JP4230970B2 - Ni-base superalloys for unidirectional solidification with excellent solidification direction strength and grain boundary strength, castings and high-temperature parts for gas turbines - Google Patents

Ni-base superalloys for unidirectional solidification with excellent solidification direction strength and grain boundary strength, castings and high-temperature parts for gas turbines Download PDF

Info

Publication number
JP4230970B2
JP4230970B2 JP2004232276A JP2004232276A JP4230970B2 JP 4230970 B2 JP4230970 B2 JP 4230970B2 JP 2004232276 A JP2004232276 A JP 2004232276A JP 2004232276 A JP2004232276 A JP 2004232276A JP 4230970 B2 JP4230970 B2 JP 4230970B2
Authority
JP
Japan
Prior art keywords
strength
solidification
amount
grain boundary
base superalloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004232276A
Other languages
Japanese (ja)
Other versions
JP2006045654A (en
Inventor
英樹 玉置
明 吉成
昭 岡山
裕之 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004232276A priority Critical patent/JP4230970B2/en
Publication of JP2006045654A publication Critical patent/JP2006045654A/en
Application granted granted Critical
Publication of JP4230970B2 publication Critical patent/JP4230970B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、Ni基超合金とNi基超合金鋳造物およびガスタービン部品に関する。本発明のNi基超合金は、一方向凝固法で鋳造するのに適しており、また、ガスタービンの動翼或いは静翼に用いるのに好適である。   The present invention relates to a Ni-base superalloy, a Ni-base superalloy casting, and a gas turbine component. The Ni-base superalloy of the present invention is suitable for casting by a unidirectional solidification method, and is suitable for use in a moving blade or a stationary blade of a gas turbine.

ガスタービンの燃焼ガス温度は、熱効率の向上を目的に年々上昇する傾向にあり、ガスタービンの各高温部材には高温強度の優れた材料が必要とされている。そのため、ガスタービンの高温部材中で最も苛酷な環境に曝される動翼用の材料は、Ni基超合金の普通鋳造材から一方向凝固材へと変遷し、航空機エンジン用ガスタービンにおいては、さらにより高温強度の優れた単結晶材が実用化されつつある。   The combustion gas temperature of a gas turbine tends to increase year by year for the purpose of improving thermal efficiency, and each high temperature member of the gas turbine is required to have a material having excellent high temperature strength. Therefore, the material for moving blades, which is exposed to the harshest environment among the high temperature components of gas turbines, has changed from ordinary cast materials of Ni-based superalloys to unidirectionally solidified materials, and in gas turbines for aircraft engines, Furthermore, single crystal materials having higher high-temperature strength are being put into practical use.

一方向凝固材用に開発されたNi基超合金として特許文献1に記載のものがある。   There exists a thing of patent document 1 as a Ni base superalloy developed for unidirectional solidification materials.

一方,単結晶材用に開発された合金は、一般にはC、B、Hf、Zrといった結晶粒界強化元素を含んでいないため、鋳物中に結晶粒界の存在を許容できない。従って、大型であるため鋳造中に結晶粒界の発生しやすい産業用ガスタービンへの実用は困難である。このような課題を克服するため、単結晶合金に微量の結晶粒界強化元素を添加したNi基超合金として特許文献2〜5に記載のものがある。このうち、特許文献2に記載の合金は、共晶合金の単結晶材として示されている。しかし、これらのNi基超合金は、非常に高い凝固方向強度に比べて凝固直角方向強度、つまり結晶粒界強度が低く、大型の複雑形状翼に適用する場合には、方位差の大きい結晶粒界を許容できないという問題がある。   On the other hand, alloys developed for single crystal materials generally do not contain grain boundary strengthening elements such as C, B, Hf, and Zr, and therefore cannot allow the presence of grain boundaries in the casting. Therefore, since it is large in size, it is difficult to put it into practical use for an industrial gas turbine in which crystal grain boundaries are likely to occur during casting. In order to overcome such problems, there are those described in Patent Documents 2 to 5 as Ni-based superalloys obtained by adding a small amount of grain boundary strengthening elements to a single crystal alloy. Among these, the alloy described in Patent Document 2 is shown as a single crystal material of a eutectic alloy. However, these Ni-base superalloys have lower solidification perpendicular direction strength, that is, grain boundary strength, compared to very high solidification direction strength. There is a problem that the world cannot be tolerated.

USP5,069,873号明細書USP 5,069,873 Specification USP4,849,030号明細書USP 4,849,030 specification USP4,719,080号明細書USP 4,719,080 specification USP4,878,965号明細書USP 4,878,965 specification USP6,051,083号明細書USP 6,051,083 specification

前述のように、Ni基超合金は、航空機エンジン用ガスタービンにおいては、Ni基超合金の普通鋳造材から一方向凝固材、単結晶材へと変遷してきた。一方、産業用ガスタービンにおいても、特許文献5に示されるように、C、B、Hf、Zrといった結晶粒界強化元素を添加して鋳造歩留まりを上げることで、単結晶材の実用化が図られている。   As described above, Ni-base superalloys have changed from ordinary cast materials of Ni-base superalloys to unidirectionally solidified materials and single-crystal materials in aircraft engine gas turbines. On the other hand, in industrial gas turbines, as disclosed in Patent Document 5, single crystal materials can be put to practical use by adding grain boundary strengthening elements such as C, B, Hf, and Zr to increase the casting yield. It has been.

しかし、産業用ガスタービン翼は大型で、さらに内部の冷却構造も複雑であるため、鋳造中に結晶粒界が発生しやすく、単結晶翼の歩留まりは航空機エンジン用ガスタービン翼に比べると著しく低い。従って、高強度の一方向凝固材用のNi基超合金が開発されれば、コストの面からも、産業用ガスタービン翼のような大型翼には一方向凝固材の適用が好ましい。   However, because industrial gas turbine blades are large and the internal cooling structure is complex, crystal grain boundaries are likely to occur during casting, and the yield of single crystal blades is significantly lower than that of aircraft engine gas turbine blades. . Therefore, if a Ni-based superalloy for high-strength unidirectional solidified material is developed, it is preferable to apply the unidirectional solidified material to large blades such as industrial gas turbine blades from the viewpoint of cost.

一方向凝固材の凝固方向の強度は、析出強化相であるγ’相の体積率を増やし、W、Re、Ta等の耐火金属元素の添加量バランスを最適化することで向上させることができる。しかし、一方で結晶粒界の強度が相対的に低下してしまい、凝固方向の強度を高めた合金は、凝固方向に直角方向の強度、つまり結晶粒界の強度が著しく低くなってしまうという課題がある。上記の特許文献5に示される合金は、単結晶翼の鋳造歩留まりを向上させるために十分な結晶粒界強度を有しているが、大型複雑形状の産業用ガスタービン用の一方向凝固翼に適用するためには、結晶粒界強度がやや不足している。また、特許文献1に示される従来の一方向凝固材用合金は、結晶粒界強度は十分であるが、凝固方向の強度が低いという課題がある。   The strength in the solidification direction of a unidirectional solidified material can be improved by increasing the volume fraction of the γ 'phase, which is a precipitation strengthening phase, and optimizing the balance of the amount of refractory metal elements such as W, Re, and Ta. . However, on the other hand, the strength of the grain boundary is relatively lowered, and the alloy whose strength in the solidification direction is increased, the strength in the direction perpendicular to the solidification direction, that is, the strength of the crystal grain boundary is significantly reduced. There is. The alloy shown in Patent Document 5 has sufficient grain boundary strength to improve the casting yield of the single crystal blade, but it is a unidirectionally solidified blade for industrial gas turbines with large and complex shapes. In order to apply, the grain boundary strength is slightly insufficient. Further, the conventional alloy for unidirectionally solidified material disclosed in Patent Document 1 has a problem that the grain boundary strength is sufficient, but the strength in the solidification direction is low.

本発明の目的は、凝固方向の強度が高く、かつ凝固方向に直角の方向の強度、つまり結晶粒界の強度も優れた、両者のバランスがとれた一方向凝固材用Ni基超合金を提供することにあり、さらに、それからなる鋳造物及び産業用ガスタービン用の高温部品を提供することにある。   The object of the present invention is to provide a Ni-based superalloy for unidirectionally solidified material that has a high strength in the solidification direction and is excellent in strength in the direction perpendicular to the solidification direction, that is, the strength of the grain boundary. It is also an object to provide high temperature parts for castings and industrial gas turbines.

本発明者らは、一方向凝固材の凝固方向の強度に及ぼす、Ni基超合金の母相であるγ相を主に強化する元素Cr、Mo、W及びReと、析出強化相であるγ’相を主に強化する元素Ta、Ti及びNbの影響について検討した。その結果、凝固方向強度を最大にするような添加元素の組成範囲を明らかにした。次に、その組成範囲に対し、結晶粒界を強化する元素であるC、B、Hf及びZrを添加した合金及びCo量を増加させた合金を作製し、凝固方向の強度を低下させることなく、結晶粒界の強度を高くできる結晶粒界強化元素及びCoの添加量の範囲を明らかにした。以上より、上記課題を解決するための組成範囲として、以下の組成範囲が適当であることを明らかにした。   The inventors of the present invention have an effect on the strength in the solidification direction of a unidirectional solidified material, the elements Cr, Mo, W and Re mainly strengthening the γ phase that is the parent phase of the Ni-base superalloy, and the γ that is the precipitation strengthened phase. 'The effects of the elements Ta, Ti and Nb that mainly strengthen the phase were studied. As a result, the composition range of additive elements that maximizes the solidification direction strength was clarified. Next, with respect to the composition range, an alloy added with C, B, Hf, and Zr, which is an element that strengthens the grain boundary, and an alloy with an increased amount of Co are produced without reducing the strength in the solidification direction. The range of the added amount of the grain boundary strengthening element and Co that can increase the strength of the grain boundary has been clarified. From the above, it has been clarified that the following composition range is appropriate as a composition range for solving the above problems.

本発明は、重量%で、C:0.05〜0.095%、B:0.01〜0.05%、Hf:0.55〜1.8%、Co:1.5〜16%、Ta:4.1〜12%、Cr:1.5〜16%、Mo:0〜3%、W:2〜12%、Ti:0〜1.1%、Al:3.5〜6.5%、Nb:0〜2%、V:0〜1%、Zr:0〜0.02%、Re:0.01〜9%、白金族元素の1種又は2種以上:0〜5%、希土類元素の1種又は2種以上:0〜2%、残部がNi及び不可避の不純物からなることを特徴とする凝固方向強度と結晶粒界強度の優れた一方向凝固用Ni基超合金である。   The present invention, by weight, C: 0.05-0.095%, B: 0.01-0.05%, Hf: 0.55-1.8%, Co: 1.5-16%, Ta: 4.1-12%, Cr: 1.5-16%, Mo: 0 to 3%, W: 2 to 12%, Ti: 0 to 1.1%, Al: 3.5 to 6.5%, Nb: 0 to 2%, V: 0 to 1%, Zr: 0 to 0.02%, Re : 0.01 to 9%, one or more platinum group elements: 0 to 5%, one or more rare earth elements: 0 to 2%, the balance being made of Ni and inevitable impurities Ni-base superalloy for unidirectional solidification with excellent solidification direction strength and grain boundary strength.

さらに、凝固方向強度と結晶粒界強度のバランスが良くとれた合金を得るためには、重量%で、C:0.05〜0.095%、B:0.01〜0.03%、Hf:0.55〜1.15%、Co:3〜16%、Ta:4.1〜12%、Cr:1.5〜16%、Mo:0〜0.95%、W:2〜12%、Ti:0〜1.1%、Al:3.5〜6.5%、Nb:0〜2%、V:0〜1%、Zr:0〜0.02%、Re:0.01〜9%、白金族元素の1種又は2種以上:0〜2%、希土類元素の1種又は2種以上:0〜2%、残部がNi及び不可避の不純物からなるNi基超合金が適当である。   Further, in order to obtain an alloy having a good balance between the solidification direction strength and the grain boundary strength, C: 0.05 to 0.095%, B: 0.01 to 0.03%, Hf: 0.55 to 1.15%, Co: 3-16%, Ta: 4.1-12%, Cr: 1.5-16%, Mo: 0-0.95%, W: 2-12%, Ti: 0-1.1%, Al: 3.5-6.5%, Nb: 0 ~ 2%, V: 0 to 1%, Zr: 0 to 0.02%, Re: 0.01 to 9%, one or more platinum group elements: 0 to 2%, one or more rare earth elements : A Ni-based superalloy consisting of 0 to 2%, the balance being Ni and inevitable impurities is suitable.

また、耐食性を重視する場合は、重量%で、C:0.05〜0.095%、B:0.01〜0.03%、Hf:0.55〜1.15%、Co:3〜8.5%、Ta:4.1〜12%、Cr:1.5〜16%、Mo:0〜0.95%、W:2〜12%、Ti:0.55〜4%、Al:3.5〜6.5%、Nb:0〜2%、V:0〜1%、Zr:0〜0.02%、Re:0.01〜9%、白金族元素の1種又は2種以上:0〜2%、希土類元素の1種又は2種以上:0〜2%、残部がNi及び不可避の不純物からなるNi基超合金が好ましい。   In addition, when emphasizing corrosion resistance, the weight percentage is C: 0.05 to 0.095%, B: 0.01 to 0.03%, Hf: 0.55 to 1.15%, Co: 3 to 8.5%, Ta: 4.1 to 12%, Cr: 1.5 to 16%, Mo: 0 to 0.95%, W: 2 to 12%, Ti: 0.55 to 4%, Al: 3.5 to 6.5%, Nb: 0 to 2%, V: 0 to 1%, Zr: 0 ~ 0.02%, Re: 0.01 ~ 9%, 1 or more types of platinum group elements: 0 ~ 2%, 1 or more types of rare earth elements: 0 ~ 2%, the balance from Ni and inevitable impurities A Ni-base superalloy is preferable.

800〜900℃付近のクリープ強度を重視する場合は、重量%で、C:0.05〜0.095%、B:0.01〜0.03%、Hf:0.55〜1.15%、Co:9.5〜16%、Ta:4.1〜12%、Cr:1.5〜16%、Mo:0〜0.95%、W:2〜12%、Ti:0〜1.1%、Al:3.5〜6.5%、Nb:0〜2%、V:0〜1%、Zr:0〜0.02%、Re:0.01〜9%、白金族元素の1種又は2種以上:0〜2%、希土類元素の1種又は2種以上:0〜2%、残部がNi及び不可避の不純物からなるNi基超合金が好ましい。   When placing importance on the creep strength around 800-900 ° C, the weight percentage is C: 0.05-0.095%, B: 0.01-0.03%, Hf: 0.55-1.15%, Co: 9.5-16%, Ta: 4.1- 12%, Cr: 1.5-16%, Mo: 0-0.95%, W: 2-12%, Ti: 0-1.1%, Al: 3.5-6.5%, Nb: 0-2%, V: 0-1 %, Zr: 0 to 0.02%, Re: 0.01 to 9%, one or more platinum group elements: 0 to 2%, one or more rare earth elements: 0 to 2%, the balance being Ni And a Ni-base superalloy consisting of inevitable impurities is preferred.

また、本発明は、上記の凝固方向強度と結晶粒界強度のバランスに優れた一方向凝固用合金で鋳造されたNi基超合金鋳造物であり、この合金は一方向凝固法で鋳造された、Ni基超合金一方向凝固鋳造物に好適であり、特にガスタービン用高温部材として最適である。   Further, the present invention is a Ni-based superalloy casting cast with a unidirectional solidification alloy having an excellent balance between the solidification direction strength and the grain boundary strength, and the alloy was cast by the unidirectional solidification method. It is suitable for a Ni-base superalloy unidirectionally solidified casting, and particularly suitable as a high temperature member for a gas turbine.

次に、個々の元素の効果及び適正範囲について述べる。なお、%表示は重量%を示している。   Next, effects and appropriate ranges of individual elements will be described. In addition,% display has shown weight%.

Cは、Hf、Ta、Nb、Ti等とMC型炭化物、Cr、W、Mo等とM23C6及びM6C型炭化物を形成し、高温での結晶粒界の移動を阻害することで結晶粒界を強化する。この効果のためには最低でも0.05%以上添加する必要がある。Cの添加量が増えると、γ相及びγ’相の固溶強化に有効な元素が炭化物にとられることで高温強度が低下する。従って、Cの上限は0.095%に規制することが好ましい。 C forms MC type carbides with Hf, Ta, Nb, Ti, etc., and forms M 23 C 6 and M 6 C type carbides with Cr, W, Mo, etc., and inhibits the movement of grain boundaries at high temperatures. Strengthen grain boundaries. For this effect, it is necessary to add at least 0.05%. When the amount of addition of C increases, an element effective for solid solution strengthening of the γ phase and the γ ′ phase is taken into the carbide, so that the high temperature strength is lowered. Therefore, it is preferable to limit the upper limit of C to 0.095%.

Bは結晶粒界の非整合部を埋め、結晶粒界の結合力を増加させる効果がある。本合金においては、最低でも0.01%のBの添加が必要である。しかし、BはNi基超合金の融点を著しく低下させるため、最大でも0.05%とする必要があり、さらに、凝固方向強度を安定させるためには、Bは0.03%以下とすることが好ましい。   B has an effect of filling non-matching portions of the grain boundaries and increasing the bonding strength of the grain boundaries. In this alloy, at least 0.01% of B must be added. However, B must be 0.05% at the maximum in order to remarkably lower the melting point of the Ni-base superalloy, and B is preferably 0.03% or less in order to stabilize the solidification direction strength.

Hfは結晶粒界に偏析し、結晶粒界の延性を向上させる効果があり、本発明において特に重要な役割を果たす元素である。合金の凝固方向強度の向上は、合金の結晶粒内の強度が向上することにより達成される。しかし、合金の結晶粒内の強度が向上し、結晶粒界の強度を大幅に上回ると、相対的に結晶粒界の強度が低下し、結晶粒界に対して直角方向となる凝固直角方向の延性が著しく低下し、結果として凝固直角方向の強度が低下する。Hfは、このような現象を防止するための必須元素であり、最低でも0.55%以上の添加が必要である。しかし、過度の添加はBと同様に合金の融点を低下させるので、1.8%以下に規制するのがよく、より好ましくは1.15%以下の添加量にすべきである。   Hf segregates at the grain boundaries and has the effect of improving the ductility of the grain boundaries, and is an element that plays a particularly important role in the present invention. Improvement in the solidification direction strength of the alloy is achieved by improving the strength in the crystal grains of the alloy. However, when the strength in the crystal grains of the alloy is improved and significantly exceeds the strength of the grain boundaries, the strength of the grain boundaries is relatively lowered, and the solidification perpendicular direction is perpendicular to the grain boundaries. The ductility is significantly reduced, and as a result, the strength in the direction perpendicular to solidification is reduced. Hf is an essential element for preventing such a phenomenon, and at least 0.55% or more must be added. However, excessive addition lowers the melting point of the alloy in the same manner as B, so it should be regulated to 1.8% or less, more preferably 1.15% or less.

Coはγ’相の固溶温度を低下させ、溶体化熱処理を容易にさせる効果があり、特に本発明合金のように、部分溶体化で使用される場合には低い熱処理温度でも溶体化率を大きくすることが可能となる。その効果を得るためには、最低でも1.5%以上の添加が必要である。さらに凝固方向強度を重視する場合は、3%以上の添加が有効である。また、Coは800〜900℃付近でγ’相の体積率を増加させる効果があり、その結果、Coの添加量が増えるに従って、800〜900℃付近のクリープ強度が増加することが明らかになった。この効果を得るためには、Coの添加量は9.5%以上とすることが望ましい。しかし、Coの過度の添加は、γ’相を不安定化し、むしろ強度低下につながる。従って、Coは最大でも16%以下とする必要がある。さらに、Coは耐食性を低下させるため、耐食性が要求される場合は、添加量を8.5%以下とし、耐食性に有効なTiを0.55〜4%複合添加することが好ましい。   Co has the effect of lowering the solid solution temperature of the γ 'phase and facilitating solution heat treatment. Especially when it is used in partial solution formation, as in the case of the present invention alloy, the solution rate is reduced even at a low heat treatment temperature. It becomes possible to enlarge. In order to obtain the effect, at least 1.5% addition is necessary. Furthermore, when importance is attached to the strength in the solidification direction, addition of 3% or more is effective. In addition, Co has the effect of increasing the volume fraction of the γ 'phase in the vicinity of 800 to 900 ° C, and as a result, it becomes clear that the creep strength near 800 to 900 ° C increases as the amount of Co added increases. It was. In order to obtain this effect, the amount of Co added is desirably 9.5% or more. However, excessive addition of Co destabilizes the γ 'phase and rather leads to a decrease in strength. Therefore, Co must be 16% or less at the maximum. Furthermore, since Co reduces corrosion resistance, when corrosion resistance is required, it is preferable to add the amount of 8.5% or less and to add 0.55 to 4% of Ti effective for corrosion resistance.

Taはγ’相の固溶強化元素として最も有効な元素である。凝固方向強度を向上させるためには、その添加量は多いほど良く、最低でも4.1%の添加が必要である。しかし、過度の添加は合金の相安定性を悪化させ、かえって強度低下につながるため、最大でも12%以下に規制する必要がある。   Ta is the most effective element as a solid solution strengthening element of the γ 'phase. In order to improve the strength in the solidification direction, the larger the addition amount, the better, and the addition of at least 4.1% is necessary. However, excessive addition deteriorates the phase stability of the alloy and leads to a decrease in strength, so it is necessary to regulate it to 12% or less at the maximum.

WはTaと反対に主にγ相を固溶強化する元素である。凝固方向強度を向上させるためには、その添加量は多いほど良く、最低でも2%以上添加する必要がある。しかし、Wの過度の添加は、合金の相安定性を悪化させTCP相等の有害相の析出につながり、かつ耐食性を著しく低下させるため、最大でも12%に規制する必要がある。   W is an element that mainly strengthens the γ phase in solid solution, contrary to Ta. In order to improve the strength in the solidification direction, the larger the amount added, the better. It is necessary to add at least 2%. However, excessive addition of W deteriorates the phase stability of the alloy, leads to precipitation of harmful phases such as TCP phase, and remarkably lowers the corrosion resistance. Therefore, it is necessary to regulate the maximum to 12%.

MoはWと同属であり、Ni基超合金の様々な特性に対する効果もWとほぼ同様である。しかしながら、本発明者らは、MoはWと比べ、燃焼環境中の耐食性を著しく悪化させることを見出した。従って、本発明合金ではMoの添加量は最大でも3%、さらに耐食性を重視する場合は、0.95%以下とすることが好ましい。   Mo has the same genus as W, and the effect on various properties of the Ni-base superalloy is almost the same as W. However, the present inventors have found that Mo significantly deteriorates the corrosion resistance in the combustion environment as compared with W. Therefore, in the alloy of the present invention, the addition amount of Mo is preferably 3% at the maximum, and when the corrosion resistance is important, it is preferably 0.95% or less.

ReもW及びMoと同様に主にγ相を固溶強化する元素である。MoあるいはWと比べ、燃焼環境中の耐食性を低下させる効果が小さいことから、耐食性と高温強度を両立させるためには非常に有効な元素である。WあるいはMoの添加量と置き換えることで、耐食性を改善すると同時に、合金を有効に強化する。しかし、Reはγ’相側への分配率が著しく低いため、相安定性に影響を及ぼし易い。従って、添加量は最大でも9%以下とする必要がある。一方、Reは非常に高価な元素であるため、大型の産業用ガスタービンに好適な合金としては、添加量を必要最低限とすることが好ましく、コストを重視し、かつWによる有効な強化が得られた場合は、Reの添加量を0.01%程度としてもよい。   Re, like W and Mo, is an element that mainly strengthens the γ phase in solid solution. Compared to Mo or W, the effect of reducing the corrosion resistance in the combustion environment is small, so it is an extremely effective element for achieving both corrosion resistance and high temperature strength. By replacing it with the added amount of W or Mo, the corrosion resistance is improved and the alloy is effectively strengthened. However, since Re has a remarkably low distribution rate to the γ ′ phase, it tends to affect the phase stability. Therefore, the addition amount needs to be 9% or less at the maximum. On the other hand, Re is a very expensive element, so as an alloy suitable for a large-scale industrial gas turbine, it is preferable to minimize the addition amount, focus on cost, and effective strengthening by W. When obtained, the amount of Re added may be about 0.01%.

CrはCr2O3の保護皮膜を形成し、Ni基超合金の耐食性を維持するための必須元素である。従って、最低でも1.5%以上の添加が必要であり、産業用ガスタービン用として必要な耐食性を得る為には、6%以上の添加が望ましい。しかし、過度の添加は、Wと同様に合金の相安定性を悪化させTCP相等の有害相の析出につながるため、16%以下に規制する必要がある。さらに凝固方向強度を向上させるため、WやReの添加量を増やす必要がある場合は、Crの添加量を9%以下とすることが好ましい。 Cr is an essential element for forming a protective film of Cr 2 O 3 and maintaining the corrosion resistance of the Ni-base superalloy. Therefore, at least 1.5% addition is necessary, and in order to obtain the corrosion resistance required for industrial gas turbines, addition of 6% or more is desirable. However, excessive addition deteriorates the phase stability of the alloy and leads to precipitation of harmful phases such as the TCP phase, like W, so it must be regulated to 16% or less. In order to further improve the strength in the solidification direction, when it is necessary to increase the addition amount of W or Re, the addition amount of Cr is preferably 9% or less.

Alはγ’相(Ni3Al)を形成するための必須元素であり、最低でも3.5%以上の添加が必要であり、γ’相の体積率を高くし、凝固方向強度を重視する場合は5%以上添加することが好ましい。また、AlはAl2O3保護皮膜を形成することで、耐酸化性及び耐食性を向上させるための必須元素でもある。しかし、過度に添加するとγ’相の固溶強化度が低下し、かえって高温強度が低下することから、添加量は最大6.5%とする必要がある。 Al is an indispensable element for forming the γ 'phase (Ni 3 Al). At least 3.5% or more is required. When the volume fraction of the γ' phase is increased and solidification direction strength is important It is preferable to add 5% or more. Al is also an essential element for improving oxidation resistance and corrosion resistance by forming an Al 2 O 3 protective film. However, if added excessively, the solid solution strengthening degree of the γ ′ phase is lowered and the high-temperature strength is lowered. Therefore, the added amount needs to be 6.5% at the maximum.

TiはCrとAlの複合酸化物の形成を防止し、合金の耐食性を向上させる効果がある。耐食性を重視する場合は0.55%以上の添加が効果的である。しかし、過度に添加するとγ’相の安定性を阻害し、かつ高温耐酸化性を低下させるため最大4%以下とする必要がある。また,TiはTaと同様に主にγ’相側に固溶し、γ’相を固溶強化する。しかし、γ’相を固溶強化する効果は、Taの方が大きいため、凝固方向の強度を特に重視する場合、Tiの添加量は必要最低限とすることが好ましく、凝固方向の強度を特に重視する場合はTiの添加量は最大でも1.1%とする必要がある。   Ti has the effect of preventing the formation of a complex oxide of Cr and Al and improving the corrosion resistance of the alloy. Addition of 0.55% or more is effective when emphasizing corrosion resistance. However, if it is added excessively, the stability of the γ 'phase is hindered and the high temperature oxidation resistance is lowered. Ti, like Ta, dissolves mainly on the γ ′ phase side and strengthens the γ ′ phase by solid solution. However, since the effect of solid solution strengthening of the γ 'phase is greater in Ta, when the strength in the solidification direction is particularly important, the addition amount of Ti is preferably minimized, and the strength in the solidification direction is particularly If importance is attached, the amount of Ti added must be 1.1% at the maximum.

NbはTiよりも効果は小さいが、CrとAlの複合酸化物の形成を防止し、合金の耐食性を改善する効果がある。一方、γ’相を固溶強化する効果は、Taよりは小さいが、Tiよりも高い。従って、Nbは高温強度を落とさずに耐食性を改善できる有効な元素である。γ’相の相安定性を保つために、Nbの添加量は2%以下とする必要がある。一方,耐食性を特に重視する場合は、0.5%以上の添加が好ましい。   Nb is less effective than Ti, but has the effect of preventing the formation of complex oxides of Cr and Al and improving the corrosion resistance of the alloy. On the other hand, the effect of solid solution strengthening of the γ ′ phase is smaller than Ta but higher than Ti. Therefore, Nb is an effective element that can improve the corrosion resistance without reducing the high temperature strength. In order to maintain the phase stability of the γ ′ phase, the amount of Nb added needs to be 2% or less. On the other hand, when the corrosion resistance is particularly important, addition of 0.5% or more is preferable.

Zrは、従来はHfと同様に、結晶粒界の強度を向上させる効果があると考えられてきたが、本発明者らの研究により、結晶粒界強度向上に及ぼす影響はHfと比べて著しく小さいことがわかった。Zrの添加量が増えると、Zrと同じく合金の初期溶融温度を低下させるHfの添加量を減らす必要が生じる。そこで、本発明合金ではZrを不純物レベルの0.02%以下に規制することとした。これによりHfの添加量を増やすことができ、結晶粒界強度の向上を図ることが可能となった。   Zr has been thought to have the effect of improving the strength of the grain boundaries, as in the case of Hf, but according to the study by the present inventors, the influence on the improvement of the grain boundary strength is significantly higher than that of Hf. I found it small. As the amount of Zr added increases, the amount of Hf added that lowers the initial melting temperature of the alloy as with Zr needs to be reduced. Therefore, in the alloy of the present invention, Zr is regulated to 0.02% or less of the impurity level. As a result, the amount of Hf added can be increased, and the grain boundary strength can be improved.

Vを添加するとTa及びNbの固溶限度が低下し、高温強度の低下につながる。また、Vは耐食性を著しく低下させることから、本発明合金では添加量を不純物レベルの1%以下とした。   When V is added, the solid solubility limit of Ta and Nb decreases, leading to a decrease in high temperature strength. Further, since V significantly reduces the corrosion resistance, the addition amount is set to 1% or less of the impurity level in the alloy of the present invention.

希土類元素は、Al2O3保護皮膜の密着性を改善し、耐酸化性を大幅に改善する。しかし、Ni基超合金の融点を著しく低下させることから、添加量は2%以下とすることが好ましい。希土類元素とは、周期律表の3A族に属する元素を意味し、Yのほか、Sc,La,Ce等のランタノイド、Ac等のアクチノイドが含まれる。これらの元素の効果はほぼ同等であり、また、単独又は2種以上の混合物にて添加してもその効果はほぼ同等であることから、これらの元素の総量を2%以下とする必要がある。 Rare earth elements improve the adhesion of the Al 2 O 3 protective coating and greatly improve oxidation resistance. However, since the melting point of the Ni-base superalloy is remarkably lowered, the addition amount is preferably 2% or less. The rare earth element means an element belonging to Group 3A of the periodic table, and includes Y, lanthanoids such as Sc, La, and Ce, and actinoids such as Ac. The effects of these elements are almost the same, and even when added alone or in a mixture of two or more, the effects are almost the same, so the total amount of these elements needs to be 2% or less. .

白金族元素は合金中のWあるいはRe等の高温強度に有効な元素の固溶限度を広げる作用があるが、非常に高価な元素であるため、添加量は2%以下とすることが好ましい。この白金族元素は、Ru,Rh,Pd,IrおよびPtから選ばれることが望ましく、1種又は2種以上を添加することができる。   The platinum group element has the effect of extending the solid solution limit of an element effective for high-temperature strength such as W or Re in the alloy. However, since it is a very expensive element, the addition amount is preferably 2% or less. This platinum group element is preferably selected from Ru, Rh, Pd, Ir, and Pt, and one or more of them can be added.

なお、不可避不純物には、Mg、Ca、Si、Ge及びFeなどが含まれる。これらのうち、MgとCaは、いずれも0.1%以下に規制されることが望ましい。また、Si、Ge及びFeは、各5%以下に抑えられることが望ましい。   Inevitable impurities include Mg, Ca, Si, Ge, Fe, and the like. Of these, it is desirable that both Mg and Ca be regulated to 0.1% or less. Moreover, it is desirable that Si, Ge, and Fe are each suppressed to 5% or less.

本発明によれば、高価な単結晶材と同等の凝固方向強度を有し、かつ歩留まりが高く低コストな一方向凝固材用合金と同等の結晶粒界強度を有する新規な一方向凝固用Ni基超合金が得られる。本発明のNi基超合金を用いたガスタービンは、低コストで、大幅な熱効率向上が図れ、省資源、CO2及びNOX等の排出量低減に伴う環境効果等、その産業上及び社会的効果は大きい。 According to the present invention, a novel unidirectional solidification Ni having a solidification direction strength equivalent to that of an expensive single crystal material and a grain boundary strength equivalent to that of a unidirectional solidification material alloy having a high yield and a low cost. A base superalloy is obtained. The gas turbine using the Ni-base superalloy according to the present invention is low in cost, greatly improves thermal efficiency, saves resources, and has environmental effects associated with reduction of CO 2 and NO X emissions, etc. The effect is great.

本発明によるNi基超合金と、特許文献1〜5に記載されたNi基超合金について、合金の化学成分と組成範囲の比較したものを表1に示す。   Table 1 shows a comparison of the chemical composition and composition range of the Ni-base superalloy according to the present invention and the Ni-base superalloys described in Patent Documents 1 to 5.

Figure 0004230970
Figure 0004230970

以下、Ni基超合金を一方向凝固法により鋳造し、凝固方向並びに凝固方向と直角方向の高温強度を測定した結果について説明する。   Hereinafter, the results obtained by casting a Ni-base superalloy by the unidirectional solidification method and measuring the high temperature strength in the solidification direction and in the direction perpendicular to the solidification direction will be described.

本発明によるNi基超合金及び本発明をなす過程で実験に供したNi基超合金の組成と熱処理条件及び試験結果を表2に示す。   Table 2 shows the composition, heat treatment conditions, and test results of the Ni-base superalloy according to the present invention and the Ni-base superalloy subjected to the experiment in the process of the present invention.

Figure 0004230970
Figure 0004230970

評価に用いた鋳物は100mm×15mm×230mmの一方向凝固平板で、表2記載の組成に予め調製したマスターインゴットを用い、鋳型引出し式一方向凝固法で鋳造した。鋳造後、表2記載の条件で熱処理を施し、その後に、各々の評価用試験片を機械加工で採取した。図1にYH64よりなる一方向凝固平板のマクロエッチング後の外観図(写真)を示す。図1には、一方向凝固平板に重要な、凝固方向、結晶粒界、凝固垂直方向も記載した。クリープ破断強度は、凝固方向については、850℃-40kgf/mm2又は1040℃-14kgf/mm2の条件、凝固直角方向については982℃-14kgf/mm2の条件で評価した。耐食性は、900℃のバーナリグ試験で評価した。腐食重量変化量が20mg/cm2に到達する時間の長短で耐食性の優劣を判断した。試験は、1サイクル10時間とし、1サイクル毎に重量変化量を測定した。燃料は硫黄を0.06重量%含む重油を用い、腐食を加速する目的で1重量%NaCl溶液を30cc/minで燃焼ガス中に噴霧した。 The cast used for the evaluation was a unidirectionally solidified flat plate of 100 mm × 15 mm × 230 mm, and was cast by a mold drawing type unidirectional solidification method using a master ingot prepared in advance in the composition shown in Table 2. After casting, heat treatment was performed under the conditions shown in Table 2, and then each test specimen for evaluation was collected by machining. FIG. 1 shows an external view (photograph) of a unidirectionally solidified flat plate made of YH64 after macro etching. FIG. 1 also shows the solidification direction, grain boundary, and solidification vertical direction, which are important for the unidirectional solidification flat plate. The creep rupture strength was evaluated under the conditions of 850 ° C.-40 kgf / mm 2 or 1040 ° C.-14 kgf / mm 2 for the solidification direction and 982 ° C.-14 kgf / mm 2 for the direction perpendicular to solidification. Corrosion resistance was evaluated by a burner rig test at 900 ° C. The superiority or inferiority of the corrosion resistance was judged by the length of time for the change in corrosion weight to reach 20 mg / cm 2 . The test was performed for 10 hours per cycle, and the weight change was measured every cycle. The fuel used was heavy oil containing 0.06% by weight of sulfur, and a 1% by weight NaCl solution was sprayed into the combustion gas at 30cc / min for the purpose of accelerating corrosion.

試験合金の組成は、特許文献5の組成範囲に含まれるYH161をベースに、各々の元素の効果を検討する目的で選定した。まず、最初にHfの効果を検討する目的でYH159とYH160を作製し、評価した。YH159とYH160は、YH161に対し、その他の元素の添加量をほぼ一定に保ったまま、Hfを単独添加した組成に相当する。合金の融点を低下させるHfを添加することで、合金の初期溶融温度が低下し、溶体化熱処理温度をYH161の1280℃から1250℃まで下げなくてはならなくなったため、1040℃-14kgf/mm2のクリープ破断時間もYH161の615時間から、YH159の152時間、YH160の113時間に大幅に低下した。このことから、YH161へのHfの単純添加は、凝固直角方向の強度向上は期待できるが、ガスタービン部材、特に動翼に重要な凝固方向の強度が大幅に低下してしまい、実用上適当でないことが明らかになった。 The composition of the test alloy was selected for the purpose of examining the effect of each element based on YH161 included in the composition range of Patent Document 5. First, YH159 and YH160 were prepared and evaluated for the purpose of examining the effect of Hf. YH159 and YH160 correspond to a composition in which Hf is added alone to YH161 while keeping the addition amount of other elements substantially constant. By adding Hf that lowers the melting point of the alloy, the initial melting temperature of the alloy decreased, and the solution heat treatment temperature had to be lowered from 1280 ° C to 1250 ° C in YH161, so 1040 ° C-14kgf / mm 2 The creep rupture time of YH161 also decreased significantly from 615 hours of YH161 to 152 hours of YH159 and 113 hours of YH160. From this, the simple addition of Hf to YH161 can be expected to improve the strength in the direction perpendicular to solidification, but the strength in the solidification direction, which is important for gas turbine members, especially moving blades, is greatly reduced, and is not practically appropriate It became clear.

次に、YH62とYH63を作製し、YH161にCoを添加した場合の効果を検討した。Coを添加することでYH161と同じ溶体化処理温度1280℃でありながら、溶体化率、つまり凝固時に粗大に析出したγ'相が溶体化処理温度に保持中にγ相に一旦固溶し、冷却時に微細に析出し、高温強度向上に寄与する領域の面積率が増加した。一般に溶体化率が増加すると凝固方向のクリープ強度は向上する。YH62とYH63の場合は、Co量の増加に伴い、溶体化率は増加したが、1040℃-14kgf/mm2のクリープ破断時間は、YH161の615時間から、YH62の522時間、YH62の428時間へと若干低下した。これはCoが高温のクリープ強度を下げるためと考えられる。一方、凝固直角方向のクリープ破断時間は、YH161の20時間に対し、YH62は26時間、YH62の54時間と若干向上したが、他の試験合金に比べ、凝固直角方向のクリープ強度向上に及ぼすCo単独添加の影響は非常に小さかった。 Next, YH62 and YH63 were produced, and the effect of adding Co to YH161 was examined. By adding Co, while the same solution treatment temperature as YH161 is 1280 ° C., the solution rate, that is, the γ ′ phase coarsely precipitated during solidification is once dissolved in the γ phase while maintaining the solution treatment temperature, The area ratio of the region that precipitated finely during cooling and contributed to the improvement of the high temperature strength increased. Generally, as the solution rate increases, the creep strength in the solidification direction improves. For YH62 and YH63, with an increase in Co content, but the solution rate was increased, the 1040 ℃ -14kgf / mm 2 creep rupture time, from 615 hours of YH161, 522 hours of YH62, 428 hours of YH62 Slightly declined. This is probably because Co lowers the creep strength at high temperatures. On the other hand, the creep rupture time in the direction perpendicular to solidification was slightly improved to 26 hours for YH62 and 54 hours for YH62 compared to 20 hours for YH161. The effect of single addition was very small.

次に、CoとHfの複合添加の影響を評価するために、さらにYH64〜67、74、75、162〜166、172および173を作製し評価した。図2と図3にHf量が約1%、約1.5%と一定の場合の1040℃-14kgf/mm2のクリープ破断時間に及ぼすCo量の影響を示す。これらの図から、どちらの場合でも約5〜10%のCoの添加が1040℃-14kgf/mm2のクリープ破断時間向上に有効であることがわかる。同時に、Co量が約1%の時は溶体化熱処理温度を高くできないためクリープ破断時間が短く、さらに、Co量が約10%を超えた場合も、1040℃-14kgf/mm2のクリープ破断時間は低下する傾向が認められた。 Next, in order to evaluate the influence of the combined addition of Co and Hf, YH64 to 67, 74, 75, 162 to 166, 172 and 173 were further prepared and evaluated. FIGS. 2 and 3 show the effect of Co content on the creep rupture time at 1040 ° C.-14 kgf / mm 2 when the Hf content is constant at about 1% and about 1.5%. From these figures, it can be seen that the addition of about 5 to 10% Co is effective in improving the creep rupture time at 1040 ° C.-14 kgf / mm 2 in both cases. At the same time, when the amount of Co is about 1%, the solution heat treatment temperature cannot be increased, so the creep rupture time is short, and even when the amount of Co exceeds about 10%, the creep rupture time of 1040 ° C-14kgf / mm 2 Tended to decrease.

一方、図4にHf量が約1%の場合の850℃-40kgf/mm2の定常クリープ速度に及ぼすCo量の影響を示す。この図から、Co量が増えるに従い、850℃-40kgf/mm2の定常クリープ速度は小さくなる傾向が認められ、850℃のクリープ強度向上にはCo添加量の増加が有効であることが明らかになった。 On the other hand, FIG. 4 shows the effect of Co amount on the steady creep rate at 850 ° C. and 40 kgf / mm 2 when the Hf amount is about 1%. From this figure, in accordance with the amount of Co is increased, the steady creep rate of 850 ℃ -40kgf / mm 2 is decreased tendency is observed, it is clearly in the creep strength improving 850 ° C. is effective increase in the Co amount became.

図5には、Co量が約9.6%の際の1040℃-14kgf/mm2のクリープ破断時間に及ぼすHfの影響を示す。この図から、Co量が約9.6%の場合、Hf量が約0.5〜1.0%の領域で1040℃-14kgf/mm2のクリープ破断時間が最大になることがわかる。YH63のクリープ破断時間が短いのは、凝固方向においても、Hf添加による結晶粒界強度の向上が必要なことを意味していると考えられる。一方、YH164よりHf添加量の多い合金でクリープ破断時間が低下したのは、Hfを添加することで、合金の初期溶融温度が低下し、溶体化熱処理温度を低くする必要が生じ、溶体化率が低下したためと考えられる。 FIG. 5 shows the effect of Hf on the creep rupture time of 1040 ° C.-14 kgf / mm 2 when the Co content is about 9.6%. From this figure, it can be seen that when the Co content is about 9.6%, the creep rupture time at 1040 ° C.-14 kgf / mm 2 is maximum in the region where the Hf content is about 0.5 to 1.0%. The short creep rupture time of YH63 is considered to mean that the grain boundary strength must be improved by adding Hf even in the solidification direction. On the other hand, the creep rupture time of the alloy with a higher Hf addition amount than YH164 was reduced because the addition of Hf reduced the initial melting temperature of the alloy and required a lower solution heat treatment temperature. This is thought to be due to a drop in

図6にCo量が約9.6%の際の凝固直角方向の982℃-14kgf/mm2のクリープ破断時間に及ぼすHfの影響を示す。この図から凝固直角方向のクリープ破断強度はHf量の増加とともに向上することがわかる。 FIG. 6 shows the effect of Hf on the creep rupture time of 982 ° C.-14 kgf / mm 2 in the direction perpendicular to solidification when the Co content is about 9.6%. It can be seen from this figure that the creep rupture strength in the direction perpendicular to solidification increases as the amount of Hf increases.

以上の結果から、Co量が約1.0%と低い場合、Hfの添加量を増やすと溶体化熱処理温度を下げる必要が生じ、凝固方向のクリープ破断強度は低下するが、Co量が約5〜10%の範囲では、Hf添加量を約1%まで増加させても溶体化熱処理温度を下げる必要がなく、CoとHfの複合添加により一方向凝固材の凝固方向及び凝固直角方向の両方のクリープ強度を向上できることが明らかになった。   From the above results, when the amount of Co is as low as about 1.0%, it is necessary to lower the solution heat treatment temperature by increasing the amount of Hf added, the creep rupture strength in the solidification direction is reduced, but the amount of Co is about 5 to 10 In the% range, it is not necessary to lower the solution heat treatment temperature even if the Hf addition amount is increased to about 1%. By adding Co and Hf in combination, the creep strength in both the solidification direction and the direction perpendicular to the solidification direction of the unidirectional solidification material It became clear that can be improved.

次に、Hfと同属元素であるZrの効果について検討した。図7にCo量が約9.7%の場合の凝固直角方向のクリープ強度に及ぼすZrの影響を示す。この図からZrは添加量約0.06%で凝固直角方向のクリープ強度、つまり結晶粒界の強度を最大にすることがわかった。しかし、その効果はHfに比べると著しく小さく、また、0.1%以上の添加ではかえって凝固直角方向のクリープ強度は低下した。また、Zrを添加することで、結晶粒界強度の向上に有効なHfの添加量を増やすことができなくなるという悪影響もある。   Next, the effect of Zr, an element belonging to the same group as Hf, was examined. FIG. 7 shows the effect of Zr on the creep strength in the direction perpendicular to solidification when the Co content is about 9.7%. From this figure, it was found that Zr maximizes the creep strength in the direction perpendicular to solidification, that is, the strength of the grain boundary when the addition amount is about 0.06%. However, the effect was remarkably small compared with Hf, and the addition of 0.1% or more reduced the creep strength in the direction perpendicular to solidification. In addition, the addition of Zr also has an adverse effect that it becomes impossible to increase the amount of Hf effective for improving the grain boundary strength.

次に結晶粒界強化元素であるCの添加量について検討した。図8にCo量が約9.6%、Hf量が約1.0%の場合の凝固方向のクリープ強度に及ぼすCの影響を示す。C量が約0.05%以下の場合、結晶粒界強度が不十分なため、凝固方向のクリープ破断時間も短いものと考えられる。その後、C量約0.07%でクリープ破断時間が最大になった後、クリープ破断時間が低下するのは、C量増加によりTa等の固溶強化に有効な元素が炭化物形成に消費されたことが原因と考えられる。図9にCo量が約9.6%、Hf量が約1.0%の場合の凝固直角方向のクリープ強度、つまり結晶粒界強度に及ぼすCの影響を示す。C量が約0.05%以下の場合、結晶粒界強度が不十分なためクリープ破断時間が短くなった。その後、C量約0.07%でクリープ破断時間が最大となった後、クリープ破断時間が低下した。これは、凝固方向の場合と同様に、C量増加によりTa等の固溶強化に有効な元素が炭化物形成に消費されたためと考えられる。   Next, the amount of C which is a grain boundary strengthening element was examined. FIG. 8 shows the effect of C on the creep strength in the solidification direction when the Co content is about 9.6% and the Hf content is about 1.0%. When the amount of C is about 0.05% or less, it is considered that the creep rupture time in the solidification direction is short because the grain boundary strength is insufficient. After that, the creep rupture time reaches a maximum at a C content of about 0.07%, and then the creep rupture time decreases because an element effective for solid solution strengthening such as Ta is consumed for carbide formation due to an increase in the C content. Possible cause. FIG. 9 shows the effect of C on the creep strength in the direction perpendicular to solidification, that is, the grain boundary strength when the Co content is about 9.6% and the Hf content is about 1.0%. When the C content was about 0.05% or less, the creep rupture time was shortened because the grain boundary strength was insufficient. Thereafter, the creep rupture time decreased after the creep rupture time reached a maximum at a C content of about 0.07%. This is presumably because the elements effective for solid solution strengthening, such as Ta, were consumed for carbide formation due to the increase in the C content, as in the solidification direction.

次に耐食性及ぼすTiの影響を検討した。図10に耐食性に及ぼすTiの効果を示す。図10の縦軸は900℃のバーナリグ試験において、腐食重量変化が20mg/cm2に到達する時間を示しており、この時間が長いほど耐食性が優れていることを示す。この結果、Ti量が増加するほど耐食性が向上し、特に、Co量を8%以下に低減したYH178とYH179が優れた耐食性を示した。これらの合金は強度評価に供しなかったが、Ti量が1%を超えるYH176〜179では溶体化熱処理温度の低下が認められ、高温強度上は好ましくないと考えられる。 Next, the effect of Ti on corrosion resistance was examined. FIG. 10 shows the effect of Ti on the corrosion resistance. The vertical axis in FIG. 10 shows the time for the change in corrosion weight to reach 20 mg / cm 2 in the burner rig test at 900 ° C., and the longer this time is, the better the corrosion resistance is. As a result, the corrosion resistance improved as the Ti content increased, and YH178 and YH179, in which the Co content was reduced to 8% or less, showed excellent corrosion resistance. Although these alloys were not subjected to strength evaluation, YH176 to 179 with Ti content exceeding 1% showed a decrease in solution heat treatment temperature, which is considered not preferable in terms of high-temperature strength.

上記の実験合金の中からYH163を選び、図11に示す形状の中実一方向凝固のガスタービン動翼1(全長170mm)を鋳造し、溶体化熱処理温度1280℃、それに続く1080℃/4時間及び871℃/20時間の時効処理後にクリープ試験片を採取した。この実体強度評価試験片は、1040℃-14kgf/mm2の条件のクリープ試験において、一方向凝固平板から採取した試験片とほぼ同等の521時間の破断時間を示し、実体強度特性も問題ないことが確認された。また、これは特許文献1に示される組成範囲に含まれる合金YH186の同条件のクリープ破断時間197時間と比べても十分長い。 YH163 is selected from the above experimental alloys, and a solid unidirectionally solidified gas turbine blade 1 (total length: 170 mm) shown in FIG. 11 is cast, followed by a solution heat treatment temperature of 1280 ° C., followed by 1080 ° C./4 hours. And creep specimens were collected after aging treatment at 871 ° C./20 hours. This solid strength evaluation test piece shows a fracture time of 521 hours, which is almost equivalent to a test piece taken from a unidirectionally solidified flat plate in a creep test under the condition of 1040 ° C-14kgf / mm 2 , and there is no problem with the solid strength characteristics. Was confirmed. This is sufficiently longer than the creep rupture time of 197 hours under the same conditions of alloy YH186 included in the composition range shown in Patent Document 1.

本発明により、凝固方向強度及び結晶粒界強度のバランスがとれた一方向凝固用Ni基超合金が開発された。これにより、産業用ガスタービンの動翼及び静翼を一方向凝固部材により製造することが可能になった。   According to the present invention, a Ni-based superalloy for unidirectional solidification has been developed in which the solidification direction strength and the grain boundary strength are balanced. Thereby, it became possible to manufacture the moving blade and stationary blade of an industrial gas turbine with a unidirectionally solidified member.

一方向凝固法で鋳造された、本発明の一実施例による鋳造品のマクロエッチング後の外観を示す図。The figure which shows the external appearance after macro-etching of the casting by one Example of this invention cast by the unidirectional solidification method. Hf量が1.0重量%であるNi基超合金について、Co量とクリープ破断時間との関係を示した線図。The diagram which showed the relationship between Co amount and creep rupture time about Ni base superalloy whose Hf amount is 1.0 weight%. Hf量が1.5重量%であるNi基超合金について、Co量とクリープ破断時間との関係を示した線図。The diagram which showed the relationship between Co amount and creep rupture time about Ni base superalloy whose Hf amount is 1.5 weight%. Hf量が1.0重量%であるNi基超合金について、Co量と定常クリープ速度との関係を示した線図。The diagram which showed the relationship between Co amount and steady state creep rate about Ni base superalloy whose Hf amount is 1.0 weight%. Co量が9.6重量%である一方向凝固Ni基超合金について、Hf量と凝固方向のクリープ破断時間との関係を示した線図。The diagram which showed the relationship between the amount of Hf and the creep rupture time of a solidification direction about the directionally solidified Ni base superalloy whose Co amount is 9.6 weight%. Co量が9.6重量%である一方向凝固Ni基超合金について、Hf量と凝固直角方向のクリープ破断時間との関係を示した線図。A diagram showing the relationship between Hf content and creep rupture time in the direction perpendicular to solidification for a unidirectionally solidified Ni-base superalloy having a Co content of 9.6% by weight. Co量が9.7重量%である一方向凝固Ni基超合金について、Zr量と凝固直角方向のクリープ破断時間との関係を示した線図。A diagram showing the relationship between the Zr content and the creep rupture time in the direction perpendicular to solidification for a unidirectionally solidified Ni-base superalloy with a Co content of 9.7 wt%. Co量が9.6重量%、Hf量が1.0重量%である一方向凝固Ni基超合金について、C量と凝固方向のクリープ破断時間との関係を示した線図。The diagram which showed the relationship between the amount of C and the creep rupture time of a solidification direction about the unidirectionally solidified Ni base superalloy whose Co amount is 9.6 weight% and Hf amount is 1.0 weight%. Co量が9.6重量%、Hf量が1.0重量%である一方向凝固Ni基超合金について、C量と凝固直角方向のクリープ破断時間との関係を示した線図。A diagram showing the relationship between C content and creep rupture time in the direction perpendicular to solidification for a unidirectionally solidified Ni-base superalloy having a Co content of 9.6 wt% and an Hf content of 1.0 wt%. 一方向凝固Ni基超合金について、Ti量と腐食重量変化量が20mg/cmに到達する時間との関係を示した線図。The diagram which showed the relationship between the amount of Ti and the time for the amount of change in corrosion weight to reach 20 mg / cm 2 for the unidirectionally solidified Ni-base superalloy. ガスタービン動翼の斜視図。The perspective view of a gas turbine rotor blade.

符号の説明Explanation of symbols

1…ガスタービン動翼。   1 ... Gas turbine blade.

Claims (4)

重量%で、C:0.05〜0.095%、B:0.01〜0.05%、Hf:0.55〜1.8%、Co:9.5〜16%、Ta:4.1〜12%、Cr:1.5〜16%、Mo:0〜3%、W:2〜12%、Al:3.5〜6.5%、Nb:0.5〜2%、V:0〜1%、Zr:0〜0.02%、Re:0.01〜9%、白金族元素の1種又は2種以上:0〜5%、希土類元素の1種又は2種以上:0〜2%、残部がNi及び不可避の不純物からなることを特徴とする凝固方向強度と結晶粒界強度の優れた一方向凝固用Ni基超合金。 In weight%, C: 0.05~0.095%, B : 0.01~0.05%, Hf: 0.55~1.8%, Co: 9.5 ~16%, Ta: 4.1~12%, Cr: 1.5~16%, Mo: 0~ 3%, W: 2-12%, Al: 3.5-6.5%, Nb: 0.5-2 %, V: 0-1%, Zr: 0-0.02%, Re: 0.01-9%, platinum group element 1 Species or 2 or more: 0 to 5%, 1 or 2 or more of rare earth elements: 0 to 2%, the balance is composed of Ni and inevitable impurities. Excellent solidification direction strength and grain boundary strength Ni-base superalloy for unidirectional solidification. 重量%で、C:0.05〜0.095%、B:0.01〜0.03%、Hf:0.55〜1.15%、Co:9.5〜16%、Ta:4.1〜12%、Cr:1.5〜16%、Mo:0〜0.95%、W:2〜12%、Al:3.5〜6.5%、Nb:0.5〜2%、V:0〜1%、Zr:0〜0.02%、Re:0.01〜9%、白金族元素の1種又は2種以上:0〜2%、希土類元素の1種又は2種以上:0〜2%、残部がNi及び不可避の不純物からなることを特徴とする凝固方向強度と結晶粒界強度の優れた一方向凝固用Ni基超合金。 In weight%, C: 0.05~0.095%, B : 0.01~0.03%, Hf: 0.55~1.15%, Co: 9.5 ~16%, Ta: 4.1~12%, Cr: 1.5~16%, Mo: 0~ 0.95%, W: 2-12%, Al: 3.5-6.5%, Nb: 0.5-2 %, V: 0-1%, Zr: 0-0.02%, Re: 0.01-9%, one of the platinum group elements Species or two or more: 0 to 2%, one or more rare earth elements: 0 to 2%, the balance consists of Ni and inevitable impurities, excellent solidification direction strength and grain boundary strength Ni-base superalloy for unidirectional solidification. 請求項1または2に記載のNi基超合金を用い、一方向凝固法で鋳造されたNi基超合金一方向凝固鋳造物。A Ni-base superalloy unidirectionally solidified casting cast by the unidirectional solidification method using the Ni-base superalloy according to claim 1 or 2. 請求項1または2に記載のNi基超合金を用い、一方向凝固法で鋳造されたNi基超合金一方向凝固鋳造物からなるガスタービン用高温部品。A high-temperature component for a gas turbine comprising a unidirectionally solidified cast of a Ni-base superalloy cast by the unidirectional solidification method using the Ni-base superalloy according to claim 1 or 2.
JP2004232276A 2004-08-09 2004-08-09 Ni-base superalloys for unidirectional solidification with excellent solidification direction strength and grain boundary strength, castings and high-temperature parts for gas turbines Expired - Fee Related JP4230970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004232276A JP4230970B2 (en) 2004-08-09 2004-08-09 Ni-base superalloys for unidirectional solidification with excellent solidification direction strength and grain boundary strength, castings and high-temperature parts for gas turbines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004232276A JP4230970B2 (en) 2004-08-09 2004-08-09 Ni-base superalloys for unidirectional solidification with excellent solidification direction strength and grain boundary strength, castings and high-temperature parts for gas turbines

Publications (2)

Publication Number Publication Date
JP2006045654A JP2006045654A (en) 2006-02-16
JP4230970B2 true JP4230970B2 (en) 2009-02-25

Family

ID=36024575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004232276A Expired - Fee Related JP4230970B2 (en) 2004-08-09 2004-08-09 Ni-base superalloys for unidirectional solidification with excellent solidification direction strength and grain boundary strength, castings and high-temperature parts for gas turbines

Country Status (1)

Country Link
JP (1) JP4230970B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5408768B2 (en) * 2008-12-04 2014-02-05 三菱マテリアル株式会社 Ni-base heat-resistant alloy ingot having high-temperature strength and dendritic structure and gas turbine blade casting comprising the same
US9169540B2 (en) 2010-09-24 2015-10-27 Osaka Prefecture University Public Corporation Re-added Ni-based dual multi-phase intermetallic compound alloy and method for producing the same
KR20120105693A (en) * 2011-03-16 2012-09-26 한국기계연구원 Ni base single crystal superalloy with enhanced creep property
CN102433467B (en) * 2011-11-29 2013-09-04 中国科学院金属研究所 Hafnium-containing high-tungsten-nickel-based isometric crystal alloy and application thereof
CN102921929B (en) * 2012-11-01 2015-05-13 哈尔滨工业大学 Non-pollution directional solidification method of high-niobium titanium aluminum intermetallic compound
WO2018157228A1 (en) * 2017-03-03 2018-09-07 Liburdi Engineering Limited High gamma prime nickel based weldable superalloy and method of repairing and manufacturing of turbine engine components using the same
CN110565035B (en) * 2019-10-17 2020-06-30 中航上大高温合金材料有限公司 Heat treatment process for high-titanium low-aluminum high-temperature alloy

Also Published As

Publication number Publication date
JP2006045654A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
JP4885530B2 (en) High strength and high ductility Ni-base superalloy, member using the same, and manufacturing method
JP4036091B2 (en) Nickel-base heat-resistant alloy and gas turbine blade
US7169241B2 (en) Ni-based superalloy having high oxidation resistance and gas turbine part
JP4557079B2 (en) Ni-based single crystal superalloy and turbine blade using the same
JP5344453B2 (en) Ni-base superalloy with excellent oxidation resistance
JP5299899B2 (en) Ni-base superalloy and manufacturing method thereof
JP5418589B2 (en) Ni-based single crystal superalloy and turbine blade using the same
JP2011074493A (en) Nickel-based superalloy and article
JP2011074492A (en) Nickel-based superalloy and article
JP4266196B2 (en) Nickel-base superalloy with excellent strength, corrosion resistance and oxidation resistance
JP3944582B2 (en) Ni-base superalloy
JP2011074491A (en) Nickel-based superalloy and article
JP5063550B2 (en) Nickel-based alloy and gas turbine blade using the same
JP2013199680A (en) Nickel-based alloy, cast article, gas turbine blade and gas turbine
JP4230970B2 (en) Ni-base superalloys for unidirectional solidification with excellent solidification direction strength and grain boundary strength, castings and high-temperature parts for gas turbines
JP4157440B2 (en) Single crystal Ni-base superalloy with excellent strength, corrosion resistance and oxidation resistance
JP6084802B2 (en) High-strength Ni-base superalloy and gas turbine using the same
JPH1121645A (en) Ni-base superalloy having heat resistance, production of ni-base superalloy having heat resistance, and ni-base superalloy parts having heat resistance
JP2546324B2 (en) Ni-based single crystal superalloy with excellent high temperature corrosion resistance
JP5427642B2 (en) Nickel-based alloy and land gas turbine parts using the same
WO2013031916A1 (en) Ni-BASED SUPERALLOY
JP4184648B2 (en) Ni-based single crystal alloy excellent in strength and corrosion resistance and its manufacturing method
JP2579316B2 (en) Single crystal Ni-base superalloy with excellent strength and corrosion resistance
JP2787946B2 (en) Ni-based single crystal superalloy with excellent high-temperature strength and high-temperature corrosion resistance
JPH10317080A (en) Ni(nickel)-base superalloy, production of ni-base superalloy, and ni-base superalloy parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060607

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081204

R150 Certificate of patent or registration of utility model

Ref document number: 4230970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees