EP2742162B1 - Method for producing forged tial components - Google Patents

Method for producing forged tial components Download PDF

Info

Publication number
EP2742162B1
EP2742162B1 EP12762523.4A EP12762523A EP2742162B1 EP 2742162 B1 EP2742162 B1 EP 2742162B1 EP 12762523 A EP12762523 A EP 12762523A EP 2742162 B1 EP2742162 B1 EP 2742162B1
Authority
EP
European Patent Office
Prior art keywords
phase
temperature
tial
heat
percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12762523.4A
Other languages
German (de)
French (fr)
Other versions
EP2742162A1 (en
Inventor
Dietmar Helm
Falko Heutling
Ulrike Habel
Wilfried Smarsly
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46924179&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2742162(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by MTU Aero Engines GmbH filed Critical MTU Aero Engines GmbH
Publication of EP2742162A1 publication Critical patent/EP2742162A1/en
Application granted granted Critical
Publication of EP2742162B1 publication Critical patent/EP2742162B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/174Titanium alloys, e.g. TiAl

Definitions

  • the present invention relates to a method for producing forged components from a TiAl alloy, in particular components for gas turbines, preferably aircraft turbines and in particular turbine blades for low-pressure turbines. Moreover, the present invention relates to corresponding components.
  • titanium aluminides Due to their low specific weight and their mechanical properties, components of titanium aluminides are of interest for use in gas turbines, in particular aircraft turbines. However, for titanium aluminide materials, the microstructures must be precisely adjusted to achieve the desired mechanical properties.
  • a method for producing forged components from a Ti-43Al-4Nb-lMo-0.1B alloy is known from " Microstructural and Tensile Ductility of a Ti-43Al-4Nb-1Mo-0.1B Alloy "- Laura, M. Droessler et al, Mater.Res.Soc.Symp.Proc, vol 1128, 2009 Materials research Society, pages 121-126 , known.
  • the components are subjected to a two-stage heat treatment after forging, wherein the first stage of the heat treatment provides recrystallization annealing below the ⁇ / ⁇ transformation temperature for a period of 50 to 100 minutes ,
  • the annealing at a temperature below the ⁇ / ⁇ transformation temperature at which ⁇ -titanium is converted into ⁇ -TiAl in accordance with the phase diagram for the TiAl alloy used may take place as close as possible to the ⁇ / ⁇ transformation temperature, with a temperature of 15 ° C, in particular 10 ° C, below the ⁇ / ⁇ - conversion temperature should not fall below.
  • the recrystallization annealing may preferably be carried out for 60 to 90 minutes, especially 70 to 80 minutes.
  • the first stage of the heat treatment with the recrystallization annealing is followed by a second stage of the heat treatment with stabilizing annealing in the temperature range of 800 ° C to 950 ° C for 5 to 7 hours.
  • the stabilization annealing can be carried out in particular in the temperature range from 825 ° C. to 925 ° C., preferably from 850 ° C. to 900 ° C., with a holding time of from 345 minutes to 375 minutes.
  • the cooling in the recrystallization annealing can be carried out by air cooling, wherein in the temperature range between 1300 ° C and 900 ° C, the cooling rate ⁇ 3 ° C per second should be to set a fine-lamellar microstructure of ⁇ 2 -Ti 3 Al and ⁇ -TiAl in the corresponding ⁇ 2 - and ⁇ -phase, which ensures the required mechanical properties.
  • the cooling in the second heat treatment stage, so the stabilization annealing, can be done with correspondingly lower cooling rates in the oven.
  • the heat treatment steps are carried out as accurately as possible at the corresponding selected temperature.
  • an increasingly precise adjustment of the temperature and holding the components at the appropriate temperatures associated with increasing effort so that a compromise must be found for an economically meaningful processing.
  • a temperature adjustment with a deviation in the range of 5 ° C to 10 ° C up and down from the target temperature has been found to be advantageous.
  • the selected target temperature for the heat treatment steps of the present invention can be set and maintained in a corresponding temperature window of 5 ° C to 10 ° C deviation from the target temperature up and down.
  • titanium-titanium aluminide alloys alloyed with niobium and molybdenum can be used in particular.
  • Such alloys are also referred to as TNM alloys.
  • an alloy of 42 to 45 atomic percent aluminum, 3 to 5 atomic percent niobium and 0.5 to 1.5 atomic percent molybdenum is used.
  • the aluminum content may be selected in the range of 42.8 to 44.2 atomic percent aluminum, while 3.7 to 4.3 atomic percent of niobium and 0.8 to 1.2 atomic percent of molybdenum may be alloyed.
  • the alloy may be alloyed with boron in the range of 0.05 to 0.15 atomic percent boron, more preferably 0.07 to 0.13 atomic percent boron.
  • the alloy may include unavoidable impurities such as carbon, oxygen, nitrogen, hydrogen, chromium, silicon, iron, copper, nickel and yttrium, the content of which is ⁇ 0.05% by weight of chromium, ⁇ 0.05% by weight of silicon, ⁇ 0.08 wt% oxygen, ⁇ 0.02 wt% carbon, ⁇ 0.015 wt% nitrogen, ⁇ 0.005 wt% hydrogen, ⁇ 0.06 wt% iron, ⁇ 0.15 wt% copper, ⁇ 0.02 wt% nickel, and ⁇ 0.001 wt% yttrium , Further constituents may be contained individually in the range of 0 to 0.05 percent by weight or in total from 0 to 0.2 percent by weight.
  • unavoidable impurities such as carbon, oxygen, nitrogen, hydrogen, chromium, silicon, iron, copper, nickel and yttrium, the content of which is ⁇ 0.05% by weight of chromium, ⁇ 0.05% by weight of silicon
  • the forging of the corresponding components can be carried out by drop forging in the ⁇ - ⁇ - ⁇ -temperature range, which can be used as a starting material for forging cast and / or hot isostatically pressed blanks.
  • the blanks themselves can be produced by melting in vacuo or inert gas with self-consumable electrodes or in the cooled crucible by means of plasma arc melting, wherein a single or multiple remelting of the alloy can be performed.
  • the remelting may be by vacuum induction melting or vacuum arc remelting (VIM vacuum induction melting), and the cast material may be hot isostatically pressed using temperatures ⁇ 200 ° C at a pressure ⁇ 190 MPa and a holding time ⁇ 4 hours can.
  • a component made of a TiAl alloy in particular a component of a gas turbine, preferably an aircraft turbine, which is produced in particular according to the above-described method, is provided, which has a triplex structure with a globulitic ⁇ -TiAl phase, a B2-TiAl Phase (cubic body-centered phase) and a lamellar ⁇ 2 -Ti 3 Al and ⁇ -TiAl phase is constructed.
  • the proportion of the ⁇ -phase is in this case 2 to 20 percent by volume, the proportion of the B2 phase 1 to 20 percent by volume and the proportion of the ⁇ -phase together with the B2 phase 5 to 25 percent by volume.
  • the proportion of the ⁇ -phase 5 to 15 volume percent and the proportion of B2 phase 3 to 15 volume percent and the proportion of the two phases together amount to 8 to 20 volume percent.
  • the size of the ⁇ -phase or the ⁇ -grains may be set so that a circumscribed circle has a diameter ⁇ 40 ⁇ m. The same applies to the B2 phase or B2 grains.
  • the lamellar microstructure areas of ⁇ 2 and ⁇ phase have a size in which the equivalent area of a circle has a diameter of ⁇ 100 ⁇ m.
  • the aspect ratio of the lamellar ⁇ 2 and ⁇ phase ie the ratio of the length to the width of the lamellae, can be ⁇ 3: 1.
  • the structure may additionally have borides.
  • the thus molten material was hot isostatically compacted at a temperature of> 1200 ° C and a pressure of greater than 190 MPa for a holding time of more than 4 hours, and then forged in a die forging at a temperature in the ⁇ - ⁇ - ⁇ phase region , Subsequently, a heat treatment was carried out with recrystallization annealing below the ⁇ / ⁇ transformation temperature for 75 minutes with air cooling at a cooling rate of more than 3 ° C per second. Subsequently, the corresponding component was subjected to stabilization annealing at 920 ° C. for 6 hours and then cooled in the oven.
  • Such a component such as a turbine blade for a low-pressure turbine in an aircraft engine, has a triplex structure according to the invention with corresponding proportions of ⁇ phase, B2 phase and lamellar ⁇ 2 and ⁇ phase.
  • a yield strength (0.2% proof strength Rp 0.2 ) of more than 670 MPa and a tensile strength R m of more than 840 MPa for a total elongation (elastic and plastic elongation to breakage) ) A dead higher than 1.7%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Forging (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

GEBIET DER ERFINDUNGFIELD OF THE INVENTION

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von geschmiedeten Bauteilen aus einer TiAl-Legierung, insbesondere von Bauteilen für Gasturbinen, vorzugsweise Flugturbinen und insbesondere Turbinenschaufeln für Niederdruckturbinen. Darüber hinaus betrifft die vorliegende Erfindung entsprechende Bauteile.The present invention relates to a method for producing forged components from a TiAl alloy, in particular components for gas turbines, preferably aircraft turbines and in particular turbine blades for low-pressure turbines. Moreover, the present invention relates to corresponding components.

STAND DER TECHNIKSTATE OF THE ART

Bauteile aus Titanaluminiden sind aufgrund ihres geringen spezifischen Gewichts und ihrer mechanischen Eigenschaften für den Einsatz in Gasturbinen, insbesondere Flugturbinen, interessant. Allerdings müssen bei Titanaluminid-Werkstoffen die Gefüge exakt eingestellt werden, um die gewünschten mechanischen Eigenschaften zu erzielen.Due to their low specific weight and their mechanical properties, components of titanium aluminides are of interest for use in gas turbines, in particular aircraft turbines. However, for titanium aluminide materials, the microstructures must be precisely adjusted to achieve the desired mechanical properties.

Dabei ergibt sich die Schwierigkeit, dass spezielle Prozessrouten gewählt werden müssen, um die gewünschten Gefügeeinstellungen vornehmen zu können. Gleichzeitig soll jedoch die Herstellung und Bearbeitung entsprechender TiAl-Bauteile in industriellen Prozessen wirtschaftlich durchführbar sein. Entsprechend besteht ein ständiger Bedarf, Gefügeeinstellungen und Herstellungswege sowie -parameter für die Herstellung von Titanaluminid-Bauteilen zu optimieren.This results in the difficulty that special process routes must be selected in order to make the desired microstructural settings. At the same time, however, the production and processing of corresponding TiAl components in industrial processes should be economically feasible. Accordingly, there is a continuing need to optimize microstructural settings and production paths and parameters for the production of titanium aluminide components.

Ein Verfahren zur Herstellung von geschmiedeten Bauteilen aus einer Ti-43Al-4Nb-lMo-0.1B Legierung ist aus " Microstructural and Tensile Ductility of a Ti-43Al-4Nb-1Mo-0.1B Alloy" - Laura. M. Droessler et al, Mater.Res.Soc.Symp.Proc, vol 1128, 2009 Materials research Society, pages 121-126 , bekannt.A method for producing forged components from a Ti-43Al-4Nb-lMo-0.1B alloy is known from " Microstructural and Tensile Ductility of a Ti-43Al-4Nb-1Mo-0.1B Alloy "- Laura, M. Droessler et al, Mater.Res.Soc.Symp.Proc, vol 1128, 2009 Materials research Society, pages 121-126 , known.

OFFENBARUNG DER ERFINDUNGDISCLOSURE OF THE INVENTION AUFGABE DER ERFINDUNGOBJECT OF THE INVENTION

Es ist deshalb Aufgabe der vorliegenden Erfindung, ein Herstellungsverfahren für die Herstellung von Bauteilen aus Titanaluminid-Werkstoffen bereit zu stellen, welche in Gasturbinen, insbesondere Flugturbinen, vorzugsweise im Bereich der Niederdruckturbine, eingesetzt werden können, wobei eine wirtschaftlich vertretbare Herstellung ermöglicht wird.It is therefore an object of the present invention to provide a manufacturing method for the production of components made of titanium aluminide materials, which in gas turbines, in particular Air turbines, preferably in the field of low-pressure turbine, can be used, with an economically feasible production is possible.

TECHNISCHE LÖSUNGTECHNICAL SOLUTION

Diese Aufgabe wird gelöst durch ein Verfahren mit den Merkmalen des Anspruchs.This object is achieved by a method having the features of the claim.

Vorteilhafte Ausgestaltungen sind Gegenstand der abhängigen Ansprüche.Advantageous embodiments are the subject of the dependent claims.

Beim erfindungsgemäßen Verfahren zur Herstellung von geschmiedeten Bauteilen aus einer Ti-Al-Legierung werden die Bauteile nach dem Schmieden einer zweistufigen Wärmebehandlung unterzogen, wobei die erste Stufe der Wärmebehandlung ein Rekristallisationsglühen unterhalb der γ/α - Umwandlungstemperatur für eine Zeitdauer von 50 bis 100 Minuten vorsieht. Das Glühen bei einer Temperatur unterhalb der γ/α - Umwandlungstemperatur, bei der entsprechend dem Phasendiagramm für die verwendete TiAl-Legierung α-Titan in γ-TiAl umgewandelt wird, kann möglichst nahe an der γ/α - Umwandlungstemperatur stattfinden, wobei eine Temperatur von 15°C, insbesondere 10°C, unterhalb der γ/α - Umwandlungstemperatur nicht unterschritten werden soll.In the method of manufacturing forged Ti-Al alloy components of the present invention, the components are subjected to a two-stage heat treatment after forging, wherein the first stage of the heat treatment provides recrystallization annealing below the γ / α transformation temperature for a period of 50 to 100 minutes , The annealing at a temperature below the γ / α transformation temperature at which α-titanium is converted into γ-TiAl in accordance with the phase diagram for the TiAl alloy used may take place as close as possible to the γ / α transformation temperature, with a temperature of 15 ° C, in particular 10 ° C, below the γ / α - conversion temperature should not fall below.

Das Rekristallisationsglühen kann vorzugsweise für 60 bis 90 Minuten, insbesondere 70 bis 80 Minuten, durchgeführt werden.The recrystallization annealing may preferably be carried out for 60 to 90 minutes, especially 70 to 80 minutes.

Der ersten Stufe der Wärmebehandlung mit dem Rekristallisationsglühen schließt sich eine zweite Stufe der Wärmebehandlung mit einem Stabilisierungsglühen im Temperaturbereich von 800°C bis 950°C für 5 bis 7 Stunden an.The first stage of the heat treatment with the recrystallization annealing is followed by a second stage of the heat treatment with stabilizing annealing in the temperature range of 800 ° C to 950 ° C for 5 to 7 hours.

Das Stabilisierungsglühen kann insbesondere im Temperaturbereich von 825°C bis 925°C, vorzugsweise von 850°C bis 900°C bei einer Haltedauer von 345 Minuten bis 375 Minuten durchgeführt werden.The stabilization annealing can be carried out in particular in the temperature range from 825 ° C. to 925 ° C., preferably from 850 ° C. to 900 ° C., with a holding time of from 345 minutes to 375 minutes.

Die Abkühlung beim Rekristallisationsglühen kann durch Luftabkühlung erfolgen, wobei im Temperaturbereich zwischen 1300°C und 900°C die Abkühlgeschwindigkeit ≥ 3°C pro Sekunde sein soll, um ein feinlamellares Gefüge aus α2-Ti3Al und γ-TiAl in der entsprechenden α2- und γ-Phase einzustellen, welches die erforderlichen mechanischen Eigenschaften gewährleistet.The cooling in the recrystallization annealing can be carried out by air cooling, wherein in the temperature range between 1300 ° C and 900 ° C, the cooling rate ≥ 3 ° C per second should be to set a fine-lamellar microstructure of α 2 -Ti 3 Al and γ-TiAl in the corresponding α 2 - and γ-phase, which ensures the required mechanical properties.

Die Abkühlung bei der zweiten Wärmebehandlungsstufe, also dem Stabilisierungsglühen, kann mit entsprechend niedrigeren Abkühlgeschwindigkeiten im Ofen erfolgen.The cooling in the second heat treatment stage, so the stabilization annealing, can be done with correspondingly lower cooling rates in the oven.

Für die Einstellung des Gefüges und Reproduzierbarkeit einer entsprechenden Gefügeeinstellung ist es von Bedeutung, dass die Wärmebehandlungsschritte möglichst genau bei der entsprechend gewählten Temperatur durchgeführt werden. Allerdings ist eine zunehmend exakte Einstellung der Temperatur und Halten der Bauteile auf den entsprechenden Temperaturen mit wachsendem Aufwand verbunden, so dass für eine wirtschaftlich sinnvolle Bearbeitung ein Kompromiss gefunden werden muss. Für die Wärmebehandlung von geschmiedeten TiAl-Bauteilen hat sich eine Temperatureinstellung mit einer Abweichung im Bereich von 5°C bis 10°C nach oben und unten von der Soll-Temperatur als vorteilhaft herausgestellt. Entsprechend kann die gewählte Soll-Temperatur für die Wärmebehandlungsschritte der vorliegenden Erfindung in einem entsprechenden Temperaturfenster mit 5°C bis 10°C Abweichung von der Soll-Temperatur nach oben und unten eingestellt und gehalten werden.For the adjustment of the microstructure and reproducibility of a corresponding structural adjustment, it is important that the heat treatment steps are carried out as accurately as possible at the corresponding selected temperature. However, an increasingly precise adjustment of the temperature and holding the components at the appropriate temperatures associated with increasing effort, so that a compromise must be found for an economically meaningful processing. For the heat treatment of forged TiAl components, a temperature adjustment with a deviation in the range of 5 ° C to 10 ° C up and down from the target temperature has been found to be advantageous. Accordingly, the selected target temperature for the heat treatment steps of the present invention can be set and maintained in a corresponding temperature window of 5 ° C to 10 ° C deviation from the target temperature up and down.

Für die Herstellung von geschmiedeten Bauteilen aus TiAl-Legierungen, insbesondere für Gasturbinenbauteile, wie beispielsweise Niederdruckturbinen-Turbinenschaufeln, sind vor allem mit Niob und Molybdän legierte Titanaluminid-Legierungen verwendbar. Derartige Legierungen werden auch als TNM-Legierungen bezeichnet.For the production of forged components from TiAl alloys, in particular for gas turbine components, such as, for example, low-pressure turbine turbine blades, titanium-titanium aluminide alloys alloyed with niobium and molybdenum can be used in particular. Such alloys are also referred to as TNM alloys.

Für das vorliegende Verfahren wird eine Legierung mit 42 bis 45 Atomprozent Aluminium, 3 bis 5 Atomprozent Niob und 0,5 bis 1,5 Atomprozent Molybdän verwendet.For the present process, an alloy of 42 to 45 atomic percent aluminum, 3 to 5 atomic percent niobium and 0.5 to 1.5 atomic percent molybdenum is used.

Der Aluminiumgehalt kann insbesondere im Bereich von 42,8 bis 44,2 Atomprozent Aluminium gewählt werden, während 3,7 bis 4,3 Atomprozent Niob und 0,8 bis 1,2 Atomprozent Molybdän zulegiert sein können.In particular, the aluminum content may be selected in the range of 42.8 to 44.2 atomic percent aluminum, while 3.7 to 4.3 atomic percent of niobium and 0.8 to 1.2 atomic percent of molybdenum may be alloyed.

Darüber hinaus kann die Legierung mit Bor legiert sein, und zwar im Bereich von 0,05 bis 0,15 Atomprozent Bor, insbesondere 0,07 bis 0,13 Atomprozent Bor.In addition, the alloy may be alloyed with boron in the range of 0.05 to 0.15 atomic percent boron, more preferably 0.07 to 0.13 atomic percent boron.

Ferner kann die Legierung unvermeidbare Verunreinigungen bzw. weitere Bestandteile wie Kohlenstoff, Sauerstoff, Stickstoff, Wasserstoff, Chrom, Silizium, Eisen, Kupfer, Nickel und Yttrium aufweisen, wobei deren Gehalt ≤ 0,05 Gewichtsprozent Chrom, ≤ 0,05 Gewichtsprozent Silizium, ≤ 0,08 Gewichtsprozent Sauerstoff, ≤ 0,02 Gewichtsprozent Kohlenstoff, ≤ 0,015 Gewichtsprozent Stickstoff, ≤0,005 Gewichtsprozent Wasserstoff, ≤ 0,06 Gewichtsprozent Eisen, ≤0,15 Gewichtsprozent Kupfer, ≤0,02 Gewichtsprozent Nickel und ≤0,001 Gewichtsprozent Yttrium betragen kann. Weitere Bestandteile können einzeln im Bereich von 0 bis 0,05 Gewichtsprozent bzw. insgesamt von 0 bis 0,2 Gewichtsprozent enthalten sein.Further, the alloy may include unavoidable impurities such as carbon, oxygen, nitrogen, hydrogen, chromium, silicon, iron, copper, nickel and yttrium, the content of which is ≦ 0.05% by weight of chromium, ≦ 0.05% by weight of silicon, ≦ 0.08 wt% oxygen, ≤ 0.02 wt% carbon, ≤ 0.015 wt% nitrogen, ≤ 0.005 wt% hydrogen, ≤ 0.06 wt% iron, ≤ 0.15 wt% copper, ≤ 0.02 wt% nickel, and ≤ 0.001 wt% yttrium , Further constituents may be contained individually in the range of 0 to 0.05 percent by weight or in total from 0 to 0.2 percent by weight.

Das Schmieden der entsprechenden Bauteile kann durch Gesenkschmieden im α-γ-β-Temperaturbereich erfolgen, wobei als Vormaterial für das Schmieden gegossene und/oder heiß-isostatisch gepresste Rohlinge eingesetzt werden können.The forging of the corresponding components can be carried out by drop forging in the α-γ-β-temperature range, which can be used as a starting material for forging cast and / or hot isostatically pressed blanks.

Die Rohlinge selbst können durch Erschmelzen im Vakuum oder Schutzgas mit selbstverzehrenden Elektroden oder im gekühlten Tiegel mittels Plasmalichtbogenschmelzen hergestellt werden, wobei ein einmaliges oder mehrmaliges Umschmelzen der Legierung durchgeführt werden kann. Das Umschmelzen kann mittels Vakuuminduktionsschmelzen oder Vakuumlichtbogenumschmelzen (VIM vacuum induction melting; VAR vacuum arc remelting) erfolgen und das abgegossene Material kann heiß-isostatisch gepresst werden, wobei Temperaturen ≥200°C bei einem Druck ≥ 190 MPa und einer Haltezeit ≥ 4 Stunden angewendet werden können.The blanks themselves can be produced by melting in vacuo or inert gas with self-consumable electrodes or in the cooled crucible by means of plasma arc melting, wherein a single or multiple remelting of the alloy can be performed. The remelting may be by vacuum induction melting or vacuum arc remelting (VIM vacuum induction melting), and the cast material may be hot isostatically pressed using temperatures ≥200 ° C at a pressure ≥ 190 MPa and a holding time ≥ 4 hours can.

Gemäß der Erfindung wird ein insbesondere nach dem oben dargestellten Verfahren hergestelltes Bauteil aus einer TiAl-Legierung, insbesondere ein Bauteil einer Gasturbine, vorzugsweise einer Flugturbine, bereitgestellt, welches ein Triplex-Gefüge mit einer globulitischen γ-TiAl-Phase, einer B2-TiAl-Phase (kubisch raumzentrierte Phase) und einer lamellaren α2-Ti3Al- und γ-TiAl-Phase aufgebaut ist. Der Anteil der γ-Phase beträgt hierbei 2 bis 20 Volumenprozent, der Anteil der B2-Phase 1 bis 20 Volumenprozent und der Anteil der γ-Phase zusammen mit der B2-Phase 5 bis 25 Volumenprozent.According to the invention, a component made of a TiAl alloy, in particular a component of a gas turbine, preferably an aircraft turbine, which is produced in particular according to the above-described method, is provided, which has a triplex structure with a globulitic γ-TiAl phase, a B2-TiAl Phase (cubic body-centered phase) and a lamellar α 2 -Ti 3 Al and γ-TiAl phase is constructed. The proportion of the γ-phase is in this case 2 to 20 percent by volume, the proportion of the B2 phase 1 to 20 percent by volume and the proportion of the γ-phase together with the B2 phase 5 to 25 percent by volume.

Insbesondere kann der Anteil der γ-Phase 5 bis 15 Volumenprozent und der Anteil der B2-Phase 3 bis 15 Volumenprozent sowie der Anteil der beiden Phasen zusammen 8 bis 20 Volumenprozent betragen.In particular, the proportion of the γ-phase 5 to 15 volume percent and the proportion of B2 phase 3 to 15 volume percent and the proportion of the two phases together amount to 8 to 20 volume percent.

Die Größe der γ-Phase oder der γ-Körner kann so eingestellt sein, dass ein umschriebener Kreis einen Durchmesser ≤ 40 µm aufweist. Gleiches gilt für die B2-Phase oder B2-Körner.The size of the γ-phase or the γ-grains may be set so that a circumscribed circle has a diameter ≤ 40 μm. The same applies to the B2 phase or B2 grains.

Die lamellaren Gefügebereiche aus α2- und γ-Phase weisen eine Größe auf, bei der die äquivalente Fläche eines Kreises einen Durchmesser von ≤ 100 µm besitzt.The lamellar microstructure areas of α 2 and γ phase have a size in which the equivalent area of a circle has a diameter of ≤ 100 μm.

Das Streckungsverhältnis der lamellaren α2- und γ-Phase, also das Verhältnis der Länge zur Breite der Lamellen kann ≤ 3:1 sein.The aspect ratio of the lamellar α 2 and γ phase, ie the ratio of the length to the width of the lamellae, can be ≦ 3: 1.

Das Gefüge kann zusätzlich Boride aufweisen.The structure may additionally have borides.

AUSFÜHRUNGSBEISPIELEmbodiment

Weitere Vorteile, Kennzeichen und Merkmale der vorliegenden Erfindung werden bei der nachfolgenden Beschreibung eines Ausführungsbeispiels deutlich.Further advantages, characteristics and features of the present invention will become apparent in the following description of an embodiment.

Eine TiAl-Legierung mit einem Aluminiumanteil von 28,1 bis 29,1 Gewichtsprozent, einem Niobanteil von 8,5 bis 9,6 Gewichtsprozent, einem Molybdänanteil von 1,8 bis 2,8 Gewichtsprozent, einem Boranteil von 0,019 bis 0,034 Gewichtsprozent, einem Kohlenstoffanteil von 0 bis 0,02 Gewichtsprozent, einem Sauerstoffanteil von 0 bis 0,08 Gewichtsprozent, einem Stickstoffanteil von 0 bis 0,015 Gewichtsprozent, einem Wasserstoffanteil von 0 bis 0,005 Gewichtsprozent, einem Chromanteil von 0 bis 0,05 Gewichtsprozent, einem Siliziumanteil von 0 bis 0,05 Gewichtsprozent, einem Eisenanteil von 0 bis 0,06 Gewichtsprozent, einem Kupferanteil von 0 bis 0,15 Gewichtsprozent und einem Nickelanteil von 0 bis 0,02 Gewichtsprozent sowie einem Anteil an Yttrium von 0 bis 0,001 Gewichtsprozent und dem Rest Titan und anderen einzelnen Bestandteilen mit einem Anteil von 0 bis 0,05 Gewichtsprozent bzw. zusammen mit insgesamt 0 bis 0,20 Gewichtsprozent, ist im Vakuum oder unter Schutzgas mit einer selbstverzehrender Elektrode erschmolzen und mindestens einmal in gleicher Weise umgeschmolzen worden. Das so erschmolzene Material wurde bei einer Temperatur von > 1200 °C und einem Druck von mehr als 190 MPa für eine Haltezeit von mehr als 4 Stunden heiß-isostatisch verdichtet und dann in einer Gesenkschmiede bei einer Temperatur im α-γ-β-Phasenbereich geschmiedet. Anschließend erfolgte eine Wärmebehandlung mit einem Rekristallisationsglühen unterhalb der γ/α-Umwandlungstemperatur für 75 Minuten mit einer Luftabkühlung mit einer Abkühlgeschwindigkeit von mehr als 3°C pro Sekunde. Anschließend wurde das entsprechende Bauteil bei 920°C für 6 Stunden einer Stabilisierungsglühung unterzogen und anschließend im Ofen abgekühlt.A TiAl alloy having an aluminum content of 28.1 to 29.1 weight percent, a niobium content of 8.5 to 9.6 weight percent, a molybdenum content of 1.8 to 2.8 weight percent, a boron content of 0.019 to 0.034 weight percent, a A carbon content of 0 to 0.02 weight percent, an oxygen content of 0 to 0.08 weight percent, a nitrogen content of 0 to 0.015 weight percent, a hydrogen content of 0 to 0.005 weight percent, a chromium content of 0 to 0.05 weight percent, a silicon content of 0 to 0.05 weight percent, an iron content of 0 to 0.06 weight percent, a copper content of 0 to 0.15 weight percent and a nickel content of 0 to 0.02 weight percent and an amount of yttrium of 0 to 0.001 weight percent and the balance titanium and others individual constituents in a proportion of 0 to 0.05 percent by weight or together with a total of 0 to 0.20 percent by weight, is in a vacuum or under inert gas with a selbstverzehre The electrode was melted and remelted at least once in the same way. The thus molten material was hot isostatically compacted at a temperature of> 1200 ° C and a pressure of greater than 190 MPa for a holding time of more than 4 hours, and then forged in a die forging at a temperature in the α-γ-β phase region , Subsequently, a heat treatment was carried out with recrystallization annealing below the γ / α transformation temperature for 75 minutes with air cooling at a cooling rate of more than 3 ° C per second. Subsequently, the corresponding component was subjected to stabilization annealing at 920 ° C. for 6 hours and then cooled in the oven.

Ein derartiges Bauteil, wie beispielsweise eine Turbinenschaufel für eine Niederdruckturbine in einem Flugtriebwerk, weist ein erfindungsgemäßes Triplex-Gefüge mit entsprechenden Anteilen an γ-Phase, B2-Phase und lamellarer α2- und γ-Phase auf. Ein derartiges Bauteil weist bei einem Warmzugversuch bei 300°C eine Streckgrenze (0,2%-Dehngrenze Rp0,2) von mehr als 670 MPa und eine Zugfestigkeit Rm von mehr als 840 MPa bei einer Gesamtdehnung (elastische und plastische Dehnung bis Bruch) Atot von mehr als 1,7 % auf. Bei einem Warmzugversuch bei einer Temperatur von 750°C wird immer noch eine Streckgrenze Rp0,2 von mehr als 500 MPa und eine Zugfestigkeit Rm > 730 MPa erreicht. Die Kriecheigenschaften sind bei einer Kriechtemperatur von 750°C und einer Prüfspannung von 150 MPa sowie einer Kriechdauer von mehr als 200 Stunden durch eine plastische Gesamtdehnung Ap von ≤ 1 % chrakterisiert.Such a component, such as a turbine blade for a low-pressure turbine in an aircraft engine, has a triplex structure according to the invention with corresponding proportions of γ phase, B2 phase and lamellar α 2 and γ phase. In a hot tensile test at 300 ° C., such a component has a yield strength (0.2% proof strength Rp 0.2 ) of more than 670 MPa and a tensile strength R m of more than 840 MPa for a total elongation (elastic and plastic elongation to breakage) ) A dead higher than 1.7%. In a hot tensile test at a temperature of 750 ° C, a yield strength Rp 0.2 of more than 500 MPa and a tensile strength R m > 730 MPa is still achieved. At a creep temperature of 750 ° C. and a test voltage of 150 MPa and a creep time of more than 200 hours, the creep properties are characterized by a total plastic strain A p of ≦ 1%.

Obwohl die vorliegende Erfindung anhand des Ausführungsbeispiels detailliert beschrieben worden ist, ist für einen Fachmann selbstverständlich, dass die Erfindung nicht auf dieses Beispiel beschränkt ist, sondern dass Abwandlungen in der Weise möglich sind, dass einzelne Prozess- und Werkstoffparameter weggelassen oder andere Kombinationen von Prozess- und Werkstoffparametern gewählt werden können, ohne dass der Schutzbereich der beigefügten Ansprüche verlassen wird. Die Offenbarung der vorliegenden Erfindung umfasst insbesondere sämtliche einzelnen Prozessschritte und Prozess-und Werkstoffparameter.Although the present invention has been described in detail with reference to the exemplary embodiment, it is obvious for a person skilled in the art that the invention is not limited to this example, but that modifications are possible in such a way that individual process and material parameters are omitted or other combinations of process and material parameters. and material parameters can be selected without departing from the scope of the appended claims. The disclosure of the present invention comprises in particular all individual process steps and process and material parameters.

Claims (9)

  1. A method for producing forged components from a TiAl alloy, in particular turbine blades, in which the components are forged and after forging are subjected to a two-stage heat-treatment, wherein the first stage of the heat-treatment comprises recrystallization annealing for 50 to 100 minutes at a temperature below the γ/α - transition temperature, namely in the temperature range between 1300°C and 900°C, in particular a recrystallization cooling temperature between 1200°C and 1300°C, and the second stage of the heat-treatment comprises stabilization annealing in the temperature range of 800°C to 950°C for 5 to 7 hours, and wherein a TiAl alloy having 42 to 45 at. % aluminium, 3 to 5 at. % niobium and 0.5 to 1.5 at. % molybdenum is used, characterised in that the rate of cooling in the first heat-treatment stage is greater than or equal to 3°C/s in order to set a fine lamellar structure of α2-Ti3Al and γ-TiAl in a corresponding α2-and γ-phase.
  2. A method according to claim 1,
    characterised in that
    the recrystallization annealing is carried out for 60 to 90 minutes, in particular 70 to 80 minutes, and/or the stabilization annealing is carried out in the temperature range of 825°C to 925°C, in particular 850°C to 900°C, and/or for 345 to 375 minutes.
  3. A method according to one of the preceding claims,
    characterised in that
    the temperature during the heat-treatment is set and held with an accuracy of a 5°C to 10°C upward and downward deviation from the desired temperature.
  4. A method according to one of the preceding claims,
    characterised in that
    during the recrystallization annealing there is no fall below a temperature of 15°C, in particular 10°C, below the γ/α transition temperature.
  5. A method according to one of the preceding claims,
    characterised in that
    an alloy having C.05 to 0.15 at. % boron is used.
  6. A method according to one of the preceding claims,
    characterised in that
    the component is produced by drop-forging in the α-γ-β-temperature range.
  7. A method according to one of the preceding claims,
    characterised in that
    cast or hot-isostatically pressed blanks are used as the starting material for the forging.
  8. A method according to one of the preceding claims,
    characterised in that
    after the second stage of the heat-treatment the component has a triplex structure, with a glabulitic γ-TiAl phase, a B2-TiAl phase and a lamellar α2-Ti3Al and γ-TiAl phase.
  9. A method according to claim 8,
    characterised in that
    the proportion of the γ-phase is 2 to 20 percent by volume, the proportion of the B2-phase is 1 to 20 percent by volume, and the proportion of the γ-phase together with the B2-phase is 5 to 25 percent by volume.
EP12762523.4A 2011-08-11 2012-08-09 Method for producing forged tial components Active EP2742162B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011110740.5A DE102011110740B4 (en) 2011-08-11 2011-08-11 Process for producing forged TiAl components
PCT/DE2012/000804 WO2013020548A1 (en) 2011-08-11 2012-08-09 Forged tial components, and method for producing same

Publications (2)

Publication Number Publication Date
EP2742162A1 EP2742162A1 (en) 2014-06-18
EP2742162B1 true EP2742162B1 (en) 2015-10-07

Family

ID=46924179

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12762523.4A Active EP2742162B1 (en) 2011-08-11 2012-08-09 Method for producing forged tial components

Country Status (5)

Country Link
US (1) US20140202601A1 (en)
EP (1) EP2742162B1 (en)
DE (1) DE102011110740B4 (en)
ES (1) ES2553439T3 (en)
WO (1) WO2013020548A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2747155T3 (en) 2013-09-20 2020-03-10 MTU Aero Engines AG Creep resistant TiAl alloy
DE102013020460A1 (en) * 2013-12-06 2015-06-11 Hanseatische Waren Handelsgesellschaft Mbh & Co. Kg Process for the production of TiAl components
CN103993248B (en) * 2014-06-20 2016-12-07 南昌航空大学 The Technology for Heating Processing of basket tissue is obtained after making TC21 alloy two-phase section superplastic deformation
CN104264012A (en) * 2014-09-30 2015-01-07 西北有色金属研究院 Molybdenum-containing high-niobium beta-type gamma-TiAl alloy ingot and preparation method thereof
DE102015103422B3 (en) 2015-03-09 2016-07-14 LEISTRITZ Turbinentechnik GmbH Process for producing a heavy-duty component of an alpha + gamma titanium aluminide alloy for piston engines and gas turbines, in particular aircraft engines
CN105220096B (en) * 2015-11-04 2017-03-08 哈尔滨工业大学 A kind of multistep cycle heat treatment method improving conventional cast γ TiAl alloy mechanical property
US20180010468A1 (en) * 2016-07-07 2018-01-11 United Technologies Corporation Enhanced temperature capability gamma titanium aluminum alloys
US20180010213A1 (en) * 2016-07-07 2018-01-11 United Technologies Corporation Enhance ductility of gamma titanium aluminum alloys by reducing interstitial contents
EP3508594B8 (en) * 2016-09-02 2021-06-16 IHI Corporation TiAI ALLOY AND METHOD OF MANUFACTURING THE SAME
DE102016224386A1 (en) * 2016-12-07 2018-06-07 MTU Aero Engines AG METHOD FOR PRODUCING A SHOVEL FOR A FLOW MACHINE
EP3372700B1 (en) 2017-03-10 2019-10-09 MTU Aero Engines GmbH Method for making forged tial components
DE102017212082A1 (en) 2017-07-14 2019-01-17 MTU Aero Engines AG FORGING AT HIGH TEMPERATURES, IN PARTICULAR OF TITANALUMINIDES
CN109500331B (en) * 2018-11-02 2020-03-17 湖南金天钛业科技有限公司 TC25 titanium alloy large-size bar processing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5558729A (en) * 1995-01-27 1996-09-24 The United States Of America As Represented By The Secretary Of The Air Force Method to produce gamma titanium aluminide articles having improved properties
DE19756354B4 (en) * 1997-12-18 2007-03-01 Alstom Shovel and method of making the blade
AT2881U1 (en) * 1998-06-08 1999-06-25 Plansee Ag METHOD FOR PRODUCING A PAD VALVE FROM GAMMA-TIAL BASE ALLOYS
DE102007051499A1 (en) * 2007-10-27 2009-04-30 Mtu Aero Engines Gmbh Material for a gas turbine component, method for producing a gas turbine component and gas turbine component
DE102007060587B4 (en) * 2007-12-13 2013-01-31 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH titanium aluminide
US8876992B2 (en) * 2010-08-30 2014-11-04 United Technologies Corporation Process and system for fabricating gamma TiAl turbine engine components

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HELMUT CLEMENS ET AL.: "Design of Novel beta-Solidifying TiAl Alloys with Adjustable beta/B2-Phase Fraction and Excellent Hot-Workability", ADVANCED ENGINEERING MATERIALS, vol. 10, no. 8, 2008, Weinheim, pages 707 - 713, XP002612341
LAURA DROESSLER ET AL.: "Microstructure and Tensile Ductility of a Ti-43Al-4Nb-1 Mo-0.1 B Alloy", MATER.RES.SOC.SYMP.PROC., vol. 1128, 2009, pages 121 - 126, XP009165478
LIMEI CHA ET AL.: "nanometer-scaled Imellar microstructures in Ti-45Al-7.5Nb-(0;0.5)C alloys and their influence on hardness", INTERMETALLICS, vol. 16, no. 7, July 2008 (2008-07-01), pages 868 - 875, XP022733484
MANFRED PETERS ET AL., TITAN- UND TITANLEGIERUNGEN, September 2002 (2002-09-01), Weinheim, pages 369 - 405, XP055298667, ISBN: 3-527-30539-4

Also Published As

Publication number Publication date
DE102011110740B4 (en) 2017-01-19
EP2742162A1 (en) 2014-06-18
WO2013020548A8 (en) 2013-07-18
US20140202601A1 (en) 2014-07-24
DE102011110740A1 (en) 2013-02-14
WO2013020548A1 (en) 2013-02-14
ES2553439T3 (en) 2015-12-09

Similar Documents

Publication Publication Date Title
EP2742162B1 (en) Method for producing forged tial components
EP2386663B1 (en) Method for producing a component and component from a gamma-titanium-aluminium base alloy
DE102013002483B4 (en) Nickel-cobalt alloy
DE102007060587B4 (en) titanium aluminide
DE102015103422B3 (en) Process for producing a heavy-duty component of an alpha + gamma titanium aluminide alloy for piston engines and gas turbines, in particular aircraft engines
JP5442857B2 (en) High-strength near β-type titanium alloy and method for producing the same
EP1819838B1 (en) Titanium aluminide based alloy
EP3336209B1 (en) Heat-resistant ti alloy and process for producing the same
CN104169449A (en) Titanium alloy with improved properties
DE102010037046A1 (en) Nickel base superalloys and articles
EP3269838B1 (en) High temperature resistant tial alloy, method for production of a composent from a corresponding tial alloy, component from a corresponding tial alloy
EP2851445B1 (en) Creep-resistant TiAl alloy
EP2807281B1 (en) Method for producing forged components from a tial alloy and component produced thereby
CN106103757B (en) High-intensitive α/β titanium alloy
CN104726746A (en) High-strength metastable beta-type titanium alloy bar and production method thereof
EP2905350A1 (en) High temperature TiAl alloy
EP3372700A1 (en) Method for making forged tial components
EP2620517A1 (en) Heat-resistant TiAl alloy
EP3427858A1 (en) Forging at high temperatures, in particular of titanium aluminides
EP3091095B1 (en) Low density rhenium-free nickel base superalloy
EP3211111A2 (en) Heat treatment method for components made of nickel base superalloys
DE1922314A1 (en) Process for tempering alloys
DE102010042889A1 (en) Turbocharger component prepared from an intermetallic titanium aluminide-alloy, useful e.g. for manufacturing turbine components, comprises e.g. aluminum, rare earth metal, niobium, tungsten, tantalum or rhenium, oxygen, and titanium
WO2012041276A2 (en) Heat-resistant tial alloy
EP3584334A1 (en) Method for producing a forged component from a tial alloy and correspondingly manufactured component

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140127

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150701

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 753810

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151015

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012004864

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2553439

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20151209

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20151007

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160107

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160207

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160108

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160208

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502012004864

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

26 Opposition filed

Opponent name: LEISTRITZ TURBINENTECHNIK GMBH

Effective date: 20160705

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160809

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120809

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 753810

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170809

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBY Invitation to file observations in appeal sent

Free format text: ORIGINAL CODE: EPIDOSNOBA2O

APCA Receipt of observations in appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNOBA4O

APAR Information on invitation to file observation in appeal modified

Free format text: ORIGINAL CODE: EPIDOSCOBA2O

APBI Information on receipt of observation in appeal deleted

Free format text: ORIGINAL CODE: EPIDOSDOBA4O

APAR Information on invitation to file observation in appeal modified

Free format text: ORIGINAL CODE: EPIDOSCOBA2O

APCA Receipt of observations in appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNOBA4O

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502012004864

Country of ref document: DE

APAR Information on invitation to file observation in appeal modified

Free format text: ORIGINAL CODE: EPIDOSCOBA2O

APAT Information on receipt of observation in appeal modified

Free format text: ORIGINAL CODE: EPIDOSCOBA4O

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20200306

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230831

Year of fee payment: 12

Ref country code: GB

Payment date: 20230824

Year of fee payment: 12

Ref country code: ES

Payment date: 20230918

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230821

Year of fee payment: 12

Ref country code: DE

Payment date: 20230822

Year of fee payment: 12