EP3269838B1 - High temperature resistant tial alloy, method for production of a composent from a corresponding tial alloy, component from a corresponding tial alloy - Google Patents
High temperature resistant tial alloy, method for production of a composent from a corresponding tial alloy, component from a corresponding tial alloy Download PDFInfo
- Publication number
- EP3269838B1 EP3269838B1 EP16178936.7A EP16178936A EP3269838B1 EP 3269838 B1 EP3269838 B1 EP 3269838B1 EP 16178936 A EP16178936 A EP 16178936A EP 3269838 B1 EP3269838 B1 EP 3269838B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- tial alloy
- tial
- phase
- alloy
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- 229910045601 alloy Inorganic materials 0.000 title claims description 80
- 239000000956 alloy Substances 0.000 title claims description 80
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 229910010038 TiAl Inorganic materials 0.000 claims description 66
- 229910021332 silicide Inorganic materials 0.000 claims description 49
- 239000010936 titanium Substances 0.000 claims description 39
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims description 26
- 239000011265 semifinished product Substances 0.000 claims description 20
- 239000000047 product Substances 0.000 claims description 19
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 18
- 229910052719 titanium Inorganic materials 0.000 claims description 18
- 229910052710 silicon Inorganic materials 0.000 claims description 14
- 239000010703 silicon Substances 0.000 claims description 14
- 229910021325 alpha 2-Ti3Al Inorganic materials 0.000 claims description 13
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 13
- 229910052782 aluminium Inorganic materials 0.000 claims description 13
- 239000000843 powder Substances 0.000 claims description 13
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 12
- 229910052796 boron Inorganic materials 0.000 claims description 12
- 229910052799 carbon Inorganic materials 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 12
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 11
- 229910052750 molybdenum Inorganic materials 0.000 claims description 11
- 239000011733 molybdenum Substances 0.000 claims description 11
- 229910052758 niobium Inorganic materials 0.000 claims description 11
- 239000010955 niobium Substances 0.000 claims description 11
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 11
- 229910006281 γ-TiAl Inorganic materials 0.000 claims description 9
- 229910052729 chemical element Inorganic materials 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 8
- 238000004090 dissolution Methods 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 8
- 238000001556 precipitation Methods 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 7
- 150000001247 metal acetylides Chemical class 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 7
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 7
- 229910052721 tungsten Inorganic materials 0.000 claims description 7
- 239000010937 tungsten Substances 0.000 claims description 7
- 238000005266 casting Methods 0.000 claims description 6
- 229910052735 hafnium Inorganic materials 0.000 claims description 5
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 5
- 230000015572 biosynthetic process Effects 0.000 claims description 4
- 230000006641 stabilisation Effects 0.000 claims description 4
- 238000011105 stabilization Methods 0.000 claims description 4
- 239000000155 melt Substances 0.000 claims description 3
- 238000004088 simulation Methods 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 claims description 2
- 238000007711 solidification Methods 0.000 claims 3
- 230000008023 solidification Effects 0.000 claims 3
- 229910052845 zircon Inorganic materials 0.000 claims 3
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 claims 3
- 239000002244 precipitate Substances 0.000 claims 2
- 238000005056 compaction Methods 0.000 claims 1
- 238000002844 melting Methods 0.000 claims 1
- 230000008018 melting Effects 0.000 claims 1
- 238000007493 shaping process Methods 0.000 claims 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 11
- 239000000463 material Substances 0.000 description 8
- 241000446313 Lamella Species 0.000 description 6
- 239000013067 intermediate product Substances 0.000 description 6
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 4
- 238000001513 hot isostatic pressing Methods 0.000 description 4
- 229910052726 zirconium Inorganic materials 0.000 description 4
- 238000005242 forging Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 230000002730 additional effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- -1 for example Inorganic materials 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000010310 metallurgical process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/16—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
- C22F1/18—High-melting or refractory metals or alloys based thereon
- C22F1/183—High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C14/00—Alloys based on titanium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
Definitions
- the present invention relates to a highly heat-resistant TiAl alloy and a method for producing a component from such a TiAl alloy as well as a corresponding component.
- TiAl alloys which have titanium and aluminum as the main components - i.e. as chemical elements with the highest proportions in the composition - are used as materials for moving parts in engines and gas turbines, e.g. as Blades, used.
- This alloy is adjusted during production so that the material has a ⁇ -Ti phase and / or B2-Ti phase at room temperature, both of which will be referred to below as the ⁇ phase for short.
- the ⁇ - phase serves to avoid coarsening of the ⁇ - Ti grains at high temperatures at which in TiAl alloys with a correspondingly high aluminum part a substantial part of the material can be present as an ⁇ - Ti phase with high aluminum solubility, in order to achieve a homogeneous structure that is favorable for the ductility and creep resistance of the material with uniform, not too coarse microstructures.
- the ⁇ - phase stabilizes the grain boundaries of the ⁇ - Ti grains and thus counteracts any coarsening.
- TiAl alloys are from the EP2851445A1 as well as from the article " Silicon distribution and silicide precipitation during annealing in an advanced multiphase ⁇ -TiAl based alloy ", Klein, Thomas et al, ACTA MATERIALIA, ELSEVIER, OXFORD, GB, Vol. 110, March 23, 2016 (2016-03-23), pp 236-245 " known.
- the invention proposes to essentially dispense with the ⁇ phase to hinder the grain growth of ⁇ -Ti grains at high temperatures and that To hinder the growth of the ⁇ -Ti grains at high temperatures through the precipitation of silicides.
- the term “essentially without the ⁇ phase” or “essentially no ⁇ phase” means in this context that the ⁇ phase in the finished alloy is less than 5% by volume, preferably less than 2% by volume. -% and more preferably 0% by volume.
- the invention proposes to select a TiAl alloy which, in addition to the main alloy components titanium and aluminum, has at least niobium, molybdenum, carbon, boron and silicon and also has zirconium and / or tungsten, with silicon being provided for the formation of the silicides which the The aim is to hinder grain growth of the ⁇ -Ti grains at correspondingly high temperatures in order to counteract coarsening of the microstructure.
- the TiAl alloy should be selected in such a way that, given the chosen chemical composition of the TiAl alloy, there is an ⁇ -phase temperature range in whose temperature range there is essentially an ⁇ -Ti phase with silicides.
- a corresponding TiAl alloy which is essentially in the form of ⁇ -Ti in a specific temperature interval for the given chemical composition, can be produced by means of simulation calculations with appropriate simulation programs that take into account a large number of thermodynamic data, and / or by producing appropriate Test melts or test alloys and metallographic examination of the test alloys are determined.
- a corresponding TiAl alloy with a certain chemical composition which has an ⁇ -phase temperature range in which the corresponding TiAl alloy is essentially single-phase as an ⁇ -Ti phase, with only silicides additionally being present in the temperature range
- such a TiAl alloy with the selected chemical composition is melted and then cast in a further step into a semifinished product or atomized into TiAl powder, the semifinished product already being a near-net-shape intermediate product or a starting product for further forming into a Can be a preliminary product.
- the cast semi-finished product can be formed into a preliminary product by forging.
- the TiAl powder can be used for further processing in powder metallurgical manufacturing processes, such as generative manufacturing processes, or compressed, joined and / or shaped by hot isostatic pressing (HIP) or the like in order to also create a preliminary product.
- powder metallurgical manufacturing processes such as generative manufacturing processes, or compressed, joined and / or shaped by hot isostatic pressing (HIP
- the cast semifinished product or a preliminary product produced from the semifinished product or from the TiAl powder is then cooled from a silicide start temperature in such a way that silicides can separate out in order to carry out precipitation stabilization.
- the cooling from the silicide start temperature can take place, for example, directly after the casting of the semifinished product when the casting is being cooled, or, if the semifinished product is unshaped after casting by hot forming into a preliminary product, by cooling from the forming temperature.
- the preliminary product can be heated to a silicide start temperature after its production and the intermediate product is cooled from the silicide start temperature in such a way that the desired silicides are eliminated.
- the pre-product produced by the powder can also be transferred to a Bred silicide start temperature and cooled by this in such a way that silicides can be excreted.
- the intermediate product can be cooled from a temperature already present during production, such as the HIP temperature, in such a way that silicide is precipitated.
- the HIP temperature is the silicide start temperature. In order to enable the silicides to precipitate, the cooling from the silicide start temperature must take place slowly enough to allow the silicides to precipitate.
- a heat treatment of the precipitation-stabilized semi-finished product or pre-product is carried out in the ⁇ -phase temperature range in which the semi-finished product or pre-product is essentially present as an ⁇ -Ti phase with precipitated silicides, the silicides having a coarsening of the Counteracting ⁇ - Ti grains.
- the existing ⁇ phase largely or completely dissolves.
- the heat treatment in the ⁇ -phase temperature range can be carried out for a period of 0.5 to 2 hours, in particular from 0.5 to 1 hour, the cooling being carried out in such a way that globular colonies of lamellae form from the ⁇ -Ti grains from ⁇ 2 - Ti 3 Al and ⁇ - TiAl, the silicide precipitations previously generated during the precipitation stabilization of the material also being present. This results in a microstructure that has an excellent, balanced profile of properties with improved creep resistance.
- the silicide start temperature to which a semi-finished product after casting or a pre-product formed after casting or a pre-product manufactured by a powder metallurgical process is heated during precipitation stabilization of the TiAl alloy can be at a temperature above a silicide dissolution temperature of the material, so that the Silicide start temperature the silicon is largely in solution in order to then enable a homogeneous precipitation of the silicides when the semi-finished product or intermediate product cools. That This coarser structure can be refined by forging, whereby fine silicides can be excreted by targeted cooling from the forging temperature.
- the silicide start temperature can also be below a silicide dissolution temperature if the silicide start temperature is the temperature during a deformation or compacting of a semi-finished product or a preliminary product.
- a temperature can be set well below the silicide dissolution temperature, so that silicides can form.
- the ⁇ -phase temperature range in which the subsequent heat treatment of the precipitation-stabilized semi-finished product or intermediate product is carried out can be below a silicide dissolution temperature of the TiAl alloy and above a ⁇ -solvus temperature at which the entire ⁇ -TiAl phase in ⁇ - Ti phase goes into solution, so that it is ensured that in the ⁇ phase temperature range, apart from the silicides present, essentially exclusively ⁇ Ti phase is present.
- the proportion of the ⁇ -Ti phase in the ⁇ -phase temperature range can be in the range of 95% by volume or more, in particular 98% by volume or more.
- a corresponding TiAl alloy which has a suitable ⁇ -phase temperature range with a sufficiently high silicide dissolution temperature and a ⁇ -solvus temperature at least 15 K, in particular at least 20 K lower, at which ⁇ -TiAl components are no longer present, but exclusively
- the ⁇ -Ti phase has a chemical composition with 42 to 48 at.% aluminum, preferably 43 to 45 at.% aluminum, 3 to 5 at.% niobium, preferably 3.5 to 4.5 at.% niobium, 0, 05 to 1 at.% Molybdenum, preferably 0.85 to 0.95 at.% Molybdenum, 0.2 to 2.2 at.% Silicon, preferably 0.25 to 0.35 at.% Silicon, 0.2 to 0.4 at.% Carbon, preferably 0.25 to 0.35 at.% Carbon, 0.05 to 0.2 at.% Boron, preferably 0.05 to 0.15 at.% Boron as well as titanium and unavoidable impurities on, wherein titanium is provided in an amount that the sum of the chemical
- Alternatives according to the invention of the TiAl alloy which are produced in particular by the production method described above or components made from this TiAl alloy, comprise at least one of the elements from a group comprising tungsten, zirconium and hafnium. With such alloys, the structures described can be achieved at room temperature or in the ⁇ -phase temperature range. In addition, the alloy components mentioned can give the alloys or the components produced with them additional properties.
- the TiAl alloy contains, in addition to titanium and unavoidable impurities, 43.5 to 45 at.% Aluminum, 3.5 to 4.5 at.% Niobium, 0.1 to 0.5 at.% Molybdenum, 0, 4 to 1 at.% Tungsten, 0.25 to 0.35 at.% Silicon, 0.25 to 0.35 at.% Carbon and 0.05 to 0.15 at.% Boron, the alloy having precisely this composition may have or may include additional alloy elements. In any case, the proportion of titanium is chosen so that the sum of the chemical elements of the alloy is 100 at.%.
- the TiAl alloy contains, in addition to titanium and unavoidable impurities, 43.5 to 45 at.% Aluminum, 3.5 to 4.5 at.% Niobium, 0.85 to 0.95 at.% Molybdenum, 0 , 1 to 3 at.% Zirconium, 0.25 to 2.2 at.% Silicon, 0.25 to 0.35 at.% Carbon and 0.05 to 0.15 at.% Boron, the alloy being exactly these May have composition or may comprise additional further alloying elements.
- the proportion of titanium is chosen so that the sum of the chemical elements of the alloy is 100 at.%.
- the TiAl alloy contains, in addition to titanium and unavoidable impurities, 46 to 48 at.% Aluminum, 3.5 to 5 at.% Niobium, 0.1 to 0.5 at.% Molybdenum, 0.4 to 1 , 8 at% tungsten, 0.1 to 3 at.% Zirconium, 0.35 to 2.2 at.% Silicon, 0.25 to 0.35 at.% Carbon and 0.05 to 0.15 at.% Boron, wherein the alloy can have precisely this composition or can comprise an additional further alloy element, namely hafnium.
- the proportion of titanium is chosen so that the sum of the chemical elements of the alloy is 100 at.%.
- boron and carbon can both contribute to solid solution strengthening of the alloy and also produce borides and / or carbides, which positively affect the microstructure with regard to a homogeneous microstructure with suitable colony sizes and lamellar thicknesses or spacings of the ⁇ 2 - Ti 3 Al - and ⁇ - TiAl - lamellae can influence.
- the semi-finished product or intermediate product heat-treated in the ⁇ -phase temperature range can be subjected to a second heat treatment at a temperature below a ⁇ -solvus temperature of Material are subjected to influence the formation of the lamellae from ⁇ 2 - Ti 3 Al and ⁇ - TiAl from the ⁇ - Ti grains and to set the desired lamella thicknesses or spacings.
- a corresponding TiAl alloy or a component made therefrom can thus have less than 5% by volume ⁇ phase and preferably no ⁇ phase at all in the TiAl alloy at operating temperatures of up to 1000 ° C., so that the creep resistance is improved.
- the globular colonies with lamellae made of ⁇ 2 - Ti 3 Al and ⁇ - TiAl can form 95% by volume or more, in particular 98% by volume or more, of the TiAl alloy at room temperature.
- the remainder can be formed by silicides, carbides and / or borides, the TiAl alloy being able to contain up to 5% by weight, preferably up to 2% by weight, of silicides, carbides and / or borides, their mean or maximum grain size can be less than or equal to 5 ⁇ m.
- the globular colonies of ⁇ 2 - Ti 3 Al and ⁇ - TiAl lamellae can have an average or maximum size of 50 to 300 ⁇ m, in particular 100 to 200 ⁇ m, the average lamellae spacing being in the range from 10 nm to 1 ⁇ m can.
- the lamella spacing is understood here as the distance between lamellae in the same phase, i.e. the distance from one ⁇ -TiAl lamella to the next ⁇ -TiAl lamella or the distance from one ⁇ 2 -Ti 3 Al lamella to the next ⁇ 2 -Ti 3 Al lamella.
- the attached drawing shows in a purely schematic manner the structure of a TiAl alloy according to the invention or a component made from a TiAl alloy.
- a structure can be formed through the corresponding heat treatments in the ⁇ -phase temperature range and a subsequent second heat treatment at a temperature below the ⁇ -solvus temperature of the TiAl alloy, as shown in is shown in the accompanying drawing.
- the globular colonies 1 made up of ⁇ 2 - Ti 3 Al lamellae 2 and ⁇ - TiAl lamellae 3 are equiaxed with similar sizes and spherical shapes, with silicides 4 and borides 5 and carbides 6 having separated at the borders of the colonies 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Powder Metallurgy (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Description
Die vorliegende Erfindung betrifft eine hochwarmfeste TiAl - Legierung und ein Verfahren zur Herstellung eines Bauteils aus einer derartigen TiAl - Legierung sowie ein entsprechendes Bauteil.The present invention relates to a highly heat-resistant TiAl alloy and a method for producing a component from such a TiAl alloy as well as a corresponding component.
TiAl - Legierungen, die als Hauptbestandteile - also als chemische Elemente mit den höchsten Anteilen in der Zusammensetzung - Titan und Aluminium aufweisen, werden aufgrund ihres niedrigen spezifischen Gewichts und ihren guten Festigkeitseigenschaften, insbesondere Hochtemperaturfestigkeitseigenschaften als Werkstoffe für bewegte Teile in Motoren und Gasturbinen, z.B. als Laufschaufeln, eingesetzt. Ein Beispiel für eine TiAl - Legierung und ihren Einsatz in Strömungsmaschinen, wie Flugtriebwerken, ist in der
Allerdings weisen derartige TiAl - Legierungen immer noch Defizite hinsichtlich der Kriechbeständigkeit auf, so dass insbesondere in dieser Hinsicht Verbesserungsbedarf besteht.However, such TiAl alloys still have deficits in terms of creep resistance, so that there is a need for improvement in this respect in particular.
Weitere TiAl - Legierungen sind aus der
Es ist deshalb Aufgabe der vorliegenden Erfindung eine TiAl - Legierung sowie ein Verfahren zur Herstellung eines Bauteils aus einer TiAl - Legierung und ein entsprechendes Bauteil bereitzustellen, wobei die TiAl - Legierung und die daraus hergestellten Bauteile ein ausgewogenes Eigenschaftsprofil mit ausreichender Festigkeit, Duktilität und insbesondere Kriechbeständigkeit aufweisen sollen.It is therefore the object of the present invention to provide a TiAl alloy and a method for producing a component from a TiAl alloy and a corresponding component, the TiAl alloy and the components made from it having a balanced profile of properties with sufficient strength, ductility and, in particular, creep resistance should have.
Diese Aufgabe wird gelöst mit einer TiAl - Legierung mit den Merkmalen des Anspruchs 1, einem Verfahren zur Herstellung eines Bauteils aus einer TiAl - Legierung mit den Merkmalen des Anspruchs 2 sowie einem Bauteil aus einer TiAl - Legierung mit den Merkmalen des Anspruchs 8. Vorteilhafte Ausgestaltungen sind Gegenstand der abhängigen Ansprüche.This object is achieved with a TiAl alloy with the features of claim 1, a method for producing a component made of a TiAl alloy with the features of
Die Erfindung schlägt zur Verbesserung der Kriechbeständigkeit von TiAl - Legierungen bzw. daraus hergestellter Bauteile insbesondere für Strömungsmaschinen, wie Gastrubinen und Flugtriebwerke vor, auf die β - Phase zur Behinderung des Kornwachstums von α - Ti - Körnern bei hohen Temperaturen im Wesentlichen zu verzichten und das Wachstum der α - Ti - Körner bei hohen Temperaturen durch die Ausscheidung von Siliziden zu behindern. Der Begriff "im Wesentlichen auf die β - Phase verzichten" bzw. "im Wesentlichen keine β - Phase" bedeutet in diesem Zusammenhang, dass die β - Phase in der fertigen Legierung weniger als 5 Vol.-%, vorzugsweise weniger als 2 Vol.-% und weiter bevorzugt 0 Vol.-% ausmacht. Durch die Vermeidung der β - Phase bzw. die Beschränkung der β - Phase auf minimale Anteile im Gefüge kann die Kriechbeständigkeit verbessert werden, wobei gleichzeitig weiterhin ein homogenes Gefüge mit feinen Strukturen erzielt werden kann. Hierzu schlägt die Erfindung vor, eine TiAl - Legierung auszuwählen, die neben den Hauptlegierungsbestandteilen Titan und Aluminium wenigstens Niob, Molybdän, Kohlenstoff, Bor und Silizium aufweist und zudem Zirkon und/oder Wolfram aufweist, wobei Silizium zur Bildung der Silizide vorgesehen ist, die das Kornwachstum der α - Ti - Körner bei entsprechend hohen Temperaturen behindern sollen, um eine Vergröberung der Mikrostruktur entgegenzuwirken. Die TiAl - Legierung soll so ausgewählt werden, dass bei der gewählten chemischen Zusammensetzung der TiAl - Legierung ein α - Phasen - Temperaturbereich gegeben ist, in dessen Temperaturbereich im Wesentlichen α - Ti - Phase mit Siliziden vorliegt. Eine entsprechende TiAl - Legierung, die in einem bestimmten Temperaturintervall für die gegebene chemische Zusammensetzung im Wesentlichen in der Form des α - Ti vorliegt, kann durch Simulationserrechnungen mit entsprechenden Simulationsprogrammen, die eine Vielzahl von thermodynamischen Daten berücksichtigen, und/oder durch die Herstellung von entsprechenden Testschmelzen bzw. Testlegierungen und metallographische Untersuchung der Testlegierungen ermittelt werden.In order to improve the creep resistance of TiAl alloys and / or components made therefrom, in particular for turbo engines, such as gas turbines and aircraft engines, the invention proposes to essentially dispense with the β phase to hinder the grain growth of α-Ti grains at high temperatures and that To hinder the growth of the α-Ti grains at high temperatures through the precipitation of silicides. The term “essentially without the β phase” or “essentially no β phase” means in this context that the β phase in the finished alloy is less than 5% by volume, preferably less than 2% by volume. -% and more preferably 0% by volume. By avoiding the β phase or restricting the β phase to minimal proportions in the structure, the creep resistance can be improved, while at the same time maintaining a homogeneous structure can be achieved with fine structures. For this purpose, the invention proposes to select a TiAl alloy which, in addition to the main alloy components titanium and aluminum, has at least niobium, molybdenum, carbon, boron and silicon and also has zirconium and / or tungsten, with silicon being provided for the formation of the silicides which the The aim is to hinder grain growth of the α-Ti grains at correspondingly high temperatures in order to counteract coarsening of the microstructure. The TiAl alloy should be selected in such a way that, given the chosen chemical composition of the TiAl alloy, there is an α-phase temperature range in whose temperature range there is essentially an α-Ti phase with silicides. A corresponding TiAl alloy, which is essentially in the form of α-Ti in a specific temperature interval for the given chemical composition, can be produced by means of simulation calculations with appropriate simulation programs that take into account a large number of thermodynamic data, and / or by producing appropriate Test melts or test alloys and metallographic examination of the test alloys are determined.
Wenn eine entsprechende TiAl - Legierung mit einer bestimmten chemischen Zusammensetzung ausgewählt worden ist, die einen α - Phasen - Temperaturbereich aufweist, in dem die entsprechende TiAl - Legierung im Wesentlichen einphasig als α - Ti - Phase vorliegt, wobei lediglich Silizide zusätzlich in dem Temperaturbereich vorliegen, wird bei dem erfindungsgemäßen Verfahren eine derartige TiAl - Legierung mit der gewählten chemischen Zusammensetzung erschmolzen und anschießend in einem weiteren Schritt zu einem Halbzeug gegossen oder zu TiAl - Pulver verdüst, wobei das Halbzeug bereits ein endkonturnahes Zwischenprodukt oder ein Ausgangsprodukt für eine weitere Umformung zu einem Vorprodukt sein kann. Beispielsweise kann das gegossene Halbzeug durch Schmieden zu einem Vorprodukt umgeformt werden. Das TiAl - Pulver kann zur weiteren Verarbeitung in pulvermetallurgischen Herstellungsverfahren, wie generativen Fertigungsverfahren eingesetzt oder durch heißisostatisches Pressen (HIP) oder dergleichen verdichtet, zusammengefügt und/oder verformt werden, um ebenfalls ein Vorprodukt zu schaffen.If a corresponding TiAl alloy with a certain chemical composition has been selected, which has an α-phase temperature range in which the corresponding TiAl alloy is essentially single-phase as an α-Ti phase, with only silicides additionally being present in the temperature range , in the process according to the invention, such a TiAl alloy with the selected chemical composition is melted and then cast in a further step into a semifinished product or atomized into TiAl powder, the semifinished product already being a near-net-shape intermediate product or a starting product for further forming into a Can be a preliminary product. For example, the cast semi-finished product can be formed into a preliminary product by forging. The TiAl powder can be used for further processing in powder metallurgical manufacturing processes, such as generative manufacturing processes, or compressed, joined and / or shaped by hot isostatic pressing (HIP) or the like in order to also create a preliminary product.
Nachfolgend wird das gegossene Halbzeug oder ein aus dem Halbzeug oder aus dem TiAl - Pulver hergestelltes Vorprodukt so von einer Silizidstarttemperatur abgekühlt, sodass sich Silizide ausscheiden können, um eine Ausscheidungsstabilisierung vorzunehmen. Die Abkühlung von der Silizidstarttemperatur kann beispielsweise direkt nach dem Gießen des Halbzeugs beim Abkühlen des Gussstücks erfolgen oder, falls das Halbzeug nach dem Gießen durch Warmumformen zu einem Vorprodukt ungeformt wird, durch Abkühlen von der Umformungstemperatur. Weiterhin kann das Vorprodukt nach seiner Herstellung auf eine Silizidstarttemperatur erwärmt werden und das Vorprodukt von der Silizidstarttemperatur in der Weise abgekühlt werden, dass sich die gewünschten Silizide ausscheiden. Wird die TiAl - Legierung als Pulver zur pulvermetallurgischen Herstellung eines Bauteils verwendet, beispielsweise zur additiven Fertigung eines Bauteils durch lageweises Abscheiden der Pulverpartikel oder durch vakuumdichtes Verkapseln und Fügen des Pulvers durch heißisostatisches Pressen zu einem Vorprodukt, kann das durch das Pulver erzeugte Vorprodukt ebenfalls auf eine Silizidstarttemperatur gebracht und von dieser in der Weise abgekühlt werden, dass Silizide ausgeschieden werden können. Auch bei der pulvermetallurgischen Herstellung kann das Vorprodukt von einer bei der Herstellung bereits vorliegenden Temperatur, wie beispielsweise der HIP - Temperatur so abgekühlt werden, dass eine Silizidausscheidung erfolgt. In diesem Fall ist also die HIP - Temperatur die Silizidstarttemperatur. Um eine Ausscheidung der Silizide zu ermöglichen, muss die Abkühlung von der Silizidstarttemperatur ausreichend langsam erfolgen, um die Möglichkeit zur Ausscheidung der Silizide zu geben.The cast semifinished product or a preliminary product produced from the semifinished product or from the TiAl powder is then cooled from a silicide start temperature in such a way that silicides can separate out in order to carry out precipitation stabilization. The cooling from the silicide start temperature can take place, for example, directly after the casting of the semifinished product when the casting is being cooled, or, if the semifinished product is unshaped after casting by hot forming into a preliminary product, by cooling from the forming temperature. Furthermore, the preliminary product can be heated to a silicide start temperature after its production and the intermediate product is cooled from the silicide start temperature in such a way that the desired silicides are eliminated. If the TiAl alloy is used as a powder for the powder-metallurgical production of a component, for example for the additive production of a component by layer-by-layer deposition of the powder particles or by vacuum-tight encapsulation and joining of the powder by hot isostatic pressing to form a pre-product, the pre-product produced by the powder can also be transferred to a Bred silicide start temperature and cooled by this in such a way that silicides can be excreted. In powder metallurgical production, too, the intermediate product can be cooled from a temperature already present during production, such as the HIP temperature, in such a way that silicide is precipitated. In this case, the HIP temperature is the silicide start temperature. In order to enable the silicides to precipitate, the cooling from the silicide start temperature must take place slowly enough to allow the silicides to precipitate.
Anschließend wird in einem weiteren Schritt des erfindungsgemäßen Verfahrens eine Wärmebehandlung des ausscheidungsstabilisierten Halbzeugs oder Vorprodukts in dem α - Phasen - Temperaturbereich durchgeführt, in dem das Halbzeug oder Vorprodukt im Wesentlichen als α - Ti - Phase mit ausgeschiedenen Siliziden vorliegt, wobei die Silizide einer Vergröberung der α - Ti - Körner entgegenwirken. Während dieses Schrittes löst sich vorhandene β - Phase weitgehend oder vollständig auf. Die Wärmebehandlung in dem α - Phasen - Temperaturbereich kann für eine Zeitdauer von 0,5 bis 2 Stunden, insbesondere von 0,5 bis 1 Stunde erfolgen, wobei das Abkühlen so erfolgt, dass sich aus den α - Ti - Körnern globulare Kolonien aus Lamellen aus α2 - Ti3Al und γ - TiAl bilden, wobei die zuvor bei der Ausscheidungsstabilisierung des Werkstoffs erzeugten Silizidausscheidungen zusätzlich vorliegen. Damit ist eine Mikrostruktur gegeben, die ein hervorragendes, ausgewogenes Eigenschaftsprofil mit einer verbesserten Kriechbeständigkeit aufweist.Subsequently, in a further step of the method according to the invention, a heat treatment of the precipitation-stabilized semi-finished product or pre-product is carried out in the α-phase temperature range in which the semi-finished product or pre-product is essentially present as an α-Ti phase with precipitated silicides, the silicides having a coarsening of the Counteracting α - Ti grains. During this step, the existing β phase largely or completely dissolves. The heat treatment in the α-phase temperature range can be carried out for a period of 0.5 to 2 hours, in particular from 0.5 to 1 hour, the cooling being carried out in such a way that globular colonies of lamellae form from the α-Ti grains from α 2 - Ti 3 Al and γ - TiAl, the silicide precipitations previously generated during the precipitation stabilization of the material also being present. This results in a microstructure that has an excellent, balanced profile of properties with improved creep resistance.
Die Silizidstarttemperatur, auf die ein Halbzeug nach dem Gießen oder ein nach dem Gießen umgeformtes Vorprodukt oder ein durch ein pulvermetallurgisches Verfahren hergestelltes Vorprodukt während der Ausscheidungsstabilisierung der TiAl - Legierung erwärmt wird, kann bei einer Temperatur über einer Silizidauflösungstemperatur des Werkstoffs liegen, so dass bei der Silizidstarttemperatur das Silizium weitgehend in Lösung ist, um dann beim Abkühlen des Halbzeugs oder Vorproduktes eine homogene Ausscheidung der Silizide zu ermöglichen.-Liegen beispielsweise grobe Silizide durch den Gussprozess vor, können diese durch die Lösungsglühung bei der Silizidstarttemperatur oberhalb einer Silzidauflösungstemperatur aufgelöst werden. Das dadurch vergröberte Gefüge kann durch Schmieden gefeint werden, wobei durch gezieltes Abkühlen von der Schmiedetemperatur feine Silizide ausgeschieden werden können. Allerdings kann die Silizidstarttemperatur auch unterhalb einer Silizidauflösungstemperatur liegen, wenn die Silizidstarttemperatur die Temperatur bei einer Umformung oder Kompaktierung eines Halbzeugs oder eines Vorprodukts ist. Beispielsweise kann beim Konsolidieren des Pulvers durch HIPen oder beim Nachverdichten eines pulvermetallurgisch aufgebauten Vorprodukts durch HIPen eine Temperatur deutlich unterhalb der Silizidauflösungstemperatur eingestellt werden, so dass sich Silizide bilden können.The silicide start temperature to which a semi-finished product after casting or a pre-product formed after casting or a pre-product manufactured by a powder metallurgical process is heated during precipitation stabilization of the TiAl alloy can be at a temperature above a silicide dissolution temperature of the material, so that the Silicide start temperature the silicon is largely in solution in order to then enable a homogeneous precipitation of the silicides when the semi-finished product or intermediate product cools. That This coarser structure can be refined by forging, whereby fine silicides can be excreted by targeted cooling from the forging temperature. However, the silicide start temperature can also be below a silicide dissolution temperature if the silicide start temperature is the temperature during a deformation or compacting of a semi-finished product or a preliminary product. For example, when consolidating the powder by HIPing or when re-compacting a pre-product built up using powder metallurgy by HIPing, a temperature can be set well below the silicide dissolution temperature, so that silicides can form.
Entsprechend kann der α - Phasen - Temperaturbereich, in dem die anschließende Wärmebehandlung des auscheidungsstabilisierten Halbzeugs oder Vorprodukts durchgeführt wird, unterhalb einer Silizidauflösungstemperatur der TiAl - Legierung und oberhalb einer γ - Solvus - Temperatur, bei der die gesamte γ - TiAl - Phase in α - Ti - Phase in Lösung geht, liegen, so dass sichergestellt ist, dass im α - Phasen - Temperaturbereich bis auf die vorhandenen Silizide im Wesentlichen ausschließlich α - Ti - Phase vorliegt. Insbesondere kann der Anteil der α - Ti - Phase im α - Phasen - Temperaturbereich im Bereich von 95 vol.% oder mehr, insbesondere 98 vol.% oder mehr liegen.Correspondingly, the α-phase temperature range in which the subsequent heat treatment of the precipitation-stabilized semi-finished product or intermediate product is carried out can be below a silicide dissolution temperature of the TiAl alloy and above a γ-solvus temperature at which the entire γ-TiAl phase in α- Ti phase goes into solution, so that it is ensured that in the α phase temperature range, apart from the silicides present, essentially exclusively α Ti phase is present. In particular, the proportion of the α-Ti phase in the α-phase temperature range can be in the range of 95% by volume or more, in particular 98% by volume or more.
Eine entsprechende TiAl - Legierung, die einen geeigneten α - Phasen - Temperaturbereich mit einer ausreichend hohen Silizidauflösungstemperatur und einer wenigstens 15 K, insbesondere wenigsten 20 K niedrigeren γ - Solvus - Temperatur aufweist, bei der keine γ - TiAl - Anteile mehr vorliegen, sondern ausschließlich α - Ti - Phase weist eine chemische Zusammensetzung mit 42 bis 48 at.% Aluminium, vorzugsweise 43 bis 45 at.% Aluminium, 3 bis 5 at.% Niob, vorzugsweise 3,5 bis 4,5 at.% Niob, 0,05 bis 1 at.% Molybdän, vorzugsweise 0,85 bis 0,95 at.% Molybdän, 0,2 bis 2,2 at.% Silizium, vorzugsweise 0,25 bis 0,35 at.% Silizium, 0,2 bis 0,4 at.% Kohlenstoff, vorzugsweise 0,25 bis 0,35 at.% Kohlenstoff, 0, 05 bis 0,2 at.% Bor, vorzugsweise 0,05 bis 0,15 at.% Bor sowie Titan und unvermeidbare Verunreinigungen auf, wobei Titan in einer Menge vorgesehen ist, dass die Summe der chemischen Elemente der Legierung 100 at.% ergibt.A corresponding TiAl alloy which has a suitable α-phase temperature range with a sufficiently high silicide dissolution temperature and a γ-solvus temperature at least 15 K, in particular at least 20 K lower, at which γ-TiAl components are no longer present, but exclusively The α-Ti phase has a chemical composition with 42 to 48 at.% aluminum, preferably 43 to 45 at.% aluminum, 3 to 5 at.% niobium, preferably 3.5 to 4.5 at.% niobium, 0, 05 to 1 at.% Molybdenum, preferably 0.85 to 0.95 at.% Molybdenum, 0.2 to 2.2 at.% Silicon, preferably 0.25 to 0.35 at.% Silicon, 0.2 to 0.4 at.% Carbon, preferably 0.25 to 0.35 at.% Carbon, 0.05 to 0.2 at.% Boron, preferably 0.05 to 0.15 at.% Boron as well as titanium and unavoidable impurities on, wherein titanium is provided in an amount that the sum of the chemical elements of the alloy is 100 at.%.
Erfindungsgemäße Alternativen der TiAl - Legierung, die insbesondere durch das oben beschriebene Herstellungsverfahren erzeugt werden bzw. Bauteile aus dieser TiAl - Legierung, umfassen wenigstens eines der Elemente aus einer Gruppe, die Wolfram, Zirkon und Hafnium umfasst. Mit derartigen Legierungen können die beschriebenen Gefüge bei Raumtemperatur bzw. im α - Phasen - Temperaturbereich eingestellt werden. Zudem können die genannten Legierungsbestandteile den Legierungen bzw. den damit hergestellten Bauteilen zusätzliche Eigenschaften verleihen.Alternatives according to the invention of the TiAl alloy, which are produced in particular by the production method described above or components made from this TiAl alloy, comprise at least one of the elements from a group comprising tungsten, zirconium and hafnium. With such alloys, the structures described can be achieved at room temperature or in the α-phase temperature range. In addition, the alloy components mentioned can give the alloys or the components produced with them additional properties.
Die TiAl - Legierung beinhaltet nach einer erfindungsgemäßen Alternative neben Titan und unvermeidbaren Verunreinigungen 43,5 bis 45 at.% Aluminium, 3,5 bis 4,5 at.% Niob, 0,1 bis 0,5 at.% Molybdän, 0,4 bis 1 at.% Wolfram, 0,25 bis 0,35 at.% Silizium, 0,25 bis 0,35 at.% Kohlenstoff und 0,05 bis 0,15 at.% Bor, wobei die Legierung genau diese Zusammensetzung aufweisen kann oder zusätzliche weitere Legierungselemente umfassen kann. In jedem Fall ist der Anteil an Titan so gewählt, dass die Summe der chemischen Elemente der Legierung 100 at.% ergibt.According to an alternative according to the invention, the TiAl alloy contains, in addition to titanium and unavoidable impurities, 43.5 to 45 at.% Aluminum, 3.5 to 4.5 at.% Niobium, 0.1 to 0.5 at.% Molybdenum, 0, 4 to 1 at.% Tungsten, 0.25 to 0.35 at.% Silicon, 0.25 to 0.35 at.% Carbon and 0.05 to 0.15 at.% Boron, the alloy having precisely this composition may have or may include additional alloy elements. In any case, the proportion of titanium is chosen so that the sum of the chemical elements of the alloy is 100 at.%.
Die TiAl - Legierung beinhaltet nach einer weiteren erfindungsgemäßen Alternative neben Titan und unvermeidbaren Verunreinigungen 43,5 bis 45 at.% Aluminium, 3,5 bis 4,5 at.% Niob, 0,85 bis 0,95 at.% Molybdän, 0,1 bis 3 at.% Zirkon, 0,25 bis 2,2 at.% Silizium, 0,25 bis 0,35 at.% Kohlenstoff und 0,05 bis 0,15 at.% Bor , wobei die Legierung genau diese Zusammensetzung aufweisen kann oder zusätzliche weitere Legierungselemente umfassen kann. In jedem Fall ist der Anteil an Titan so gewählt, dass die Summe der chemischen Elemente der Legierung 100 at.% ergibt.According to a further alternative according to the invention, the TiAl alloy contains, in addition to titanium and unavoidable impurities, 43.5 to 45 at.% Aluminum, 3.5 to 4.5 at.% Niobium, 0.85 to 0.95 at.% Molybdenum, 0 , 1 to 3 at.% Zirconium, 0.25 to 2.2 at.% Silicon, 0.25 to 0.35 at.% Carbon and 0.05 to 0.15 at.% Boron, the alloy being exactly these May have composition or may comprise additional further alloying elements. In any case, the proportion of titanium is chosen so that the sum of the chemical elements of the alloy is 100 at.%.
Die TiAl - Legierung beinhaltet nach einer weiteren erfindungsgemäßen Alternative neben Titan und unvermeidbaren Verunreinigungen 46 bis 48 at.% Aluminium, 3,5 bis 5 at.% Niob, 0,1 bis 0,5 at.% Molybdän, 0,4 bis 1,8 at% Wolfram, 0,1 bis 3 at.% Zirkon, 0,35 bis 2,2 at.% Silizium, 0,25 bis 0,35 at.% Kohlenstoff und 0,05 bis 0,15 at.% Bor, wobei die Legierung genau diese Zusammensetzung aufweisen kann oder ein zusätzliches weiteres Legierungselement, nämlich Hafnium, umfassen kann. In jedem Fall ist der Anteil an Titan so gewählt, dass die Summe der chemischen Elemente der Legierung 100 at.% ergibt.According to a further alternative according to the invention, the TiAl alloy contains, in addition to titanium and unavoidable impurities, 46 to 48 at.% Aluminum, 3.5 to 5 at.% Niobium, 0.1 to 0.5 at.% Molybdenum, 0.4 to 1 , 8 at% tungsten, 0.1 to 3 at.% Zirconium, 0.35 to 2.2 at.% Silicon, 0.25 to 0.35 at.% Carbon and 0.05 to 0.15 at.% Boron, wherein the alloy can have precisely this composition or can comprise an additional further alloy element, namely hafnium. In any case, the proportion of titanium is chosen so that the sum of the chemical elements of the alloy is 100 at.%.
In diesen Legierungen können zum Beispiel Bor und Kohlenstoff sowohl zur Mischkristallverfestigung der Legierung beitragen als auch Boride und/oder Karbide erzeugen, welche die Gefügeausbildung positiv hinsichtlich einer homogenen Gefügestruktur mit geeigneten Koloniegrößen und Lamellendicken bzw. - abständen der α2 - Ti3Al - und γ - TiAl - Lamellen beeinflussen können.In these alloys, for example, boron and carbon can both contribute to solid solution strengthening of the alloy and also produce borides and / or carbides, which positively affect the microstructure with regard to a homogeneous microstructure with suitable colony sizes and lamellar thicknesses or spacings of the α 2 - Ti 3 Al - and γ - TiAl - lamellae can influence.
Bei dem Verfahren zur Herstellung eines Bauteils aus einer TiAl - Legierung kann das im α - Phasen - Temperaturbereich wärmebehandelte Halbzeug oder Vorprodukt nachfolgend einer zweiten Wärmebehandlung bei einer Temperatur unterhalb einer γ - Solvus - Temperatur des Werkstoff unterzogen werden, um die Bildung der Lamellen aus α2 - Ti3Al und γ - TiAl aus den α - Ti - Körnern zu beeinflussen und gewünschte Lamellendicken bzw. - abstände einzustellen.In the method for producing a component from a TiAl alloy, the semi-finished product or intermediate product heat-treated in the α-phase temperature range can be subjected to a second heat treatment at a temperature below a γ-solvus temperature of Material are subjected to influence the formation of the lamellae from α 2 - Ti 3 Al and γ - TiAl from the α - Ti grains and to set the desired lamella thicknesses or spacings.
Eine entsprechende TiAl - Legierung bzw. ein daraus hergestelltes Bauteil kann somit in der TiAl - Legierung bei Einsatztemperaturen bis zu 1000 °C weniger als 5 vol.% β - Phase und vorzugsweise gar keine β - Phase aufweisen, so dass die Kriechbeständigkeit verbessert wird.A corresponding TiAl alloy or a component made therefrom can thus have less than 5% by volume β phase and preferably no β phase at all in the TiAl alloy at operating temperatures of up to 1000 ° C., so that the creep resistance is improved.
Die globularen Kolonien mit Lamellen aus α2 - Ti3Al und γ - TiAl können bei Raumtemperatur 95 vol.% oder mehr, insbesondere 98 vol.% oder mehr der TiAl - Legierung bilden. Der Rest kann durch Silizide, Karbide und/oder Boride gebildet sein, wobei die TiAl - Legierung bis zu 5% Gew.%, vorzugsweise bis zu 2% Gew.% Silizide, Karbide und/oder Boride enthalten kann, deren mittlere oder maximale Korngröße kleiner oder gleich 5 µm sein kann.The globular colonies with lamellae made of α 2 - Ti 3 Al and γ - TiAl can form 95% by volume or more, in particular 98% by volume or more, of the TiAl alloy at room temperature. The remainder can be formed by silicides, carbides and / or borides, the TiAl alloy being able to contain up to 5% by weight, preferably up to 2% by weight, of silicides, carbides and / or borides, their mean or maximum grain size can be less than or equal to 5 µm.
Die globularen Kolonien aus α2 - Ti3Al - und γ - TiAl - Lamellen können eine mittlere oder maximale Größe von 50 bis 300 µm, insbesondere von 100 bis 200 µm aufweisen, wobei der mittlere Lamellenabstand im Bereich von 10 nm bis 1 µm liegen kann. Unter dem Lamellenabstand wird hierbei der Abstand von Lamellen gleicher Phase zueinander verstanden, also der Abstand einer γ - TiAl - Lamelle zu der nächsten γ - TiAl - Lamelle bzw. der Abstand einer α2 - Ti3Al - Lamelle zur nächsten α2 - Ti3Al - Lamelle.The globular colonies of α 2 - Ti 3 Al and γ - TiAl lamellae can have an average or maximum size of 50 to 300 μm, in particular 100 to 200 μm, the average lamellae spacing being in the range from 10 nm to 1 μm can. The lamella spacing is understood here as the distance between lamellae in the same phase, i.e. the distance from one γ-TiAl lamella to the next γ-TiAl lamella or the distance from one α 2 -Ti 3 Al lamella to the next α 2 -Ti 3 Al lamella.
Die beigefügte Zeichnung zeigt in rein schematischer Weise das Gefüge einer erfindungsgemäßen TiAl - Legierung bzw. eines Bauteils aus einer TiAl - Legierung.The attached drawing shows in a purely schematic manner the structure of a TiAl alloy according to the invention or a component made from a TiAl alloy.
Weitere Vorteile, Kennzeichen und Merkmale der vorliegenden Offenbarung werden bei der nachfolgend detaillierten Beschreibung deutlich.Further advantages, characteristics and features of the present disclosure will become apparent from the detailed description below.
Für eine TiAl - Legierung, die aus 43,8 at.% Aluminium, 4 at.% Niob, 0,9 at.% Molybdän, 0,3 at.% Silizium, 0,3 at.% Kohlenstoff, 0,1 at.% Bor sowie Rest Titan und unvermeidbaren Verunreinigungen besteht, kann durch die entsprechenden Wärmebehandlungen im α - Phasen - Temperaturbereich und einer nachfolgenden zweiten Wärmebehandlung bei einer Temperatur unterhalb der γ - Solvus - Temperatur der TiAl - Legierung ein Gefüge ausgebildet werden, wie es in der beigefügten Zeichnung dargestellt ist. Die globularen Kolonien 1 aus α2 - Ti3Al - Lamellen 2 und γ - TiAl - Lamellen 3 sind gleichachsig mit ähnlichen Größen und kugelartigen Formen ausgebildet, wobei sich an den Grenzen der Kolonien 1 Silizide 4 sowie Boride 5 und Karbide 6 ausgeschieden haben.For a TiAl alloy consisting of 43.8 at.% Aluminum, 4 at.% Niobium, 0.9 at.% Molybdenum, 0.3 at.% Silicon, 0.3 at.% Carbon, 0.1 at .% Boron and the remainder titanium and unavoidable impurities, a structure can be formed through the corresponding heat treatments in the α-phase temperature range and a subsequent second heat treatment at a temperature below the γ-solvus temperature of the TiAl alloy, as shown in is shown in the accompanying drawing. The globular colonies 1 made up of α 2 - Ti 3 Al lamellae 2 and γ -
- 11
- globulare Kolonienglobular colonies
- 22
- α2 - Ti3Al - Lamellenα 2 - Ti 3 Al - lamellae
- 33
- γ - TiAl - Lamellenγ - TiAl lamellae
- 44th
- SilizideSilicides
- 55
- BorideBoride
- 66th
- KarbideCarbides
Claims (12)
- TiAl alloy which has a microstructure at room temperature that comprises globular colonies (1) of lamellae of α2-Ti3Al(2) and γ-TiAl (3) and silicide precipitates (4), wherein the β phase in the alloy makes up less than 5 vol.% and the alloy has one of the following compositions:(i) 43.5 to 45 at.% aluminum,3.5 to 4.5 at.% niobium,0.1 to 0.5 at.% molybdenum,0.4 to 1 at.% tungsten,0.25 to 0.35 at.% silicon,0.25 to 0.35 at.% carbon,0.05 to 0.15 at.% boron,0 to 3.5 at.% zircon,0 to 0.3 at.% hafnium,unavoidable impurities and
titanium, wherein titanium is provided in such an amount that the sum of the proportions of chemical elements contained amounts to 100 at.%;(ii) 43.5 to 45 at.% aluminum,3.5 to 4.5 at.% niobium,0.85 to 0.95 at.% molybdenum,0.1 to 3 at.% zircon,0.25 to 2.2 at.% silicon,0.25 to 0.35 at.% carbon,0.05 to 0.15 at.% boron,0 to 2.0 at.% tungsten,0 to 0.3 at.% hafnium,unavoidable impurities and
titanium, wherein titanium is provided in such an amount that the sum of the proportions of chemical elements contained amounts to 100 at.%;(iii) 46 to 48 at.% aluminum,3.5 to 5 at.% niobium,0.1 to 0.5 at.% molybdenum,0.4 to 1.8 at.% tungsten0.1 to 3 at.% zircon,0.35 to 2.2 at.% silicon,0.25 to 0.35 at.% carbon,0.05 to 0.15 at.% boron,0 to 0.3 at.% hafnium,unavoidable impurities and
titanium, wherein titanium is provided in such an amount that the sum of the proportions of chemical elements contained amounts to 100 at.%; - Method for producing a component from a TiAl alloy according to claim 1, which method comprises the following steps:- selecting a TiAl alloy which comprises a chemical composition of the TiAl alloy according to claim 1, and which is present in the α-Ti phase with silicides in the chemical composition of the TiAl alloy to be selected in an α phase temperature range,- melting the TiAl alloy,- casting the TiAl alloy into a semi-finished product or atomizing the TiAl alloy to form powder,- precipitation-stabilizing the semi-finished product or a preliminary product produced from the semi-finished product or the powder by cooling the semi-finished product or the preliminary product from a silicide starting temperature in such a way that silicides are precipitated,- heat-treating the precipitation-stabilized semi-finished product or preliminary product in the α-phase temperature range in which silicide precipitates (4) are present for 0.5 to 2 hours and cooling, such that globular colonies (1) of lamellae of α2-Ti3Al (2) and γ-TiAl (3) are formed.
- Method according to claim 2, wherein the precipitation stabilization takes place directly during solidification from the melt or during cooling after compaction or shaping, and/or the silicide starting temperature is above or below a silicide dissolution temperature.
- Method according to any of claims 2 to 3, wherein the α-phase temperature range is below a silicide dissolution temperature and above a gamma solvus temperature and preferably includes a range of at least 15 K, in particular at least 20 K.
- Method according to any of claims 2 to 4, wherein the α-phase temperature range, a silicide dissolution temperature and/or a gamma solvus temperature of the TiAl alloy is determined by simulation calculations and/or by test melts and metallographic examinations.
- Method according to any of claims 2 to 5, wherein the TiAl alloy is selected such that the TiAl alloy exhibits peritectic solidification with α-Ti phase formation or solidification with β-phase formation.
- Method according to any of claims 2 to 6, wherein the heat-treated semi-finished product or preliminary product is subjected to a second heat treatment at a temperature below a gamma-solvus temperature for a period of 2 hours to 24 hours.
- Component made of a TiAl alloy according to claim 1, preferably for a turbomachine, wherein the TiAl alloy has less than 5 vol.% of β phase at operating temperatures of up to 900°C, and the globular colonies have an average or maximum size of 50 to 300 µm.
- Component according to claim 8, wherein the TiAl alloy does not have a β phase at operating temperatures of up to 900°C.
- Component according to any of claims 8 to 9, wherein the globular colonies of lamellae of α2-Ti3Al and γ-TiAl form more than or equal to 95 vol.%, preferably more than or equal to 98 vol.%, of the TiAl alloy.
- Component according to any of claims 8 to 10, wherein up to 5 wt.%, preferably up to 2 wt.%, of silicides, carbides and/or borides are contained in the TiAl alloy, wherein the average or maximum grain size of the silicides, carbides and/or borides is smaller than or equal to 5 µm, in particular the diameter according to a circle-area equivalent is smaller than or equal to 5 µm.
- Component according to any of claims 8 to 11, wherein the globular colonies of lamellae of α2-Ti3Al and γ-TiAl have an average or maximum size of 100 to 200 µm and/or the average lamellae spacing is in the range of from 10 nm to 1 µm.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES16178936T ES2891724T3 (en) | 2016-07-12 | 2016-07-12 | High temperature resistant TiAl alloy, method for manufacturing a corresponding TiAl alloy component and corresponding TiAl alloy component |
EP16178936.7A EP3269838B1 (en) | 2016-07-12 | 2016-07-12 | High temperature resistant tial alloy, method for production of a composent from a corresponding tial alloy, component from a corresponding tial alloy |
US15/644,927 US10590520B2 (en) | 2016-07-12 | 2017-07-10 | High temperature resistant TiAl alloy, production method therefor and component made therefrom |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16178936.7A EP3269838B1 (en) | 2016-07-12 | 2016-07-12 | High temperature resistant tial alloy, method for production of a composent from a corresponding tial alloy, component from a corresponding tial alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3269838A1 EP3269838A1 (en) | 2018-01-17 |
EP3269838B1 true EP3269838B1 (en) | 2021-09-01 |
Family
ID=56409029
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16178936.7A Not-in-force EP3269838B1 (en) | 2016-07-12 | 2016-07-12 | High temperature resistant tial alloy, method for production of a composent from a corresponding tial alloy, component from a corresponding tial alloy |
Country Status (3)
Country | Link |
---|---|
US (1) | US10590520B2 (en) |
EP (1) | EP3269838B1 (en) |
ES (1) | ES2891724T3 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3326746A1 (en) * | 2016-11-25 | 2018-05-30 | Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH | Method for joining and/or repairing substrates of titanium aluminide alloys |
WO2020235200A1 (en) * | 2019-05-23 | 2020-11-26 | 株式会社Ihi | Tial alloy and production method therefor |
US20230175101A1 (en) * | 2019-05-23 | 2023-06-08 | Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. | METHOD FOR PRODUCING TiAl ALLOY MEMBER AND SYSTEM FOR PRODUCING TiAl ALLOY MEMBER |
CN113481444B (en) * | 2021-07-05 | 2022-04-08 | 四川大学 | Method for regulating and controlling fine grain structure of peritectic solidification cast TiAl alloy |
US11807911B2 (en) * | 2021-12-15 | 2023-11-07 | Metal Industries Research & Development Centre | Heat treatment method for titanium-aluminum intermetallic and heat treatment device therefor |
CN116024457A (en) * | 2023-01-04 | 2023-04-28 | 中国航空制造技术研究院 | High-strength TiAl alloy with tensile strength of more than 750MPa and additive manufacturing method thereof |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4229216A (en) | 1979-02-22 | 1980-10-21 | Rockwell International Corporation | Titanium base alloy |
DE102006052650A1 (en) | 2006-01-17 | 2007-07-19 | Daimlerchrysler Ag | Α / α2 titanium alloy valve and method of making the same |
DE102007051499A1 (en) | 2007-10-27 | 2009-04-30 | Mtu Aero Engines Gmbh | Material for a gas turbine component, method for producing a gas turbine component and gas turbine component |
GB2467312B (en) | 2009-01-28 | 2013-06-26 | Mark Labudek Design Ltd | Titanium alloy, a method of producing the alloy and an article made of the alloy |
US20120041276A1 (en) | 2010-08-13 | 2012-02-16 | Delcina Doreus | All in one medical monitor |
WO2012041276A2 (en) * | 2010-09-22 | 2012-04-05 | Mtu Aero Engines Gmbh | Heat-resistant tial alloy |
US10119178B2 (en) | 2012-01-12 | 2018-11-06 | Titanium Metals Corporation | Titanium alloy with improved properties |
EP2851445B1 (en) * | 2013-09-20 | 2019-09-04 | MTU Aero Engines GmbH | Creep-resistant TiAl alloy |
EP3553193A1 (en) * | 2014-07-14 | 2019-10-16 | MTU Aero Engines GmbH | Al-rich high temperature tial alloy |
-
2016
- 2016-07-12 ES ES16178936T patent/ES2891724T3/en active Active
- 2016-07-12 EP EP16178936.7A patent/EP3269838B1/en not_active Not-in-force
-
2017
- 2017-07-10 US US15/644,927 patent/US10590520B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
EP3269838A1 (en) | 2018-01-17 |
ES2891724T3 (en) | 2022-01-31 |
US20180016668A1 (en) | 2018-01-18 |
US10590520B2 (en) | 2020-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3269838B1 (en) | High temperature resistant tial alloy, method for production of a composent from a corresponding tial alloy, component from a corresponding tial alloy | |
EP2956562B1 (en) | Nickel-cobalt alloy | |
DE102015103422B3 (en) | Process for producing a heavy-duty component of an alpha + gamma titanium aluminide alloy for piston engines and gas turbines, in particular aircraft engines | |
EP2145967B1 (en) | Titanium aluminide alloys | |
EP3069802B1 (en) | Method for producing a component made of a compound material with a metal matrix and incorporated intermetallic phases | |
EP2386663B1 (en) | Method for producing a component and component from a gamma-titanium-aluminium base alloy | |
DE69701268T2 (en) | Nickel alloy for turbine engine component | |
EP2742162B1 (en) | Method for producing forged tial components | |
DE102004056582B4 (en) | Alloy based on titanium aluminides | |
EP3249064A1 (en) | Additive manufacture of high temperature components from tial | |
DE102010037046A1 (en) | Nickel base superalloys and articles | |
EP2807281B1 (en) | Method for producing forged components from a tial alloy and component produced thereby | |
EP2851445B1 (en) | Creep-resistant TiAl alloy | |
EP3581668B1 (en) | Method for producing a component from gamma tial and correspondingly manufactured component | |
DE102017113780A1 (en) | Subject and additive manufacturing process for manufacturing | |
EP3530763B1 (en) | Method forproducing a blade of a turbomachine from a graded tial alloy, and correspondingly produced component | |
EP2905350A1 (en) | High temperature TiAl alloy | |
DE2046409A1 (en) | Thermo-mechanical increase in the resistance of the superalloys | |
EP2620517A1 (en) | Heat-resistant TiAl alloy | |
EP3553193A1 (en) | Al-rich high temperature tial alloy | |
EP3211111A2 (en) | Heat treatment method for components made of nickel base superalloys | |
EP3427858A1 (en) | Forging at high temperatures, in particular of titanium aluminides | |
DE102008055546A1 (en) | A method for improving mechanical properties of a beta-treated titanium alloy article | |
WO2012041276A2 (en) | Heat-resistant tial alloy | |
DE2148390A1 (en) | Cobalt alloy and process for its manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180717 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20191024 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210315 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1426333 Country of ref document: AT Kind code of ref document: T Effective date: 20210915 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502016013736 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211201 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211201 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2891724 Country of ref document: ES Kind code of ref document: T3 Effective date: 20220131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220101 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220103 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502016013736 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 |
|
26N | No opposition filed |
Effective date: 20220602 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502016013736 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20220712 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220712 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220731 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220712 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230201 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220712 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20230828 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1426333 Country of ref document: AT Kind code of ref document: T Effective date: 20220712 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220713 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220712 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20160712 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 |