JP2007191791A - Nickel-based superalloy composition - Google Patents

Nickel-based superalloy composition Download PDF

Info

Publication number
JP2007191791A
JP2007191791A JP2006342208A JP2006342208A JP2007191791A JP 2007191791 A JP2007191791 A JP 2007191791A JP 2006342208 A JP2006342208 A JP 2006342208A JP 2006342208 A JP2006342208 A JP 2006342208A JP 2007191791 A JP2007191791 A JP 2007191791A
Authority
JP
Japan
Prior art keywords
alloy
aluminum
titanium
nickel
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006342208A
Other languages
Japanese (ja)
Inventor
Ramgopal Darolia
ラムゴパル・ダロリア
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2007191791A publication Critical patent/JP2007191791A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0433Iron group; Ferrous alloys, e.g. steel
    • F05C2201/0466Nickel

Abstract

<P>PROBLEM TO BE SOLVED: To provide a material having a reduced density and also having properties that are suitable for use on conditions that the low pressure turbine section of a gas turbine engine is operated. <P>SOLUTION: The nickel-based alloy composition contains, by weight, from about 8 to about 18% cobalt, from about 12 to about 16% chromium, from about 4 to about 8% aluminum, up to about 6% tungsten, from about 0.5 to about 3.5% titanium, from about 2 to about 6% molybdenum, from about 0.05 to about 0.25% carbon, from about 0.005 to about 0.025% boron, from about 0.02 to about 0.1% zirconium, up to about 1.0% iron, up to about 2.0% rhenium, up to about 2.0% tantalum, up to about 1.0% hafnium and the balance nickel with incidental impurities. The sum weight percent of aluminum and titanium is from about 4.5 wt.% to about 13 wt.%. Further, the ratio of the weight percentage of aluminum to titanium is larger than about 1:1, preferably larger than about 2:1. <P>COPYRIGHT: (C)2007,JPO&amp;INPIT

Description

本発明はニッケル基超合金組成物に関する。具体的には、本発明は、ガスタービンエンジンに用いられる低圧タービン動翼及び静翼セグメントのようなガスタービンエンジン部品用のニッケル基超合金組成物に関する。   The present invention relates to nickel-base superalloy compositions. Specifically, the present invention relates to nickel-base superalloy compositions for gas turbine engine components such as low pressure turbine blades and stationary blade segments used in gas turbine engines.

ガスタービンエンジンでは、空気を圧縮機で加圧して燃焼器で燃料と混合・点火して高温燃焼ガスを発生する。高温燃焼ガスはエンジンのタービンセクションに流れ込む。エンジンのタービンセクションは通例、タービン動翼とタービン静翼の組合せを含む段を複数含んでいる。膨張した燃焼ガスが動翼と接触してタービン軸を回転させることによってタービンが駆動される。タービン軸の回転は圧縮機その他のエンジン部品又は付属部品の動力供給に利用される。静翼は通例翼形部を含んでおり、燃焼ガスをタービンの次段のタービン動翼に導く。これらの燃焼ガスはタービン動翼及び静翼を高温の腐食性雰囲気に暴露する。   In a gas turbine engine, air is pressurized by a compressor and mixed with a fuel and ignited by a combustor to generate high-temperature combustion gas. Hot combustion gases flow into the turbine section of the engine. The turbine section of an engine typically includes multiple stages that include a combination of turbine blades and turbine vanes. The expanded combustion gas comes into contact with the moving blades to rotate the turbine shaft, thereby driving the turbine. The rotation of the turbine shaft is used to power a compressor or other engine parts or accessories. The vane typically includes an airfoil and directs the combustion gas to the turbine blade in the next stage of the turbine. These combustion gases expose turbine blades and vanes to hot corrosive atmospheres.

ガスタービンエンジンのタービン動翼及び静翼はニッケル基超合金から製造できる。本明細書で用いる「ニッケル基」その他同様の用語は、その組成物が他の元素よりもニッケルを最も多く含むことを意味する。例えば、RENE(登録商標)80及びRENE(登録商標)77のような合金をガスタービンエンジンの低圧タービンセクションのタービン動翼及び静翼に使用し得る。RENE(登録商標)80及びRENE(登録商標)77の組成は公知であり、様々なガスタービンエンジン部品の製造に用いられている。RENE(登録商標)は超合金についてのTeledyne Industries社(米国カリフォルニア州ロサンジェルスの)の商標である。RENE(登録商標)77及びRENE(登録商標)80は通例以下の公称組成(重量%単位)を有する。   The turbine blades and vanes of a gas turbine engine can be made from a nickel-base superalloy. As used herein, “nickel-based” and other like terms mean that the composition contains the most nickel than other elements. For example, alloys such as RENE (R) 80 and RENE (R) 77 may be used for turbine blades and vanes in the low pressure turbine section of a gas turbine engine. The compositions of RENE® 80 and RENE® 77 are known and are used in the manufacture of various gas turbine engine components. RENE® is a trademark of Teledyne Industries, Inc. (Los Angeles, Calif.) For superalloys. RENE® 77 and RENE® 80 typically have the following nominal composition (in weight percent):

Figure 2007191791
RENE(登録商標)77及びRENE(登録商標)80のようなニッケル基超合金は、それらで得られる特性の組合せのゆえにガスタービンエンジン部品に用いられている。これらのニッケル基超合金の使用に伴う短所の一つは、それらの密度が比較的高いことである。密度が高いとガスタービンエンジンの総重量に影響する。例えば、公知のガスタービンエンジンでは、低圧タービンセクションは6〜7段の動翼と静翼を備えていることがある。あるタイプのエンジンでは、最初の2段の動翼と静翼はRENE(登録商標)80製から製造され、次の4段はRENE(登録商標)77から製造される。RENE(登録商標)80及びRENE(登録商標)77を低圧タービンセクションに使用すると、タービンセクションが比較的重くなり、エンジンの総重量に影響する。
Figure 2007191791
Nickel-based superalloys such as RENE® 77 and RENE® 80 are used in gas turbine engine components because of the combination of properties obtained with them. One disadvantage associated with the use of these nickel-base superalloys is their relatively high density. High density affects the total weight of the gas turbine engine. For example, in known gas turbine engines, the low pressure turbine section may include 6-7 stages of blades and vanes. In one type of engine, the first two stages of blades and vanes are manufactured from RENE® 80 and the next four stages are manufactured from RENE® 77. When RENE® 80 and RENE® 77 are used in a low pressure turbine section, the turbine section becomes relatively heavy and affects the total weight of the engine.

航空機及び航空機エンジン設計では、軽量化と効率向上が絶えず図られてきた。航空機は大型化しつつあり、エンジンの推力向上又は追加のエンジンが必要とされる。エンジンの大型化、エンジンの発生する推力の増大によって、維持及び製造コストの削減を達成できる。しかし、エンジンの大型化に伴い、エンジン内のすべてのエンジン部品も大型化する必要があるので、軽量化が最重要課題となる。さらに、十分な推力を与えるために追加のエンジンを航空機に設ける場合も、航空機の総重量が増す。こうした問題を補うため、ガスタービンエンジンの作動に必要とされる特性を保持しつつ重量が最小限となる材料を選択すべきである。低密度合金の使用によって個々の部品を軽量化できれば、エンジン効率、エンジン耐久性、ペイロード能力及び燃料コストの削減に顕著な利点が得られ、エンジン総重量の減少に関連する他の利点も得られる。従前の低密度合金の使用における短所は、低密度合金が、ガスタービンエンジンのタービンセクションで遭遇する過酷な高温条件での使用に必要とされる特性の組合せを有していないことであった。   Aircraft and aircraft engine designs have continually reduced weight and increased efficiency. Aircraft are becoming larger and require increased engine thrust or additional engines. Maintenance and reduction of manufacturing costs can be achieved by increasing the size of the engine and increasing the thrust generated by the engine. However, as the engine size increases, all engine components in the engine must be increased in size, so weight reduction is the most important issue. Furthermore, the total weight of the aircraft also increases when an additional engine is provided on the aircraft to provide sufficient thrust. To compensate for these problems, materials should be selected that minimize the weight while maintaining the properties required for gas turbine engine operation. If individual parts can be reduced in weight through the use of low-density alloys, there will be significant benefits in reducing engine efficiency, engine durability, payload capacity and fuel costs, as well as other benefits associated with reducing total engine weight. . A disadvantage in the use of previous low density alloys is that the low density alloys do not have the combination of properties required for use in the severe high temperature conditions encountered in the turbine section of gas turbine engines.

エンジンの軽量化の別の試みとして、ガスタービンエンジン部品をエポキシ複合材料のような軽量非金属材料で置き換えることがある。これらの材料は軽量で、特にエンジンの低温部分では望ましい機械的特性をもたらす。しかし、これらの材料では、エンジンの低圧タービン部分のような高温腐食性雰囲気に暴露されるガスタービンエンジン部品に必要とされる特性の組合せは得られない。
米国特許第6926754号明細書 米国特許第6905559号明細書 米国特許第6730264号明細書 米国特許第5823243号明細書 米国特許第5270122号明細書 米国特許第5019334号明細書 米国特許出願公開第2005/0178480号明細書 米国特許出願公開第2004/0202569号明細書 米国特許出願公開第2003/0051780号明細書 欧州特許出願公開第1561830号明細書 特開昭54−101005号公報 特開平10−030404号公報 国際公開第03/097888号パンフレット 国際公開第02/26015号パンフレット 国際公開第01/64964号パンフレット
Another attempt to reduce the weight of the engine is to replace gas turbine engine components with lightweight non-metallic materials such as epoxy composites. These materials are lightweight and provide desirable mechanical properties, especially in the cold part of the engine. However, these materials do not provide the combination of properties required for gas turbine engine components that are exposed to a hot corrosive atmosphere, such as the low pressure turbine portion of the engine.
US Pat. No. 6,926,754 US Pat. No. 6,905,559 US Pat. No. 6,730,264 US Pat. No. 5,823,243 US Pat. No. 5,270,122 US Pat. No. 5,019,334 US Patent Application Publication No. 2005/0178480 US Patent Application Publication No. 2004/0202569 US Patent Application Publication No. 2003/0051780 European Patent Application No. 1561830 JP 54-101005 A Japanese Patent Laid-Open No. 10-030404 International Publication No. 03/097888 Pamphlet International Publication No. 02/26015 Pamphlet International Publication No. 01/64964 Pamphlet

そこで、密度が低く、ガスタービンエンジンの低圧タービンセクションに存在する条件下での使用に適した特性を併せもつ、ガスタービンエンジンのタービンセクションでの使用に適した材料が必要とされている。   Accordingly, there is a need for materials suitable for use in the turbine section of a gas turbine engine that have low density and combine properties suitable for use under conditions present in the low pressure turbine section of a gas turbine engine.

本発明は、ニッケル基合金組成物であって、約8〜18重量%のコバルト、約12〜16重量%のクロム、約4〜8重量%のアルミニウム、約6重量%以下のタングステン、約0.5〜3.5重量%のチタン、約2〜6重量%のモリブデン、約0.05〜0.25重量%の炭素、約0.005〜0.025重量%のホウ素、約0.02〜0.1重量%のジルコニウム、約1.0重量%以下の鉄、約2.0重量%以下のレニウム、約2.0重量%以下のタンタル、約1.0重量%以下のハフニウム、残部のニッケル及び不可避不純物を含み、アルミニウムとチタンの合計重量百分率が約4.5〜13重量%である合金組成物を包含する。さらに、アルミニウム/チタン重量%比は約1:1を超え、好ましくは約2:1を超える。さらに、合金は、特に限定されないが、応力破断寿命、疲れ強さ、耐酸化性及び耐高温腐食性を始めとする特性を有する。これらの特性はRENE(登録商標)77及びRENE(登録商標)80のような従来の等軸多結晶ニッケル基超合金と同等又はそれらよりも優れている。   The present invention is a nickel-based alloy composition comprising about 8-18 wt% cobalt, about 12-16 wt% chromium, about 4-8 wt% aluminum, about 6 wt% or less tungsten, 5 to 3.5 wt% titanium, about 2 to 6 wt% molybdenum, about 0.05 to 0.25 wt% carbon, about 0.005 to 0.025 wt% boron, about 0.02 ~ 0.1 wt% zirconium, about 1.0 wt% or less iron, about 2.0 wt% or less rhenium, about 2.0 wt% or less tantalum, about 1.0 wt% or less hafnium, the balance And an alloy composition in which the total weight percentage of aluminum and titanium is about 4.5 to 13% by weight. Further, the aluminum / titanium weight percent ratio is greater than about 1: 1, preferably greater than about 2: 1. Further, the alloy has characteristics including, but not limited to, stress rupture life, fatigue strength, oxidation resistance and hot corrosion resistance. These properties are equivalent to or better than conventional equiaxed polycrystalline nickel-base superalloys such as RENE® 77 and RENE® 80.

本発明は、特に限定されないが、圧縮機動翼、圧縮機静翼、タービン静翼及びタービン動翼を始めとするガスタービンエンジン部品も包含する。本発明のニッケル基超合金から製造したガスタービンエンジン部品は密度が低く、エンジンの総重量を低減するが、上述の用途での使用に十分な機械的特性及び耐酸化/耐食性を与える。   The invention also includes gas turbine engine components including, but not limited to, compressor blades, compressor vanes, turbine vanes and turbine blades. Gas turbine engine components made from the nickel-base superalloy of the present invention have low density and reduce the overall weight of the engine, but provide sufficient mechanical properties and oxidation / corrosion resistance for use in the applications described above.

本発明は、表2に示す組成(重量%単位)を有する低密度ニッケル基超合金及びその製品を包含する。   The present invention encompasses low density nickel-base superalloys and products thereof having the compositions (in weight percent units) shown in Table 2.

Figure 2007191791
本発明の別の実施形態は、表3に示す組成(重量%単位)を有する低密度ニッケル基超合金及びその製品を包含する。
Figure 2007191791
Another embodiment of the present invention includes low density nickel-base superalloys and products thereof having the compositions (in weight percent units) shown in Table 3.

Figure 2007191791
本発明のニッケル基超合金には、慣用法で鋳造される等軸多結晶ミクロ組織含有合金が包含される。合金は、表2及び表3に示す合金組成物を真空溶解して溶湯を慣用法で鋳造することによって成形できる。次いで、γ相マトリックス中で望ましいγ′相を析出させるため熱処理を用いてもよい。本発明の合金を成形するための鋳造法としては、慣用のインベストメント鋳造法が挙げられ、RENE(登録商標)77及びRENE(登録商標)80のような従来の等軸多結晶ニッケル基超合金と同等又はそれらよりも優れた応力破断寿命、疲れ強さ、耐酸化性及び耐高温腐食性を与えるのに十分なγ′相を有する実質的に等軸の多結晶合金が得られる。
Figure 2007191791
The nickel-base superalloy of the present invention includes an equiaxed polycrystalline microstructure-containing alloy cast by a conventional method. The alloy can be formed by melting the alloy compositions shown in Table 2 and Table 3 in a vacuum and casting the molten metal by a conventional method. A heat treatment may then be used to precipitate the desired γ 'phase in the γ phase matrix. Casting methods for forming the alloys of the present invention include conventional investment casting methods such as conventional equiaxed polycrystalline nickel-based superalloys such as RENE® 77 and RENE® 80; A substantially equiaxed polycrystalline alloy having a γ 'phase sufficient to provide equivalent or better stress rupture life, fatigue strength, oxidation resistance and hot corrosion resistance is obtained.

本発明の利点の一つは、本発明のニッケル基超合金の密度が、ガスタービンエンジンのタービンセクションに従前使用されてきたニッケル基超合金の密度よりも低いことである。   One advantage of the present invention is that the density of the nickel-base superalloy of the present invention is lower than the density of nickel-base superalloys previously used in the turbine section of gas turbine engines.

本発明のもう一つの利点は、γ′相の形成もできる一方で、合金表面での酸化アルミニウム含有皮膜の形成に十分なアルミニウムを与えるアルミニウム/チタン比を本ニッケル基超合金組成物が保持していることであり、酸化及び高温腐食から合金を保護するとともに追加の皮膜に適した表面を形成する。   Another advantage of the present invention is that the nickel-base superalloy composition retains an aluminum / titanium ratio that provides sufficient aluminum to form an aluminum oxide-containing coating on the alloy surface, while the gamma prime phase can be formed. It protects the alloy from oxidation and hot corrosion and forms a suitable surface for additional coatings.

本発明のさらに別の利点は、本合金の特性が、RENE(登録商標)77及びRENE(登録商標)80のような実質的に等軸の慣用鋳造合金と同等又はそれらよりも優れていることである。RENE(登録商標)77及びRENE(登録商標)80の機械的特性及び耐酸化性/耐食性と同等又はそれらよりも優れているため、ガスタービンエンジンの作動パラメータを維持又は高めながら、タービンエンジン部品を低密度材料で置き換えることができる。   Yet another advantage of the present invention is that the properties of the alloy are comparable or superior to substantially equiaxed conventional casting alloys such as RENE® 77 and RENE® 80. It is. The mechanical properties and oxidation / corrosion resistance of RENE (R) 77 and RENE (R) 80 are equal to or superior to those of turbine engine components while maintaining or increasing operating parameters of the gas turbine engine. Can be replaced with low density material.

本発明のさらに別の利点は、本発明の合金を用いて製造したガスタービンエンジンが軽量化され、特にエンジン効率、エンジン耐久性、ペイロード能力及び燃料消費率の低減に顕著な利点がもたらされることである。   Yet another advantage of the present invention is that gas turbine engines manufactured using the alloys of the present invention are lighter, particularly providing significant advantages in reducing engine efficiency, engine durability, payload capacity and fuel consumption. It is.

本発明のその他の特徴及び利点は、本発明の原理を例示するために挙げた好ましい実施の形態についての詳細な説明から明らかとなろう。   Other features and advantages of the present invention will become apparent from the detailed description of the preferred embodiments given to illustrate the principles of the invention.

本発明は、ガスタービンエンジン部品用の低密度ニッケル基超合金を包含する。特に、本発明は、低密度ニッケル基超合金から製造されるガスタービンエンジンのタービン動翼及び静翼を包含する。   The present invention includes a low density nickel-base superalloy for gas turbine engine components. In particular, the present invention includes gas turbine engine turbine blades and vanes manufactured from low density nickel-base superalloys.

本発明の一実施形態は、約8〜11重量%のコバルト、約12〜16重量%のクロム、約4〜8重量%のアルミニウム、約4〜6重量%のタングステン、約0.5〜3.5重量%のチタン、約2〜6重量%のモリブデン、約0.05〜0.25重量%の炭素、約0.005〜0.025重量%のホウ素、約0.02〜0.1重量%のジルコニウム、約2.0重量%以下のレニウム、約2.0重量%以下のタンタル、約1.0重量%以下のハフニウム、残部のニッケル及び不可避不純物を含むニッケル基超合金を包含する。   One embodiment of the present invention includes about 8-11% cobalt, about 12-16% chromium, about 4-8% aluminum, about 4-6% tungsten, about 0.5-3 5 wt% titanium, about 2-6 wt% molybdenum, about 0.05-0.25 wt% carbon, about 0.005-0.025 wt% boron, about 0.02-0.1 Includes nickel-base superalloys containing weight percent zirconium, less than about 2.0 weight percent rhenium, less than about 2.0 weight percent tantalum, less than about 1.0 weight percent hafnium, the balance nickel and inevitable impurities. .

本発明の他の実施形態は、約12〜18重量%のコバルト、約13〜16重量%のクロム、約4〜8重量%のアルミニウム、約1〜3重量%のチタン、約2〜6重量%のモリブデン、約0.05〜0.25重量%の炭素、約0.005〜0.025重量%のホウ素、約0.01〜0.1重量%のジルコニウム、約1.0重量%以下の鉄、約2.0重量%以下のレニウム、約2.0重量%以下のタンタル、約1.0重量%以下のハフニウム、残部のニッケル及び不可避不純物を含むニッケル基超合金を包含する。   Other embodiments of the invention include about 12-18% cobalt, about 13-16% chromium, about 4-8% aluminum, about 1-3% titanium, about 2-6% % Molybdenum, about 0.05-0.25 wt% carbon, about 0.005-0.025 wt% boron, about 0.01-0.1 wt% zirconium, up to about 1.0 wt% A nickel-base superalloy containing about 2.0 wt% or less rhenium, about 2.0 wt% or less tantalum, about 1.0 wt% or less hafnium, the balance nickel and unavoidable impurities.

本発明の一実施形態に係るニッケル基超合金は、好ましくは従来の等軸多結晶ミクロ組織の鋳造合金よりも密度の低い組成物である。本発明の合金には、慣用法で鋳造される実質的に等軸の多結晶ミクロ組織を有する合金が包含される。合金を成形するには、まず元素状組成物を溶解する。鋳造のための溶解は、真空誘導溶解又は真空アーク溶解を始めとする適当な溶解プロセスを用いて実施できる。溶湯から不純物を取り除くため、追加の真空アーク再溶解、エレクトロスラグ再溶解及びそれらの組合せを始めとする追加の再溶解ステップを設けてもよい。次いで、所望のミクロ組織を得るため熱処理を行ってもよい。本発明の一実施形態では、合金組成物のアルミニウム/チタンの重量比を約1:1よりも大きく保つことによって低い密度が得られる。この比は、好ましくは、低密度合金を与えるのに十分な大きさの下限を有し、所定の特性を有するニッケル基超合金を与えるのに十分な低さの上限を有する。   The nickel-base superalloy according to an embodiment of the present invention is preferably a composition having a lower density than a conventional equiaxed polycrystalline microstructure cast alloy. The alloys of the present invention include alloys having a substantially equiaxed polycrystalline microstructure cast by conventional methods. To mold the alloy, the elemental composition is first dissolved. Melting for casting can be performed using any suitable melting process, including vacuum induction melting or vacuum arc melting. Additional remelting steps may be provided to remove impurities from the melt, including additional vacuum arc remelting, electroslag remelting, and combinations thereof. Next, heat treatment may be performed to obtain a desired microstructure. In one embodiment of the invention, low density is obtained by keeping the aluminum / titanium weight ratio of the alloy composition greater than about 1: 1. This ratio preferably has a lower limit large enough to give a low density alloy and an upper limit low enough to give a nickel-base superalloy having the predetermined properties.

アルミニウムとチタンの比及び総量は、慣用鋳造合金に比べて合金マトリックス中でのγ′相析出量が増すように規定される。γ′相析出物は通例Ni(Al、Ti)又はCo(Al、Ti)を含み、合金の破壊靭性をさほど低下させずに合金の主要な強化相をもたらす。チタン及びアルミニウムの量の増加に伴って、γ′相の形成に利用可能なチタン及びアルミニウムの量も増加する。さらに、アルミニウム/チタン比が高いほど、合金マトリックス中のγ′相の存在量も増す。γ′相の存在は、ガスタービンエンジン部品に用いられる合金に望ましい特性をもたらす。ニッケル基超合金は、好ましくは約5重量%を超えるアルミニウムとチタンの合計重量百分率を有する。アルミニウム/チタン比に加えてアルミニウムとチタンの総量を組み合わせることによって、合金の密度を、RENE(登録商標)80及びRENE(登録商標)77のような従来の鋳造合金よりも低くすることができる。 The ratio and total amount of aluminum and titanium are defined such that the amount of γ 'phase precipitation in the alloy matrix is increased compared to conventional cast alloys. The γ 'phase precipitates typically contain Ni 3 (Al, Ti) or Co 3 (Al, Ti) and provide the main strengthening phase of the alloy without significantly reducing the fracture toughness of the alloy. As the amount of titanium and aluminum increases, the amount of titanium and aluminum available to form the γ 'phase also increases. Furthermore, the higher the aluminum / titanium ratio, the greater the amount of γ 'phase present in the alloy matrix. The presence of the γ 'phase provides desirable properties for alloys used in gas turbine engine components. The nickel-base superalloy preferably has a total weight percentage of aluminum and titanium greater than about 5% by weight. By combining the total amount of aluminum and titanium in addition to the aluminum / titanium ratio, the density of the alloy can be made lower than conventional cast alloys such as RENE® 80 and RENE® 77.

γ′相の存在量の増加及び合金密度の低下だけでなく、アルミニウム量を増してアルミニウム/チタン比を好ましくは約1:1よりも大きくすると、過剰量のアルミニウムが合金外表面での酸化アルミニウム含有層の形成に利用できるようになる。これらの酸化物含有層は、雰囲気から保護をもたらし、耐酸化性及び耐高温腐食性を与えるだけでなく、遮熱コーティングのような追加の皮膜を設けるのに適した表面を形成する。また、過剰のアルミニウムは、損傷又はエロージョンを起こした表面部位で酸化アルミニウム含有皮膜が再生する自己修復皮膜特性をもたらす。   In addition to increasing the abundance of the γ 'phase and decreasing the alloy density, increasing the amount of aluminum and increasing the aluminum / titanium ratio, preferably greater than about 1: 1, will result in excess aluminum being aluminum oxide on the outer surface of the alloy. It becomes possible to use it for formation of a content layer. These oxide-containing layers not only provide protection from the atmosphere, provide oxidation resistance and hot corrosion resistance, but also form a surface suitable for providing additional coatings such as thermal barrier coatings. Excess aluminum also provides self-healing film properties in which the aluminum oxide-containing film regenerates at damaged or eroded surface sites.

本発明の別の実施形態では、合金組成物に強化元素を添加してもよい。W及びMoのような高密度元素は、ニッケル基超合金からなる部品全体の重さを大幅に増やす。これらの高密度元素の濃度は、Re、Ta、Hf及びそれらの組合せを含む少量の強化元素の添加によって低減させることができる。Re、Ta、Hf及びそれらの組合せを添加すると、材料の強度が増す。合金に存在するTa及びHfは、γ′相の固溶体強化によって合金をさらに強化する。合金中に存在するReは、γマトリックスの固溶体強化によって合金をさらに強化する。これらの強化元素を比較的少量添加すると、合金組成物のW及びMo使用量を低減できる。W及びMoの低減並びにRe、Ta、Hfのような少量の強化元素で合金組成物を強化できることは、全体として合金密度を下げる作用効果をもつ。合金のW濃度は、これらの代替強化元素の導入によって2%まで下げることができる。合金のMo濃度は、これらの代替強化元素の導入によって低減又は完全になくすことができる。好ましい実施形態では、W及び/又はMoをこれらの代替強化元素で置換することによって、本発明のAl:Ti比を有する合金よりも合金密度がさらに2%低下する。   In another embodiment of the present invention, a strengthening element may be added to the alloy composition. High density elements such as W and Mo greatly increase the weight of the entire component made of nickel-base superalloy. The concentration of these high density elements can be reduced by the addition of small amounts of strengthening elements including Re, Ta, Hf and combinations thereof. The addition of Re, Ta, Hf and combinations thereof increases the strength of the material. Ta and Hf present in the alloy further strengthen the alloy by solid solution strengthening of the γ 'phase. Re present in the alloy further strengthens the alloy by solid solution strengthening of the γ matrix. When a relatively small amount of these strengthening elements is added, the amount of W and Mo used in the alloy composition can be reduced. The reduction of W and Mo and the ability to strengthen the alloy composition with a small amount of strengthening elements such as Re, Ta and Hf have the effect of lowering the alloy density as a whole. The W concentration of the alloy can be reduced to 2% by introducing these alternative strengthening elements. The Mo concentration of the alloy can be reduced or completely eliminated by the introduction of these alternative strengthening elements. In a preferred embodiment, replacing W and / or Mo with these alternative strengthening elements further reduces the alloy density by 2% over the alloys having the Al: Ti ratio of the present invention.

実施例1Example 1

Figure 2007191791
表4に、RENE(登録商標)80の公称組成を有する比較例1と、標記の量のTi及びAlを有する実施例1を示す。アルミニウムとチタンはいずれもγ′形成元素であり、γ′相組織を形成して合金を強化する。比較例1は5重量%のTiと3重量%のAlを含み、密度は0.295lbs/inである。実施例1のニッケル基超合金は約9.5重量%のコバルト、約14重量%のクロム、約6重量%のアルミニウム、約4重量%のタングステン、約2重量%のチタン、約4重量%のモリブデン、約0.17重量%の炭素、約0.015重量%のホウ素、約0.03重量%のジルコニウム、残部のニッケル及び不可避不純物を含む。実施例1はAl+Tiの合計8重量%、Al:Ti比約3:1である。表4に示すように、実施例1の密度は0.287lbs/inである。実施例1の密度は、比較例1の密度よりも約3%低い。合金密度の3%の低下は、組立後のエンジンの総重量の約81lbs以上の低減に相当する。この密度低下によって、実施例1の合金から製造した部品の総重量は大幅に低減される。
Figure 2007191791
Table 4 shows Comparative Example 1 having a nominal composition of RENE® 80 and Example 1 having the indicated amounts of Ti and Al. Aluminum and titanium are both γ′-forming elements and form a γ ′ phase structure to strengthen the alloy. Comparative Example 1 contains 5% by weight of Ti and 3% by weight of Al, the density is 0.295lbs / in 3. The nickel-base superalloy of Example 1 is about 9.5 wt% cobalt, about 14 wt% chromium, about 6 wt% aluminum, about 4 wt% tungsten, about 2 wt% titanium, about 4 wt% Molybdenum, about 0.17 weight percent carbon, about 0.015 weight percent boron, about 0.03 weight percent zirconium, the balance nickel and inevitable impurities. Example 1 has a total of 8% by weight of Al + Ti and an Al: Ti ratio of about 3: 1. As shown in Table 4, the density of Example 1 is 0.287 lbs / in 3 . The density of Example 1 is about 3% lower than the density of Comparative Example 1. A 3% decrease in alloy density corresponds to a reduction of about 81 lbs or more in the total weight of the engine after assembly. This reduction in density significantly reduces the total weight of parts made from the alloy of Example 1.

実施例2Example 2

Figure 2007191791
表5に、実施例2のチタンとアルミニウムの相対的存在量及び密度を、RENE(商標)77の公称組成をもつ比較例2の密度と対比して示す。比較例2は、3.35重量%のTiと4.3重量%のAlを含み、密度は0.286lbs/inである。実施例2のニッケル基超合金は、約15重量%のコバルト、約14.3重量%のクロム、約6重量%のアルミニウム、約3重量%のチタン、約4.2重量%のモリブデン、約0.07重量%の炭素、約0.015重量%のホウ素、約0.04重量%のジルコニウム及び0.5重量%の鉄を含む。実施例2はAl+Tiの合計9重量%、Al:Ti比約2:1、密度0.279lbs/inである。実施例2の密度は、比較例2の密度よりも約3%低い。合金密度の3%の低下は、組立後のエンジンの総重量の約81lbs以上の低減に相当する。この密度低下によって、実施例2の合金から製造した部品の総重量は大幅に低減される。
Figure 2007191791
Table 5 shows the relative abundance and density of titanium and aluminum of Example 2 as compared to the density of Comparative Example 2 having a nominal composition of RENE ™ 77. Comparative Example 2 contains 3.35 wt% Ti and 4.3 wt% Al and has a density of 0.286 lbs / in 3 . The nickel-base superalloy of Example 2 has about 15 wt% cobalt, about 14.3 wt% chromium, about 6 wt% aluminum, about 3 wt% titanium, about 4.2 wt% molybdenum, about Contains 0.07 wt% carbon, about 0.015 wt% boron, about 0.04 wt% zirconium and 0.5 wt% iron. Example 2 has a total of 9% by weight of Al + Ti, an Al: Ti ratio of about 2: 1, and a density of 0.279 lbs / in 3 . The density of Example 2 is about 3% lower than the density of Comparative Example 2. A 3% decrease in alloy density corresponds to a reduction of about 81 lbs or more in the total weight of the engine after assembly. This reduction in density significantly reduces the total weight of parts made from the alloy of Example 2.

GE−92Bのような6段の低圧タービンを有するガスタービンエンジンにおいて、比較例1、2の高密度RENE(登録商標)77及びRENE(登録商標)80を実施例1、2の低密度合金に置き換えると、約81lbsの軽量化につながり、ガスタービンエンジンが大幅に軽量化される。   In a gas turbine engine having a six-stage low-pressure turbine such as GE-92B, the high-density RENE (registered trademark) 77 and the RENE (registered trademark) 80 of Comparative Examples 1 and 2 are used as the low-density alloys of Examples 1 and 2. Replacing leads to a weight reduction of about 81 lbs, and the gas turbine engine is significantly reduced in weight.

本発明を好ましい実施形態を参照して説明してきたが、本発明の技術的範囲内で様々な変更を加えることができ、均等物で要素を置換できることは当業者には明らかあろう。さらに、本発明の技術的範囲内で、特定の状態又は材料を本発明の教示に適合させるため多くの修正を加えることができる。したがって、本発明は、その最良の実施の形態として開示した特定の実施形態に限定されるものではなく、特許請求の範囲に属するあらゆる実施形態を包含する。   Although the invention has been described with reference to preferred embodiments, it will be apparent to those skilled in the art that various modifications can be made and elements can be substituted with equivalents within the scope of the invention. In addition, many modifications may be made to adapt a particular state or material to the teachings of the invention within the scope of the invention. Therefore, the present invention is not limited to the specific embodiment disclosed as the best mode, and includes all the embodiments belonging to the claims.

Claims (10)

実質的に等軸の多結晶ミクロ組織を有するニッケル基合金組成物であって、
約8〜18重量%のコバルト、約12〜16重量%のクロム、約4〜8重量%のアルミニウム、約6重量%以下のタングステン、約0.5〜3.5重量%のチタン、約2〜6重量%のモリブデン、約0.05〜0.25重量%の炭素、約0.005〜0.025重量%のホウ素、約0.02〜0.1重量%のジルコニウム、約1.0重量%以下の鉄、約2.0重量%以下のレニウム、約2.0重量%以下のタンタル、約1.0重量%以下のハフニウム、残部のニッケル及び不可避不純物を含み、
アルミニウムとチタンの合計重量百分率が約4.5〜13重量%であり、アルミニウム/チタン比が約1:1を超える、合金組成物。
A nickel-based alloy composition having a substantially equiaxed polycrystalline microstructure,
About 8-18% cobalt, about 12-16% chromium, about 4-8% aluminum, up to about 6% tungsten, about 0.5-3.5% titanium, about 2% ~ 6 wt% molybdenum, about 0.05 to 0.25 wt% carbon, about 0.005 to 0.025 wt% boron, about 0.02 to 0.1 wt% zirconium, about 1.0 Containing no more than wt% iron, no more than about 2.0 wt% rhenium, no more than about 2.0 wt% tantalum, no more than about 1.0 wt% hafnium, the balance nickel and inevitable impurities,
An alloy composition wherein the total weight percentage of aluminum and titanium is about 4.5-13 wt% and the aluminum / titanium ratio is greater than about 1: 1.
アルミニウム/チタン比が約2:1以上である、請求項1記載の合金。 The alloy of claim 1, wherein the aluminum / titanium ratio is about 2: 1 or greater. 約8〜11重量%のコバルト、約12〜16重量%のクロム、約4〜8重量%のアルミニウム、約4〜6重量%のタングステン、約0.5〜3.5重量%のチタン、約2〜6重量%のモリブデン、約0.05〜0.25重量%の炭素、約0.005〜0.025重量%のホウ素、約0.02〜0.1重量%のジルコニウム、約2.0重量%以下のレニウム、約2.0重量%以下のタンタル、約1.0重量%以下のハフニウム、残部のニッケル及び不可避不純物を含む、請求項1記載の合金。 About 8-11 wt% cobalt, about 12-16 wt% chromium, about 4-8 wt% aluminum, about 4-6 wt% tungsten, about 0.5-3.5 wt% titanium, about 2 to 6 wt% molybdenum, about 0.05 to 0.25 wt% carbon, about 0.005 to 0.025 wt% boron, about 0.02 to 0.1 wt% zirconium, about 2. The alloy of claim 1, comprising no more than 0 wt% rhenium, no more than about 2.0 wt% tantalum, no more than about 1.0 wt% hafnium, the balance nickel and inevitable impurities. 約9〜10重量%のコバルト、約13〜15重量%のクロム、約5〜7重量%のアルミニウム、約3〜5重量%のタングステン、約1〜3重量%のチタン、約3〜5重量%のモリブデン、約0.1〜0.2重量%の炭素、約0.010〜0.020重量%のホウ素、約0.02〜0.05重量%のジルコニウム、約1.0重量%以下のレニウム、約1.0重量%以下のタンタル、約1.0重量%以下のハフニウム、残部のニッケル及び不可避不純物を含む、請求項3記載の合金。 About 9-10% cobalt, about 13-15% chromium, about 5-7% aluminum, about 3-5% tungsten, about 1-3% titanium, about 3-5% % Molybdenum, about 0.1-0.2% carbon, about 0.010-0.020% boron, about 0.02-0.05% zirconium, up to about 1.0% by weight 4. The alloy of claim 3, comprising less than about 1.0% by weight of rhenium, less than about 1.0% by weight of hafnium, the balance nickel and unavoidable impurities. 約9.5重量%のコバルト、約14重量%のクロム、約6重量%のアルミニウム、約4重量%のタングステン、約1重量%のチタン、約4重量%のモリブデン、約0.17重量%の炭素、約0.015重量%のホウ素、約0.05重量%のジルコニウム、残部のニッケル及び不可避不純物を含む、請求項4記載の合金。 About 9.5 wt% cobalt, about 14 wt% chromium, about 6 wt% aluminum, about 4 wt% tungsten, about 1 wt% titanium, about 4 wt% molybdenum, about 0.17 wt% 5. The alloy of claim 4, comprising about 0.015% by weight boron, about 0.05% by weight zirconium, the balance nickel and unavoidable impurities. 約12〜18重量%のコバルト、約13〜16重量%のクロム、約4〜8重量%のアルミニウム、約1〜3重量%のチタン、約2〜6重量%のモリブデン、約0.05〜0.25重量%の炭素、約0.005〜0.025重量%のホウ素、約0.01〜0.1重量%のジルコニウム、約1.0重量%以下の鉄、約2.0重量%以下のレニウム、約2.0重量%以下のタンタル、約1.0重量%以下のハフニウム、残部のニッケル及び不可避不純物を含む、請求項1記載の合金。 About 12-18% cobalt, about 13-16% chromium, about 4-8% aluminum, about 1-3% titanium, about 2-6% molybdenum, about 0.05- 0.25 wt% carbon, about 0.005-0.025 wt% boron, about 0.01-0.1 wt% zirconium, up to about 1.0 wt% iron, about 2.0 wt% The alloy of claim 1 comprising the following rhenium, no more than about 2.0 wt% tantalum, no more than about 1.0 wt% hafnium, the balance nickel and inevitable impurities. 約13〜16重量%のコバルト、約14〜15重量%のクロム、約5〜7重量%のアルミニウム、約2〜3重量%のチタン、約3〜5重量%のモリブデン、約0.10〜0.20重量%の炭素、約0.010〜0.020重量%のホウ素、約0.02〜0.05重量%のジルコニウム、約0.75重量%以下の鉄、約1.0重量%以下のレニウム、約1.0重量%以下のタンタル、約1.0重量%以下のハフニウム、残部のニッケル及び不可避不純物を含む、請求項6記載の合金。 About 13-16 wt% cobalt, about 14-15 wt% chromium, about 5-7 wt% aluminum, about 2-3 wt% titanium, about 3-5 wt% molybdenum, about 0.10 0.20 wt% carbon, about 0.010 to 0.020 wt% boron, about 0.02 to 0.05 wt% zirconium, up to about 0.75 wt% iron, about 1.0 wt% The alloy of claim 6 comprising the following rhenium, up to about 1.0 wt% tantalum, up to about 1.0 wt% hafnium, the balance nickel and inevitable impurities. 約15重量%のコバルト、約14.3重量%のクロム、約6重量%のアルミニウム、約3重量%のチタン、約4.2重量%のモリブデン、約0.07重量%の炭素、約0.015重量%のホウ素、約0.05重量%のジルコニウム、約0.5重量%の鉄、残部のニッケル及び不可避不純物を含む、請求項7記載の合金。 About 15% cobalt, about 14.3% chromium, about 6% aluminum, about 3% titanium, about 4.2% molybdenum, about 0.07% carbon, about 0% The alloy of claim 7 comprising: .015 weight percent boron, about 0.05 weight percent zirconium, about 0.5 weight percent iron, the balance nickel and unavoidable impurities. 前記合金が約0.287lbs/in未満の密度を有する、請求項1記載の合金。 The alloy of claim 1, wherein the alloy has a density of less than about 0.287 lbs / in 3 . 前記合金が約0.279lbs/in未満の密度を有する、請求項1記載の合金。 The alloy of claim 1, wherein the alloy has a density of less than about 0.279 lbs / in 3 .
JP2006342208A 2005-12-21 2006-12-20 Nickel-based superalloy composition Pending JP2007191791A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US31449505A 2005-12-21 2005-12-21

Publications (1)

Publication Number Publication Date
JP2007191791A true JP2007191791A (en) 2007-08-02

Family

ID=37757117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006342208A Pending JP2007191791A (en) 2005-12-21 2006-12-20 Nickel-based superalloy composition

Country Status (3)

Country Link
EP (1) EP1801251B1 (en)
JP (1) JP2007191791A (en)
DE (1) DE602006017324D1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052688A (en) * 2009-08-31 2011-03-17 General Electric Co <Ge> Process and alloy for turbine blade and the blade formed by using them
JP2019516012A (en) * 2016-04-20 2019-06-13 アーコニック インコーポレイテッドArconic Inc. Aluminum, cobalt, chromium and nickel FCC materials and products made therefrom

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103952595A (en) * 2014-05-15 2014-07-30 中国人民解放军第五七一九工厂 Laser-cladding powder for repairing directional solidified nickel-based high-temperature alloy blade
GB2539959A (en) 2015-07-03 2017-01-04 Univ Oxford Innovation Ltd A Nickel-based alloy
GB2554898B (en) 2016-10-12 2018-10-03 Univ Oxford Innovation Ltd A Nickel-based alloy
US10793934B2 (en) 2017-05-02 2020-10-06 United Technologies Corporation Composition and method for enhanced precipitation hardened superalloys
RU2754941C1 (en) 2018-05-01 2021-09-08 Сименс Энерджи, Инк. Welding additive material for nickel-based superalloys
EP3572540A1 (en) 2018-05-23 2019-11-27 Rolls-Royce plc Nickel-base superalloy
US10577679B1 (en) 2018-12-04 2020-03-03 General Electric Company Gamma prime strengthened nickel superalloy for additive manufacturing
CN109504879A (en) * 2018-12-28 2019-03-22 西安欧中材料科技有限公司 A kind of aero-engine nickel base superalloy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002167636A (en) * 2000-10-30 2002-06-11 United Technol Corp <Utc> Low density oxidation resistant superalloy material capable of thermal barrier coating retention without bond coat

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3536542A (en) * 1968-05-31 1970-10-27 Gen Electric Alloy heat treatment
GB1224804A (en) * 1968-10-18 1971-03-10 Gen Electric Co Ltd Improvements in or relating to sintered nickel-based alloys
US4574015A (en) * 1983-12-27 1986-03-04 United Technologies Corporation Nickle base superalloy articles and method for making
US5143563A (en) * 1989-10-04 1992-09-01 General Electric Company Creep, stress rupture and hold-time fatigue crack resistant alloys

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002167636A (en) * 2000-10-30 2002-06-11 United Technol Corp <Utc> Low density oxidation resistant superalloy material capable of thermal barrier coating retention without bond coat

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052688A (en) * 2009-08-31 2011-03-17 General Electric Co <Ge> Process and alloy for turbine blade and the blade formed by using them
JP2019516012A (en) * 2016-04-20 2019-06-13 アーコニック インコーポレイテッドArconic Inc. Aluminum, cobalt, chromium and nickel FCC materials and products made therefrom

Also Published As

Publication number Publication date
EP1801251B1 (en) 2010-10-06
EP1801251A1 (en) 2007-06-27
DE602006017324D1 (en) 2010-11-18

Similar Documents

Publication Publication Date Title
US11001913B2 (en) Cast nickel-base superalloy including iron
JP2007191791A (en) Nickel-based superalloy composition
JP5278936B2 (en) Heat resistant superalloy
EP1717326B1 (en) Ni-based alloy member, method of producing the alloy member and turbine engine part
EP3183372B1 (en) Enhanced superalloys by zirconium addition
EP2778241A1 (en) Heat-resistant nickel-based superalloy
EP2420584B1 (en) Nickel-based single crystal superalloy and turbine blade incorporating this superalloy
JP2007162041A (en) Ni-BASE SUPERALLOY WITH HIGH STRENGTH AND HIGH DUCTILITY, MEMBER USING THE SAME, AND MANUFACTURING METHOD OF THE MEMBER
JP2009084684A (en) Nickel-based alloy for turbine rotor of steam turbine, and turbine rotor of steam turbine
EP2813590B1 (en) Ni based forged alloy, and turbine disc, turbine spacer and gas turbine each using the same
US6554920B1 (en) High-temperature alloy and articles made therefrom
EP3862448A1 (en) Nickel-based superalloys
JP2003231933A (en) Directionally solidified articles and nickel base superalloy
JP2009149976A (en) Ternary nickel eutectic alloy
JP2013199680A (en) Nickel-based alloy, cast article, gas turbine blade and gas turbine
EP2520678B1 (en) Nickel-base alloy
JPH0211660B2 (en)
JP2004256840A (en) COMPOSITE REINFORCED TYPE Ni BASED SUPERALLOY, AND PRODUCTION METHOD THEREFOR
JPH1121645A (en) Ni-base superalloy having heat resistance, production of ni-base superalloy having heat resistance, and ni-base superalloy parts having heat resistance
JP2006016671A (en) Ni-BASED ALLOY MEMBER, MANUFACTURING METHOD THEREFOR, TURBINE ENGINE PARTS, WELDING MATERIAL AND MANUFACTURING METHOD THEREFOR
JP2009221545A (en) Ni-BASED ALLOY FOR TURBINE ROTOR OF STEAM TURBINE, AND TURBINE ROTOR OF STEAM TURBINE
JPH10317080A (en) Ni(nickel)-base superalloy, production of ni-base superalloy, and ni-base superalloy parts
KR20110114928A (en) Ni base single crystal superalloy with good creep property
US11739398B2 (en) Nickel-based superalloy
KR102340057B1 (en) Ni base single crystal superalloy and Method of manufacturing thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20091215

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD04 Notification of resignation of power of attorney

Effective date: 20091215

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120921

A131 Notification of reasons for refusal

Effective date: 20120925

Free format text: JAPANESE INTERMEDIATE CODE: A131

A601 Written request for extension of time

Effective date: 20121219

Free format text: JAPANESE INTERMEDIATE CODE: A601

A602 Written permission of extension of time

Effective date: 20121225

Free format text: JAPANESE INTERMEDIATE CODE: A602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130723

A602 Written permission of extension of time

Effective date: 20130726

Free format text: JAPANESE INTERMEDIATE CODE: A602

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130823

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130828

A521 Written amendment

Effective date: 20130920

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A02 Decision of refusal

Effective date: 20140304

Free format text: JAPANESE INTERMEDIATE CODE: A02