EP2851445B1 - Creep-resistant TiAl alloy - Google Patents

Creep-resistant TiAl alloy Download PDF

Info

Publication number
EP2851445B1
EP2851445B1 EP13185280.8A EP13185280A EP2851445B1 EP 2851445 B1 EP2851445 B1 EP 2851445B1 EP 13185280 A EP13185280 A EP 13185280A EP 2851445 B1 EP2851445 B1 EP 2851445B1
Authority
EP
European Patent Office
Prior art keywords
alloy
tial
annealing
temperature
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP13185280.8A
Other languages
German (de)
French (fr)
Other versions
EP2851445A1 (en
Inventor
Wilfried Dr. Smarsly
Helmut Prof. Dr. Clemens
Emanuel Schwaighofer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines AG filed Critical MTU Aero Engines AG
Priority to EP13185280.8A priority Critical patent/EP2851445B1/en
Priority to ES13185280T priority patent/ES2747155T3/en
Priority to US14/481,295 priority patent/US9994934B2/en
Publication of EP2851445A1 publication Critical patent/EP2851445A1/en
Application granted granted Critical
Publication of EP2851445B1 publication Critical patent/EP2851445B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/13Refractory metals, i.e. Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W
    • F05D2300/133Titanium

Definitions

  • the present invention relates to a method for the production of a component from a TiAl alloy, which besides niobium and aluminum comprises niobium and molybdenum and / or manganese and is referred to in the art as TNM alloy.
  • TiAl alloys based on the ⁇ -TiAl intermetallic phase are predestined for applications in turbomachines, such as stationary gas turbines and aircraft engines, due to their low specific weight and the high strength due to the ordered intermetallic phase.
  • turbomachines such as stationary gas turbines and aircraft engines
  • the US 2011/0189026 A1 a TiAl - based alloy for the manufacture of gas turbine components.
  • the alloy described therein is a so-called TNM alloy which, in addition to 42 to 45 at.% Aluminum, contains 3 to 8 at.% Niobium and 0.2 to 3 at.% Molybdenum and / or manganese.
  • 0.1 to 1 at.% Boron and / or carbon and / or silicon may be included.
  • the remainder of the alloy is formed by titanium.
  • Such alloys which in particular have 43.5 at.% Aluminum, 4 at.% Niobium, 1 at.% Molybdenum and 0.1 percent boron with the remainder of titanium, are suitable for use at operating temperatures of 750 ° C. to 780 ° C suitable.
  • TNM alloys is complexly composed of several phases and comprises ⁇ - TiAl, ⁇ 2 - Ti 3 Al and ⁇ o / B2 - titanium.
  • Another alloy with a structure of ⁇ - TiAl, ⁇ 2 - Ti 3 Al and ⁇ - phase is in US 2011/0277891 A1 described.
  • This alloy has 42 to 44.5 at.% Aluminum, 3.5 to 4.5 at.% Niobium, 0.5 to 1.5 percent molybdenum, up to 2.2 at.% Manganese, 0.05 to 0 , 2 at.% Boron, 0.001 to 0.01 at.% Silicon, 0.001 to 1.0 at.% Carbon, 0.001 to 0.1 at.% Oxygen, 0.0001 to about 0.002 at.% Nitrogen and the balance titanium and impurities on.
  • TiAl alloys are from the documents WO 2012/041276 A2 and EP 2 620 517 A1 known.
  • TNM alloys are limited to temperatures below 800 ° C, as with prolonged use at higher temperatures an insufficient Creep resistance is observed, which has an insufficient life for use in turbomachinery, such as stationary gas turbine or aircraft engines result.
  • the present invention makes it possible to improve the known TNM alloys in their creep resistance and thus to increase the possible use temperatures.
  • the known composition of the TNM alloys it is proposed to limit the aluminum content to a maximum of 43 at.%.
  • the combined and targeted reduction of the aluminum content and the simultaneous provision of certain proportions of carbon and silicon can significantly improve the creep resistance of a corresponding TiAl alloy and thus increase the operating temperature in the range of 800 to 850 ° C.
  • the chemical composition of a corresponding alloy can not exceed 43 at.% Aluminum, 3 to 8 at.% Niobium, 0.2 at.% To 3 at.% Molybdenum and / or manganese, 0.05 at.% To 0.5 % boron, 0.1 at.% to 0.5 at.% carbon, 0.1 at.% to 0.5 at.% silicon, and the balance titanium and unavoidable impurities.
  • the TiAl alloy may be at most 43 at.% Aluminum, 3.5 at.% To 4.5 at.% Niobium, 0.8 at.% To 1.2 at.% Molybdenum and / or manganese, 0.05 % to 0.15 at.% boron, 0.2 at.% to 0.4 at.% carbon, 0.2 at.% to 0.4 at.% silicon and the balance titanium and unavoidable impurities.
  • a TiAl alloy has proved to be advantageous which contains 43 at.% Aluminum, 4 at.% Niobium, 1 at.% Molybdenum, 0.1 at.% Boron, 0.3 at.% Carbon, 0.3 at. % Silicon and the rest titanium and unavoidable impurities.
  • the specified values are not absolute values, but represent target values, from which within the limits of the technical feasibility can be deviated, which are thus adjustable according to the accepted rules of technology in a certain accuracy range.
  • Such an alloy has a microstructure at room or operating temperatures which has the phases ⁇ - TiAl, ⁇ 2 - Ti 3 Al and ⁇ o / B2 - titanium, the B2 or ⁇ o phase being an ordered variant of the ⁇ - Titans represents.
  • a corresponding component with a TiAl alloy can be produced by casting with or without subsequent cold and / or hot working according to the invention.
  • a common method for producing corresponding components of turbomachines, such as turbine blades, is to cast a blank and then hot-form it by forging.
  • a suitably prepared intermediate may be subjected to a heat treatment according to the present invention comprising annealing at a temperature between 800 ° C and 900 ° C for 4 to 8 hours. Such stabilization annealing can be used to optimize the desired microstructure of a TNM alloy for improved creep resistance.
  • the annealing may take place at a temperature of or around 850 ° C for 6 hours.
  • the corresponding component can be cooled rapidly, for example to ambient atmosphere or by flowing with a cooling gas.
  • the heat treatment may include, in addition to the above-described annealing, additional heat treatment steps that take place before annealing.
  • the heat treatment can be configured in two stages with an aging upstream of the annealing.
  • the use of the terms outsourcing and annealing here does not indicate fundamentally different process mechanisms, but merely serves to distinguish the heat treatment stages.
  • thermomechanical treatments it is possible to carry out further thermal and / or thermomechanical treatments before or after the heat treatment described here.
  • the heat treatment described herein should be the final heat treatment.
  • the aging as the first stage of a two-stage heat treatment may take place at a temperature of 950 ° C to 1300 ° C for 0.1 hour to 2 hours.
  • the aging can take place at a temperature of 950 ° C to 1050 ° C or 1200 ° C to 1300 ° C for a period of 0.25 hours to 1 hour.
  • a TiAl alloy with the presented composition and a component made of a corresponding TiAl alloy, which has been subjected in particular to the presented production method with the heat treatment according to the invention, can advantageously be used for components of turbomachines, such as, for example, blades of a turbomachine.
  • the components can be used at temperatures up to 850 ° C, in particular in the operating temperature range from 800 ° C to 830 ° C, wherein operating temperature here means that the corresponding temperature occurs permanently during operation or the temperature can occur as a peak temperature in the short term during operation ,
  • the attached figure shows in a microsection a typical structure of a material according to the invention.
  • a blade of an aircraft engine can be made by first casting and hot isostatically pressing the above TNM alloy. Thereafter, it is subjected to fine - grain forging by Hot Die forging above the dissolution temperature of the ⁇ - TiAl phase (T ⁇ solv ⁇ 1260 ° C), whereby dynamic recrystallization of the disordered ⁇ - titanium phase results in a nearly texture - free and fine - grained microstructure with a mean grain size ⁇ - phase of ⁇ 10 microns can be adjusted.
  • the fine - grained and supersaturated TNM alloy is subjected to a two - stage heat treatment.
  • a targeted ⁇ -lamella width is set for the first removal in order to optimize the creep properties ("short-time annealing").
  • phase fractions are set close to the thermodynamic equilibrium (“long-term annealing”).
  • the heat treatment process for the microstructure with a particularly good creep resistance takes place, for example, with an aging at 1000 ° C. for 15 minutes with a subsequent rapid cooling and annealing at 850 ° C. for 6 hours and likewise rapid cooling.
  • the first removal leads to the formation of a cellular reaction phase (ZR) starting from the limits of the ⁇ 2 -Ti 3 Al / ⁇ -TiAl colonies, which occurs in different amounts depending on the aging temperature and duration and represents a transformation structure.
  • ZR cellular reaction phase
  • the driving force for the cellular reaction and the corresponding formation of the cellular reaction phase comes to a standstill because of the larger lamellar spacing.
  • the described method results in combination with the selected material with less effort compared to the previous methods to significantly improved mechanical properties. Avoiding high-temperature annealing prevents the risk of grain growth.
  • a correspondingly produced component such as, for example, a blade of an aircraft engine, has improved creep resistance compared to previously known TiAl alloys and in particular TNM alloys.
  • a characteristic structure of a component of a TiAl alloy produced according to the invention is shown in the attached figure.
  • This microstructure is a nearly lamellar microstructure with small amounts of ⁇ o - phase in the order of ⁇ 5 vol.% (NL ⁇ ).
  • the ⁇ o - titanium phase can be linear or globular. Within the ⁇ o phase are lenticular ⁇ - TiAl precipitates.
  • the structure consists with up to 98 vol.% Mainly of globular ⁇ 2 - Ti 3 Al / ⁇ - TiAl colonies with a maximum size of ⁇ 10 - 20 ⁇ m and an average width of the ⁇ - TiAl lamellae of the order of 50 - 150 nm. In general, there are no globular y grains, which can lead to a reduction of the creep resistance from a volume fraction of about> 5%.
  • the volume fraction of cellular reaction phase (ZR) is less than 10 vol.%.
  • the microstructure of a corresponding component may comprise from about 70 to 80 vol.%, In particular about 75 vol.% ⁇ - TiAl, 20 to 25 vol.%, In particular about 23 vol.% ⁇ 2 - Ti 3 Al and 1 to 3 vol.%, in particular about 2 vol.% ⁇ o - Ti.
  • the carbon is mainly present in solution.
  • cellular reaction phase (ZR) may additionally be present in the structure, wherein the structural constituents are of course to 100 vol.% and wherein the cellular reaction phase is assigned to the proportions of ⁇ - TiAl and ⁇ 2 - Ti 3 Al.
  • the microstructural fractions of ⁇ - TiAl, ⁇ 2 - Ti 3 Al and ⁇ o - Ti hardly change, ie the microstructure remains stable, but the creep under conditions of use leads to the precipitation of very fine carbides within the ⁇ -TiAl phase, eg in the form of P-Ti 3 AlC, which contribute to the hindrance of dislocation creep and thus to an increase in creep resistance.
  • the finest silicide precipitates ( ⁇ - Ti 5 Si 3 ) at the ⁇ 2 - Ti 3 Al / ⁇ - TiAl interfaces improve the microstructure stability. Residues of coarser silicides can be contained in the microstructure depending on the choice of the forming and heat treatment parameters.
  • the fine - grained NL ⁇ microstructure is characterized by high high - temperature strength, creep resistance and microstructure stability with significantly improved damage tolerance below the brittle - ductile transition temperature due to the small size and globular form of the ⁇ 2 - Ti 3 Al / ⁇ - TiAl colonies.

Description

HINTERGRUND DER ERFINDUNGBACKGROUND OF THE INVENTION GEBIET DER ERFINDUNGFIELD OF THE INVENTION

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines Bauteils aus einer TiAl - Legierung, die neben Titan und Aluminium Niob und Molybdän und/oder Mangan umfasst und in Fachkreisen als TNM - Legierung bezeichnet wird.The present invention relates to a method for the production of a component from a TiAl alloy, which besides niobium and aluminum comprises niobium and molybdenum and / or manganese and is referred to in the art as TNM alloy.

STAND DER TECHNIKSTATE OF THE ART

TiAl - Legierungen auf Basis der intermetallischen Phase γ-TiAl sind aufgrund ihres geringen spezifischen Gewichts und der durch die geordnete intermetallische Phase hohen Festigkeit für Anwendungen in Strömungsmaschinen, wie stationären Gasturbinen und Flugzeugtriebwerken prädestiniert. So beschreibt beispielsweise die US 2011/0189026 A1 eine TiAl - basierte Legierung für die Herstellung von Gasturbinenkomponenten. Bei der dort beschriebenen Legierung handelt es sich um eine sogenannte TNM - Legierung, die neben 42 bis 45 at.% Aluminium 3 bis 8 at.% Niob und 0,2 bis 3 at.% Molybdän und/oder Mangan enthält. Darüber hinaus können 0,1 bis 1 at.% Bor und/oder Kohlenstoff und/oder Silizium enthalten sein. Der Rest der Legierung wird durch Titan gebildet. Derartige Legierungen, die insbesondere 43,5 at.% Aluminium, 4 at.% Niob, 1 at.% Molybdän und 0,1 Prozent Bor mit dem Rest an Titan aufweisen, sind für den Einsatz bei Betriebstemperaturen von 750°C bis 780°C geeignet.TiAl alloys based on the γ-TiAl intermetallic phase are predestined for applications in turbomachines, such as stationary gas turbines and aircraft engines, due to their low specific weight and the high strength due to the ordered intermetallic phase. For example, describes the US 2011/0189026 A1 a TiAl - based alloy for the manufacture of gas turbine components. The alloy described therein is a so-called TNM alloy which, in addition to 42 to 45 at.% Aluminum, contains 3 to 8 at.% Niobium and 0.2 to 3 at.% Molybdenum and / or manganese. In addition, 0.1 to 1 at.% Boron and / or carbon and / or silicon may be included. The remainder of the alloy is formed by titanium. Such alloys, which in particular have 43.5 at.% Aluminum, 4 at.% Niobium, 1 at.% Molybdenum and 0.1 percent boron with the remainder of titanium, are suitable for use at operating temperatures of 750 ° C. to 780 ° C suitable.

Das Gefüge derartiger TNM - Legierungen ist komplex aus mehreren Phasen aufgebaut und umfasst γ - TiAl, α2 - Ti3Al und βo/B2 - Titan.The microstructure of such TNM alloys is complexly composed of several phases and comprises γ - TiAl, α 2 - Ti 3 Al and β o / B2 - titanium.

Eine weitere Legierung mit einem Gefüge aus γ - TiAl, α2 - Ti3Al und β - Phase ist in der US 2011/0277891 A1 beschrieben. Diese Legierung weist 42 bis 44,5 at.% Aluminium, 3,5 bis 4,5 at.% Niob, 0,5 bis 1,5 Prozent Molybdän, bis zu 2,2 at.% Mangan, 0,05 bis 0,2 at.% Bor, 0,001 bis 0,01 at.% Silizium, 0,001 bis 1,0 at.% Kohlenstoff, 0,001 bis 0,1 at.% Sauerstoff, 0,0001 bis ungefähr 0,002 at.% Stickstoff sowie Rest Titan und Verunreinigungen auf.Another alloy with a structure of γ - TiAl, α 2 - Ti 3 Al and β - phase is in US 2011/0277891 A1 described. This alloy has 42 to 44.5 at.% Aluminum, 3.5 to 4.5 at.% Niobium, 0.5 to 1.5 percent molybdenum, up to 2.2 at.% Manganese, 0.05 to 0 , 2 at.% Boron, 0.001 to 0.01 at.% Silicon, 0.001 to 1.0 at.% Carbon, 0.001 to 0.1 at.% Oxygen, 0.0001 to about 0.002 at.% Nitrogen and the balance titanium and impurities on.

Weitere TiAl-Legierungen sind aus den Dokumenten WO 2012/041276 A2 und EP 2 620 517 A1 bekannt.Other TiAl alloys are from the documents WO 2012/041276 A2 and EP 2 620 517 A1 known.

Allerdings ist die Einsatzfähigkeit der beschriebenen TNM - Legierungen auf Temperaturen unter 800°C beschränkt, da bei längerem Einsatz bei höheren Temperaturen eine ungenügende Kriechbeständigkeit beobachtet wird, die eine nicht ausreichende Lebensdauer für den Einsatz in Strömungsmaschinen, wie stationären Gasturbinen oder Flugzeugtriebwerken, zur Folge hat.However, the usability of the described TNM alloys is limited to temperatures below 800 ° C, as with prolonged use at higher temperatures an insufficient Creep resistance is observed, which has an insufficient life for use in turbomachinery, such as stationary gas turbine or aircraft engines result.

OFFENBARUNG DER ERFINDUNGDISCLOSURE OF THE INVENTION AUFGABE DER ERFINDUNGOBJECT OF THE INVENTION

Es ist deshalb Aufgabe der vorliegenden Erfindung, ein Verfahren zur Herstellung eines Bauteils, insbesondere für Strömungsmaschinen, vorzugsweise Flugzeugtriebwerke, aus einer TiAl - Legierung bereitzustellen, die höhere Einsatztemperaturen im Bereich von über 800°C und insbesondere eine verbesserte Kriechbeständigkeit aufweist.It is therefore an object of the present invention to provide a method for producing a component, in particular for turbomachines, preferably aircraft engines, from a TiAl alloy which has higher use temperatures in the range of more than 800 ° C. and, in particular, improved creep resistance.

TECHNISCHE LÖSUNGTECHNICAL SOLUTION

Diese Aufgabe wird gelöst durch ein Verfahren zur Herstellung eines Bauteils aus einer entsprechenden TiAl - Legierung mit den Merkmalen des Anspruchs 1. Vorteilhafte Ausgestaltungen sind Gegenstand der abhängigen Ansprüche.This object is achieved by a method for producing a component from a corresponding TiAl alloy having the features of claim 1. Advantageous embodiments are the subject matter of the dependent claims.

Die vorliegende Erfindung ermöglicht, die bekannten TNM - Legierungen in ihrer Kriechbeständigkeit zu verbessern und somit die möglichen Einsatztemperaturen zu erhöhen. Hierzu wird ausgehend von der bekannten Zusammensetzung der TNM - Legierungen vorgeschlagen, den Aluminiumgehalt auf 43 at.% maximal zu begrenzen. Zusätzlich wird vorgeschlagen neben Bor zusätzlich Kohlenstoff und Silizium zwingend in der Legierung vorzusehen, wobei die Bestandteile jeweils im Bereich von 0,1 at.% bis 0,5 at.% liegen sollen. Durch die kombinierte und gezielte Maßnahme einer Reduzierung des Aluminiumgehalts und das gleichzeitige Vorsehen von bestimmten Anteilen von Kohlenstoff und Silizium kann die Kriechfestigkeit einer entsprechenden TiAl - Legierung deutlich verbessert und somit die Einsatztemperatur in den Bereich von 800 bis 850°C erhöht werden.The present invention makes it possible to improve the known TNM alloys in their creep resistance and thus to increase the possible use temperatures. For this purpose, starting from the known composition of the TNM alloys, it is proposed to limit the aluminum content to a maximum of 43 at.%. In addition, it is proposed, in addition to boron, to additionally provide carbon and silicon in the alloy, with the constituents in each case being in the range from 0.1 at.% To 0.5 at.%. The combined and targeted reduction of the aluminum content and the simultaneous provision of certain proportions of carbon and silicon can significantly improve the creep resistance of a corresponding TiAl alloy and thus increase the operating temperature in the range of 800 to 850 ° C.

Somit kann die chemische Zusammensetzung einer entsprechenden Legierung maximal 43 at.% Aluminium, 3 bis 8 at.% Niob, 0,2 at.% bis 3 at.% Molybdän und/oder Mangan, 0,05 at.% bis 0,5 at.% Bor, 0,1 at.% bis 0,5 at.% Kohlenstoff, 0,1 at.% bis 0,5 at.% Silizium sowie den Rest Titan und unvermeidbare Verunreinigungen aufweisen.Thus, the chemical composition of a corresponding alloy can not exceed 43 at.% Aluminum, 3 to 8 at.% Niobium, 0.2 at.% To 3 at.% Molybdenum and / or manganese, 0.05 at.% To 0.5 % boron, 0.1 at.% to 0.5 at.% carbon, 0.1 at.% to 0.5 at.% silicon, and the balance titanium and unavoidable impurities.

Vorzugsweise kann die TiAl-Legierung maximal 43 at.% Aluminium, 3,5 at.% bis 4,5 at.% Niob, 0,8 at.% bis 1,2 at.% Molybdän und/oder Mangan, 0,05 at.% bis 0,15 at.% Bor, 0,2 at.% bis 0,4 at.% Kohlenstoff, 0,2 at.% bis 0,4 at.% Silizium sowie den Rest Titan und unvermeidbare Verunreinigungen aufweisen.Preferably, the TiAl alloy may be at most 43 at.% Aluminum, 3.5 at.% To 4.5 at.% Niobium, 0.8 at.% To 1.2 at.% Molybdenum and / or manganese, 0.05 % to 0.15 at.% boron, 0.2 at.% to 0.4 at.% carbon, 0.2 at.% to 0.4 at.% silicon and the balance titanium and unavoidable impurities.

Als vorteilhaft hat sich eine TiAl - Legierung erwiesen, die 43 at.% Aluminium, 4 at.% Niob, 1 at.% Molybdän, 0,1 at.% Bor, 0,3 at.% Kohlenstoff, 0,3 at.% Silizium sowie den Rest Titan und unvermeidbare Verunreinigungen aufweist. Die angegebenen Werte sind hierbei keine absoluten Werte, sondern stellen Zielwerte dar, von denen innerhalb der Grenzen der technischen Realisierbarkeit abgewichen werden kann, die also entsprechend den anerkannten Regeln der Technik in einen bestimmten Genauigkeitsbereich einstellbar sind.A TiAl alloy has proved to be advantageous which contains 43 at.% Aluminum, 4 at.% Niobium, 1 at.% Molybdenum, 0.1 at.% Boron, 0.3 at.% Carbon, 0.3 at. % Silicon and the rest titanium and unavoidable impurities. The specified values are not absolute values, but represent target values, from which within the limits of the technical feasibility can be deviated, which are thus adjustable according to the accepted rules of technology in a certain accuracy range.

Eine derartige Legierung weist bei Raum - bzw. Einsatztemperaturen ein Gefüge auf, welches die Phasen γ - TiAl, α2 - Ti3Al und βo/B2 - Titan aufweist, wobei die B2 - bzw. βo - Phase eine geordnete Variante des β - Titans darstellt.Such an alloy has a microstructure at room or operating temperatures which has the phases γ - TiAl, α 2 - Ti 3 Al and β o / B2 - titanium, the B2 or β o phase being an ordered variant of the β - Titans represents.

Ein entsprechendes Bauteil mit einer TiAl - Legierung kann gießtechnisch mit oder ohne anschließende Kalt- und/oder Warmumformung erfindungsgemäß hergestellt werden. Ein übliches Verfahren zum Herstellen von entsprechenden Bauteilen von Strömungsmaschinen, wie beispielsweise Turbinenschaufeln, besteht darin, einen Rohling zu gießen und diesen anschließend durch Schmieden warm umzuformen. Ein entsprechend hergestelltes Zwischenprodukt kann gemäß der vorliegenden Erfindung einer Wärmebehandlung unterzogen werden, die ein Glühen bei einer Temperatur zwischen 800°C und 900°C für 4 bis 8 Stunden umfasst. Durch ein derartiges Stabilisierungsglühen kann das gewünschte Gefüge einer TNM - Legierung für eine verbesserte Kriechbeständigkeit optimiert werden.A corresponding component with a TiAl alloy can be produced by casting with or without subsequent cold and / or hot working according to the invention. A common method for producing corresponding components of turbomachines, such as turbine blades, is to cast a blank and then hot-form it by forging. A suitably prepared intermediate may be subjected to a heat treatment according to the present invention comprising annealing at a temperature between 800 ° C and 900 ° C for 4 to 8 hours. Such stabilization annealing can be used to optimize the desired microstructure of a TNM alloy for improved creep resistance.

Vorteilhafterweise kann das Glühen bei einer Temperatur von oder um 850°C für 6 Stunden stattfinden.Advantageously, the annealing may take place at a temperature of or around 850 ° C for 6 hours.

Nach dem Glühen kann das entsprechende Bauteil schnell abgekühlt werden, beispielsweise an Umgebungsatmosphäre oder durch Anströmen mit einem Kühlgas.After annealing, the corresponding component can be cooled rapidly, for example to ambient atmosphere or by flowing with a cooling gas.

Die Wärmebehandlung kann neben dem oben beschriebenen Glühen zusätzliche Wärmebehandlungsschritte aufweisen, die vor dem Glühen stattfinden. Insbesondere kann die Wärmebehandlung zweistufig mit einer dem Glühen vorgeschalteten Auslagerung ausgestaltet werden. Die Verwendung der Begriffe Auslagerung und Glühen weist hierbei nicht auf grundsätzlich unterschiedliche Verfahrensmechanismen hin, sondern soll lediglich zur Unterscheidung der Wärmebehandlungsstufen dienen.The heat treatment may include, in addition to the above-described annealing, additional heat treatment steps that take place before annealing. In particular, the heat treatment can be configured in two stages with an aging upstream of the annealing. The use of the terms outsourcing and annealing here does not indicate fundamentally different process mechanisms, but merely serves to distinguish the heat treatment stages.

Außerdem ist es möglich vor oder nach der hier beschriebenen Wärmebehandlung weitere thermische und/oder thermomechanische Behandlungen durchzuführen. Vorzugsweise soll die hier beschriebene Wärmebehandlung jedoch die abschließende Wärmebehandlung darstellen.In addition, it is possible to carry out further thermal and / or thermomechanical treatments before or after the heat treatment described here. Preferably, however, the heat treatment described herein should be the final heat treatment.

Die Auslagerung als erste Stufe einer zweistufigen Wärmebehandlung kann bei einer Temperatur von 950°C bis 1300°C für 0,1 Stunde bis 2 Stunden stattfinden. Insbesondere kann die Auslagerung bei einer Temperatur von 950°C bis 1050°C oder 1200°C bis 1300°C für eine Zeitdauer von 0,25 Stunden bis 1 Stunde stattfinden.The aging as the first stage of a two-stage heat treatment may take place at a temperature of 950 ° C to 1300 ° C for 0.1 hour to 2 hours. In particular, the aging can take place at a temperature of 950 ° C to 1050 ° C or 1200 ° C to 1300 ° C for a period of 0.25 hours to 1 hour.

Eine TiAl - Legierung mit der vorgestellten Zusammensetzung und ein Bauteil aus einer entsprechenden TiAl - Legierung, welches insbesondere dem vorgestellten Herstellungsverfahren mit der erfindungsgemäßen Wärmebehandlung unterzogen worden ist, kann vorteilhaft für Bauteile von Strömungsmaschinen, wie beispielsweise Schaufeln einer Strömungsmaschine, eingesetzt werden.A TiAl alloy with the presented composition and a component made of a corresponding TiAl alloy, which has been subjected in particular to the presented production method with the heat treatment according to the invention, can advantageously be used for components of turbomachines, such as, for example, blades of a turbomachine.

Insbesondere können die Bauteile bei Temperaturen bis 850°C, insbesondere im Betriebstemperaturbereich von 800°C bis 830°C, eingesetzt werden, wobei Betriebstemperatur hierbei bedeutet, dass die entsprechende Temperatur dauerhaft während des Betriebs auftritt oder die Temperatur als Spitzentemperatur kurzfristig im Betrieb auftreten kann.In particular, the components can be used at temperatures up to 850 ° C, in particular in the operating temperature range from 800 ° C to 830 ° C, wherein operating temperature here means that the corresponding temperature occurs permanently during operation or the temperature can occur as a peak temperature in the short term during operation ,

KURZBESCHREIBUNG DER FIGURBRIEF DESCRIPTION OF THE FIGURE

Die beigefügte Figur zeigt in einem Schliffbild ein typisches Gefüge eines erfindungsgemäß hergestellten Werkstoffs.The attached figure shows in a microsection a typical structure of a material according to the invention.

AUSFÜHRUNGSBEISPIELEmbodiment

Weitere Vorteile, Kennzeichen und Merkmale der vorliegenden Erfindung werden bei der nachfolgenden Beschreibung eines Ausführungsbeispiels deutlich, wobei die Erfindung nicht auf dieses Ausführungsbeispiel beschränkt ist.Further advantages, characteristics and features of the present invention will become apparent in the following description of an embodiment, wherein the invention is not limited to this embodiment.

Mit einer TiAl - Legierung mit 43 at.% Aluminium, 4 at.% Niob, 1 at.% Molybdän, 0,1 at.% Bor, 0,3 at.% Kohlenstoff, 0,3 at.% Silizium sowie dem Rest Titan kann eine Schaufel eines Flugzeugtriebwerks hergestellt werden, indem zunächst die oben genannte TNM - Legierung gegossen und heißisostatisch gepresst wird. Danach wird sie einer Feinkornschmiedung mittels Hot Die - Schmiedeprozess oberhalb der Auflösungstemperatur der γ - TiAl - Phase (Tγsolv ~ 1260°C) unterzogen, wodurch durch dynamische Rekristallisation der ungeordneten α - Titan - Phase ein nahezu texturfreies und feinkörniges Gefüge mit einer mittleren Korngröße der α - Phase von ∼ 10 µm eingestellt werden kann. Anteile an 10 - 30 vol.% β - Phase sowie geringe Anteile an Siliziden (ζ - Ti5Si3) und Karbiden (H - Ti2AlC) führen dabei zu erhöhter Keimbildung während des Umformprozesses und dadurch zu verbesserter Rekristallisationsneigung der α - Phase (particle stimulated recrystallization). Bei der nachfolgenden Abkühlung verzögert der gelöste Anteil an Kohlenstoff in der α - Phase die Ausscheidungskinetik der γ - TiAl - Phase, wodurch die α/α2 - Phase bei geeigneter Abkühlung übersättigt bleibt.With a TiAl alloy containing 43 at.% Aluminum, 4 at.% Niobium, 1 at.% Molybdenum, 0.1 at.% Boron, 0.3 at.% Carbon, 0.3 at.% Silicon and the rest Titan, a blade of an aircraft engine can be made by first casting and hot isostatically pressing the above TNM alloy. Thereafter, it is subjected to fine - grain forging by Hot Die forging above the dissolution temperature of the γ - TiAl phase (T γsolv ~ 1260 ° C), whereby dynamic recrystallization of the disordered α - titanium phase results in a nearly texture - free and fine - grained microstructure with a mean grain size α - phase of ~ 10 microns can be adjusted. Shares of 10 to 30 vol.% Β - phase and small amounts of silicides (ζ - Ti 5 Si 3 ) and carbides (H - Ti 2 AlC) lead to increased nucleation during the forming process and thereby to improved recrystallization tendency of the α - phase (particle stimulated recrystallization). In the subsequent cooling delays the dissolved fraction of carbon in the α - phase, the precipitation kinetics of the γ - TiAl phase, whereby the α / α 2 - phase remains supersaturated with suitable cooling.

Im nächsten Schritt wird die feinkörnig geschmiedete und übersättigte TNM - Legierung einer 2 - stufigen Wärmebehandlung unterzogen. Bei dieser wird bei einer ersten Auslagerung eine gezielte γ - Lamellenbreite zur Optimierung der Kriecheigenschaften eingestellt ("Kurzzeitglühung"). Im zweiten darauffolgenden Glühschritt knapp oberhalb der maximalen Einsatztemperatur werden Phasenanteile nahe dem thermodynamischen Gleichgewicht eingestellt ("Langzeitglühung"). Der Wärmebehandlungsprozess für das Gefüge mit einer besonders guten Kriechfestigkeit erfolgt beispielsweise mit einer Auslagerung bei 1000°C für 15 min mit einer nachfolgenden schnellen Abkühlung und einer Glühung bei 850°C für 6 h und einer ebenfalls schnellen Abkühlung. Dabei führt die erste Auslagerung zudem zur Ausbildung einer zellularen Reaktionsphase (ZR) ausgehend von den Grenzen der α2 - Ti3Al / γ - TiAl - Kolonien, die je nach Auslagerungstemperatur und -dauer in unterschiedlicher Menge auftritt und ein Umwandlungsgefüge darstellt. Bei der zweiten Glühung bei 850°C kommt dann die Triebkraft für die zellulare Reaktion und die entsprechende Bildung der zellularen Reaktionsphase wegen des größeren Lamellenabstands nahezu zum Erliegen.In the next step, the fine - grained and supersaturated TNM alloy is subjected to a two - stage heat treatment. In this case, a targeted γ-lamella width is set for the first removal in order to optimize the creep properties ("short-time annealing"). In the second subsequent annealing step, just above the maximum operating temperature, phase fractions are set close to the thermodynamic equilibrium ("long-term annealing"). The heat treatment process for the microstructure with a particularly good creep resistance takes place, for example, with an aging at 1000 ° C. for 15 minutes with a subsequent rapid cooling and annealing at 850 ° C. for 6 hours and likewise rapid cooling. In addition, the first removal leads to the formation of a cellular reaction phase (ZR) starting from the limits of the α 2 -Ti 3 Al / γ-TiAl colonies, which occurs in different amounts depending on the aging temperature and duration and represents a transformation structure. In the second annealing at 850 ° C then the driving force for the cellular reaction and the corresponding formation of the cellular reaction phase comes to a standstill because of the larger lamellar spacing.

Das beschriebene Verfahren führt in Kombination mit dem gewählten Werkstoff bei geringerem Aufwand im Vergleich zu den bisherigen Verfahren zu deutlich verbesserten mechanischen Eigenschaften. Die Vermeidung einer Hochtemperaturglühung verhindert die Gefahr von Kornwachstum.The described method results in combination with the selected material with less effort compared to the previous methods to significantly improved mechanical properties. Avoiding high-temperature annealing prevents the risk of grain growth.

Ein entsprechend hergestelltes Bauteil, wie beispielsweise eine Schaufel eines Flugzeugtriebwerks, weist gegenüber bisher bekannten TiAl - Legierungen und insbesondere TNM - Legierungen eine verbesserte Kriechbeständigkeit auf.A correspondingly produced component, such as, for example, a blade of an aircraft engine, has improved creep resistance compared to previously known TiAl alloys and in particular TNM alloys.

Ein charakteristisches Gefüge eines erfindungsgemäß hergestellten Bauteils einer TiAl - Legierung ist in der beigefügten Figur dargestellt. Bei diesem Gefüge handelt es sich um ein nahezu lamellares Gefüge mit geringen Anteilen an βo - Phase in der Größenordnung < 5 vol.% (NLβ).A characteristic structure of a component of a TiAl alloy produced according to the invention is shown in the attached figure. This microstructure is a nearly lamellar microstructure with small amounts of β o - phase in the order of <5 vol.% (NLβ).

Die βo - Titan - Phase kann dabei je nach Umformgeschwindigkeit beim Schmieden zeilig oder globular ausgeprägt sein. Innerhalb der βo - Phase befinden sich linsenförmige γ - TiAl - Ausscheidungen.Depending on the forming speed, the β o - titanium phase can be linear or globular. Within the β o phase are lenticular γ - TiAl precipitates.

Das Gefüge besteht mit bis zu 98 vol.% hauptsächlich aus globularen α2 - Ti3Al / γ - TiAl - Kolonien mit einer maximalen Größe von ∼ 10 - 20 µm und einer mittleren Breite der γ - TiAl - Lamellen in der Größenordnung von 50 - 150 nm. In der Regel liegen keine globularen y - Körner vor, welche ab einem Volumenanteil von etwa > 5 % zu einer Reduktion des Kriechwiderstands führen können.The structure consists with up to 98 vol.% Mainly of globular α 2 - Ti 3 Al / γ - TiAl colonies with a maximum size of ~ 10 - 20 μm and an average width of the γ - TiAl lamellae of the order of 50 - 150 nm. In general, there are no globular y grains, which can lead to a reduction of the creep resistance from a volume fraction of about> 5%.

Der Volumenanteil an zellularer Reaktionsphase (ZR) ist kleiner als 10 vol.%.The volume fraction of cellular reaction phase (ZR) is less than 10 vol.%.

Vor dem ersten Einsatz kann das Gefüge eines entsprechenden Bauteils aus etwa 70 bis 80 vol.%, insbesondere ca. 75 vol.% γ - TiAl, 20 bis 25 vol.%, insbesondere ca. 23 vol.% α2 - Ti3Al und 1 bis 3 vol.%, insbesondere ca. 2 vol.% βo - Ti umfassen. Der Kohlenstoff liegt dabei hauptsächlich in Lösung vor. Geringe Anteile an H - Karbiden und Siliziden, insbesondere von insgesamt weniger als 3 vol.%, vorzugsweise weniger als 1 vol.%, sowie zellularer Reaktionsphase (ZR) können zusätzlich im Gefüge vorhanden sein, wobei die Gefügebestandteile sich selbstverständlich zu 100 vol.% ergänzen und wobei die zellulare Reaktionsphase den Anteilen von γ - TiAl und α2 - Ti3Al zugerechnet wird.Before the first use, the microstructure of a corresponding component may comprise from about 70 to 80 vol.%, In particular about 75 vol.% Γ - TiAl, 20 to 25 vol.%, In particular about 23 vol.% Α 2 - Ti 3 Al and 1 to 3 vol.%, in particular about 2 vol.% β o - Ti. The carbon is mainly present in solution. Small proportions of H carbides and silicides, in particular less than 3 vol.% Total, preferably less than 1 vol.%, And cellular reaction phase (ZR) may additionally be present in the structure, wherein the structural constituents are of course to 100 vol.% and wherein the cellular reaction phase is assigned to the proportions of γ - TiAl and α 2 - Ti 3 Al.

Beim Einsatz des Bauteils bei den entsprechenden Einsatztemperaturen verändern sich die Gefügeanteile von γ - TiAl, α2 - Ti3Al und βo - Ti zwar kaum, d.h. das Gefüge bleibt stabil, aber die Kriechbeanspruchung bei Einsatzbedingungen führt zur Ausscheidung von feinsten Karbiden innerhalb der γ - TiAl - Phase, z.B. in Form von P-Ti3AlC, welche zur Behinderung des Versetzungskriechens und damit zur Steigerung der Kriechbeständigkeit beitragen.When using the component at the appropriate operating temperatures, the microstructural fractions of γ - TiAl, α 2 - Ti 3 Al and β o - Ti hardly change, ie the microstructure remains stable, but the creep under conditions of use leads to the precipitation of very fine carbides within the γ-TiAl phase, eg in the form of P-Ti 3 AlC, which contribute to the hindrance of dislocation creep and thus to an increase in creep resistance.

Zusätzlich verbessern feinste Silizidausscheidungen (ζ - Ti5Si3) an den α2 - Ti3Al/ γ - TiAl - Grenzflächen die Gefügestabilität. Reste an gröberen Siliziden können in Abhängigkeit der Wahl der Umform - und Wärmebehandlungsparameter im Gefüge enthalten sein.In addition, the finest silicide precipitates (ζ - Ti 5 Si 3 ) at the α 2 - Ti 3 Al / γ - TiAl interfaces improve the microstructure stability. Residues of coarser silicides can be contained in the microstructure depending on the choice of the forming and heat treatment parameters.

Das feinkörnige NLβ - Gefüge zeichnet sich durch hohe Hochtemperaturfestigkeit, Kriechbeständigkeit und Gefügestabilität bei deutlich verbesserter Schadenstoleranz unterhalb der Spröd - Duktil - Übergangstemperatur wegen der geringen Größe und globularen Ausbildung der α2 - Ti3Al/ γ - TiAl - Kolonien aus.The fine - grained NLβ microstructure is characterized by high high - temperature strength, creep resistance and microstructure stability with significantly improved damage tolerance below the brittle - ductile transition temperature due to the small size and globular form of the α 2 - Ti 3 Al / γ - TiAl colonies.

Obwohl die Erfindung anhand des Ausführungsbeispiels detailliert beschrieben worden ist, ist die Erfindung nicht auf dieses Ausführungsbeispiel beschränkt, sondern es sind Abwandlungen in der Weise möglich, dass einzelne Merkmale weggelassen oder andersartige Kombinationen von Merkmalen verwirklicht werden, solang der Schutzbereich der beigefügten Ansprüche nicht verlassen wird. Die vorliegende Offenbarung schließt sämtliche Kombinationen der vorgestellten Einzelmerkmale mit ein.Although the invention has been described in detail with reference to the embodiment, the invention is not limited to this embodiment, but modifications are possible in such a way that individual features omitted or other types of combinations of features are realized, as long as the scope of the appended claims not will leave. The present disclosure includes all combinations of the features presented.

Claims (10)

  1. Method for producing a component from a TiAl alloy for high temperature applications, which alloy consists of the following chemical composition:
    no more than 43 at.% Al,
    3 at.% to 8 at.% Nb,
    0.2 at.% to 3 at.% Mo and/or Mn,
    0.05 at.% to 0.5 at.% B,
    0.1 at.% to 0.5 at.% C,
    0.1 at.% to 0.5 at.% Si,
    and the remainder Ti and unavoidable impurities, characterized in that a cast and/or cold and/or hot formed intermediate product is provided from the alloy and is subjected to a heat treatment which comprises annealing at a temperature of between 800°C and 900°C for 4 to 8 h.
  2. Method according to claim 1, characterized in that the annealing takes place at a temperature of or approximately 850°C for 6 h.
  3. Method according to either claim 1 or claim 2, characterized in that the annealing is terminated by rapid cooling.
  4. Method according to any of claims 1 to 3, characterized in that the heat treatment is carried out in two stages and the annealing is the second stage of the heat treatment.
  5. Method according to any of claims 1 to 4, characterized in that the annealing is preceded by aging as the first stage of the heat treatment.
  6. Method according to claim 5, characterized in that the aging takes place at a temperature of 950°C to 1300°C for 0.1 h to 2 h.
  7. Method according to either claim 5 or claim 6, characterized in that the aging takes place at a temperature of 950°C to 1050°C or 1200°C to 1300°C for 0.25 h to 1 h.
  8. Method according to any of claims 1 to 7, characterized in that the alloy has the following chemical composition:
    no more than 43 at.% Al,
    3.5 at.% to 4.5 at.% Nb,
    0.8 at.% to 1.2 at.% Mo and/or Mn, 0.05 at.% to 0.15 at.% B,
    0.2 at.% to 0.4 at.% C,
    0.2 at.% to 0.4 at.% Si,
    and the remainder Ti.
  9. Method according to any of claims 1 to 8, characterized in that the alloy has the following chemical composition:
    43 at.% Al,
    4 at.% Nb,
    1 at.% Mo,
    0.1 at.% B,
    0.3 at.% C,
    0.3 at.% Si,
    and the remainder Ti.
  10. Method according to any of claims 1 to 9, characterized in that the alloy has γ-TiAl, α2-Ti3Al and β0/B2-Ti at room temperature.
EP13185280.8A 2013-09-20 2013-09-20 Creep-resistant TiAl alloy Not-in-force EP2851445B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13185280.8A EP2851445B1 (en) 2013-09-20 2013-09-20 Creep-resistant TiAl alloy
ES13185280T ES2747155T3 (en) 2013-09-20 2013-09-20 Creep resistant TiAl alloy
US14/481,295 US9994934B2 (en) 2013-09-20 2014-09-09 Creep-resistant TiA1 alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13185280.8A EP2851445B1 (en) 2013-09-20 2013-09-20 Creep-resistant TiAl alloy

Publications (2)

Publication Number Publication Date
EP2851445A1 EP2851445A1 (en) 2015-03-25
EP2851445B1 true EP2851445B1 (en) 2019-09-04

Family

ID=49226043

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13185280.8A Not-in-force EP2851445B1 (en) 2013-09-20 2013-09-20 Creep-resistant TiAl alloy

Country Status (3)

Country Link
US (1) US9994934B2 (en)
EP (1) EP2851445B1 (en)
ES (1) ES2747155T3 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3012410B1 (en) * 2014-09-29 2023-05-10 Raytheon Technologies Corporation Advanced gamma tial components
CN104878452A (en) * 2015-05-13 2015-09-02 南京理工大学 High-temperature high-strength TiAl-Nb monocrystal and preparation method thereof
US20180010213A1 (en) * 2016-07-07 2018-01-11 United Technologies Corporation Enhance ductility of gamma titanium aluminum alloys by reducing interstitial contents
US20180010468A1 (en) * 2016-07-07 2018-01-11 United Technologies Corporation Enhanced temperature capability gamma titanium aluminum alloys
EP3269838B1 (en) 2016-07-12 2021-09-01 MTU Aero Engines AG High temperature resistant tial alloy, method for production of a composent from a corresponding tial alloy, component from a corresponding tial alloy
CN110512116B (en) * 2019-09-09 2021-03-26 中国航发北京航空材料研究院 Multicomponent high-alloying high Nb-TiAl intermetallic compound
CN112620488A (en) * 2020-12-16 2021-04-09 西部超导材料科技股份有限公司 Ti3Al laminated composite board and preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5350466A (en) * 1993-07-19 1994-09-27 Howmet Corporation Creep resistant titanium aluminide alloy
DE102007051499A1 (en) 2007-10-27 2009-04-30 Mtu Aero Engines Gmbh Material for a gas turbine component, method for producing a gas turbine component and gas turbine component
DE102009050603B3 (en) * 2009-10-24 2011-04-14 Gfe Metalle Und Materialien Gmbh Process for producing a β-γ-TiAl base alloy
AT509768B1 (en) 2010-05-12 2012-04-15 Boehler Schmiedetechnik Gmbh & Co Kg METHOD FOR PRODUCING A COMPONENT AND COMPONENTS FROM A TITANIUM ALUMINUM BASE ALLOY
US8876992B2 (en) * 2010-08-30 2014-11-04 United Technologies Corporation Process and system for fabricating gamma TiAl turbine engine components
WO2012041276A2 (en) * 2010-09-22 2012-04-05 Mtu Aero Engines Gmbh Heat-resistant tial alloy
DE102011110740B4 (en) 2011-08-11 2017-01-19 MTU Aero Engines AG Process for producing forged TiAl components
EP2620517A1 (en) * 2012-01-25 2013-07-31 MTU Aero Engines GmbH Heat-resistant TiAl alloy
DE102012201082B4 (en) * 2012-01-25 2017-01-26 MTU Aero Engines AG Method for producing forged components from a TiAl alloy and correspondingly manufactured component

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
ES2747155T3 (en) 2020-03-10
EP2851445A1 (en) 2015-03-25
US9994934B2 (en) 2018-06-12
US20150086414A1 (en) 2015-03-26

Similar Documents

Publication Publication Date Title
EP2851445B1 (en) Creep-resistant TiAl alloy
DE102015103422B3 (en) Process for producing a heavy-duty component of an alpha + gamma titanium aluminide alloy for piston engines and gas turbines, in particular aircraft engines
EP2386663B1 (en) Method for producing a component and component from a gamma-titanium-aluminium base alloy
EP2227571B1 (en) Material for a gas turbine component, method for producing a gas turbine component and gas turbine component
EP2742162B1 (en) Method for producing forged tial components
EP2807281B1 (en) Method for producing forged components from a tial alloy and component produced thereby
EP3269838B1 (en) High temperature resistant tial alloy, method for production of a composent from a corresponding tial alloy, component from a corresponding tial alloy
DE102010037046A1 (en) Nickel base superalloys and articles
EP3175008B1 (en) Cobalt based alloy
JPH0798989B2 (en) Method for producing titanium alloy parts comprising improved hot working and resulting parts
EP2402473B1 (en) Process for producing a single-crystal component made of a nickel-based superalloy
EP1819838A1 (en) Titanium aluminide based alloy
EP2905350A1 (en) High temperature TiAl alloy
DE60008116T2 (en) Superalloy with optimized high-temperature performance in high-pressure turbine disks
EP2620517A1 (en) Heat-resistant TiAl alloy
EP3054023B1 (en) Aluminium-rich high temperature tial alloy
EP3211111A2 (en) Heat treatment method for components made of nickel base superalloys
EP3091095B1 (en) Low density rhenium-free nickel base superalloy
EP1341945B1 (en) Method for producing components with a high load capacity from tial alloys
DE102017212082A1 (en) FORGING AT HIGH TEMPERATURES, IN PARTICULAR OF TITANALUMINIDES
WO2012041276A2 (en) Heat-resistant tial alloy
EP2354261A1 (en) Nickel-Basis-Superalloy with improved degradation behaviour
DE4318424C2 (en) Process for the production of moldings from alloys based on titanium-aluminum
EP3584334A1 (en) Method for producing a forged component from a tial alloy and correspondingly manufactured component
DE10150674B4 (en) Process for the production of heavy-duty components made of TiAl alloys

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130920

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20150908

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180806

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 1/02 20060101ALI20190325BHEP

Ipc: C22F 1/18 20060101ALI20190325BHEP

Ipc: C22C 14/00 20060101AFI20190325BHEP

Ipc: C22F 1/00 20060101ALI20190325BHEP

INTG Intention to grant announced

Effective date: 20190411

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1175441

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013013499

Country of ref document: DE

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190904

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191205

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2747155

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013013499

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190920

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190920

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200105

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190930

26N No opposition filed

Effective date: 20200605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200924

Year of fee payment: 8

Ref country code: FR

Payment date: 20200921

Year of fee payment: 8

Ref country code: GB

Payment date: 20200923

Year of fee payment: 8

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1175441

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190920

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20201016

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130920

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502013013499

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210920

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220401

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20221125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210921