EP3269838B1 - Alliage tial thermostable, procédé de production d'un composant constitué d'un alliage tial correspondant, composant constitué d'un alliage tial correspondant - Google Patents

Alliage tial thermostable, procédé de production d'un composant constitué d'un alliage tial correspondant, composant constitué d'un alliage tial correspondant Download PDF

Info

Publication number
EP3269838B1
EP3269838B1 EP16178936.7A EP16178936A EP3269838B1 EP 3269838 B1 EP3269838 B1 EP 3269838B1 EP 16178936 A EP16178936 A EP 16178936A EP 3269838 B1 EP3269838 B1 EP 3269838B1
Authority
EP
European Patent Office
Prior art keywords
tial alloy
tial
phase
alloy
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16178936.7A
Other languages
German (de)
English (en)
Other versions
EP3269838A1 (fr
Inventor
Wilfried Dr. Smarsly
Martin Dr. Schloffer
Helmut Dr. Clemens
Thomas Klein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines AG filed Critical MTU Aero Engines AG
Priority to EP16178936.7A priority Critical patent/EP3269838B1/fr
Priority to ES16178936T priority patent/ES2891724T3/es
Priority to US15/644,927 priority patent/US10590520B2/en
Publication of EP3269838A1 publication Critical patent/EP3269838A1/fr
Application granted granted Critical
Publication of EP3269838B1 publication Critical patent/EP3269838B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent

Definitions

  • the present invention relates to a highly heat-resistant TiAl alloy and a method for producing a component from such a TiAl alloy as well as a corresponding component.
  • TiAl alloys which have titanium and aluminum as the main components - i.e. as chemical elements with the highest proportions in the composition - are used as materials for moving parts in engines and gas turbines, e.g. as Blades, used.
  • This alloy is adjusted during production so that the material has a ⁇ -Ti phase and / or B2-Ti phase at room temperature, both of which will be referred to below as the ⁇ phase for short.
  • the ⁇ - phase serves to avoid coarsening of the ⁇ - Ti grains at high temperatures at which in TiAl alloys with a correspondingly high aluminum part a substantial part of the material can be present as an ⁇ - Ti phase with high aluminum solubility, in order to achieve a homogeneous structure that is favorable for the ductility and creep resistance of the material with uniform, not too coarse microstructures.
  • the ⁇ - phase stabilizes the grain boundaries of the ⁇ - Ti grains and thus counteracts any coarsening.
  • TiAl alloys are from the EP2851445A1 as well as from the article " Silicon distribution and silicide precipitation during annealing in an advanced multiphase ⁇ -TiAl based alloy ", Klein, Thomas et al, ACTA MATERIALIA, ELSEVIER, OXFORD, GB, Vol. 110, March 23, 2016 (2016-03-23), pp 236-245 " known.
  • the invention proposes to essentially dispense with the ⁇ phase to hinder the grain growth of ⁇ -Ti grains at high temperatures and that To hinder the growth of the ⁇ -Ti grains at high temperatures through the precipitation of silicides.
  • the term “essentially without the ⁇ phase” or “essentially no ⁇ phase” means in this context that the ⁇ phase in the finished alloy is less than 5% by volume, preferably less than 2% by volume. -% and more preferably 0% by volume.
  • the invention proposes to select a TiAl alloy which, in addition to the main alloy components titanium and aluminum, has at least niobium, molybdenum, carbon, boron and silicon and also has zirconium and / or tungsten, with silicon being provided for the formation of the silicides which the The aim is to hinder grain growth of the ⁇ -Ti grains at correspondingly high temperatures in order to counteract coarsening of the microstructure.
  • the TiAl alloy should be selected in such a way that, given the chosen chemical composition of the TiAl alloy, there is an ⁇ -phase temperature range in whose temperature range there is essentially an ⁇ -Ti phase with silicides.
  • a corresponding TiAl alloy which is essentially in the form of ⁇ -Ti in a specific temperature interval for the given chemical composition, can be produced by means of simulation calculations with appropriate simulation programs that take into account a large number of thermodynamic data, and / or by producing appropriate Test melts or test alloys and metallographic examination of the test alloys are determined.
  • a corresponding TiAl alloy with a certain chemical composition which has an ⁇ -phase temperature range in which the corresponding TiAl alloy is essentially single-phase as an ⁇ -Ti phase, with only silicides additionally being present in the temperature range
  • such a TiAl alloy with the selected chemical composition is melted and then cast in a further step into a semifinished product or atomized into TiAl powder, the semifinished product already being a near-net-shape intermediate product or a starting product for further forming into a Can be a preliminary product.
  • the cast semi-finished product can be formed into a preliminary product by forging.
  • the TiAl powder can be used for further processing in powder metallurgical manufacturing processes, such as generative manufacturing processes, or compressed, joined and / or shaped by hot isostatic pressing (HIP) or the like in order to also create a preliminary product.
  • powder metallurgical manufacturing processes such as generative manufacturing processes, or compressed, joined and / or shaped by hot isostatic pressing (HIP
  • the cast semifinished product or a preliminary product produced from the semifinished product or from the TiAl powder is then cooled from a silicide start temperature in such a way that silicides can separate out in order to carry out precipitation stabilization.
  • the cooling from the silicide start temperature can take place, for example, directly after the casting of the semifinished product when the casting is being cooled, or, if the semifinished product is unshaped after casting by hot forming into a preliminary product, by cooling from the forming temperature.
  • the preliminary product can be heated to a silicide start temperature after its production and the intermediate product is cooled from the silicide start temperature in such a way that the desired silicides are eliminated.
  • the pre-product produced by the powder can also be transferred to a Bred silicide start temperature and cooled by this in such a way that silicides can be excreted.
  • the intermediate product can be cooled from a temperature already present during production, such as the HIP temperature, in such a way that silicide is precipitated.
  • the HIP temperature is the silicide start temperature. In order to enable the silicides to precipitate, the cooling from the silicide start temperature must take place slowly enough to allow the silicides to precipitate.
  • a heat treatment of the precipitation-stabilized semi-finished product or pre-product is carried out in the ⁇ -phase temperature range in which the semi-finished product or pre-product is essentially present as an ⁇ -Ti phase with precipitated silicides, the silicides having a coarsening of the Counteracting ⁇ - Ti grains.
  • the existing ⁇ phase largely or completely dissolves.
  • the heat treatment in the ⁇ -phase temperature range can be carried out for a period of 0.5 to 2 hours, in particular from 0.5 to 1 hour, the cooling being carried out in such a way that globular colonies of lamellae form from the ⁇ -Ti grains from ⁇ 2 - Ti 3 Al and ⁇ - TiAl, the silicide precipitations previously generated during the precipitation stabilization of the material also being present. This results in a microstructure that has an excellent, balanced profile of properties with improved creep resistance.
  • the silicide start temperature to which a semi-finished product after casting or a pre-product formed after casting or a pre-product manufactured by a powder metallurgical process is heated during precipitation stabilization of the TiAl alloy can be at a temperature above a silicide dissolution temperature of the material, so that the Silicide start temperature the silicon is largely in solution in order to then enable a homogeneous precipitation of the silicides when the semi-finished product or intermediate product cools. That This coarser structure can be refined by forging, whereby fine silicides can be excreted by targeted cooling from the forging temperature.
  • the silicide start temperature can also be below a silicide dissolution temperature if the silicide start temperature is the temperature during a deformation or compacting of a semi-finished product or a preliminary product.
  • a temperature can be set well below the silicide dissolution temperature, so that silicides can form.
  • the ⁇ -phase temperature range in which the subsequent heat treatment of the precipitation-stabilized semi-finished product or intermediate product is carried out can be below a silicide dissolution temperature of the TiAl alloy and above a ⁇ -solvus temperature at which the entire ⁇ -TiAl phase in ⁇ - Ti phase goes into solution, so that it is ensured that in the ⁇ phase temperature range, apart from the silicides present, essentially exclusively ⁇ Ti phase is present.
  • the proportion of the ⁇ -Ti phase in the ⁇ -phase temperature range can be in the range of 95% by volume or more, in particular 98% by volume or more.
  • a corresponding TiAl alloy which has a suitable ⁇ -phase temperature range with a sufficiently high silicide dissolution temperature and a ⁇ -solvus temperature at least 15 K, in particular at least 20 K lower, at which ⁇ -TiAl components are no longer present, but exclusively
  • the ⁇ -Ti phase has a chemical composition with 42 to 48 at.% aluminum, preferably 43 to 45 at.% aluminum, 3 to 5 at.% niobium, preferably 3.5 to 4.5 at.% niobium, 0, 05 to 1 at.% Molybdenum, preferably 0.85 to 0.95 at.% Molybdenum, 0.2 to 2.2 at.% Silicon, preferably 0.25 to 0.35 at.% Silicon, 0.2 to 0.4 at.% Carbon, preferably 0.25 to 0.35 at.% Carbon, 0.05 to 0.2 at.% Boron, preferably 0.05 to 0.15 at.% Boron as well as titanium and unavoidable impurities on, wherein titanium is provided in an amount that the sum of the chemical
  • Alternatives according to the invention of the TiAl alloy which are produced in particular by the production method described above or components made from this TiAl alloy, comprise at least one of the elements from a group comprising tungsten, zirconium and hafnium. With such alloys, the structures described can be achieved at room temperature or in the ⁇ -phase temperature range. In addition, the alloy components mentioned can give the alloys or the components produced with them additional properties.
  • the TiAl alloy contains, in addition to titanium and unavoidable impurities, 43.5 to 45 at.% Aluminum, 3.5 to 4.5 at.% Niobium, 0.1 to 0.5 at.% Molybdenum, 0, 4 to 1 at.% Tungsten, 0.25 to 0.35 at.% Silicon, 0.25 to 0.35 at.% Carbon and 0.05 to 0.15 at.% Boron, the alloy having precisely this composition may have or may include additional alloy elements. In any case, the proportion of titanium is chosen so that the sum of the chemical elements of the alloy is 100 at.%.
  • the TiAl alloy contains, in addition to titanium and unavoidable impurities, 43.5 to 45 at.% Aluminum, 3.5 to 4.5 at.% Niobium, 0.85 to 0.95 at.% Molybdenum, 0 , 1 to 3 at.% Zirconium, 0.25 to 2.2 at.% Silicon, 0.25 to 0.35 at.% Carbon and 0.05 to 0.15 at.% Boron, the alloy being exactly these May have composition or may comprise additional further alloying elements.
  • the proportion of titanium is chosen so that the sum of the chemical elements of the alloy is 100 at.%.
  • the TiAl alloy contains, in addition to titanium and unavoidable impurities, 46 to 48 at.% Aluminum, 3.5 to 5 at.% Niobium, 0.1 to 0.5 at.% Molybdenum, 0.4 to 1 , 8 at% tungsten, 0.1 to 3 at.% Zirconium, 0.35 to 2.2 at.% Silicon, 0.25 to 0.35 at.% Carbon and 0.05 to 0.15 at.% Boron, wherein the alloy can have precisely this composition or can comprise an additional further alloy element, namely hafnium.
  • the proportion of titanium is chosen so that the sum of the chemical elements of the alloy is 100 at.%.
  • boron and carbon can both contribute to solid solution strengthening of the alloy and also produce borides and / or carbides, which positively affect the microstructure with regard to a homogeneous microstructure with suitable colony sizes and lamellar thicknesses or spacings of the ⁇ 2 - Ti 3 Al - and ⁇ - TiAl - lamellae can influence.
  • the semi-finished product or intermediate product heat-treated in the ⁇ -phase temperature range can be subjected to a second heat treatment at a temperature below a ⁇ -solvus temperature of Material are subjected to influence the formation of the lamellae from ⁇ 2 - Ti 3 Al and ⁇ - TiAl from the ⁇ - Ti grains and to set the desired lamella thicknesses or spacings.
  • a corresponding TiAl alloy or a component made therefrom can thus have less than 5% by volume ⁇ phase and preferably no ⁇ phase at all in the TiAl alloy at operating temperatures of up to 1000 ° C., so that the creep resistance is improved.
  • the globular colonies with lamellae made of ⁇ 2 - Ti 3 Al and ⁇ - TiAl can form 95% by volume or more, in particular 98% by volume or more, of the TiAl alloy at room temperature.
  • the remainder can be formed by silicides, carbides and / or borides, the TiAl alloy being able to contain up to 5% by weight, preferably up to 2% by weight, of silicides, carbides and / or borides, their mean or maximum grain size can be less than or equal to 5 ⁇ m.
  • the globular colonies of ⁇ 2 - Ti 3 Al and ⁇ - TiAl lamellae can have an average or maximum size of 50 to 300 ⁇ m, in particular 100 to 200 ⁇ m, the average lamellae spacing being in the range from 10 nm to 1 ⁇ m can.
  • the lamella spacing is understood here as the distance between lamellae in the same phase, i.e. the distance from one ⁇ -TiAl lamella to the next ⁇ -TiAl lamella or the distance from one ⁇ 2 -Ti 3 Al lamella to the next ⁇ 2 -Ti 3 Al lamella.
  • the attached drawing shows in a purely schematic manner the structure of a TiAl alloy according to the invention or a component made from a TiAl alloy.
  • a structure can be formed through the corresponding heat treatments in the ⁇ -phase temperature range and a subsequent second heat treatment at a temperature below the ⁇ -solvus temperature of the TiAl alloy, as shown in is shown in the accompanying drawing.
  • the globular colonies 1 made up of ⁇ 2 - Ti 3 Al lamellae 2 and ⁇ - TiAl lamellae 3 are equiaxed with similar sizes and spherical shapes, with silicides 4 and borides 5 and carbides 6 having separated at the borders of the colonies 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Claims (12)

  1. Alliage TiAI présentant, à température ambiante, une microstructure comprenant des colonies globulaires (1) constituées de lamelles de α2-Ti3Al (2) et de γ-TiAl (3) ainsi que des précipités de siliciure (4), la phase β dans l'alliage représentant moins de 5 % en volume et l'alliage contenant l'une des compositions suivantes :
    (i) 43,5 à 45 % en atome d'aluminium,
    3,5 à 4,5 % en atome de niobium,
    0,1 à 0,5 % en atome de molybdène,
    0,4 à 1 % en atome de tungstène
    0,25 à 0,35 % en atome de silicium,
    0,25 à 0,35 % en atome de carbone,
    0,05 à 0,15 % en atome de bore,
    0 à 3,5 % en atome de zircon,
    0 à 0,3 % en atome de hafnium,
    des impuretés inévitables et
    du titane, le titane étant prévu en une quantité telle que la somme des proportions des éléments chimiques contenus donne 100 % en atome ;
    (ii) 43,5 à 45 % en atome d'aluminium,
    3,5 à 4,5 % en atome de niobium,
    0,85 à 0,95 % en atome de molybdène,
    0,1 à 3 % en atome de zircon
    0,25 à 2,2 % en atome de silicium,
    0,25 à 0,35 % en atome de carbone,
    0,05 à 0,15 % en atome de bore,
    0 à 2,0 % en atome de tungstène,
    0 à 0,3 % en atome de hafnium,
    des impuretés inévitables et
    du titane, le titane étant prévu en une quantité telle que la somme des proportions des éléments chimiques contenus donne 100 % en atome ;
    (iii) 46 à 48 % en atome d'aluminium,
    3,5 à 5 % en atome de niobium,
    0,1 à 0,5 % en atome de molybdène,
    0,4 à 1,8 % en atome de tungstène
    0,1 à 3 % en atome de zircon
    0,35 à 2,2 % en atome de silicium,
    0,25 à 0,35 % en atome de carbone,
    0,05 à 0,15 % en atome de bore,
    0 à 0,3 % en atome de hafnium,
    des impuretés inévitables et
    du titane, le titane étant prévu en une quantité telle que la somme des proportions des éléments chimiques contenus donne 100 % en atome.
  2. Procédé permettant la fabrication d'un composant à partir d'un alliage TiAl selon la revendication 1, comprenant les étapes suivantes :
    - sélectionner un alliage TiAl qui comprend une composition chimique de l'alliage TiAl selon la revendication 1, et qui est présent dans la composition chimique de l'alliage TiAl à sélectionner dans une plage de température de phase α dans la phase α-Ti avec des siliciures,
    - faire fondre l'alliage TiAl,
    - mouler l'alliage TiAl en un demi-produit ou atomiser l'alliage TiAl en poudre,
    - stabiliser par précipitation le demi-produit ou un pré-produit fabriqué à partirdu demi-produit ou de la poudre par refroidissement du demi-produit ou du pré-produit à une température de départ de siliciure de telle sorte que les siliciures sont précipités,
    - traiter thermiquement le demi-produitou le pré-produit stabilisé par précipitation dans la plage de température de phase α, dans laquelle des précipités de siliciure (4) sont présents, pendant 0,5 à 2 heures et refroidir afin que des colonies globulaires (1) soient constituées de lamelles de α2-Ti3Al (2) et de γ-TiAl (3).
  3. Procédé selon la revendication 2,
    dans lequel
    la stabilisation par précipitation a lieu directement lors de la solidification de la masse fondue ou lors du refroidissement après compactage ou transformation et/ou la température de départ de siliciure est supérieure ou inférieure à une température de dissolution de siliciure.
  4. Procédé selon l'une des revendications 2 à 3,
    dans lequel
    la plage de température de phase α est inférieure à une température de dissolution de siliciure et supérieure à une température de gamma solvus et comprend de préférence une plage d'au moins 15 K, en particulier d'au moins 20 K.
  5. Procédé selon l'une des revendications 2 à 4,
    dans lequel
    la plage de température de phase α, une température de dissolution de siliciure et/ou une température de gamma solvus de l'alliage TiAl est déterminée pardes calculs de simulation et/ou par des fusions d'essai et des examens métallographiques.
  6. Procédé selon l'une des revendications 2 à 5,
    dans lequel
    l'alliage TiAl est choisi de telle sorte que l'alliage TiAl présente une solidification péritectique avec la formation de phase α-Ti ou une solidification avec une formation de phase β.
  7. Procédé selon l'une des revendications 2 à 6,
    dans lequel
    le demi-produit ou le pré-produit traité thermiquement est soumis à un second traitement thermique à une température inférieure à une température de gamma solvus pendant une période de 2 heures à 24 heures.
  8. Composant constitué d'un alliage TiAl selon la revendication 1, de préférence pour une machine à écoulement de fluide, dans lequel l'alliage TiAl présente moins de 5 % en volume de phase β à des températures de fonctionnement allant jusqu'à 900 °C et les colonies globulaires présentent une taille moyenne ou maximale de 50 à 300 µm.
  9. Composant selon la revendication 8,
    dans lequel
    l'alliage TiAl ne présente pas de phase β à des températures de fonctionnement allant jusqu'à 900 °C.
  10. Composant selon l'une des revendications 8 à 9,
    dans lequel
    les colonies globulaires constituées de lamelles de α2-Ti3Al et de γ-TiAl forment 95 % en volume ou plus, de préférence 98 % en volume ou plus, de l'alliage TiAl.
  11. Composant selon l'une des revendications 8 à 10,
    dans lequel
    l'alliage TiAl contient jusqu'à 5 % en poids, de préférence jusqu'à 2 % en poids, de siliciures, carbures et/ou borures, la granulométrie moyenne ou maximale des siliciures, carbures et/ou borures étant inférieure ou égale à 5 µm, en particulier le diamètre étant inférieur ou égal à 5 µm selon un équivalent de surface circulaire.
  12. Composant selon l'une des revendications 8 à 11,
    dans lequel
    les colonies globulaires constituées de lamelles de α2-Ti3Al et de γ-TiAl présentent une taille moyenne ou maximale de 100 à 200 µm et/ou l'espacement moyen des lamelles est dans la plage de 10 nm à 1 µm.
EP16178936.7A 2016-07-12 2016-07-12 Alliage tial thermostable, procédé de production d'un composant constitué d'un alliage tial correspondant, composant constitué d'un alliage tial correspondant Active EP3269838B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16178936.7A EP3269838B1 (fr) 2016-07-12 2016-07-12 Alliage tial thermostable, procédé de production d'un composant constitué d'un alliage tial correspondant, composant constitué d'un alliage tial correspondant
ES16178936T ES2891724T3 (es) 2016-07-12 2016-07-12 Aleación de TiAl resistente a altas temperaturas, método para fabricar un componente de una aleación de TiAl correspondiente y componente de una aleación de TiAl correspondiente
US15/644,927 US10590520B2 (en) 2016-07-12 2017-07-10 High temperature resistant TiAl alloy, production method therefor and component made therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16178936.7A EP3269838B1 (fr) 2016-07-12 2016-07-12 Alliage tial thermostable, procédé de production d'un composant constitué d'un alliage tial correspondant, composant constitué d'un alliage tial correspondant

Publications (2)

Publication Number Publication Date
EP3269838A1 EP3269838A1 (fr) 2018-01-17
EP3269838B1 true EP3269838B1 (fr) 2021-09-01

Family

ID=56409029

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16178936.7A Active EP3269838B1 (fr) 2016-07-12 2016-07-12 Alliage tial thermostable, procédé de production d'un composant constitué d'un alliage tial correspondant, composant constitué d'un alliage tial correspondant

Country Status (3)

Country Link
US (1) US10590520B2 (fr)
EP (1) EP3269838B1 (fr)
ES (1) ES2891724T3 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3326746A1 (fr) * 2016-11-25 2018-05-30 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Procédé pour assembler et/ou réparer des substrats d'alliages d'aluminure de titane
DE112019007062T5 (de) * 2019-05-23 2021-12-16 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Verfahren zur herstellung eines tial-legierungsteils und system zur herstellung eines tial-legierungsteils
WO2020235200A1 (fr) * 2019-05-23 2020-11-26 株式会社Ihi Alliage tial et son procédé de production
CN113481444B (zh) * 2021-07-05 2022-04-08 四川大学 一种包晶凝固铸态TiAl合金细晶组织调控方法
US11807911B2 (en) * 2021-12-15 2023-11-07 Metal Industries Research & Development Centre Heat treatment method for titanium-aluminum intermetallic and heat treatment device therefor
CN116024457A (zh) * 2023-01-04 2023-04-28 中国航空制造技术研究院 一种抗拉强度大于750MPa的高强TiAl合金及其增材制造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4229216A (en) 1979-02-22 1980-10-21 Rockwell International Corporation Titanium base alloy
DE102006052650A1 (de) 2006-01-17 2007-07-19 Daimlerchrysler Ag Ventil aus einer α/α2-Titanlegierung und Verfahren zu seiner Herstellung
DE102007051499A1 (de) 2007-10-27 2009-04-30 Mtu Aero Engines Gmbh Werkstoff für ein Gasturbinenbauteil, Verfahren zur Herstellung eines Gasturbinenbauteils sowie Gasturbinenbauteil
GB2467312B (en) 2009-01-28 2013-06-26 Mark Labudek Design Ltd Titanium alloy, a method of producing the alloy and an article made of the alloy
US20120041276A1 (en) 2010-08-13 2012-02-16 Delcina Doreus All in one medical monitor
WO2012041276A2 (fr) * 2010-09-22 2012-04-05 Mtu Aero Engines Gmbh Alliage tial résistant à la chaleur
US10119178B2 (en) 2012-01-12 2018-11-06 Titanium Metals Corporation Titanium alloy with improved properties
ES2747155T3 (es) * 2013-09-20 2020-03-10 MTU Aero Engines AG Aleación de TiAl resistente a la fluencia
EP3553193A1 (fr) * 2014-07-14 2019-10-16 MTU Aero Engines GmbH Alliage tial à haute température riche en al

Also Published As

Publication number Publication date
ES2891724T3 (es) 2022-01-31
US20180016668A1 (en) 2018-01-18
EP3269838A1 (fr) 2018-01-17
US10590520B2 (en) 2020-03-17

Similar Documents

Publication Publication Date Title
EP3269838B1 (fr) Alliage tial thermostable, procédé de production d'un composant constitué d'un alliage tial correspondant, composant constitué d'un alliage tial correspondant
EP2956562B1 (fr) Alliage nickel-cobalt
DE102015103422B3 (de) Verfahren zur Herstellung eines hochbelastbaren Bauteils aus einer Alpha+Gamma-Titanaluminid-Legierung für Kolbenmaschinen und Gasturbinen, insbesondere Flugtriebwerke
EP2145967B1 (fr) Alliages d'aluminure de titane
EP3069802B1 (fr) Procédé de production d'un composant en matériau composite doté d'une matrice en métal et de phases intercalaires inter-métalliques
EP2386663B1 (fr) Procédé de fabrication d'un composant et composants constitués d'un alliage à base d'aluminium-titane
EP2742162B1 (fr) Procédé de fabrication des composants en tial forgés
DE102004056582B4 (de) Legierung auf der Basis von Titanaluminiden
EP3249064A1 (fr) Fabrication additive de composants haute temperature en tial
EP2807281B1 (fr) Procédé de fabrication de pièces forgées dans un alliage tial et pièce forgée fabriquée par ce procédé
DE102010037046A1 (de) Nickelbasissuperlegierungen und Artikel
EP2851445B1 (fr) Alliage TiAl résistant au fluage
DE102017113780A1 (de) Gegenstand und additives Fertigungsverfahren für die Herstellung
EP3530763B1 (fr) Procédé de fabrication d'une aube de turbomachine en alliage de tial gradué et pièce ainsi obtenue
EP3581668B1 (fr) Procédé de fabrication d'un composant à partir de gamma-tial et composant fabriqué correspondant
EP2905350A1 (fr) Alliage TiAl haute température
DE2046409A1 (de) Thermo mechanische Erhöhung der Widerstandsfähigkeit der Superlegierungen
EP2620517A1 (fr) Alliage TiAl thermostable
EP3553193A1 (fr) Alliage tial à haute température riche en al
EP3211111A2 (fr) Procédé de traitement thermique pour des composants constitués de super-alliages à base de nickel
EP3427858A1 (fr) Forgeage à haute température, en particulier des aluminures de titane
DE102008055546A1 (de) Verfahren zum Verbessern mechanischer Eigenschaften eines beta-behandelten Titanlegierungs-Gegenstandes
WO2012041276A2 (fr) Alliage tial résistant à la chaleur
DE2148390A1 (de) Kobaltlegierung und Verfahren zu ihrer Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180717

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20191024

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210315

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1426333

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016013736

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2891724

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220101

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220103

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016013736

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

26N No opposition filed

Effective date: 20220602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502016013736

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220712

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220712

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220712

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230201

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220712

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230828

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1426333

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220713

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901