EP1801251A1 - Nickel-based superalloy composition - Google Patents

Nickel-based superalloy composition Download PDF

Info

Publication number
EP1801251A1
EP1801251A1 EP06126538A EP06126538A EP1801251A1 EP 1801251 A1 EP1801251 A1 EP 1801251A1 EP 06126538 A EP06126538 A EP 06126538A EP 06126538 A EP06126538 A EP 06126538A EP 1801251 A1 EP1801251 A1 EP 1801251A1
Authority
EP
European Patent Office
Prior art keywords
alloy
aluminum
titanium
nickel
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06126538A
Other languages
German (de)
French (fr)
Other versions
EP1801251B1 (en
Inventor
Ramgopal Darolia
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of EP1801251A1 publication Critical patent/EP1801251A1/en
Application granted granted Critical
Publication of EP1801251B1 publication Critical patent/EP1801251B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0433Iron group; Ferrous alloys, e.g. steel
    • F05C2201/0466Nickel

Definitions

  • the present invention is directed to a nickel-based superalloy composition.
  • the present invention is directed to a nickel-based superalloy composition for gas turbine engine components, such as low pressure turbine blades or vane segments, for use in gas turbine engines.
  • a gas turbine engine air is pressurized in a compressor, mixed with fuel in a combustor and is ignited to generate hot combustion gases.
  • the hot combustion gases flow into a turbine section of the engine.
  • the turbine section of the engine typically includes a plurality of stages that may include a combination of turbine blades and turbine vanes.
  • the expanding combustion gases drive the turbine by contacting the blades that rotate a turbine shaft.
  • the rotation of the turbine shaft is utilized to power the compressor and other engine or accessory components.
  • the vanes typically include an airfoil configuration and guide the combustion gases to the turbine blades of the next stage of the compressor. These combustion gases expose the turbine blades and vanes to high temperatures and corrosive atmospheres.
  • the turbine blades and vanes of a gas turbine engine may be fabricated from nickel-based superalloys.
  • nickel-base nickel-based or the similar, means that the composition has more nickel present than any other element.
  • alloys such as RENE ® 80 and RENE ® 77 may be used in the low pressure turbine section of the gas turbine engine as turbine blades and vanes.
  • the compositions of RENE ® 80 and RENE ® 77 are known and have been utilized in the fabrication of a variety of gas turbine engine components.
  • RENE ® is a trademark of Teledyne Industries, Inc., Los Angeles, CA for superalloy metals.
  • RENE ® 77 and RENE ® 80 typically have the following nominal compositions in weight percent: TABLE 1 Alloy Ni Co Cr Al W Ti Mo C B Zr Fe Density (lbs/in 3 ) RENE ® 80 Balance 9.5 14 3 4 5 4 0.17 0.015 0.03 0.295 RENE ® 77 Balance 15 14.6 4.3 0 3.35 4.2 0.07 0.015 0.04 0.5 0.287
  • Nickel-based superalloys such as RENE ® 77 and RENE ® 80, are used in gas turbine engine components for the combination of properties that they provide.
  • One of the drawbacks to the use of these nickel-based superalloys is the relatively high density of these alloys. The high density contributes to the total weight of the gas turbine engine.
  • the low pressure turbine section may include six to seven stages of blades and vanes.
  • One type of engine may include the first two stages having both the blades and vanes of these two stages made out of RENE ® 80, and the later four stages being made out of RENE ® 77.
  • the use of RENE ® 80 and RENE ® 77 in the low pressure turbine section results in a relatively heavy turbine section, contributing to the total weight of the engine.
  • Aircraft and aircraft engine design have always strived for reduced weight and greater efficiency. Aircraft are becoming larger, requiring more thrust from the engines or additional engines. Reduced maintenance cost and initial cost can be achieved by enlarging the engine, increasing the thrust developed by the engines. However, as the engines grow in size, weight reduction becomes paramount as all the engine components within the engine, likewise, are required to grow. Further, additional engines on an aircraft in order to provide sufficient thrust likewise increase the total weight of the aircraft. In order to offset these problems, materials should be selected to minimize weight, while maintaining the required properties for gas turbine engine operation. A reduction in weight of individual components due to the use of lower density alloys provides significant advantages in engine efficiency, engine durability, payload capacity, lower fuel cost and other advantages relating to the lower total weight of the engine. The drawback to using lower density alloys previously has been that the lower density alloys do not have the combination of properties that are required for use in harsh, high-temperature conditions experienced in the turbine section of the gas turbine engine.
  • the present invention includes a nickel-based alloy composition including from about 8 % to about 18 % cobalt, from about 12 % to about 16 % chromium, from about 4 % to about 8 % aluminum, up to about 6 % tungsten, from about 0.5 % to about 3.5 % titanium, from about 2 % to about 6 % molybdenum, from about 0.05 % to about 0.25 % carbon, from about 0.005 % to about 0.025 % boron, from about 0.02 % to about 0.1 % zirconium, up to about 1.0% iron, up to about 2.0% rhenium, up to about 2.0% tantalum, up to about 1.0 % hafnium, balance essentially nickel and incidental impurities, wherein the sum weight percent of aluminum and titanium is from about 4.5 wt% to about 13 wt%.
  • the ratio of the weight percentage of aluminum to titanium is greater than about 1:1, preferably greater than about 2:1.
  • the alloy has properties, including, but not limited to stress rupture life, fatigue strength, oxidation resistance and hot corrosion resistance that are equal to or greater than conventional polycrystalline equiaxed nickel-based superalloys, such as RENE ® 77 and RENE ® 80.
  • the present invention also includes gas turbine engine components, including, but not limited to compressor blades, compressor vanes, turbine vanes, and turbine blades.
  • gas turbine engine components including, but not limited to compressor blades, compressor vanes, turbine vanes, and turbine blades.
  • the gas turbine engine components fabricated from the nickel-based superalloys, according to the invention have a lower density, providing a reduced total engine weight while providing acceptable mechanical properties and oxidation/corrosion resistance for use in the above-listed applications.
  • the present invention includes a lower density nickel-based superalloy and articles fabricated therefrom comprising, in weight percent, the composition shown in TABLE 2.
  • TABLE 2 Typical Alloy Compositions (in weight %) Ni Balance Balance Balance Co about 8 to about 11 about 9 to about 10 about 9.5 Cr about 12 to about 16 about 13 to about 15 about 14 Al about 4 to about 8 about 5 to about 7 about 6 W about 4 to about 6 about 3 to about 5 about 4 Ti about 0.5 to about 3.5 about 1 to about 3 about 1 Mo about 2 to about 6 about 3 to about 5 about 4 C about 0.05 to about 0.25 about 0.1 to about 0.2 about 0.17 B about 0.005 to about 0.025 about 0.010 to about 0.020 about 0.015 Zr about 0.02 to about 0.1 about 0.02 to about 0.05 about 0.05 Fe up to about 1.0 up to about 0.5 Re up to about 2.0 up to about 1.0 Ta up to about 2.0 up to about 1.0 Hf up to about 1.0 up to about 0.5 Al + Ti about 4.5 to about 11.5 about 6 to
  • Another embodiment of the present invention includes a lower density nickel-based superalloy and articles fabricated therefrom comprising, in weight percent, having the composition shown in TABLE 3.
  • TABLE 3 Typical Alloy Compositions (in weight %) Ni Balance Balance Balance Co about 12 to about 18 about 13 to about 16 about 15 Cr about 13 to about 16 about 14 to about 15 about 14.3 Al about 4 to about 8 about 5 to about 7 about 6 W up to about 1 up to about 0.5 about 0 Ti about 1 to about 3 about 2 to about 3 about 3 Mo about 2 to about 6 about 3 to about 5 about 4.2 C about 0.05 to about 0.25 about 0.1 to about 0.2 about 0.07 B about 0.005 to about 0.025 about 0.010 to about 0.020 about 0.015 Zr about 0.01 to about 0.1 about 0.05 to about 0.1 about 0.05 Fe up to about 1.0 up to about 0.75 about 0.5 Re up to about 2.0 up to about 1.0 Ta up to about 2.0 up to about 1.0 Hf up to about 1.0 up to about 0.5 Al + Ti about 4.5 to
  • the nickel-based superalloys according to the present invention include conventionally cast polycrystalline equiaxed microstructure containing alloys.
  • the alloys may be formed by vacuum melting alloy constituents, as shown in TABLES 2 and 3 and conventionally casting the melt.
  • Subsequent heat treatment may be used to desirably precipitate the gamma-prime (i.e., ⁇ ') phase into the gamma (i.e., ⁇ ) phase matrix.
  • the casting process for forming the alloy of the present invention may include conventional investment casting to polycrystalline substantially equiaxed alloy having sufficient ⁇ ' phase to provide stress rupture life, fatigue strength, oxidation resistance and hot corrosion resistance equal to or greater than conventional polycrystalline equiaxed nickel-based superalloys, such as RENE ® 77 and RENE ® 80.
  • An advantage of the present invention is that the nickel-based superalloy of the present invention has a density that is less than the density of nickel-based superalloys that have been previously used in the turbine section of the gas turbine engine.
  • nickel-based superalloy composition maintains an aluminum to titanium ratio that provides sufficient aluminum to form an aluminum oxide containing coating on the alloy surface, which further protects the alloy from oxidation and hot corrosion and forms a surface suitable for additional coatings, while also allowing the ⁇ ' phase to form.
  • Still another advantage of the present invention is that the properties of the alloys equal or exceed the properties of substantially equiaxed, conventionally cast alloys, such as RENE ® 77 and RENE ® 80.
  • the meeting or exceeding of the mechanical properties and oxidation/corrosion resistance properties of RENE ® 77 and RENE ® 80 permits the replacement of turbine engine components with lower density materials, while maintaining or exceeding operating parameters for the gas turbine engine.
  • Still another advantage of the present invention is that gas turbine engines fabricated using the alloys of the present invention are lighter, providing significant advantages in, among other things, engine efficiency, engine durability, payload capacity, and lower specific fuel consumption.
  • the present invention includes lower density nickel-based superalloys for use in gas turbine engine components.
  • the present invention includes gas turbine engine turbine blades and vanes fabricated from lower density nickel-based superalloys.
  • One embodiment of the present invention includes a nickel-based superalloy comprising, in weight percent, from about 8 % to about 11 % cobalt, from about 12 % to about 16 % chromium, from about 4 % to about 8 % aluminum, from about 4 % to about 6 % tungsten, from about 0.5 % to about 3.5 % titanium, from about 2 % to about 6 % molybdenum, from about 0.05 % to about 0.25 % carbon, from about 0.005 % to about 0.025 % boron, from about 0.02 % to about 0.1 % zirconium, up to about 2.0% rhenium, up to about 2.0% tantalum, up to about 1.0 % hafnium, balance essentially nickel and incidental impurities.
  • Another embodiment of the present invention includes a nickel-based superalloy comprising, in weight percent, from about 12 % to about 18 % cobalt, from about 13 % to about 16 % chromium, from about 4 % to about 8 % aluminum, from about 1 % to about 3 % titanium, from about 2 % to about 6 % molybdenum, from about 0.05 % to about 0.25 % carbon, from about 0.005 % to about 0.025 % boron, from about 0.01 % to about 0.1 % zirconium, up to about 1.0 % iron, up to about 2.0% rhenium, up to about 2.0% tantalum, up to about 1.0 % hafnium, balance essentially nickel and incidental impurities.
  • the nickel-based superalloy according to an embodiment of the invention is preferably a composition having a low density compared to conventional polycrystalline equiaxed microstructure cast alloys.
  • the alloy of the present invention includes a conventionally cast alloy having a polycrystalline substantially equiaxed microstructure.
  • the elemental composition is first melted. Melting for casting purposes may take place using any suitable melting process, including vacuum-induction melting or vacuum-arc melting. Additional remelting steps may also be applied to remove impurities from the melt, including additional vacuum-arc remelting, electroslab remelting and combinations thereof. Subsequent heat treatment may be applied to provide the desired microstructure.
  • a lower density is provided by maintaining a ratio of aluminum to titanium in the alloy composition greater than about 1:1 by weight.
  • the ratio is preferably sufficiently large to provide a lower density alloy, but sufficiently low to provide the nickel-based superalloy with the properties.
  • the ratio of the aluminum to titanium and the total amount of aluminum and titanium is provided to increase the amount of ⁇ ' phase precipitated into the alloy matrix as compared to conventionally cast alloys.
  • the ⁇ ' phase precipitate typically includes Ni 3 (Al,Ti) or Co 3 (Al,Ti), which provides the primary strengthening phase of the alloy, without significant lowering the fracture toughness of the alloy.
  • the amount of titanium and aluminum increases, the amount of titanium and aluminum available to form the ⁇ ' phase likewise increases.
  • the greater the ratio of aluminum to titanium the greater the presence of the ⁇ ' phase in the alloy matrix.
  • the presence of ⁇ ' phase provides properties that are desirable in alloys used in gas turbine engine components.
  • the nickel-based superalloy preferably includes a combined weight percent of aluminum and titanium greater than about 5 wt%.
  • the combination of the sum of the aluminum and titanium in addition to the ratio of aluminum and titanium also permits the alloy to have a density lower than conventional cast alloys, such as RENE ® 80 and RENE ® 77.
  • the increase in the amount of aluminum and the ratio of aluminum to titanium permits an excess amount of aluminum to be available to form aluminum oxide-containing layers on the exterior surface of the alloy.
  • These oxide-containing layers provide protections against the atmosphere, providing oxidation resistance and hot corrosion resistance, as well as forming a surface favorable to providing subsequent coatings, such as thermal barrier coatings.
  • the excess aluminum provides self-healing coating properties, wherein aluminum oxide containing coatings regenerate in locations on the surface where the coatings have been damaged or eroded.
  • strengthening elements may be added to the alloy composition.
  • High density elements such as W and Mo, add significant weight to the overall component formed of the nickel-based superalloy.
  • concentrations of these high density elements may be reduced by the addition of smaller amounts of strengthening elements including Re, Ta, Hf and combinations thereof.
  • the addition of Re, Ta, Hf and combinations thereof increases the strength of the material.
  • Ta and Hf present in the alloy provide further strengthening of the alloy by solid solution strengthening of the ⁇ ' phase.
  • Re present in the alloy provides further strengthening of the alloy by solid solution strengthening of the ⁇ matrix.
  • the addition of relatively small amounts of these strengthening elements permits reduction in the use of W and Mo in the alloy composition.
  • the reduction of W and Mo and the ability to strengthen the alloy composition with smaller amounts of strengthening elements, such as Re, Ta, Hf, has the overall effect of reducing the density of the alloy.
  • the concentrations of W may be reduced to as low as 2 % in the alloy by introduction of these alternate strengthening elements.
  • the concentrations of Mo may be reduced or eliminated in the alloy by introduction of these alternate strengthening elements.
  • the density of the alloy is reduced an additional 2% from the alloy having the Al:Ti ratio of the present invention by substitution of these alternate strengthening elements for W and/or Mo.
  • Example 1 Table 3 shows the Comparative Example 1 having a nominal composition of RENE ® 80 and Example 1 having the shown amounts of Ti and Al. Aluminum and titanium are both ⁇ ' formers and form the ⁇ ' phase structure, which strengthens the alloy. Comparative Example 1 includes 5 wt % Ti and 3 wt % Al, and has a density of 0.295 lbs/in 3 .
  • Example 1 includes a nickel-based alloy that includes, in weight percent, about 9.5 % cobalt, about 14 % chromium, about 6 % aluminum, about 4 % tungsten, about 2 % titanium, about 4 % molybdenum, about 0.17 % carbon, about 0.015 % boron, about 0.03 % zirconium, balance essentially nickel and incidental impurities.
  • Example 1 includes a total of 8 wt % Al + Ti, with an Al:Ti ratio of about 3:1. As shown in Table 3, Example 1 has a density of 0.287 1bs/in 3 . The density of Example 1 is about 3% less than the density for Comparative Example 1.
  • the 3% density reduction in the alloy may correspond to a reduction in total weight of the assembled engine of about 81 lbs more. This reduction in density yields significant reductions in the total weight of the component fabricated from the alloy of Example 1.
  • Example 2 9 2 0.279 * Comparative Example 2 includes a nominal composition of RENE ® 77
  • Example 2 Table 4 shows the relative presence of titanium and aluminum and density of Example 2 in comparison to the density of Comparative Example 2, which is a nominal composition of RENE TM 77.
  • Comparative Example 2 includes 3.35 wt % Ti and 4.3wt % Al, and has a density of 0.286 lbs/in 3 .
  • Example 2 includes a nickel-based alloy that includes, in weight percent, about 15 % cobalt, about 14.3 % chromium, about 6 % aluminum, about 3 % titanium, about 4.2 % molybdenum, about 0.07 % carbon, about 0.015 % boron, about 0.04 % zirconium and about 0.5 % iron.
  • Example 2 includes a total of 9 wt % Al+Ti, with an Al:Ti ratio of about 2:1, has a density of 0.279 lbs/in 3 .
  • the density of Example 2 is about 3 % less than the density for Comparative Example 2.
  • the 3% density reduction in the alloy may correspond to a reduction in total weight of the assembled engine of about 81 lbs more. This reduction in density yields significant reductions in total weight of the component fabricated from the alloy of Example 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

A nickel-based alloy composition and turbine vanes and blades including from about 8 % to about 18 % cobalt, from about 12 % to about 16 % chromium, from about 4 % to about 8 % aluminum, up to about 6 % tungsten, from about 0.5 % to about 3.5 % titanium, from about 2 % to about 6 % molybdenum, from about 0.05 % to about 0.25 % carbon, from about 0.005 % to about 0.025 % boron, from about 0.02 % to about 0.1 % zirconium, up to about 1.0% iron, up to about 2.0% rhenium, up to about 2.0% tantalum, up to about 1.0 % hafnium, balance essentially nickel and incidental impurities, wherein the sum weight percent of aluminum and titanium is from about 4.5 wt% to about 13 wt%. In addition, the ratio of the weight percentage of aluminum to titanium is greater than about 1:1, preferably greater than about 2:1.

Description

    FIELD OF THE INVENTION
  • The present invention is directed to a nickel-based superalloy composition. In particular, the present invention is directed to a nickel-based superalloy composition for gas turbine engine components, such as low pressure turbine blades or vane segments, for use in gas turbine engines.
  • BACKGROUND OF THE INVENTION
  • In a gas turbine engine, air is pressurized in a compressor, mixed with fuel in a combustor and is ignited to generate hot combustion gases. The hot combustion gases flow into a turbine section of the engine. The turbine section of the engine typically includes a plurality of stages that may include a combination of turbine blades and turbine vanes. The expanding combustion gases drive the turbine by contacting the blades that rotate a turbine shaft. The rotation of the turbine shaft is utilized to power the compressor and other engine or accessory components. The vanes typically include an airfoil configuration and guide the combustion gases to the turbine blades of the next stage of the compressor. These combustion gases expose the turbine blades and vanes to high temperatures and corrosive atmospheres.
  • The turbine blades and vanes of a gas turbine engine may be fabricated from nickel-based superalloys. As used herein, "nickel-base", "nickel-based" or the similar, means that the composition has more nickel present than any other element. For example, alloys such as RENE® 80 and RENE® 77 may be used in the low pressure turbine section of the gas turbine engine as turbine blades and vanes. The compositions of RENE® 80 and RENE® 77 are known and have been utilized in the fabrication of a variety of gas turbine engine components. RENE® is a trademark of Teledyne Industries, Inc., Los Angeles, CA for superalloy metals. RENE® 77 and RENE® 80 typically have the following nominal compositions in weight percent: TABLE 1
    Alloy Ni Co Cr Al W Ti Mo C B Zr Fe Density (lbs/in3)
    RENE® 80 Balance 9.5 14 3 4 5 4 0.17 0.015 0.03 0.295
    RENE® 77 Balance 15 14.6 4.3 0 3.35 4.2 0.07 0.015 0.04 0.5 0.287
  • Nickel-based superalloys, such as RENE® 77 and RENE® 80, are used in gas turbine engine components for the combination of properties that they provide. One of the drawbacks to the use of these nickel-based superalloys is the relatively high density of these alloys. The high density contributes to the total weight of the gas turbine engine. For example, in a known gas turbine engine, the low pressure turbine section may include six to seven stages of blades and vanes. One type of engine may include the first two stages having both the blades and vanes of these two stages made out of RENE® 80, and the later four stages being made out of RENE® 77. The use of RENE® 80 and RENE® 77 in the low pressure turbine section results in a relatively heavy turbine section, contributing to the total weight of the engine.
  • Aircraft and aircraft engine design have always strived for reduced weight and greater efficiency. Aircraft are becoming larger, requiring more thrust from the engines or additional engines. Reduced maintenance cost and initial cost can be achieved by enlarging the engine, increasing the thrust developed by the engines. However, as the engines grow in size, weight reduction becomes paramount as all the engine components within the engine, likewise, are required to grow. Further, additional engines on an aircraft in order to provide sufficient thrust likewise increase the total weight of the aircraft. In order to offset these problems, materials should be selected to minimize weight, while maintaining the required properties for gas turbine engine operation. A reduction in weight of individual components due to the use of lower density alloys provides significant advantages in engine efficiency, engine durability, payload capacity, lower fuel cost and other advantages relating to the lower total weight of the engine. The drawback to using lower density alloys previously has been that the lower density alloys do not have the combination of properties that are required for use in harsh, high-temperature conditions experienced in the turbine section of the gas turbine engine.
  • Other attempts to reduce weight in the engine include replacement of gas turbine engine components with lighter weight non-metallic materials, such as epoxy composite materials. These materials are lightweight and provide some desirable mechanical characteristics, particularly for lower temperature portions of the engine. However, these materials do not provide the combination of properties necessary for components of the gas turbine engine subject to higher temperatures and corrosive atmospheres, such as the low-pressure turbine portion of the engine.
  • Therefore, what is needed is a material suitable for use in the turbine section of a gas turbine engine having a reduced density with properties that are suitable for use in conditions present in the low pressure turbine section of the gas turbine engine.
  • SUMMARY OF THE INVENTION
  • The present invention includes a nickel-based alloy composition including from about 8 % to about 18 % cobalt, from about 12 % to about 16 % chromium, from about 4 % to about 8 % aluminum, up to about 6 % tungsten, from about 0.5 % to about 3.5 % titanium, from about 2 % to about 6 % molybdenum, from about 0.05 % to about 0.25 % carbon, from about 0.005 % to about 0.025 % boron, from about 0.02 % to about 0.1 % zirconium, up to about 1.0% iron, up to about 2.0% rhenium, up to about 2.0% tantalum, up to about 1.0 % hafnium, balance essentially nickel and incidental impurities, wherein the sum weight percent of aluminum and titanium is from about 4.5 wt% to about 13 wt%. In addition, the ratio of the weight percentage of aluminum to titanium is greater than about 1:1, preferably greater than about 2:1. In addition, the alloy has properties, including, but not limited to stress rupture life, fatigue strength, oxidation resistance and hot corrosion resistance that are equal to or greater than conventional polycrystalline equiaxed nickel-based superalloys, such as RENE® 77 and RENE® 80.
  • The present invention also includes gas turbine engine components, including, but not limited to compressor blades, compressor vanes, turbine vanes, and turbine blades. The gas turbine engine components fabricated from the nickel-based superalloys, according to the invention, have a lower density, providing a reduced total engine weight while providing acceptable mechanical properties and oxidation/corrosion resistance for use in the above-listed applications.
  • The present invention includes a lower density nickel-based superalloy and articles fabricated therefrom comprising, in weight percent, the composition shown in TABLE 2. TABLE 2
    Typical Alloy Compositions (in weight %)
    Ni Balance Balance Balance
    Co about 8 to about 11 about 9 to about 10 about 9.5
    Cr about 12 to about 16 about 13 to about 15 about 14
    Al about 4 to about 8 about 5 to about 7 about 6
    W about 4 to about 6 about 3 to about 5 about 4
    Ti about 0.5 to about 3.5 about 1 to about 3 about 1
    Mo about 2 to about 6 about 3 to about 5 about 4
    C about 0.05 to about 0.25 about 0.1 to about 0.2 about 0.17
    B about 0.005 to about 0.025 about 0.010 to about 0.020 about 0.015
    Zr about 0.02 to about 0.1 about 0.02 to about 0.05 about 0.05
    Fe up to about 1.0 up to about 0.5
    Re up to about 2.0 up to about 1.0
    Ta up to about 2.0 up to about 1.0
    Hf up to about 1.0 up to about 0.5
    Al + Ti about 4.5 to about 11.5 about 6 to about 10 about 7
    Al:Ti about 1.5:1 to about 6:1 about 2:1 to about 6:1 about 6:1
  • Another embodiment of the present invention includes a lower density nickel-based superalloy and articles fabricated therefrom comprising, in weight percent, having the composition shown in TABLE 3. TABLE 3
    Typical Alloy Compositions (in weight %)
    Ni Balance Balance Balance
    Co about 12 to about 18 about 13 to about 16 about 15
    Cr about 13 to about 16 about 14 to about 15 about 14.3
    Al about 4 to about 8 about 5 to about 7 about 6
    W up to about 1 up to about 0.5 about 0
    Ti about 1 to about 3 about 2 to about 3 about 3
    Mo about 2 to about 6 about 3 to about 5 about 4.2
    C about 0.05 to about 0.25 about 0.1 to about 0.2 about 0.07
    B about 0.005 to about 0.025 about 0.010 to about 0.020 about 0.015
    Zr about 0.01 to about 0.1 about 0.05 to about 0.1 about 0.05
    Fe up to about 1.0 up to about 0.75 about 0.5
    Re up to about 2.0 up to about 1.0
    Ta up to about 2.0 up to about 1.0
    Hf up to about 1.0 up to about 0.5
    Al + Ti about 4.5 to about 11 about 7 to about 11 about 9
    Al:Ti about 1:1 to about 5:1 about 1.5:1 to about 3:1 about 2:1
  • The nickel-based superalloys according to the present invention include conventionally cast polycrystalline equiaxed microstructure containing alloys. The alloys may be formed by vacuum melting alloy constituents, as shown in TABLES 2 and 3 and conventionally casting the melt. Subsequent heat treatment may be used to desirably precipitate the gamma-prime (i.e., γ') phase into the gamma (i.e., γ) phase matrix. The casting process for forming the alloy of the present invention may include conventional investment casting to polycrystalline substantially equiaxed alloy having sufficient γ' phase to provide stress rupture life, fatigue strength, oxidation resistance and hot corrosion resistance equal to or greater than conventional polycrystalline equiaxed nickel-based superalloys, such as RENE® 77 and RENE® 80.
  • An advantage of the present invention is that the nickel-based superalloy of the present invention has a density that is less than the density of nickel-based superalloys that have been previously used in the turbine section of the gas turbine engine.
  • Another advantage of the present invention is that the nickel-based superalloy composition maintains an aluminum to titanium ratio that provides sufficient aluminum to form an aluminum oxide containing coating on the alloy surface, which further protects the alloy from oxidation and hot corrosion and forms a surface suitable for additional coatings, while also allowing the γ' phase to form.
  • Still another advantage of the present invention is that the properties of the alloys equal or exceed the properties of substantially equiaxed, conventionally cast alloys, such as RENE® 77 and RENE® 80. The meeting or exceeding of the mechanical properties and oxidation/corrosion resistance properties of RENE® 77 and RENE® 80 permits the replacement of turbine engine components with lower density materials, while maintaining or exceeding operating parameters for the gas turbine engine.
  • Still another advantage of the present invention is that gas turbine engines fabricated using the alloys of the present invention are lighter, providing significant advantages in, among other things, engine efficiency, engine durability, payload capacity, and lower specific fuel consumption.
  • Other features and advantages of the present invention will be apparent from the following more detailed description of the preferred embodiment, taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention includes lower density nickel-based superalloys for use in gas turbine engine components. In particular, the present invention includes gas turbine engine turbine blades and vanes fabricated from lower density nickel-based superalloys.
  • One embodiment of the present invention includes a nickel-based superalloy comprising, in weight percent, from about 8 % to about 11 % cobalt, from about 12 % to about 16 % chromium, from about 4 % to about 8 % aluminum, from about 4 % to about 6 % tungsten, from about 0.5 % to about 3.5 % titanium, from about 2 % to about 6 % molybdenum, from about 0.05 % to about 0.25 % carbon, from about 0.005 % to about 0.025 % boron, from about 0.02 % to about 0.1 % zirconium, up to about 2.0% rhenium, up to about 2.0% tantalum, up to about 1.0 % hafnium, balance essentially nickel and incidental impurities.
  • Another embodiment of the present invention includes a nickel-based superalloy comprising, in weight percent, from about 12 % to about 18 % cobalt, from about 13 % to about 16 % chromium, from about 4 % to about 8 % aluminum, from about 1 % to about 3 % titanium, from about 2 % to about 6 % molybdenum, from about 0.05 % to about 0.25 % carbon, from about 0.005 % to about 0.025 % boron, from about 0.01 % to about 0.1 % zirconium, up to about 1.0 % iron, up to about 2.0% rhenium, up to about 2.0% tantalum, up to about 1.0 % hafnium, balance essentially nickel and incidental impurities.
  • The nickel-based superalloy according to an embodiment of the invention is preferably a composition having a low density compared to conventional polycrystalline equiaxed microstructure cast alloys. The alloy of the present invention includes a conventionally cast alloy having a polycrystalline substantially equiaxed microstructure. To form the alloy, the elemental composition is first melted. Melting for casting purposes may take place using any suitable melting process, including vacuum-induction melting or vacuum-arc melting. Additional remelting steps may also be applied to remove impurities from the melt, including additional vacuum-arc remelting, electroslab remelting and combinations thereof. Subsequent heat treatment may be applied to provide the desired microstructure. In one embodiment of the present invention, a lower density is provided by maintaining a ratio of aluminum to titanium in the alloy composition greater than about 1:1 by weight. The ratio is preferably sufficiently large to provide a lower density alloy, but sufficiently low to provide the nickel-based superalloy with the properties.
  • The ratio of the aluminum to titanium and the total amount of aluminum and titanium is provided to increase the amount of γ' phase precipitated into the alloy matrix as compared to conventionally cast alloys. The γ' phase precipitate typically includes Ni3(Al,Ti) or Co3(Al,Ti), which provides the primary strengthening phase of the alloy, without significant lowering the fracture toughness of the alloy. As the amount of titanium and aluminum increases, the amount of titanium and aluminum available to form the γ' phase likewise increases. In addition, the greater the ratio of aluminum to titanium the greater the presence of the γ' phase in the alloy matrix. The presence of γ' phase provides properties that are desirable in alloys used in gas turbine engine components. The nickel-based superalloy preferably includes a combined weight percent of aluminum and titanium greater than about 5 wt%. The combination of the sum of the aluminum and titanium in addition to the ratio of aluminum and titanium also permits the alloy to have a density lower than conventional cast alloys, such as RENE® 80 and RENE® 77.
  • In addition to increasing the presence of the γ' phase and the lowering of the density of the alloy, the increase in the amount of aluminum and the ratio of aluminum to titanium, preferably greater than about 1:1, permits an excess amount of aluminum to be available to form aluminum oxide-containing layers on the exterior surface of the alloy. These oxide-containing layers provide protections against the atmosphere, providing oxidation resistance and hot corrosion resistance, as well as forming a surface favorable to providing subsequent coatings, such as thermal barrier coatings. In addition, the excess aluminum provides self-healing coating properties, wherein aluminum oxide containing coatings regenerate in locations on the surface where the coatings have been damaged or eroded.
  • In another embodiment of the present invention, strengthening elements may be added to the alloy composition. High density elements, such as W and Mo, add significant weight to the overall component formed of the nickel-based superalloy. The concentrations of these high density elements may be reduced by the addition of smaller amounts of strengthening elements including Re, Ta, Hf and combinations thereof. The addition of Re, Ta, Hf and combinations thereof increases the strength of the material. Ta and Hf present in the alloy provide further strengthening of the alloy by solid solution strengthening of the γ' phase. Re present in the alloy provides further strengthening of the alloy by solid solution strengthening of the γ matrix. The addition of relatively small amounts of these strengthening elements permits reduction in the use of W and Mo in the alloy composition. The reduction of W and Mo and the ability to strengthen the alloy composition with smaller amounts of strengthening elements, such as Re, Ta, Hf, has the overall effect of reducing the density of the alloy. The concentrations of W may be reduced to as low as 2 % in the alloy by introduction of these alternate strengthening elements. The concentrations of Mo may be reduced or eliminated in the alloy by introduction of these alternate strengthening elements. In a preferred embodiment, the density of the alloy is reduced an additional 2% from the alloy having the Al:Ti ratio of the present invention by substitution of these alternate strengthening elements for W and/or Mo.
  • EXAMPLES
  • Table 3
    Alloy Al + Ti Al:Ti Density Lbs/in3
    Comparative Example 1* 8 3:5 0.295
    Example 1 8 3:1 0.287
    * Comparative Example 1 includes a nominal composition of RENE® 80
  • Example 1: Table 3 shows the Comparative Example 1 having a nominal composition of RENE® 80 and Example 1 having the shown amounts of Ti and Al. Aluminum and titanium are both γ' formers and form the γ' phase structure, which strengthens the alloy. Comparative Example 1 includes 5 wt % Ti and 3 wt % Al, and has a density of 0.295 lbs/in3. Example 1 includes a nickel-based alloy that includes, in weight percent, about 9.5 % cobalt, about 14 % chromium, about 6 % aluminum, about 4 % tungsten, about 2 % titanium, about 4 % molybdenum, about 0.17 % carbon, about 0.015 % boron, about 0.03 % zirconium, balance essentially nickel and incidental impurities. Example 1 includes a total of 8 wt % Al + Ti, with an Al:Ti ratio of about 3:1. As shown in Table 3, Example 1 has a density of 0.287 1bs/in3. The density of Example 1 is about 3% less than the density for Comparative Example 1. The 3% density reduction in the alloy may correspond to a reduction in total weight of the assembled engine of about 81 lbs more. This reduction in density yields significant reductions in the total weight of the component fabricated from the alloy of Example 1. Table 4
    Alloy Al + Ti Al:Ti Density lbs/in3
    Comparative Example 2* 7.65 4.3:3.35 0.286
    Example 2 9 2 0.279
    * Comparative Example 2 includes a nominal composition of RENE® 77
  • Example 2: Table 4 shows the relative presence of titanium and aluminum and density of Example 2 in comparison to the density of Comparative Example 2, which is a nominal composition of RENE 77. Comparative Example 2 includes 3.35 wt % Ti and 4.3wt % Al, and has a density of 0.286 lbs/in3. Example 2 includes a nickel-based alloy that includes, in weight percent, about 15 % cobalt, about 14.3 % chromium, about 6 % aluminum, about 3 % titanium, about 4.2 % molybdenum, about 0.07 % carbon, about 0.015 % boron, about 0.04 % zirconium and about 0.5 % iron. Example 2 includes a total of 9 wt % Al+Ti, with an Al:Ti ratio of about 2:1, has a density of 0.279 lbs/in3. The density of Example 2 is about 3 % less than the density for Comparative Example 2. The 3% density reduction in the alloy may correspond to a reduction in total weight of the assembled engine of about 81 lbs more. This reduction in density yields significant reductions in total weight of the component fabricated from the alloy of Example 2.
  • In a gas turbine engine having six low pressure turbine stages, such as the GE-92B, the substitution of the lower density alloys of Examples 1 and 2 for the higher density RENE® 77 and RENE® 80 of Comparative Examples 1 and 2 results in a weight savings of about 81 lbs, which is a significant weight savings for a gas turbine engine.
  • While the invention has been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.

Claims (10)

  1. A nickel-based alloy composition having a polycrystalline substantially equiaxed microstructure comprising:
    from about 8 % to about 18 % cobalt, from about 12 % to about 16 % chromium, from about 4 % to about 8 % aluminum, up to about 6 % tungsten, from about 0.5 % to about 3.5 % titanium, from about 2 % to about 6 % molybdenum, from about 0.05 % to about 0.25 % carbon, from about 0.005 % to about 0.025 % boron, from about 0.02 % to about 0.1 % zirconium, up to about 1.0% iron, up to about 2.0% rhenium, up to about 2.0% tantalum, up to about 1.0 % hafnium, balance essentially nickel and incidental impurities; and
    wherein the sum weight percent of aluminum and titanium is from about 4.5 wt% to about 13 wt% and the ratio of aluminum to titanium is greater than about 1:1.
  2. The alloy of claim 1 wherein the ratio of aluminum to titanium is at least about 2:1
  3. The alloy of claim 1 comprising, in weight percent, from about 8 % to about 11% cobalt, from about 12 % to about 16 % chromium, from about 4 % to about 8 % aluminum, from about 4 % to about 6 % tungsten, from about 0.5 % to about 3.5 % titanium, from about 2 % to about 6 % molybdenum, from about 0.05 % to about 0.25 % carbon, from about 0.005 % to about 0.025 % boron, from about 0.02 % to about 0.1 % zirconium, up to about 2.0% rhenium, up to about 2.0% tantalum, up to about 1.0 % hafnium, balance essentially nickel and incidental impurities.
  4. The alloy of claim 3 comprising, in weight percent, from about 9 % to about 10 % cobalt, from about 13 % to about 15 % chromium, from about 5 % to about 7 % aluminum, from about 3 % to about 5 % tungsten, from about 1 % to about 3 % titanium, from about 3 % to about 5 % molybdenum, from about 0.1% to about 0.2 % carbon, from about 0.010 % to about 0.020 % boron, from about 0.02 % to about 0.05 % zirconium, up to about 1.0% rhenium, up to about 1.0% tantalum, up to about 1.0 % hafnium, balance essentially nickel and incidental impurities.
  5. The alloy of claim 4 comprising, in weight percent, about 9.5 % cobalt, about 14 % chromium, about 6 % aluminum, about 4 % tungsten, about 1 % titanium, about 4 % molybdenum, about 0.17 % carbon, about 0.015 % boron, about 0.05 % zirconium, balance essentially nickel and incidental impurities.
  6. The alloy of claim 1 comprising, in weight percent, from about 12 % to about 18 % cobalt, from about 13 % to about 16 % chromium, from about 4 % to about 8 % aluminum, from about 1 % to about 3 % titanium, from about 2 % to about 6 % molybdenum, from about 0.05 % to about 0.25 % carbon, from about 0.005 % to about 0.025 % boron, from about 0.01 % to about 0.1 % zirconium, up to about 1.0 % iron, up to about 2.0% rhenium, up to about 2.0% tantalum, up to about 1.0 % hafnium, balance essentially nickel and incidental impurities.
  7. The alloy of claim 6 comprising, in weight percent, from about 13 % to about 16 % cobalt, from about 14 % to about 15 % chromium, from about 5 % to about 7 % aluminum, from about 2 % to about 3 % titanium, from about 3 % to about 5 % molybdenum, from about 0.10 % to about 0.20 % carbon, from about 0.010 % to about 0.020 % boron, from about 0.02 % to about 0.05 % zirconium, up to about 0.75 % iron, up to about 1.0% rhenium, up to about 1.0% tantalum, up to about 1.0 % hafnium, balance essentially nickel and incidental impurities.
  8. The alloy of claim 7 comprising, in weight percent, about 15 % cobalt, about 14.3 % chromium, about 6 % aluminum, about 3 % titanium, about 4.2 % molybdenum, about 0.07 % carbon, about 0.015 % boron, about 0.05 % zirconium, about 0.5 % iron, balance essentially nickel and incidental impurities.
  9. The alloy of claim 1, wherein the alloy has a density less than about 0.287 1bs/in3.
  10. The alloy of claim 1, wherein the alloy has a density of less than about 0.279 lbs/in3.
EP20060126538 2005-12-21 2006-12-19 Nickel-based superalloy composition Expired - Fee Related EP1801251B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US31449505A 2005-12-21 2005-12-21

Publications (2)

Publication Number Publication Date
EP1801251A1 true EP1801251A1 (en) 2007-06-27
EP1801251B1 EP1801251B1 (en) 2010-10-06

Family

ID=37757117

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20060126538 Expired - Fee Related EP1801251B1 (en) 2005-12-21 2006-12-19 Nickel-based superalloy composition

Country Status (3)

Country Link
EP (1) EP1801251B1 (en)
JP (1) JP2007191791A (en)
DE (1) DE602006017324D1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103952595A (en) * 2014-05-15 2014-07-30 中国人民解放军第五七一九工厂 Laser-cladding powder for repairing directional solidified nickel-based high-temperature alloy blade
WO2017006089A1 (en) * 2015-07-03 2017-01-12 Oxford University Innovation Limited A nickel-based alloy
EP3399059A1 (en) * 2017-05-02 2018-11-07 United Technologies Corporation Composition and method for enhanced precipitation hardened superalloys
CN109504879A (en) * 2018-12-28 2019-03-22 西安欧中材料科技有限公司 A kind of aero-engine nickel base superalloy
WO2019212529A1 (en) * 2018-05-01 2019-11-07 Siemens Energy, Inc. Nickel based superalloy braze filler
US10577679B1 (en) 2018-12-04 2020-03-03 General Electric Company Gamma prime strengthened nickel superalloy for additive manufacturing
US11085103B2 (en) 2018-05-23 2021-08-10 Rolls-Royce Plc Nickel-base superalloy
US11859267B2 (en) 2016-10-12 2024-01-02 Oxford University Innovation Limited Nickel-based alloy

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8597440B2 (en) * 2009-08-31 2013-12-03 General Electric Company Process and alloy for turbine blades and blades formed therefrom
KR20180114226A (en) * 2016-04-20 2018-10-17 아르코닉 인코포레이티드 FCC materials made of aluminum, cobalt, chromium, and nickel, and products made therefrom

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3536542A (en) * 1968-05-31 1970-10-27 Gen Electric Alloy heat treatment
GB1224804A (en) * 1968-10-18 1971-03-10 Gen Electric Co Ltd Improvements in or relating to sintered nickel-based alloys
GB2152076A (en) * 1983-12-27 1985-07-31 United Technologies Corp Improved forgeability in nickel base superalloys
EP0421229A1 (en) * 1989-10-04 1991-04-10 General Electric Company Creep, stress rupture and hold-time fatigue crack resistant alloys
EP1201778A2 (en) * 2000-10-30 2002-05-02 United Technologies Corporation Low density oxidation resistant superalloy materials capable of thermal barrier coating retention without a bond coat

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3536542A (en) * 1968-05-31 1970-10-27 Gen Electric Alloy heat treatment
GB1224804A (en) * 1968-10-18 1971-03-10 Gen Electric Co Ltd Improvements in or relating to sintered nickel-based alloys
GB2152076A (en) * 1983-12-27 1985-07-31 United Technologies Corp Improved forgeability in nickel base superalloys
EP0421229A1 (en) * 1989-10-04 1991-04-10 General Electric Company Creep, stress rupture and hold-time fatigue crack resistant alloys
EP1201778A2 (en) * 2000-10-30 2002-05-02 United Technologies Corporation Low density oxidation resistant superalloy materials capable of thermal barrier coating retention without a bond coat

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.R. DAVIS: "Nickel, Cobalt, and their alloys", 2000, ASM INTERNATIONAL, MATERIALS PARK, OHIO, XP002421955 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103952595A (en) * 2014-05-15 2014-07-30 中国人民解放军第五七一九工厂 Laser-cladding powder for repairing directional solidified nickel-based high-temperature alloy blade
WO2017006089A1 (en) * 2015-07-03 2017-01-12 Oxford University Innovation Limited A nickel-based alloy
US10370740B2 (en) 2015-07-03 2019-08-06 Oxford University Innovation Limited Nickel-based alloy
US11859267B2 (en) 2016-10-12 2024-01-02 Oxford University Innovation Limited Nickel-based alloy
EP3399059A1 (en) * 2017-05-02 2018-11-07 United Technologies Corporation Composition and method for enhanced precipitation hardened superalloys
US10793934B2 (en) 2017-05-02 2020-10-06 United Technologies Corporation Composition and method for enhanced precipitation hardened superalloys
WO2019212529A1 (en) * 2018-05-01 2019-11-07 Siemens Energy, Inc. Nickel based superalloy braze filler
US11794287B2 (en) 2018-05-01 2023-10-24 Siemens Energy, Inc. Nickel based superalloy weld filler
US11085103B2 (en) 2018-05-23 2021-08-10 Rolls-Royce Plc Nickel-base superalloy
US10577679B1 (en) 2018-12-04 2020-03-03 General Electric Company Gamma prime strengthened nickel superalloy for additive manufacturing
CN109504879A (en) * 2018-12-28 2019-03-22 西安欧中材料科技有限公司 A kind of aero-engine nickel base superalloy

Also Published As

Publication number Publication date
JP2007191791A (en) 2007-08-02
EP1801251B1 (en) 2010-10-06
DE602006017324D1 (en) 2010-11-18

Similar Documents

Publication Publication Date Title
EP1801251B1 (en) Nickel-based superalloy composition
US6673308B2 (en) Nickel-base single-crystal superalloys, method of manufacturing same and gas turbine high temperature parts made thereof
EP1717326B1 (en) Ni-based alloy member, method of producing the alloy member and turbine engine part
EP1842934B1 (en) Heat-resistant superalloy
EP2503013B1 (en) Heat-resistant superalloy
EP2796578B1 (en) Cast nickel-based superalloy including iron
RU2505616C2 (en) Filler weld material, use of filler weld material, and structural element
EP2778241B1 (en) Heat-resistant nickel-based superalloy
EP1748089B1 (en) Refractory metal intermetallic composites based on niobium-silicides, and related articles
EP2188400B1 (en) Low rhenium nickel base superalloy compositions and superalloy articles
EP2006402B1 (en) Ni-BASE SUPERALLOY AND METHOD FOR PRODUCING SAME
EP2039789A1 (en) Nickel-based alloy for turbine rotor of steam turbine and turbine rotor of steam turbine
US20070090167A1 (en) Weld filler, use of the weld filler and welding process
EP1433865B1 (en) High-strength Ni-base superalloy and gas turbine blades
EP2179068B1 (en) Corrosion resistant nickel alloy compositions with enhanced castability and mechanical properties
EP1334215B1 (en) Nickel-base superalloy for high temperature, high strain application
EP3862448A1 (en) Nickel-based superalloys
US6554920B1 (en) High-temperature alloy and articles made therefrom
EP1927669B1 (en) Low-density directionally solidified single-crystal superalloys
EP2537951B1 (en) Ni-based alloy, and turbine rotor and stator blade for gas turbine
EP2169087A2 (en) Nickel-based superalloy and gas turbine blade using the same
US6582534B2 (en) High-temperature alloy and articles made therefrom
EP3778943A1 (en) Ni group superalloy casting material and ni group superalloy product using same
EP2617846A2 (en) A cast nickel-iron-base alloy component and process of forming a cast nickel-iron-base alloy component
EP2944704B1 (en) Nickel alloy composition

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20071227

17Q First examination report despatched

Effective date: 20080204

AKX Designation fees paid

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602006017324

Country of ref document: DE

Date of ref document: 20101118

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110707

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006017324

Country of ref document: DE

Effective date: 20110707

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20121227

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130110

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121231

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006017324

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131219

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006017324

Country of ref document: DE

Effective date: 20140701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131219

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231