EP2905350A1 - High temperature TiAl alloy - Google Patents

High temperature TiAl alloy Download PDF

Info

Publication number
EP2905350A1
EP2905350A1 EP14154052.6A EP14154052A EP2905350A1 EP 2905350 A1 EP2905350 A1 EP 2905350A1 EP 14154052 A EP14154052 A EP 14154052A EP 2905350 A1 EP2905350 A1 EP 2905350A1
Authority
EP
European Patent Office
Prior art keywords
phase
tial alloy
alloy
alloy according
tial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14154052.6A
Other languages
German (de)
French (fr)
Inventor
Martin Schloffer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines AG filed Critical MTU Aero Engines AG
Priority to EP14154052.6A priority Critical patent/EP2905350A1/en
Priority to US14/612,504 priority patent/US10060012B2/en
Publication of EP2905350A1 publication Critical patent/EP2905350A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/022Casting heavy metals, with exceedingly high melting points, i.e. more than 1600 degrees C, e.g. W 3380 degrees C, Ta 3000 degrees C, Mo 2620 degrees C, Zr 1860 degrees C, Cr 1765 degrees C, V 1715 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/04Influencing the temperature of the metal, e.g. by heating or cooling the mould
    • B22D27/045Directionally solidified castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/047Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/02Alloys based on vanadium, niobium, or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling

Definitions

  • the following invention relates to a TiAl alloy for use at high temperatures, in particular in the range of 750 ° C to 900 ° C, and to their preparation and their use.
  • Alloys based on intermetallic titanium aluminide compounds are used in the construction of stationary gas turbines or aircraft engines, for example as a material for moving blades, since they have the mechanical properties required for use and additionally have a low specific weight, so that the use of such alloys improves the efficiency from stationary gas turbines and aircraft engines.
  • TiAl alloys based on the ⁇ - TiAl intermetallic phase in particular being used which are alloyed with niobium and molybdenum or boron and are therefore referred to as TNM or TNB alloys.
  • Such alloys have as their main constituent titanium and also about 40 to 45 at.% Aluminum, 5 at.% Niobium and for example 1 at.% Molybdenum and also small amounts of boron.
  • the microstructure is characterized by a high proportion of ⁇ - TiAl and also significant proportions of ⁇ 2 - Ti 3 Al, whereby further phases, such as ⁇ - phase or B19 - phase, may occur to a lesser extent.
  • the known TNM or TNB alloys based on ⁇ -TiAl usually have an equiaxed ⁇ -TiAl microstructure, a lamellar microstructure or a duplex microstructure with equiaxed ⁇ -TiAl grains and lamellar regions of ⁇ -TiAl and ⁇ 2 . Ti 3 Al on.
  • ⁇ -TiAl alloys in particular with lamellar microstructures, have overall very good mechanical properties up to 750 ° C., the mechanical properties deteriorate at higher temperatures due to the thermodynamic instability of the microstructure, with creep resistance in particular decreasing.
  • Such an alloy should be manufacturable and processable on an industrial scale without undue effort and be used reliably in stationary gas turbines and aircraft engines.
  • TiAl alloy is understood to mean an alloy whose main constituents are titanium and aluminum, so that the proportion of aluminum and titanium in at.% Or wt.% Is greater in each case than the corresponding proportion of any other alloy component.
  • in.% Or wt.% Of the aluminum content may be greater than the titanium content and not only the titanium content greater than the aluminum content, as the term TiAl seems to indicate.
  • a TiAl alloy according to the invention is understood to mean an alloy which is composed predominantly of intermetallic phases with the constituents titanium and / or aluminum.
  • the present invention accordingly proposes a TiAl alloy as a high-temperature TiAl alloy in which, in addition to the main constituents titanium and aluminum, in particular one main constituent titanium, an aluminum fraction ⁇ 30 at.% Is present and the microstructure has a matrix of ⁇ phase in which precipitates of ⁇ - phase are incorporated.
  • ⁇ -phase is also understood to mean various ⁇ -phase morphologies, such as ⁇ or ⁇ o .
  • different morphologies fall under the ⁇ phase, such as ⁇ o -B8 2 , ⁇ - D8 8 or ⁇ "- transition phases.
  • the volume fraction of the ⁇ phase and the ⁇ phase together should be at least 55% by volume, preferably at least 75% by volume and in particular at least 80% by volume.
  • the creep resistance can be improved by a microstructure with a ⁇ -phase matrix with ⁇ precipitates embedded in, so that higher use temperatures are possible compared with the known ⁇ -TiAl alloys. Due to the In the ⁇ - phase matrix, the corresponding alloy can also be referred to as a ⁇ - TiAl alloy.
  • the ratio of ⁇ -phase to ⁇ -phase corresponding to the volume fractions can be in the range from 1 to 4 to 4 to 1, in particular 1 to 3 to 3 to 1.
  • the ⁇ -phase can be precipitated with particle sizes in the range of 5 nm to 500 nm, in particular 10 nm to 450 nm or 25 nm to 400 nm, and be present in the ⁇ -matrix.
  • the ⁇ phase may also be present in particular globular form at grain boundaries of the TiAl alloy, with grain boundaries of all possible structural constituents coming into question.
  • the alloy may be subjected to at least one heat treatment lasting from 1 to 100 hours at a temperature in the range of 20 ° C. to 400 ° C. below the ⁇ solvus temperature, so that a thermodynamically stable structure is established.
  • the strength properties in particular can be favorably influenced.
  • the precipitation of the ⁇ -phase can also be carried out in such a way that the ⁇ -phase is present in at least two different particle size ranges in the microstructure, wherein a first particle size range particle sizes in the range of 5 nm to 100 nm and a second particle size range particle sizes in the range of 200 nm to 500 nm.
  • multi-stage aging annealing can be carried out.
  • different deformation mechanisms in the alloy can be suppressed so as to increase the strength of the alloy.
  • larger particle size ⁇ deposits may interfere with cutting by dislocations, while the smaller ⁇ precipitates may hinder overclimbing by the dislocations.
  • the ⁇ -phase may be present as semicoherent in spherical or cubic form in the ⁇ -matrix, wherein the ⁇ -matrix may have a net-like microstructure, which allows a high creep resistance up to temperatures of 900 ° Celsius and more.
  • one or more alloying elements may be added from the group including niobium, molybdenum, tungsten, zirconium, vanadium, yttrium, hafnium, silicon, carbon and cobalt.
  • the alloy components niobium, molybdenum, tungsten, zirconium and cobalt are advantageous because they stabilize the ⁇ phase.
  • the alloy constituents niobium and molybdenum can be provided in particular in a ratio of 1.8: 1 to 5: 1, preferably 2: 1 to 3: 1 relative to one another in the alloy, so that there is always a higher niobium content than a molybdenum content.
  • niobium and molybdenum in the alloy, the higher the ratio of niobium to molybdenum can be selected in order to favor the precipitation of the ⁇ phase.
  • a higher niobium content allows the formation of the ⁇ -phase, since niobium stabilizes the ⁇ -phase formation, while molybdenum essentially allows the formation of ⁇ -phases.
  • the alloy components tungsten, zirconium, vanadium, yttrium and hafnium are used to form oxides and carbides, which can form finely divided precipitates, so that these alloying constituents can contribute to increasing the strength of the alloy in addition to solid solution hardening by forming the precipitates. Accordingly, the alloying constituents tungsten, zirconium, vanadium, yttrium and hafnium can be at least partially mutually substituted. The same applies to the alloy components tungsten, vanadium and cobalt on the one hand and zirconium, yttrium and hafnium on the other hand.
  • cobalt can further increase the creep resistance because the alloying element cobalt can lower the stacking fault energy, thus causing dislocations to be split, making it difficult to climb the dislocations and thus increasing the creep resistance.
  • the addition of silicon can improve the corrosion resistance of the alloy.
  • a ⁇ -TiAl alloy according to the invention may contain 30 to 42 at.% Aluminum, in particular 30 to 35 at.% Aluminum, 5 to 25 at.% Niobium, in particular 15 to 25 at.% Niobium, 2 to 10 at.% Molybdenum, in particular 5 to 10 at.% molybdenum, 0.1 to 10 at.% cobalt, in particular 5 to 10 at.% cobalt, 0.1 to 0.5 at.% silicon and 0.1 to 0.5 at.% Hafnium and the rest of titanium.
  • the individual alloy components are to be selected in accordance with the above-mentioned share ranges so that they add up to 100%. As a result, it is not always possible to fully exhaust every given share range. Rather, this depends on which other alloying components have already been selected with what proportion, so that the share areas influence each other.
  • the proposed TiAl alloy can be produced by melt metallurgy, wherein the melt can be monocrystalline drawn or polycrystalline poured, so that the corresponding component of the ⁇ - TiAl alloy can be used as a single crystal, as directionally solidified component or as a polycrystalline component.
  • alloy components can be mechanically alloyed, such as the alloying elements cobalt, tungsten, hafnium, vanadium and yttrium.
  • the alloy may be subjected to single or multi-stage aging anneals performed in the temperature range of 20 ° C to 400 ° C below the ⁇ solvus temperature at which the ⁇ phase goes into solution.
  • a corresponding TiAl alloy can be used in particular for components of stationary gas turbines or aircraft engines, such as, for example, for rotor blades.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Powder Metallurgy (AREA)

Abstract

Die vorliegende Erfindung betrifft eine TiAl - Legierung für den Einsatz bei hohen Temperaturen mit den Hauptbestandteilen Titan und Aluminium und mit einem Aluminium - Anteil von größer oder gleich 30 at.% und einer Matrix aus ² - Phase und in der Matrix eingelagerten Ausscheidungen aus É - Phase, wobei die ² - Phase und die É - Phase zusammen mindestens 55 vol.% des Gefüges einnehmen, sowie ein Verfahren zu ihrer Herstellung und die Verwendung derselben.The present invention relates to a TiAl alloy for use at high temperatures with the main constituents titanium and aluminum and having an aluminum content of greater than or equal to 30 at.% And a matrix of ² phase and precipitates of ε embedded in the matrix. Phase, wherein the ² - phase and the É - phase together occupy at least 55 vol.% Of the structure, as well as a process for their preparation and the use thereof.

Description

HINTERGRUND DER ERFINDUNGBACKGROUND OF THE INVENTION GEBIET DER DER ERFINDUNGFIELD OF THE INVENTION

Die folgende Erfindung betrifft eine TiAl - Legierung für den Einsatz bei hohen Temperaturen, insbesondere im Bereich von 750°C bis 900°C, sowie ihre Herstellung und ihre Verwendung.The following invention relates to a TiAl alloy for use at high temperatures, in particular in the range of 750 ° C to 900 ° C, and to their preparation and their use.

STAND DER TECHNIKSTATE OF THE ART

Legierungen auf Basis von intermetallischen Titanaluminid - Verbindungen finden beim Bau von stationären Gasturbinen oder Flugtriebwerken, beispielsweise als Werkstoff für Laufschaufeln, Verwendung, da sie die für den Einsatz erforderlichen mechanischen Eigenschaften aufweisen und zusätzlich ein geringes spezifisches Gewicht besitzen, sodass der Einsatz derartiger Legierungen die Effizienz von stationären Gasturbinen und Flugtriebwerken steigern kann.Alloys based on intermetallic titanium aluminide compounds are used in the construction of stationary gas turbines or aircraft engines, for example as a material for moving blades, since they have the mechanical properties required for use and additionally have a low specific weight, so that the use of such alloys improves the efficiency from stationary gas turbines and aircraft engines.

Entsprechend wurde bereits eine Vielzahl von TiAl - Legierungen entwickelt, wobei derzeit insbesondere TiAl - Legierungen auf Basis der intermetallischen γ - TiAl - Phase eingesetzt werden, die mit Niob und Molybdän oder Bor legiert sind und deshalb als TNM bzw. TNB - Legierungen bezeichnet werden. Derartige Legierung weisen als Hauptbestandteil Titan sowie ca. 40 bis 45 at. % Aluminium, um 5 at. % Niob und beispielsweise 1 at. % Molybdän sowie geringe Anteile an Bor auf. Das Gefüge ist durch einen hohen γ - TiAl - Anteil und ebenfalls deutliche Anteile an α2 - Ti3Al gekennzeichnet, wobei weitere Phasen, wie z.B. β - Phase oder B19 - Phase, in geringerem Anteil vorkommen können.Accordingly, a large number of TiAl alloys has already been developed, with TiAl alloys based on the γ - TiAl intermetallic phase in particular being used, which are alloyed with niobium and molybdenum or boron and are therefore referred to as TNM or TNB alloys. Such alloys have as their main constituent titanium and also about 40 to 45 at.% Aluminum, 5 at.% Niobium and for example 1 at.% Molybdenum and also small amounts of boron. The microstructure is characterized by a high proportion of γ - TiAl and also significant proportions of α 2 - Ti 3 Al, whereby further phases, such as β - phase or B19 - phase, may occur to a lesser extent.

Die bekannten TNM - oder TNB - Legierungen auf γ - TiAl - Basis weisen üblicherweise ein gleichachsiges γ - TiAl - Gefüge, ein lamellares Gefüge oder ein Duplex - Gefüge mit gleichachsigen γ - TiAl - Körnern und lamellaren Bereichen aus γ - TiAl und α2 - Ti3Al auf. Obwohl derartige γ - TiAl - Legierungen insbesondere mit lamellaren Mikrostrukturen insgesamt sehr gute mechanische Eigenschaften bis 750°C aufweisen, kommt es bei höheren Temperaturen auf Grund der thermodynamischen Instabilität des Gefüges zu einer Verschlechterung der mechanischen Eigenschaften, wobei insbesondere die Kriechbeständigkeit abnimmt.The known TNM or TNB alloys based on γ-TiAl usually have an equiaxed γ-TiAl microstructure, a lamellar microstructure or a duplex microstructure with equiaxed γ-TiAl grains and lamellar regions of γ-TiAl and α 2 . Ti 3 Al on. Although such γ-TiAl alloys, in particular with lamellar microstructures, have overall very good mechanical properties up to 750 ° C., the mechanical properties deteriorate at higher temperatures due to the thermodynamic instability of the microstructure, with creep resistance in particular decreasing.

OFFENBARUNG DER ERFINDUNGDISCLOSURE OF THE INVENTION AUFGABE DER ERFINDUNGOBJECT OF THE INVENTION

Es ist deshalb Aufgabe der vorliegenden Erfindung eine Legierung bereitzustellen, welche ein niedriges spezifisches Gewicht ähnlich den bekannten γ - TiAl - Legierungen sowie vergleichbare mechanische Eigenschaften, insbesondere bei hohen Temperaturen, aufweist, wobei der Einsatzbereich vorzugsweise auf Temperaturen im Bereich von 750° bis 900°C oder 950°C ausgeweitet ist. Eine derartige Legierung soll im industriellen Maßstab ohne übermäßigen Aufwand herstellbar und verarbeitbar sein sowie in stationären Gasturbinen und Flugtriebwerken zuverlässig eingesetzt werden können.It is therefore an object of the present invention to provide an alloy which has a low specific gravity similar to the known γ-TiAl alloys and comparable mechanical properties, in particular at high temperatures, wherein the range of application preferably to temperatures in the range of 750 ° to 900 ° C or 950 ° C is extended. Such an alloy should be manufacturable and processable on an industrial scale without undue effort and be used reliably in stationary gas turbines and aircraft engines.

TECHNISCHE LÖSUNGTECHNICAL SOLUTION

Diese Aufgabe wird gelöst durch eine TiAl - Legierung mit den Merkmalen des Anspruchs 1, einem Verfahren zur Herstellung einer TiAl - Legierung mit den Merkmalen des Anspruchs 14 sowie der Verwendung der TiAl - Legierung mit den Merkmalen des Anspruchs 15. Weitere vorteilhafte Ausgestaltungen sind Gegenstand der abhängigen Ansprüche.This object is achieved by a TiAl alloy having the features of claim 1, a method for producing a TiAl alloy having the features of claim 14 and the use of the TiAl alloy having the features of claim 15. Further advantageous embodiments are the subject of dependent claims.

Unter TiAl - Legierung wird im Folgenden eine Legierung verstanden, deren Hauptbestandteile Titan und Aluminium sind, sodass also der Anteil an Aluminium und Titan in at.% oder Gew.% jeweils größer ist als der entsprechende Anteil jeder anderen Legierungskomponente. Allerdings kann in at.% oder Gew.% der Aluminium - Anteil größer als der Titan - Anteil sein und nicht nur der Titan - Anteil größer als der Aluminium - Anteil, wie die Bezeichnung TiAl anzudeuten scheint. Darüber hinaus wird unter einer erfindungsgemäßen TiAl - Legierung eine Legierung verstanden, die überwiegend aus intermetallischen Phasen mit den Bestandteilen Titan und/oder Aluminium aufgebaut ist.In the following, TiAl alloy is understood to mean an alloy whose main constituents are titanium and aluminum, so that the proportion of aluminum and titanium in at.% Or wt.% Is greater in each case than the corresponding proportion of any other alloy component. However, in.% Or wt.% Of the aluminum content may be greater than the titanium content and not only the titanium content greater than the aluminum content, as the term TiAl seems to indicate. In addition, a TiAl alloy according to the invention is understood to mean an alloy which is composed predominantly of intermetallic phases with the constituents titanium and / or aluminum.

Die vorliegende Erfindung schlägt entsprechend eine TiAl - Legierung als Hochtemperatur - TiAl - Legierung vor, bei der neben den Hauptbestandteilen Titan und Aluminium, insbesondere einem Hauptbestandteil Titan, ein Aluminiumanteil ≥ 30 at.% vorliegt und wobei das Gefüge eine Matrix aus β - Phase aufweist, in die Ausscheidungen aus ω - Phase eingelagert sind.The present invention accordingly proposes a TiAl alloy as a high-temperature TiAl alloy in which, in addition to the main constituents titanium and aluminum, in particular one main constituent titanium, an aluminum fraction ≥ 30 at.% Is present and the microstructure has a matrix of β phase in which precipitates of ω - phase are incorporated.

Unter β - Phase werden auch verschiedene Morphologien der β - Phase, wie β oder βo, verstanden. Entsprechend fallen unter die ω - Phase verschiedene Morphologien, wie ωo - B82, ω - D88 oder ω" - Übergangsphasen.Β-phase is also understood to mean various β-phase morphologies, such as β or β o . Correspondingly, different morphologies fall under the ω phase, such as ω o -B8 2 , ω - D8 8 or ω "- transition phases.

Der Volumenanteil der β - Phase und der ω - Phase zusammen soll mindestens 55 vol.%, vorzugweise mindestens 75 vol.% und insbesondere mindestens 80 vol.% betragen. Durch eine Mikrostruktur mit einer Matrix aus β - Phase mit eingelagerten ω - Ausscheidungen kann insbesondere die Kriechbeständigkeit verbessert werden, sodass höhere Einsatztemperaturen verglichen mit den bekannten γ - TiAl - Legierungen möglich sind. Auf Grund der Matrix aus β - Phase kann die entsprechende Legierung auch als β - TiAl - Legierung bezeichnet werden.The volume fraction of the β phase and the ω phase together should be at least 55% by volume, preferably at least 75% by volume and in particular at least 80% by volume. In particular, the creep resistance can be improved by a microstructure with a β-phase matrix with ω precipitates embedded in, so that higher use temperatures are possible compared with the known γ-TiAl alloys. Due to the In the β - phase matrix, the corresponding alloy can also be referred to as a β - TiAl alloy.

Das Verhältnis von β - Phase zu ω - Phase entsprechend der Volumenanteile kann im Bereich von 1 zu 4 bis 4 zu 1, insbesondere 1 zu 3 bis 3 zu 1 liegen.The ratio of β-phase to ω-phase corresponding to the volume fractions can be in the range from 1 to 4 to 4 to 1, in particular 1 to 3 to 3 to 1.

Die ω - Phase kann mit Korngrößen im Bereich von 5 nm bis 500 nm, insbesondere 10 nm bis 450 nm bzw. 25 nm bis 400 nm ausgeschieden werden und in der β - Matrix vorliegen. Darüber hinaus kann die ω - Phase auch in insbesondere globularer Form an Korngrenzen der TiAl - Legierung vorliegen, wobei Korngrenzen von allen möglichen Gefügebestandteilen in Frage kommen.The ω-phase can be precipitated with particle sizes in the range of 5 nm to 500 nm, in particular 10 nm to 450 nm or 25 nm to 400 nm, and be present in the β-matrix. In addition, the ω phase may also be present in particular globular form at grain boundaries of the TiAl alloy, with grain boundaries of all possible structural constituents coming into question.

Dazu kann die Legierung mindestens einer 1 bis 100 Stunden dauernden Wärmebehandlung bei einer Temperatur im Bereich von 20°C bis 400°C unterhalb der ω - Solvus - Temperatur unterzogen werden, sodass sich ein thermodynamisch stabiles Gefüge einstellt. Durch Ausscheidungen von ω - Phasen mit kleinen Korngrößen im nm - Bereich können insbesondere die Festigkeitseigenschaften günstig beeinflusst werden.For this purpose, the alloy may be subjected to at least one heat treatment lasting from 1 to 100 hours at a temperature in the range of 20 ° C. to 400 ° C. below the ω solvus temperature, so that a thermodynamically stable structure is established. By precipitating ω phases with small grain sizes in the nm range, the strength properties in particular can be favorably influenced.

Die Ausscheidung der ω - Phase kann auch so durchgeführt werden, dass die ω - Phase in mindestens zwei unterschiedlichen Korngrößenbereichen im Gefüge vorliegt, wobei ein erster Korngrößenbereich Korngrößen im Bereich von 5 nm bis 100 nm und ein zweiter Korngrößenbereich Korngrößen im Bereich von 200 nm bis 500 nm umfassen kann. Hierzu können mehrstufige Auslagerungsglühungen durchgeführt werden.The precipitation of the ω-phase can also be carried out in such a way that the ω-phase is present in at least two different particle size ranges in the microstructure, wherein a first particle size range particle sizes in the range of 5 nm to 100 nm and a second particle size range particle sizes in the range of 200 nm to 500 nm. For this purpose, multi-stage aging annealing can be carried out.

In Abhängigkeit der unterschiedlichen Korngrößen der ω - Phasen können unterschiedliche Verformungsmechanismen in der Legierung unterdrückt werden, um so die Festigkeit der Legierung zu steigern. So können die ω - Auslagerungen mit größeren Korngrößen ein Schneiden durch Versetzungen behindern, während die kleineren ω - Ausscheidungen ein Überklettern durch die Versetzungen behindern können.Depending on the different grain sizes of the ω phases, different deformation mechanisms in the alloy can be suppressed so as to increase the strength of the alloy. For example, larger particle size ω deposits may interfere with cutting by dislocations, while the smaller ω precipitates may hinder overclimbing by the dislocations.

Die ω - Phase kann als semikohärent in sphärischer oder kubischer Form in der β - Matrix vorliegen, wobei die β - Matrix eine netzartige Mikrostruktur aufweisen kann, welche einen hohen Kriechwiderstand bis Temperaturen von 900° Celsius und mehr ermöglicht.The ω-phase may be present as semicoherent in spherical or cubic form in the β-matrix, wherein the β-matrix may have a net-like microstructure, which allows a high creep resistance up to temperatures of 900 ° Celsius and more.

Als Legierungsbestandteile können ein oder mehrere Legierungselemente aus der Gruppe hinzulegiert werden, die Niob, Molybdän, Wolfram, Zirkon, Vanadium, Yttrium, Hafnium, Silicium, Kohlenstoff und Kobalt beinhaltet. Insbesondere die Legierungskomponenten Niob, Molybdän, Wolfram, Zirkon und Kobalt sind vorteilhaft, da diese die β - Phase stabilisieren. Die Legierungsbestandteile Niob und Molybdän können insbesondere in einem Verhältnis von 1,8 zu 1 bis 5 zu 1, vorzugsweise 2 zu 1 bis 3 zu 1 zueinander in der Legierung vorgesehen werden, sodass immer ein höherer Niobgehalt als ein Molybdängehalt vorliegt. Je höher der Anteil von Niob und Molybdän in der Legierung ist, desto höher kann auch das Verhältnis von Niob zu Molybdän gewählt werden, um die Ausscheidung der ω - Phase zu begünstigen. Ein höherer Niob - Anteil ermöglicht die Bildung der ω - Phase, da Niob die ω - Phasenbildung stabilisiert, während Molybdän im Wesentlichen die Bildung der β - Phasen ermöglicht.As alloy constituents, one or more alloying elements may be added from the group including niobium, molybdenum, tungsten, zirconium, vanadium, yttrium, hafnium, silicon, carbon and cobalt. In particular, the alloy components niobium, molybdenum, tungsten, zirconium and cobalt are advantageous because they stabilize the β phase. The alloy constituents niobium and molybdenum can be provided in particular in a ratio of 1.8: 1 to 5: 1, preferably 2: 1 to 3: 1 relative to one another in the alloy, so that there is always a higher niobium content than a molybdenum content. The higher the proportion of niobium and molybdenum in the alloy, the higher the ratio of niobium to molybdenum can be selected in order to favor the precipitation of the ω phase. A higher niobium content allows the formation of the ω-phase, since niobium stabilizes the ω-phase formation, while molybdenum essentially allows the formation of β-phases.

Die Legierungskomponenten Wolfram, Zirkon, Vanadium, Yttrium und Hafnium dienen der Bildung von Oxiden und Karbiden, die fein verteilte Ausscheidungen bilden können, sodass diese Legierungsbestandteile neben einer Mischkristallverfestigung auch durch die Bildung der Ausscheidungen zur Steigerung der Festigkeit der Legierung beitragen können. Entsprechend können die Legierungsbestandteile Wolfram, Zirkon, Vanadium, Yttrium und Hafnium zumindest teilweise gegenseitig substituiert werden. Gleiches gilt für die Legierungsbestandteile Wolfram, Vanadium und Kobalt einerseits und Zirkon, Yttrium und Hafnium andererseits.The alloy components tungsten, zirconium, vanadium, yttrium and hafnium are used to form oxides and carbides, which can form finely divided precipitates, so that these alloying constituents can contribute to increasing the strength of the alloy in addition to solid solution hardening by forming the precipitates. Accordingly, the alloying constituents tungsten, zirconium, vanadium, yttrium and hafnium can be at least partially mutually substituted. The same applies to the alloy components tungsten, vanadium and cobalt on the one hand and zirconium, yttrium and hafnium on the other hand.

Die Zugabe von Kobalt kann die Kriechbeständigkeit weiter erhöhen, da das Legierungselement Kobalt die Stapelfehlerenergie absenken kann, sodass es zu einem Aufspalten von Versetzungen kommt, wodurch das Klettern der Versetzungen erschwert und somit die Kriechbeständigkeit erhöht wird.The addition of cobalt can further increase the creep resistance because the alloying element cobalt can lower the stacking fault energy, thus causing dislocations to be split, making it difficult to climb the dislocations and thus increasing the creep resistance.

Die Zugabe von Silicium kann die Korrosionsbeständigkeit der Legierung verbessern.The addition of silicon can improve the corrosion resistance of the alloy.

Entsprechend kann eine erfindungsgemäße β - TiAl - Legierung 30 bis 42 at.% Aluminium, insbesondere 30 bis 35 at.% Aluminium, 5 bis 25 at% Niob, insbesondere 15 bis 25 at.% Niob, 2 bis 10 at.% Molybdän, insbesondere 5 bis 10 at.% Molybdän, 0,1 bis 10 at.% Kobalt, insbesondere 5 bis 10 at. % Kobalt, 0,1 bis 0,5 at. % Silicium und 0,1 bis 0,5 at. % Hafnium sowie den Rest Titan umfasst. Die einzelnen Legierungsbestandteile sind entsprechend den oben angegebenen Anteilsbereichen so zu wählen, dass sie insgesamt 100 % ergeben. Entsprechend kann nicht unbedingt jeder angegebene Anteilsbereich vollständig ausgeschöpft werden. Dies hängt vielmehr davon ab, welche anderen Legierungsbestandteile mit welchem Anteil bereits gewählt worden sind, sodass sich die Anteilsbereiche gegenseitig beeinflussen.Accordingly, a β-TiAl alloy according to the invention may contain 30 to 42 at.% Aluminum, in particular 30 to 35 at.% Aluminum, 5 to 25 at.% Niobium, in particular 15 to 25 at.% Niobium, 2 to 10 at.% Molybdenum, in particular 5 to 10 at.% molybdenum, 0.1 to 10 at.% cobalt, in particular 5 to 10 at.% cobalt, 0.1 to 0.5 at.% silicon and 0.1 to 0.5 at.% Hafnium and the rest of titanium. The individual alloy components are to be selected in accordance with the above-mentioned share ranges so that they add up to 100%. As a result, it is not always possible to fully exhaust every given share range. Rather, this depends on which other alloying components have already been selected with what proportion, so that the share areas influence each other.

Die vorgestellte TiAl - Legierung kann schmelzmetallurgisch hergestellt werden, wobei die Schmelze einkristallin gezogen oder polykristallin abgegossen werden kann, sodass das entsprechende Bauteil aus der β - TiAl - Legierung als Einkristall, als gerichtet erstarrtes Bauteil oder als polykristallines Bauteil eingesetzt werden kann.The proposed TiAl alloy can be produced by melt metallurgy, wherein the melt can be monocrystalline drawn or polycrystalline poured, so that the corresponding component of the β - TiAl alloy can be used as a single crystal, as directionally solidified component or as a polycrystalline component.

Darüber hinaus ist auch eine pulvermetallurgische Herstellung möglich, bei der zumindest Teile der Legierungsbestandteile mechanisch legiert werden können, wie beispielsweise die Legierungselemente Kobalt, Wolfram, Hafnium, Vanadium und Yttrium.In addition, a powder metallurgy production is possible in which at least parts of the alloy components can be mechanically alloyed, such as the alloying elements cobalt, tungsten, hafnium, vanadium and yttrium.

Zur Bildung der ω - Ausscheidungen kann die Legierung ein- oder mehrstufigen Auslagerungsglühungen unterzogen werden, die im Temperaturbereich von 20°C bis 400°C unter der ω - Solvus - Temperatur, bei der die ω - Phase in Lösung geht, durchgeführt werden.To form the ω precipitates, the alloy may be subjected to single or multi-stage aging anneals performed in the temperature range of 20 ° C to 400 ° C below the ω solvus temperature at which the ω phase goes into solution.

Eine entsprechende TiAl - Legierung kann insbesondere für Komponenten von stationären Gasturbinen oder Flugtriebwerken, wie beispielsweise für Laufschaufeln, eingesetzt werden.A corresponding TiAl alloy can be used in particular for components of stationary gas turbines or aircraft engines, such as, for example, for rotor blades.

Claims (15)

TiAl - Legierung für den Einsatz bei hohen Temperaturen mit dem Hauptbestandteilen Titan und Aluminium, wobei die TiAl - Legierung einen Aluminium - Anteil von größer oder gleich 30 at.% und eine Matrix aus β - Phase und in der Matrix eingelagerte Ausscheidungen aus ω - Phase aufweist, wobei die β - Phase und die ω - Phase zusammen mindestens 55 vol.% des Gefüges einnehmen.TiAl alloy for use at high temperatures with the main constituent titanium and aluminum, where the TiAl alloy has an aluminum content of greater than or equal to 30 at.% And a matrix of β - phase and ω - phase precipitates embedded in the matrix , wherein the β - phase and the ω - phase together occupy at least 55 vol.% Of the structure. TiAl - Legierung nach Anspruch 1,
dadurch gekennzeichnet, dass
die β - Phase und die ω - Phase zusammen mindestens 75 vol.%, insbesondere mindestens 80 vol.% des Gefüges einnehmen
TiAl alloy according to claim 1,
characterized in that
the β phase and the ω phase together take up at least 75 vol.%, in particular at least 80 vol.%, of the microstructure
TiAl - Legierung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
die β - Phase und die ω - Phase mit Volumenanteilen in einem Verhältnis größer 1:4 und kleiner 4:1, insbesondere größer 1:3 und kleiner 3:1 zueinander im Gefüge vorliegen.
TiAl alloy according to one of the preceding claims,
characterized in that
the β phase and the ω phase with volume fractions in a ratio of greater than 1: 4 and less than 4: 1, in particular greater than 1: 3 and less than 3: 1 to one another in the microstructure.
TiAl - Legierung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
die β - Phase Morphologien der β - Phase, insbesondere β oder βo umfasst und/oder Morphologien der ω - Phase, insbesondere ωo - B82, ω - D88 oder ω" - Übergangsphasen umfasst.
TiAl alloy according to one of the preceding claims,
characterized in that
which comprises β phase morphologies of the β phase, in particular β or β o , and / or morphologies of the ω phase, in particular ω o - B 8 2 , ω - D 8 8 or ω "transition phases.
TiAl - Legierung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
die ω - Phase mit Korngrößen im Bereich von 5 nm bis 500 nm, insbesondere 10 nm bis 450 nm, vorzugsweise 25 nm bis 400 nm vorliegt.
TiAl alloy according to one of the preceding claims,
characterized in that
the ω phase is present with particle sizes in the range of 5 nm to 500 nm, in particular 10 nm to 450 nm, preferably 25 nm to 400 nm.
TiAl - Legierung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
die ω - Phase mit Korngrößen in mindestens zwei unterschiedlichen Korngrößenbereichen im Gefüge vorliegt, wobei ein erster Korngrößenbereich Korngrößen im Bereich von 5 nm bis 100 nm und ein zweiter Korngrößenbereich Korngrößen im Bereich von 200 nm bis 500 nm umfasst.
TiAl alloy according to one of the preceding claims,
characterized in that
the ω-phase is present with grain sizes in at least two different particle size ranges in the microstructure, wherein a first particle size range comprises particle sizes in the range from 5 nm to 100 nm and a second particle size range particle sizes in the range from 200 nm to 500 nm.
TiAl - Legierung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
die ω - Phase als sphärische oder kubische Ausscheidungen in der β - Phase und/oder als semikohärente Ausscheidung in der β - Matrix und/oder als globulare Ausscheidung an Korngrenzen vorliegt.
TiAl alloy according to one of the preceding claims,
characterized in that
the ω phase is present as spherical or cubic precipitates in the β phase and / or as semicoolent precipitation in the β matrix and / or as globular precipitation at grain boundaries.
TiAl - Legierung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
die β - Matrix eine netzartige Mikrostruktur aufweist.
TiAl alloy according to one of the preceding claims,
characterized in that
the β - matrix has a netlike microstructure.
TiAl - Legierung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
die Legierung ein oder mehrere Legierungselemente aus der Gruppe umfasst, die Nb, Mo, W, Zr, V, Y, Hf, Si, C und Co beinhaltet.
TiAl alloy according to one of the preceding claims,
characterized in that
the alloy comprises one or more alloying elements selected from the group consisting of Nb, Mo, W, Zr, V, Y, Hf, Si, C and Co.
TiAI - Legierung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
die Legierung Nb und Mo umfasst, wobei die Anteile dieser Legierungselemente in at.% in der Legierung in einem Verhältnis von 1,8:1 bis 5:1, insbesondere 2:1 bis 3:1 vorliegen.
TiAl alloy according to one of the preceding claims,
characterized in that
the alloy comprises Nb and Mo, the proportions of these alloying elements being present in at.% in the alloy in a ratio of 1.8: 1 to 5: 1, in particular 2: 1 to 3: 1.
TiAl - Legierung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
die Legierung mindestens eines der Elemente aus der Gruppe umfasst, die W, Zr, V, Y und Hf beinhaltet, wobei die Elemente sich zumindest teilweise gegenseitig substituieren können, und/oder dass
die Legierung mindestens eines der Elemente aus der Gruppe umfasst, die W, V und Co beinhaltet, wobei die Elemente sich zumindest teilweise gegenseitig substituieren können.
TiAl alloy according to one of the preceding claims,
characterized in that
the alloy comprises at least one of the elements selected from the group consisting of W, Zr, V, Y and Hf, which elements may at least partially substitute each other, and / or
the alloy comprises at least one of the elements selected from the group consisting of W, V and Co, which elements may at least partially substitute each other.
TiAl - Legierung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
die Legierung mindestens eines der Elemente aus der Gruppe umfasst, die Zr, Y und Hf beinhaltet, wobei die Elemente sich zumindest teilweise gegenseitig substituieren können.
TiAl alloy according to one of the preceding claims,
characterized in that
the alloy comprises at least one of the elements selected from the group consisting of Zr, Y and Hf, which elements may at least partially substitute each other.
TiAl - Legierung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
die Legierung umfasst: 30 bis 42 at.% Al 5 bis 25 at.% Nb 2 bis 10 at.% Mo 0,1 bis 10 at.% Co 0,1 bis 0,5 at.% Si 0,1 bis 0,5 at.% Hf und Rest Ti, insbesondere umfasst: 30 bis 35 at.% Al 15 bis 25 at.% Nb 5 bis 10 at. % Mo 5 bis 10 at.% Co 0,1 bis 0,5 at.% Si 0,1 bis 0,5 at.% Hf und Rest Ti.
TiAl alloy according to one of the preceding claims,
characterized in that
the alloy comprises: 30 to 42 at.% Al 5 to 25 at.% Nb 2 to 10 at.% Mo 0.1 to 10 at.% Co 0.1 to 0.5 at.% Si 0.1 to 0.5 at.% Hf and the remainder Ti, in particular comprises: 30 to 35 at.% Al 15 to 25 at.% Nb 5 to 10 at.% Mo 5 to 10 at.% Co 0.1 to 0.5 at.% Si 0.1 to 0.5 at.% Hf and balance Ti.
Verfahren zur Herstellung einer TiAl - Legierung nach einem der vorhergehenden Ansprüche, bei dem
die Legierung schmelzmetallurgisch hergestellt und einkristallin gezogen oder polykristallin abgegossen wird oder
bei dem die Legierung zumindest teilweise pulvermetallurgisch hergestellt wird und vorzugsweise zumindest Teile der Legierungsbestandteile mechanisch legiert werden.
Process for producing a TiAl alloy according to one of the preceding claims, in which
the alloy is produced by fusion metallurgy and monocrystalline drawn or polycrystalline poured or
in which the alloy is at least partially produced by powder metallurgy and preferably at least parts of the alloy components are mechanically alloyed.
Verwendung einer TiAl - Legierung nach einem der Ansprüche 1 bis 13 zur Bildung einer Komponente für eine Strömungsmaschine, insbesondere ein Flugzeugtriebwerk.Use of a TiAl alloy according to one of claims 1 to 13 for forming a component for a turbomachine, in particular an aircraft engine.
EP14154052.6A 2014-02-06 2014-02-06 High temperature TiAl alloy Withdrawn EP2905350A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14154052.6A EP2905350A1 (en) 2014-02-06 2014-02-06 High temperature TiAl alloy
US14/612,504 US10060012B2 (en) 2014-02-06 2015-02-03 High-temperature TiAl alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP14154052.6A EP2905350A1 (en) 2014-02-06 2014-02-06 High temperature TiAl alloy

Publications (1)

Publication Number Publication Date
EP2905350A1 true EP2905350A1 (en) 2015-08-12

Family

ID=50112711

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14154052.6A Withdrawn EP2905350A1 (en) 2014-02-06 2014-02-06 High temperature TiAl alloy

Country Status (2)

Country Link
US (1) US10060012B2 (en)
EP (1) EP2905350A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3216547A1 (en) 2016-03-08 2017-09-13 MTU Aero Engines GmbH Method for producing a rotor blade for a fluid flow engine
EP3239468A1 (en) 2016-04-27 2017-11-01 MTU Aero Engines GmbH Method for producing a rotor blade for a fluid flow engine
EP3238863A1 (en) 2016-04-27 2017-11-01 MTU Aero Engines GmbH Method for producing a rotor blade for a fluid flow engine
CN109402420A (en) * 2018-10-29 2019-03-01 昆明理工大学 A method of titanium silicon and alusil alloy are prepared using titanium-containing blast furnace slag
CN110257641A (en) * 2019-06-20 2019-09-20 昆明理工大学 A method of silica-base material and low Fe eutectic Al-Si alloy are prepared using titanium-contained slag and scrap aluminium alloy

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016224386A1 (en) * 2016-12-07 2018-06-07 MTU Aero Engines AG METHOD FOR PRODUCING A SHOVEL FOR A FLOW MACHINE
DE102016224532A1 (en) * 2016-12-08 2018-06-14 MTU Aero Engines AG High temperature protective coating for titanium aluminide alloys
DE102017215321A1 (en) * 2017-09-01 2019-03-07 MTU Aero Engines AG METHOD FOR PRODUCING A TITANALUMINIDE COMPONENT WITH A TEETH CORE AND COMPONENT PRODUCED ACCORDINGLY
CN109628867B (en) * 2019-01-28 2020-09-08 西北工业大学 Heat treatment method for obtaining peritectic casting TiAl alloy near lamellar structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356729A (en) * 2001-05-28 2002-12-13 Mitsubishi Heavy Ind Ltd TiAl ALLOY, THE MANUFACTURING METHOD, AND MOVING BLADE USING IT
EP2251445A1 (en) * 2008-03-12 2010-11-17 Mitsubishi Heavy Industries, Ltd. Tial-based alloy, process for production of the same, and rotor blade comprising the same
WO2012041276A2 (en) * 2010-09-22 2012-04-05 Mtu Aero Engines Gmbh Heat-resistant tial alloy

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4716020A (en) * 1982-09-27 1987-12-29 United Technologies Corporation Titanium aluminum alloys containing niobium, vanadium and molybdenum

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356729A (en) * 2001-05-28 2002-12-13 Mitsubishi Heavy Ind Ltd TiAl ALLOY, THE MANUFACTURING METHOD, AND MOVING BLADE USING IT
EP2251445A1 (en) * 2008-03-12 2010-11-17 Mitsubishi Heavy Industries, Ltd. Tial-based alloy, process for production of the same, and rotor blade comprising the same
WO2012041276A2 (en) * 2010-09-22 2012-04-05 Mtu Aero Engines Gmbh Heat-resistant tial alloy

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MARTIN SCHLOFFER, BORYANA RASHKOVA, THOMAS SCHÖBERL, EMANUEL SCHWAIGHOFER, ZAOLI ZHANG, HELMUT CLEMENS, SVEA MAYER,: "Evolution of the wo phase in a B-stabilized multi-phase TiAl alloy and its effect on hardness", ACTA MATERIALIA, vol. 64, 19 November 2013 (2013-11-19), pages 241 - 252, XP002726501 *
TETSUI T ET AL: "Fabrication of TiAl components by means of hot forging and machining", INTERMETALLICS, ELSEVIER SCIENCE PUBLISHERS B.V, GB, vol. 13, no. 9, 1 September 2005 (2005-09-01), pages 971 - 978, XP027617056, ISSN: 0966-9795, [retrieved on 20050901] *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3216547A1 (en) 2016-03-08 2017-09-13 MTU Aero Engines GmbH Method for producing a rotor blade for a fluid flow engine
DE102016203785A1 (en) 2016-03-08 2017-09-14 MTU Aero Engines AG Method for producing a blade for a turbomachine
EP3239468A1 (en) 2016-04-27 2017-11-01 MTU Aero Engines GmbH Method for producing a rotor blade for a fluid flow engine
EP3238863A1 (en) 2016-04-27 2017-11-01 MTU Aero Engines GmbH Method for producing a rotor blade for a fluid flow engine
CN109402420A (en) * 2018-10-29 2019-03-01 昆明理工大学 A method of titanium silicon and alusil alloy are prepared using titanium-containing blast furnace slag
CN110257641A (en) * 2019-06-20 2019-09-20 昆明理工大学 A method of silica-base material and low Fe eutectic Al-Si alloy are prepared using titanium-contained slag and scrap aluminium alloy

Also Published As

Publication number Publication date
US20150218675A1 (en) 2015-08-06
US10060012B2 (en) 2018-08-28

Similar Documents

Publication Publication Date Title
EP2905350A1 (en) High temperature TiAl alloy
EP2075349B1 (en) Titanium aluminide alloys
EP3175008B1 (en) Cobalt based alloy
EP2163656B1 (en) High-temperature-resistant cobalt-base superalloy
EP2742162B1 (en) Method for producing forged tial components
EP2402473B1 (en) Process for producing a single-crystal component made of a nickel-based superalloy
EP2851445B1 (en) Creep-resistant TiAl alloy
EP2807281B1 (en) Method for producing forged components from a tial alloy and component produced thereby
EP3269838B1 (en) High temperature resistant tial alloy, method for production of a composent from a corresponding tial alloy, component from a corresponding tial alloy
EP3530763B1 (en) Method forproducing a blade of a turbomachine from a graded tial alloy, and correspondingly produced component
EP3054023B1 (en) Aluminium-rich high temperature tial alloy
EP3091095B1 (en) Low density rhenium-free nickel base superalloy
DE102016224546A1 (en) HOT GAS CORROSION AND OXIDATING PROTECTION LAYER FOR TIAL ALLOYS
EP2927336A1 (en) Nickel base alloy with optimised matrix properties
DE2821524A1 (en) HEAT TREATED NICKEL-BASED SUPER ALLOY ARTICLE AND THE METHOD AND INTERSINGLE CRYSTAL ARTICLE OF ITS MANUFACTURING
WO2011003804A1 (en) Nickel-based superalloy
WO2012041276A2 (en) Heat-resistant tial alloy
WO1995032314A1 (en) Nickel-aluminium intermetallic basis alloy
DE102013214767A1 (en) Highly heat-resistant lightweight alloy of NiAl
WO2021259750A1 (en) Nickel-based alloy, powder, method and component
EP2876177B1 (en) Material from laves phase and ferritic fe-al phase
DE2005758C3 (en) Use of a nickel-molybdenum-aluminum cast alloy
CH634110A5 (en) Process for producing a eutectic nickel-based object, and eutectic object

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20160118

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20170718

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190312