030%とする。
B: 0.005 to 0.030%
B is added in an amount of 0.005% or more in order to strengthen the grain boundaries. However, since excessive addition of B forms boride and deteriorates the properties, the upper limit is set to 0.030%.

Zr:0.05〜0.15%
ZrもBと同様に粒界強化によりクリープ強度を向上させるため、0.05%以上添加する。ただし、過剰に添加すると延性が低下するため、上限を0.15%とする。
Zr: 0.05 to 0.15%
Similar to B, Zr is added in an amount of 0.05% or more in order to improve the creep strength by strengthening the grain boundaries. However, if it is added in excess, the ductility will decrease, so the upper limit is set to 0.15%.

Ti+Al:16.0〜20.3%
Ti/Al:0.3以下
上記したところから明らかなように、Ti+Alの総量はγ′相の量を示す指標であり、高温強度特性を向上させるためには原子%で16%以上含有させる必要がある。ただし、過剰に添加すると延性が低下するため、上限を20.3%とする。
Ti/Al比は、γ′相の析出温度にとって重要な因子であり、本発明ではTi/Al比を0.3以下とする。Ti+Alの総量が16%以上あり、且つTi/Al比が0.3を超えた場合には、γ′相の析出温度が上昇し鋳造工程における凝固過程で延性不足による割れが発生し易くなる。
Ti + Al: 16.0 to 20.3%
Ti / Al: 0.3 or less As is clear from the above, the total amount of Ti + Al is an index indicating the amount of the γ'phase, and it is necessary to contain 16% or more in atomic% in order to improve the high temperature strength characteristics. There is. However, if it is added excessively, the ductility will decrease, so the upper limit is set to 20.3%.
The Ti / Al ratio is an important factor for the precipitation temperature of the γ'phase, and in the present invention, the Ti / Al ratio is set to 0.3 or less. When the total amount of Ti + Al is 16% or more and the Ti / Al ratio exceeds 0.3, the precipitation temperature of the γ'phase rises and cracks due to insufficient ductility are likely to occur in the solidification process in the casting process.

以上のような本発明によれば、比重が小さく、高温強度特性および鋳造性に優れたNi基超合金を提供することができる。 According to the present invention as described above, it is possible to provide a Ni-based superalloy having a small specific gravity and excellent high-temperature strength characteristics and castability.

次に本発明の実施例を以下に説明する。
先ず表1に示す化学成分の合金を真空溶解炉にて溶解し、50kgのインゴットに鋳造した。その後、インゴットから機械加工により試験片を作製し、試験片を用いて、比重、0.2%耐力、伸び、クリープ強度を評価した。また、表1に示す化学成分の合金を用いて、タービンホイールを作製し鋳造性を評価した。
Next, examples of the present invention will be described below.
First, the alloys of the chemical components shown in Table 1 were melted in a vacuum melting furnace and cast into a 50 kg ingot. Then, a test piece was prepared from the ingot by machining, and the specific gravity, 0.2% proof stress, elongation, and creep strength were evaluated using the test piece. In addition, a turbine wheel was produced using the alloy of the chemical components shown in Table 1 and the castability was evaluated.

Figure 0006769341
Figure 0006769341

[比重測定]
JlS Z 8807に準拠して比重測定を実施し、以下の基準に従い評価した。
A:比重が7.9g/cm3以下
B:比重が7.9g/cm3超、8.0g/cm3以下
C:比重が8.0g/cm3
[Specific gravity measurement]
Specific gravity measurements were performed according to JlS Z 8807 and evaluated according to the following criteria.
A: Specific gravity is 7.9 g / cm 3 or less B: Specific gravity is more than 7.9 g / cm 3 and 8.0 g / cm 3 or less C: Specific gravity is more than 8.0 g / cm 3

[高温引張試験]
JlS G 0567に準拠し平行部径8mm、標点距離40mmの試験片を作製し、試験温度1050℃で引張試験を行った。この試験では1050℃での0.2%耐力、伸びの測定を行った。
0.2%耐力については、以下の基準に従い評価した。
A:0.2%耐力が200MPa以上
B:0.2%耐力が150MPa以上、200MPa未満
C:0.2%耐力が150MPa未満
また伸びについては、以下の基準に従い評価した。
A:伸びが15%以上
B:伸びが10%以上、15%未満
C:伸びが10%未満
[High temperature tensile test]
A test piece having a parallel portion diameter of 8 mm and a gauge point distance of 40 mm was prepared according to JlS G 0567, and a tensile test was performed at a test temperature of 1050 ° C. In this test, 0.2% proof stress and elongation at 1050 ° C were measured.
The 0.2% proof stress was evaluated according to the following criteria.
A: 0.2% proof stress is 200 MPa or more B: 0.2% proof stress is 150 MPa or more and less than 200 MPa C: 0.2% proof stress is less than 150 MPa The elongation was evaluated according to the following criteria.
A: Elongation is 15% or more B: Elongation is 10% or more and less than 15% C: Elongation is less than 10%

[クリープ破断試験]
JlS Z 2271に準拠した試験片を作製し、試験温度1000℃で負荷応力180MPaを掛け破断に到る寿命を測定し、以下の基準に従い評価した。試験片は平行部がΦ6.4mmである。
A:破断寿命が25h以上
B:破断寿命が15h以上、25h未満
C:破断寿命が15h未満
[Creep rupture test]
A test piece conforming to JlS Z 2271 was prepared, a load stress of 180 MPa was applied at a test temperature of 1000 ° C., the life until fracture was measured, and the test piece was evaluated according to the following criteria. The parallel part of the test piece is Φ6.4 mm.
A: Breaking life is 25h or more B: Breaking life is 15h or more and less than 25h C: Breaking life is less than 15h

[鋳造性評価]
表1に示す化学成分の合金を用いて、同一形状、同一サイズのタービンホイールをそれぞれ同一条件にて減圧鋳造し、同一の合金組成で作製された100個のタービンホイールについて、羽先における割れ発生の有無を目視にて確認し、以下の基準に従い評価した。
A:割れ発生無し
B:割れが認められたタービンホイールの発生率30%未満
C:割れが認められたタービンホイールの発生率30%以上
これらの結果が表2に示してある。
[Evaluation of castability]
Using the alloys of the chemical components shown in Table 1, turbine wheels of the same shape and size were cast under the same conditions under the same conditions, and cracks occurred at the tips of 100 turbine wheels manufactured with the same alloy composition. The presence or absence of the above was visually confirmed and evaluated according to the following criteria.
A: No cracking B: Turbine wheel occurrence rate with cracks less than 30% C: Turbine wheel occurrence rate with cracks 30% or more These results are shown in Table 2.

Figure 0006769341
Figure 0006769341

比較例1は、本発明の組成と比べて固溶強化元素であるCo及びTaが非添加である。また、γ′相生成元素であるTi量が本発明の下限値より少ない一方、本発明では非添加のNbが添加されている。この比較例1は、十分な高温強度特性が得られず、0.2%耐力、クリープ強度の評価が「C」であった。更に、比重の評価が「B」で後述する実施例に比べ劣っている。 In Comparative Example 1, Co and Ta, which are solid solution strengthening elements, are not added as compared with the composition of the present invention. Further, while the amount of Ti, which is a γ'phase-forming element, is less than the lower limit of the present invention, Nb, which is not added, is added in the present invention. In this Comparative Example 1, sufficient high-temperature strength characteristics could not be obtained, and the evaluation of 0.2% proof stress and creep strength was "C". Further, the evaluation of specific gravity is "B", which is inferior to that of the examples described later.

比較例2は、Ti量及びTi+Alの総量が本発明の下限値を下回っている一方、本発明において非添加の重元素Wが添加されている。このため比較例2においては、0.2%耐力、伸び、クリープ強度の評価は「A」と良好であるものの、比重の評価が「C」であった。 In Comparative Example 2, the amount of Ti and the total amount of Ti + Al are below the lower limit of the present invention, while the non-added heavy element W is added in the present invention. Therefore, in Comparative Example 2, the evaluation of 0.2% proof stress, elongation, and creep strength was as good as “A”, but the evaluation of specific gravity was “C”.

比較例3は、Ti量及びTi+Alの総量が本発明の下限値を下回っている一方、本発明において非添加の重元素Hf及びWが添加されている。またTa量も本発明の上限値1.5%を上回っている。このため比較例3においては、0.2%耐力、伸び、クリープ強度の評価は「A」と良好であるものの、比重の評価が「C」であった。 In Comparative Example 3, the amount of Ti and the total amount of Ti + Al are below the lower limit of the present invention, while the non-added heavy elements Hf and W are added in the present invention. The amount of Ta also exceeds the upper limit of 1.5% of the present invention. Therefore, in Comparative Example 3, the evaluation of 0.2% proof stress, elongation, and creep strength was as good as “A”, but the evaluation of specific gravity was “C”.

比較例4は、Ti+Alの総量が本発明の規定範囲内である一方で、Ti/Al比が本発明の上限値0.3を上回っている。このため比較例4についてはγ′相の析出温度が、他の例よりも高くなっており、鋳造性評価において凝固割れ(鋳造割れ)の発生が認められ評価が「C」であった。また、γ′相の析出温度が高いことから高温時の延性が低く熱間伸びの評価も「C」であった。 In Comparative Example 4, the total amount of Ti + Al is within the specified range of the present invention, while the Ti / Al ratio exceeds the upper limit of 0.3 of the present invention. Therefore, in Comparative Example 4, the precipitation temperature of the γ'phase was higher than in the other examples, and solidification cracks (casting cracks) were observed in the castability evaluation, and the evaluation was “C”. Further, since the precipitation temperature of the γ'phase was high, the ductility at high temperature was low and the evaluation of hot elongation was also “C”.

比較例5は、Al量及びTi+Alの総量が本発明の下限値を下回っている。このため十分な高温強度特性が得られず、0.2%耐力、クリープ強度の評価は「C」であった。また、この比較例5は、Ti+Alの総量自体は少ないが、比較例4と同様にTi/Al比が本発明の上限値0.3を上回っているため、鋳造割れの発生が認められ鋳造性の評価が「B」であった。 In Comparative Example 5, the total amount of Al and Ti + Al is below the lower limit of the present invention. Therefore, sufficient high-temperature strength characteristics could not be obtained, and the evaluation of 0.2% proof stress and creep strength was "C". Further, in Comparative Example 5, although the total amount of Ti + Al itself is small, the Ti / Al ratio exceeds the upper limit value of 0.3 of the present invention as in Comparative Example 4, so that casting cracks are observed and castability is observed. The evaluation of was "B".

比較例6,7は、Ti+Alの総量が比較例5に比べれば多いものの、未だ本発明の下限値16%を下回っている。加えてTaが非添加であるため、クリープ強度の評価は「C」であった。 In Comparative Examples 6 and 7, although the total amount of Ti + Al is larger than that in Comparative Example 5, it is still below the lower limit of 16% of the present invention. In addition, since Ta was not added, the creep strength was evaluated as "C".

比較例8は、前述の比較例6,7と異なり、Taが本発明の成分範囲となるように添加されたものであるが、Ti+Alの総量が本発明の下限値16%を下回っている。このためクリープ強度は比較例6,7より改善されるも「B」であった。この比較例8は、クリープ強度のほか、0.2%耐力、伸び、鋳造性の評価も「B」であり、後述の実施例に比べて全体としての特性が劣っている。 In Comparative Example 8, unlike Comparative Examples 6 and 7 described above, Ta was added so as to be within the component range of the present invention, but the total amount of Ti + Al was less than the lower limit of 16% of the present invention. Therefore, the creep strength was "B" although it was improved from Comparative Examples 6 and 7. In Comparative Example 8, in addition to creep strength, 0.2% proof stress, elongation, and castability were also evaluated as “B”, and the overall characteristics were inferior to those of Examples described later.

一方、各元素が本発明の成分範囲を満たす実施例1〜14は、比重の評価が何れも「A」と良好であった。また0.2%耐力、伸び、クリープ強度の評価は、全て「A」又は一項目のみ「B」と良好であった。また、何れの実施例も鋳造性に問題はなく評価は「A」であった。このように実施例の合金は、比重が小さく(何れも7.9g/cm3以下)、1000℃近傍の高温域で高い高温強度特性を有し、且つ鋳造性を兼ね備えている。特に各元素が、より好ましい範囲を満たす実施例1,2,5,10,14においては、何れの評価項目も「A」となっており、バランスに優れた合金が得られている。 On the other hand, in Examples 1 to 14 in which each element satisfies the component range of the present invention, the evaluation of specific gravity was as good as "A". The evaluations of 0.2% proof stress, elongation, and creep strength were all good as "A" or only one item was "B". In addition, there was no problem in castability in any of the examples, and the evaluation was "A". As described above, the alloys of the examples have a small specific gravity (7.9 g / cm 3 or less in each case), have high high-temperature strength characteristics in a high-temperature region near 1000 ° C., and have castability. In particular, in Examples 1, 2, 5, 10, and 14 in which each element satisfies a more preferable range, all the evaluation items are "A", and an alloy having an excellent balance is obtained.

Claims (3)

質量%で
C:0.1〜0.3%
Cr:8.0〜12.0%
Mo:1.0〜5.0%
Co:10.0〜20.0%
Ta:0.01〜1.50%
Ti:2.0〜4.2%
Al:5.0〜8.0%
V:0〜1.5%
B:0.005〜0.030%
Zr:0.05〜0.15%
を満たし、更に原子%で
Ti+Al:16.0〜20.3%
Ti/Al:0.3以下
残部がNi及び不可避的不純物の組成を有することを特徴とするNi基超合金。
By mass% C: 0.1 to 0.3%
Cr: 8.0-12.0%
Mo: 1.0-5.0%
Co: 10.0-20.0%
Ta: 0.01 to 1.50%
Ti: 2.0-4.2%
Al: 5.0-8.0%
V: 0-1.5%
B: 0.005 to 0.030%
Zr: 0.05 to 0.15%
Ti + Al: 16.0 to 20.3% in atomic%
Ti / Al: 0.3 or less A Ni-based superalloy characterized in that the balance has a composition of Ni and unavoidable impurities.
比重が7.9g/cm3以下であることを特徴とする請求項1に記載のNi基超合金。 The Ni-based superalloy according to claim 1, wherein the specific gravity is 7.9 g / cm 3 or less. 前記Taが0.3〜0.8質量%であることを特徴とする請求項1,2の何れかに記載のNi基超合金。 The Ni-based superalloy according to any one of claims 1 and 2, wherein the Ta is 0.3 to 0.8% by mass.
JP2017033971A 2017-02-24 2017-02-24 Ni-based superalloy Active JP6769341B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017033971A JP6769341B2 (en) 2017-02-24 2017-02-24 Ni-based superalloy
EP18157015.1A EP3366794B1 (en) 2017-02-24 2018-02-15 Ni-based superalloy
US15/900,460 US10385426B2 (en) 2017-02-24 2018-02-20 Ni-based superalloy
CN201810156719.2A CN108504903B (en) 2017-02-24 2018-02-24 Ni-based superalloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017033971A JP6769341B2 (en) 2017-02-24 2017-02-24 Ni-based superalloy

Publications (2)

Publication Number Publication Date
JP2018138690A JP2018138690A (en) 2018-09-06
JP6769341B2 true JP6769341B2 (en) 2020-10-14

Family

ID=61226511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017033971A Active JP6769341B2 (en) 2017-02-24 2017-02-24 Ni-based superalloy

Country Status (4)

Country Link
US (1) US10385426B2 (en)
EP (1) EP3366794B1 (en)
JP (1) JP6769341B2 (en)
CN (1) CN108504903B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021141690A2 (en) * 2019-11-22 2021-07-15 Raytheon Technologies Corporation Metallic alloy

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4608094A (en) * 1984-12-18 1986-08-26 United Technologies Corporation Method of producing turbine disks
JP3753143B2 (en) 2003-03-24 2006-03-08 大同特殊鋼株式会社 Ni-based super heat-resistant cast alloy and turbine wheel using the same
JP5278936B2 (en) * 2004-12-02 2013-09-04 独立行政法人物質・材料研究機構 Heat resistant superalloy
JP4885530B2 (en) * 2005-12-09 2012-02-29 株式会社日立製作所 High strength and high ductility Ni-base superalloy, member using the same, and manufacturing method
CN100543164C (en) * 2007-04-25 2009-09-23 中国科学院金属研究所 A kind of directional solidification heat corrosion resistant nickel base cast superalloy and preparation method thereof
CN101974708A (en) * 2010-11-05 2011-02-16 钢铁研究总院 Hot erosion resisting directionally solidified nickel-based cast superalloy
US10266926B2 (en) 2013-04-23 2019-04-23 General Electric Company Cast nickel-base alloys including iron
JP6213185B2 (en) 2013-11-25 2017-10-18 株式会社Ihi Nickel base alloy
JP6634674B2 (en) 2014-02-28 2020-01-22 大同特殊鋼株式会社 Turbine wheel for automotive turbocharger and method of manufacturing the same

Also Published As

Publication number Publication date
EP3366794A1 (en) 2018-08-29
CN108504903B (en) 2020-07-28
EP3366794B1 (en) 2019-06-19
CN108504903A (en) 2018-09-07
US20180245188A1 (en) 2018-08-30
US10385426B2 (en) 2019-08-20
JP2018138690A (en) 2018-09-06

Similar Documents

Publication Publication Date Title
JP6393993B2 (en) Ni-base superalloy with high temperature strength and capable of hot forging
JP5696995B2 (en) Heat resistant superalloy
JP5582532B2 (en) Co-based alloy
JP5177559B2 (en) Ni-based single crystal superalloy
JP5869034B2 (en) Nickel superalloys and parts made from nickel superalloys
JP6514441B2 (en) Cast nickel base superalloy containing iron
JP5299899B2 (en) Ni-base superalloy and manufacturing method thereof
JP5721189B2 (en) Heat-resistant Ni-based alloy and method for producing the same
JP3753143B2 (en) Ni-based super heat-resistant cast alloy and turbine wheel using the same
JP4557079B2 (en) Ni-based single crystal superalloy and turbine blade using the same
JP5418589B2 (en) Ni-based single crystal superalloy and turbine blade using the same
JP2007162041A (en) Ni-BASE SUPERALLOY WITH HIGH STRENGTH AND HIGH DUCTILITY, MEMBER USING THE SAME, AND MANUFACTURING METHOD OF THE MEMBER
JP6293682B2 (en) High strength Ni-base superalloy
JP6769341B2 (en) Ni-based superalloy
JP5595495B2 (en) Nickel-base superalloy
US7306682B2 (en) Single-crystal Ni-based superalloy with high temperature strength, oxidation resistance and hot corrosion resistance
JP4911753B2 (en) Ni-base superalloy and gas turbine component using the same
EP2449140A1 (en) Nickel base superalloy compositions and superalloy articles
JP2023018394A (en) Ni-BASED SUPERALLOY, AND TURBINE WHEEL
JP6803573B2 (en) Ni-based unidirectional solidified alloy
JP2014047371A (en) Ni-BASED ALLOY AND GAS TURBINE BLADE AND GAS TURBINE USING THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200907

R150 Certificate of patent or registration of utility model

Ref document number: 6769341

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150