WO2020235200A1 - Tial alloy and production method therefor - Google Patents

Tial alloy and production method therefor Download PDF

Info

Publication number
WO2020235200A1
WO2020235200A1 PCT/JP2020/011935 JP2020011935W WO2020235200A1 WO 2020235200 A1 WO2020235200 A1 WO 2020235200A1 JP 2020011935 W JP2020011935 W JP 2020011935W WO 2020235200 A1 WO2020235200 A1 WO 2020235200A1
Authority
WO
WIPO (PCT)
Prior art keywords
atomic
tial alloy
less
tial
grains
Prior art date
Application number
PCT/JP2020/011935
Other languages
French (fr)
Japanese (ja)
Inventor
圭司 久布白
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to JP2021520073A priority Critical patent/JP7226535B2/en
Priority to EP20808685.0A priority patent/EP3974551B1/en
Publication of WO2020235200A1 publication Critical patent/WO2020235200A1/en
Priority to US17/449,133 priority patent/US20220017995A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1094Alloys containing non-metals comprising an after-treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Definitions

  • This disclosure relates to a TiAl alloy and a method for producing the same.
  • TiAl (titanium aluminide) alloy is an alloy formed of an intermetallic compound of Ti and Al. TiAl alloys have excellent heat resistance, are lighter in weight and have higher specific strength than Ni-based alloys, and are therefore applied to aircraft engine parts such as turbine blades. As such a TiAl alloy, a TiAl alloy containing Cr and Nb is used (see Patent Document 1).
  • an object of the present disclosure is to provide a TiAl alloy and a method for producing the same, which can improve the mechanical strength and ductility of the TiAl alloy in a well-balanced manner.
  • the TiAl alloy according to the present disclosure includes Al of 48 atomic% or more and 50 atomic% or less, Nb of 1 atomic% or more and 3 atomic% or less, Zr of 0.3 atomic% or more and 1 atomic% or less, and 0.05 atom. It contains B of% or more and 0.3 atomic% or less, and the balance is composed of Ti and unavoidable impurities.
  • the Al content may be 49 atomic% or more and 50 atomic% or less.
  • the metal structure is composed of lamella grains and ⁇ grains, and it is preferable that there is no segregation of Zr.
  • the volume fraction of the lamella grains may be 50% by volume or more when the total volume fraction of the lamella grains and the ⁇ grains is 100% by volume.
  • the room temperature tensile breaking strength may be 400 MPa or more and the room temperature tensile breaking strain may be 1.0% or more.
  • the creep strain after 200 hours may be 2% or less at 800 ° C. and a load stress of 150 MPa.
  • the method for producing a TiAl alloy according to the present disclosure includes Al of 48 atomic% or more and 50 atomic% or less, Nb of 1 atomic% or more and 3 atomic% or less, Zr of 0.3 atomic% or more and 1 atomic% or less, and 0.
  • the present invention comprises a casting step of casting a TiAl alloy raw material containing .05 atomic% or more and 0.3 atomic% or less B, and the balance being Ti and unavoidable impurities.
  • the method for producing a TiAl alloy according to the present disclosure is to hot-isotropically pressurize the cast TiAl alloy at 1250 ° C. or higher and 1350 ° C. or lower, 1 hour or longer and 5 hours or lower, 158 MPa or higher and 186 MPa or lower. It may be provided with a hot isotropic pressurizing process in which the alloy is later cooled to 900 ° C. and rapidly cooled to 900 ° C. or lower to perform hot isotropic pressurization.
  • the method for producing a TiAl alloy according to the present disclosure includes a stress removing step of holding the TiAl alloy subjected to hot isotropic pressure treatment at 800 ° C. or higher and 950 ° C. or lower for 1 hour or longer and 5 hours or shorter to relieve stress. May be good.
  • the TiAl alloy having the above configuration and the manufacturing method thereof, it is possible to improve the mechanical strength and ductility of the TiAl alloy in a well-balanced manner.
  • the TiAl (titanium aluminide) alloy according to the embodiment of the present disclosure includes Al of 48 atomic% or more and 50 atomic% or less, Nb of 1 atomic% or more and 3 atomic% or less, and 0.3 atomic% or more and 1 atomic% or less. It contains Zr and B of 0.05 atomic% or more and 0.3 atomic% or less, and the balance is composed of Ti and unavoidable impurities. Next, the reason for limiting the composition range of each alloy component constituting the TiAl alloy will be described.
  • Al has a function of improving mechanical strength and ductility such as room temperature ductility.
  • the Al content is 48 atomic% or more and 50 atomic% or less. When the Al content is less than 48 atomic%, the ductility decreases. If the Al content is greater than 50 atomic%, the ductility is reduced.
  • the Al content may be 49 atomic% or more and 50 atomic% or less, and the Al content may be 49 atomic%. Thereby, the mechanical strength and ductility can be further improved.
  • Nb niobium
  • the content of Nb is 1 atomic% or more and 3 atomic% or less.
  • the Nb content is less than 1 atomic%, the oxidation resistance and the high temperature strength are lowered.
  • the Nb content is greater than 3 atomic%, ductility such as room temperature ductility decreases.
  • Zr zirconium
  • the Zr content is 0.3 atomic% or more and 1 atomic% or less.
  • the ductility such as oxidation resistance and room temperature ductility, and the mechanical strength such as high temperature strength are lowered.
  • the Zr content is less than 0.3 atomic%, the castability is lowered.
  • the Zr content is greater than 1 atomic%, segregation may occur.
  • mechanical strength and ductility may decrease.
  • the Zr content may be 0.3 atomic% or more and 0.5 atomic% or less.
  • B (boron) has a function of increasing ductility such as room temperature ductility by refining crystal grains.
  • the content of B is 0.05 atomic% or more and 0.3 atomic% or less.
  • the content of B is smaller than 0.05 atomic%, the crystal grains become coarse and the ductility decreases. If the B content is greater than 0.3 atomic%, the impact characteristics may deteriorate.
  • the ductility can be improved because it is composed of fine crystal grains having a crystal grain size of 200 ⁇ m or less.
  • the B has a function of precipitating fine boride in crystal grains by hot isotropic pressure treatment, which will be described later, to improve mechanical strength.
  • the fine boride is formed including those having a particle size of 0.1 ⁇ m or less.
  • the fine boride is composed of TiB, TiB 2 , and the like.
  • the rest of the TiAl alloy is composed of Ti and unavoidable impurities. Inevitable impurities are impurities that can be mixed in without intentional addition. Since the TiAl alloy does not contain Cr (chromium), it is possible to suppress a decrease in mechanical strength. Since the TiAl alloy does not contain V (vanadium), it is possible to suppress a decrease in mechanical strength and a decrease in oxidation resistance. Since the TiAl alloy does not contain Mo (molybdenum), a decrease in specific strength can be suppressed.
  • the method for producing a TiAl alloy is as follows: Al of 48 atomic% or more and 50 atomic% or less, Nb of 1 atomic% or more and 3 atomic% or less, Zr of 0.3 atomic% or more and 1 atomic% or less, and 0.05 atomic%.
  • the present invention comprises a casting step of melting and casting a TiAl alloy raw material containing B of 0.3 atomic% or less and the balance of Ti and unavoidable impurities. This TiAl alloy raw material is melted and cast in a vacuum induction furnace or the like to form an ingot (ingot) or the like.
  • a casting apparatus used for casting a general metal material can be used for casting a general metal material.
  • this TiAl alloy has a lower solidification temperature than the conventional TiAl alloy, it is possible to improve the hot water circulation during casting.
  • This TiAl alloy can have a solid-liquid coexistence temperature range of 1440 ° C. to 1510 ° C. as measured by differential thermal analysis (DTA).
  • DTA differential thermal analysis
  • TiAl alloy parts such as turbine blades can be formed with a net shape or a near net shape, so that the manufacturing cost can be reduced. Further, according to this TiAl alloy, it is not necessary to take super heat, so that castability is improved.
  • the TiAl alloy is produced by hot isotropic pressurization (HIP) of the cast TiAl alloy at 1250 ° C. or higher and 1350 ° C. or lower, 1 hour or higher and 5 hours or lower, 158 MPa or higher and 186 MPa or lower, and after hot isotropic pressurization. It may be provided with a hot isotropic pressurizing process in which the alloy is cooled to 900 ° C. and rapidly cooled to 900 ° C. or lower to perform hot isotropic pressurization. By the hot isotropic pressure treatment, casting defects such as voids can be suppressed and the metal structure can be controlled.
  • HIP hot isotropic pressurization
  • the cast TiAl alloy is hot and isotropically pressurized at 1250 ° C. or higher and 1350 ° C. or lower, 1 hour or higher and 5 hours or lower, 158 MPa or higher and 186 MPa or lower, so that the voids mainly contained in the cast TiAl alloy are contained. Casting defects such as internal defects such as, etc. can be suppressed.
  • the metal structure can be mainly controlled by releasing the pressure after hot isotropic pressurization, cooling the furnace to 900 ° C., and quenching at 900 ° C. or lower. It should be noted that rapid cooling from 900 ° C. is preferably performed at a cooling rate higher than that of air cooling, and can be performed by gas fan cooling or the like.
  • the method for producing a TiAl alloy may include a stress removing step of holding the TiAl alloy subjected to hot isotropic pressure treatment at 800 ° C. or higher and 950 ° C. or lower for 1 hour or more and 5 hours or less to remove stress. Residual stress and the like can be removed by heat-treating the TiAl alloy subjected to the hot isotropic pressure treatment to remove the stress. Thereby, the ductility of the TiAl alloy can be further improved.
  • the hot isotropic pressurization treatment and stress relief should be performed in a vacuum atmosphere or in an inert gas atmosphere such as argon gas to prevent oxidation.
  • a HIP device or the like used for hot isotropic pressurization of a general metal material can be used.
  • an atmosphere furnace or the like used for stress relief annealing of general metal materials can be used.
  • the metal structure of the TiAl alloy is composed of fine crystal grains having a crystal grain size of 200 ⁇ m or less. Thereby, the ductility of the TiAl alloy can be improved. Further, the metal structure of the TiAl alloy is composed of lamella grains and ⁇ grains, and there is no segregation of Zr.
  • the lamella grains are formed by regularly arranging ⁇ 2 phases made of Ti 3 Al and ⁇ phases made of Ti Al in a layered manner.
  • the ⁇ grains are made of TiAl. Boride having a particle size of 0.1 ⁇ m or less is contained in the ⁇ grains.
  • the boride is made of TiB, TiB 2, etc. in a needle shape or the like.
  • the lamella grains can improve mechanical strength such as tensile strength, fatigue strength, and creep strength.
  • the ⁇ grains can improve ductility and high temperature strength.
  • a fine boride having a particle size of 0.1 ⁇ m or less can improve the mechanical strength.
  • the metal structure of the TiAl alloy is preferably such that the volume fraction of the lamella grains is 50% by volume or more and the balance is ⁇ grains, where the total volume fraction of the lamella grains and the ⁇ grains is 100% by volume. Since the metal structure of the TiAl alloy is mainly composed of lamella grains, the mechanical strength can be improved. Further, since the metal structure of the TiAl alloy does not segregate Zr, it is possible to suppress a decrease in mechanical strength and ductility.
  • the mechanical properties of TiAl alloys at room temperature can be such that the room temperature tensile breaking strength is 400 MPa or more and the room temperature tensile breaking strain is 1.0% or more when a tensile test is performed in accordance with JIS, ASTM, etc. ..
  • the high temperature creep characteristics of TiAl alloy when a creep test is performed in accordance with JIS, ASTM, etc., the creep strain after 200 hours can be reduced to 2% or less at 800 ° C. and a load stress of 150 MPa. Further, the high temperature creep characteristic of the TiAl alloy can reduce the creep strain after 400 hours to 5% or less at 800 ° C. and a load stress of 150 MPa. Further, the high temperature creep characteristic of the TiAl alloy can reduce the creep strain after 600 hours to 15% or less at 800 ° C. and a load stress of 150 MPa.
  • FIG. 1 is a diagram showing a configuration of turbine blades 10. Since this TiAl alloy has high mechanical strength such as high temperature strength, the heat resistance of the turbine blade 10 can be improved. Further, since this TiAl alloy is excellent in ductility such as room temperature ductility, damage to the turbine blade 10 can be suppressed even when the turbine blade 10 is assembled or assembled.
  • the TiAl alloy having the above constitution includes Al of 48 atomic% or more and 50 atomic% or less, Nb of 1 atomic% or more and 3 atomic% or less, Zr of 0.3 atomic% or more and 1 atomic% or less, and 0.05. It contains B of atomic% or more and 0.3 atomic% or less, and the balance is composed of Ti and unavoidable impurities. As a result, the mechanical strength and ductility of the TiAl alloy can be improved in a well-balanced manner.
  • the method for producing a TiAl alloy having the above constitution is as follows: Al of 48 atomic% or more and 50 atomic% or less, Nb of 1 atomic% or more and 3 atomic% or less, Zr of 0.3 atomic% or more and 1 atomic% or less, and 0.
  • the present invention comprises a casting step of casting a TiAl alloy raw material containing B of 05 atomic% or more and 0.3 atomic% or less, and the balance of which is Ti and unavoidable impurities. As a result, it is possible to manufacture a TiAl alloy having improved mechanical strength and ductility in a well-balanced manner, and it is possible to improve castability because the hot water circulation property is good.
  • the TiAl alloy of Example 1 contains 49.5 atomic% Al, 2 atomic% Nb, 0.5 atomic% Zr, and 0.2 atomic% B, and the balance is inevitably Ti. As an impurity.
  • the TiAl alloy of Example 2 contains 49.5 atomic% Al, 2 atomic% Nb, 1 atomic% Zr, and 0.2 atomic% B, and the balance is Ti and unavoidable impurities. And said.
  • the TiAl alloy of Reference Example 1 contained 48 atomic% Al, 1 atomic% Nb, 3 atomic% Zr, and 0.1 atomic% B, and the balance was Ti and unavoidable impurities. ..
  • the TiAl alloy of Reference Example 2 contained 49 atomic% Al, 1 atomic% Nb, 3 atomic% Zr, and 0.1 atomic% B, and the balance was Ti and unavoidable impurities. ..
  • the TiAl alloy of Reference Example 3 contained 48 atomic% Al and 0.1 atomic% B, and the balance was Ti and unavoidable impurities.
  • the TiAl alloy of Reference Example 4 contained 49 atomic% Al and 0.1 atomic% B, and the balance was Ti and unavoidable impurities.
  • the TiAl alloy of Reference Example 5 contained 50 atomic% Al and 0.1 atomic% B, and the balance was Ti and unavoidable impurities.
  • the TiAl alloy of Reference Example 6 contained 49.5 atomic% Al and 0.2 atomic% B, and the balance was Ti and unavoidable impurities.
  • the TiAl alloy of Reference Example 7 contains 49.5 atomic% Al, 4 atomic% Nb, 0.2 atomic% Zr, and 0.2 atomic% B, and the balance is inevitably Ti. As an impurity.
  • the TiAl alloy of Reference Example 8 contains 49.5 atomic% Al, 4 atomic% Nb, 0.5 atomic% Zr, and 0.2 atomic% B, and the balance is inevitably Ti. As an impurity.
  • the TiAl alloy of Comparative Example 1 contained 48 atomic% Al, 2 atomic% Nb, and 2 atomic% Cr, and the balance was Ti and unavoidable impurities.
  • Each TiAl alloy raw material having an alloy composition shown in Table 1 was melted and cast in a high-frequency vacuum melting furnace to form a TiAl alloy ingot having each alloy composition.
  • Each TiAl alloy was subjected to hot isotropic pressure treatment after casting.
  • the hot isotropic pressurization treatment the cast TiAl alloy is hot isotropically pressurized at 1300 ⁇ 14 ° C. for 3 ⁇ 0.1 hours at 172 ⁇ 14 MPa, and then cooled to 900 ° C. after hot isotropic pressurization. Then, it was rapidly cooled by gas fan cooling at 900 ° C. or lower for processing.
  • FIG. 2 is a graph showing the results of the tensile test.
  • the horizontal axis represents the Al content
  • the vertical axis represents the strain
  • Reference Examples 3 to 5 are represented by white circles.
  • the strain indicates a breaking strain. From the graph of FIG. 2, it was found that the room temperature ductility decreases when the Al content is smaller than 48 atomic% or when the Al content is larger than 50 atomic%.
  • Reference Examples 4 and 5 had a larger distortion than Reference Example 3.
  • FIG. 3 is a graph showing the results of the tensile test.
  • the horizontal axis is the Zr content
  • the vertical axis is the 0.2% proof stress
  • Reference Example 6 is a black circle
  • Examples 1 and 2 are black squares
  • Reference Examples 7 and 8 are white rhombuses. It is shown by. Examples 1 to 2 and Reference Examples 7 to 8 had a 0.2% higher yield strength than Reference Example 6. From this, it was found that the mechanical strength was increased by adding Nb and Zr. Further, in Reference Example 8, the room temperature ductility was lower than that in Example 1. From this, it was found that when the Nb content is larger than 3 atomic%, the ductility such as room temperature ductility of the TiAl alloy decreases.
  • the metallographic structure of the TiAl alloy was evaluated.
  • the metallographic structure of the TiAl alloys of Examples 1 and 2 and Reference Examples 1 and 2 was observed.
  • the metallographic structure was observed with an optical microscope or a scanning electron microscope.
  • 4A and 4B are photographs showing the results of observing the metallographic structure, FIG. 4A is a photograph of Example 1, FIG. 4B is a photograph of Example 2, and FIG. 4C is a photograph of Example 2. , It is a photograph of Reference Example 1, and FIG. 4D is a photograph of Reference Example 2.
  • the metallographic structures of Examples 1 and 2 were composed of fine crystal grains having a crystal grain size of 200 ⁇ m or less.
  • the metallographic structure of Examples 1 and 2 was composed of lamella grains and ⁇ grains, and contained boride having a particle size of 0.1 ⁇ m or less in the ⁇ grains.
  • the volume fraction of the lamella grains is 50% by volume or more, and the balance is composed of ⁇ grains. It was.
  • the volume fraction of each grain the area fraction of each grain was calculated by image processing from the contrast information of each grain in the metallographic photograph, and this was used as the volume fraction of each grain.
  • Example 1 had a higher room temperature intensity than Comparative Example 1.
  • Example 1 had a higher room temperature ductility than Comparative Example 1. More specifically, the room temperature tensile breaking strength of Example 1 was 400 MPa or more, and the room temperature tensile breaking strain was 1.0% or more.
  • Example 1 The high temperature mechanical properties of TiAl alloy were evaluated.
  • the TiAl alloys of Example 1 and Comparative Example 1 were subjected to a creep test at a high temperature.
  • the creep test was performed in accordance with ASTM E139.
  • the creep test conditions were a test temperature of 800 ° C. and a load stress of 150 MPa.
  • FIG. 6 is a graph showing the results of the creep test. In FIG. 6, the creep time is taken on the horizontal axis and the creep strain is taken on the vertical axis, and the creep curve of each TiAl alloy is shown.
  • Example 1 has improved high temperature creep characteristics as compared with Comparative Example 1.
  • Example 1 when the test temperature was 800 ° C. and the load stress was 150 MPa, the creep strain after 200 hours had passed was 2% or less. Further, as for the high temperature creep characteristics of Example 1, when the test temperature was 800 ° C. and the load stress was 150 MPa, the creep strain after 400 hours was 5% or less. Further, as for the high temperature creep characteristics of Example 1, when the test temperature was 800 ° C. and the load stress was 150 MPa, the creep strain after 600 hours had passed was 15% or less.
  • the TiAl alloy of Example 1 was excellent in mechanical strength and ductility, and the mechanical strength and ductility were improved in a well-balanced manner.
  • the TiAl alloy of Comparative Example 1 had lower room temperature mechanical properties and high temperature mechanical properties than the TiAl alloy of Example 1. The reason for this is considered to be the influence of Cr contained in the TiAl alloy of Comparative Example 1.
  • FIG. 7 is a photograph showing a cross-sectional observation result after the oxidation test
  • FIG. 7 (a) is a photograph of Example 1
  • FIG. 7 (b) is a photograph of Comparative Example 1.
  • the thickness of the oxide film of Example 1 was 2.1 ⁇ m.
  • the thickness of the oxide film of Comparative Example 1 was 4.3 ⁇ m. From this result, it was found that Example 1 was superior in oxidation resistance to Comparative Example 1.
  • FIG. 8 is a graph showing the results of differential thermal analysis.
  • each TiAl alloy is taken on the horizontal axis, the temperature is taken on the vertical axis, and the solid-liquid coexistence temperature range of each TiAl alloy is indicated by a quadrangle. From the graph shown in FIG. 8, it was found that Example 1 had a lower solidification temperature than Comparative Example 1. More specifically, in Example 1, the solid-liquid coexistence temperature range was 1440 ° C to 1510 ° C as measured by differential thermal analysis (DTA). As a result, it was clarified that in Example 1, since the casting temperature can be set lower than that in Comparative Example 1, mold reaction defects can be suppressed.
  • DTA differential thermal analysis
  • the present disclosure can improve the mechanical strength and ductility of TiAl alloy in a well-balanced manner, it can be applied to turbine blades and the like of aircraft engine parts.

Abstract

Provided is a TiAl alloy which contains 48 at% to 50 at% Al, 1 at% to 3 at% Nb, 0.3 at% to 1 at% Zr, and 0.05 at% to 0.3 at% B, with the remainder comprising Ti and unavoidable impurities.

Description

TiAl合金及びその製造方法TiAl alloy and its manufacturing method
 本開示は、TiAl合金及びその製造方法に関する。 This disclosure relates to a TiAl alloy and a method for producing the same.
 TiAl(チタンアルミナイド)合金は、TiとAlとの金属間化合物で形成されている合金である。TiAl合金は、耐熱性に優れており、Ni基合金よりも軽量で比強度が大きいことから、タービン翼等の航空機用エンジン部品等に適用されている。このようなTiAl合金には、CrとNbとを含有するTiAl合金が用いられている(特許文献1参照)。 TiAl (titanium aluminide) alloy is an alloy formed of an intermetallic compound of Ti and Al. TiAl alloys have excellent heat resistance, are lighter in weight and have higher specific strength than Ni-based alloys, and are therefore applied to aircraft engine parts such as turbine blades. As such a TiAl alloy, a TiAl alloy containing Cr and Nb is used (see Patent Document 1).
特開2013-209750号公報Japanese Unexamined Patent Publication No. 2013-209750
 ところで、タービン翼等のTiAl合金部品を軽量化するためには、TiAl合金をより高強度化して比強度を大きくする必要がある。しかし、従来のTiAl合金では、機械的強度と延性とをバランスよく向上させて高強度化することは難しく、延性を大きくすると機械的強度が低下する可能性がある。 By the way, in order to reduce the weight of TiAl alloy parts such as turbine blades, it is necessary to increase the strength of the TiAl alloy to increase the specific strength. However, with conventional TiAl alloys, it is difficult to improve the mechanical strength and ductility in a well-balanced manner to increase the strength, and increasing the ductility may reduce the mechanical strength.
 そこで本開示の目的は、TiAl合金の機械的強度と延性とをバランスよく向上させることが可能なTiAl合金及びその製造方法を提供することである。 Therefore, an object of the present disclosure is to provide a TiAl alloy and a method for producing the same, which can improve the mechanical strength and ductility of the TiAl alloy in a well-balanced manner.
 本開示に係るTiAl合金は、48原子%以上50原子%以下のAlと、1原子%以上3原子%以下のNbと、0.3原子%以上1原子%以下のZrと、0.05原子%以上0.3原子%以下のBと、を含有し、残部がTiと不可避的不純物とからなる。 The TiAl alloy according to the present disclosure includes Al of 48 atomic% or more and 50 atomic% or less, Nb of 1 atomic% or more and 3 atomic% or less, Zr of 0.3 atomic% or more and 1 atomic% or less, and 0.05 atom. It contains B of% or more and 0.3 atomic% or less, and the balance is composed of Ti and unavoidable impurities.
 本開示に係るTiAl合金において、Alの含有率は、49原子%以上50原子%以下としてもよい。 In the TiAl alloy according to the present disclosure, the Al content may be 49 atomic% or more and 50 atomic% or less.
 本開示に係るTiAl合金において、金属組織は、ラメラ粒とγ粒とから構成されており、Zrの偏析がないとよい。 In the TiAl alloy according to the present disclosure, the metal structure is composed of lamella grains and γ grains, and it is preferable that there is no segregation of Zr.
 本開示に係るTiAl合金において、前記金属組織は、ラメラ粒とγ粒との合計の体積率を100体積%としたとき、ラメラ粒の体積率が50体積%以上としてもよい。 In the TiAl alloy according to the present disclosure, the volume fraction of the lamella grains may be 50% by volume or more when the total volume fraction of the lamella grains and the γ grains is 100% by volume.
 本開示に係るTiAl合金において、室温引張破断強度が400MPa以上であり、室温引張破断歪みが1.0%以上であってもよい。 In the TiAl alloy according to the present disclosure, the room temperature tensile breaking strength may be 400 MPa or more and the room temperature tensile breaking strain may be 1.0% or more.
 本開示に係るTiAl合金において、800℃、負荷応力150MPaのとき、200時間経過後のクリープ歪みが2%以下であってもよい。 In the TiAl alloy according to the present disclosure, the creep strain after 200 hours may be 2% or less at 800 ° C. and a load stress of 150 MPa.
 本開示に係るTiAl合金の製造方法は、48原子%以上50原子%以下のAlと、1原子%以上3原子%以下のNbと、0.3原子%以上1原子%以下のZrと、0.05原子%以上0.3原子%以下のBと、を含有し、残部がTiと不可避的不純物とからなるTiAl合金原料を鋳造する鋳造工程を備える。 The method for producing a TiAl alloy according to the present disclosure includes Al of 48 atomic% or more and 50 atomic% or less, Nb of 1 atomic% or more and 3 atomic% or less, Zr of 0.3 atomic% or more and 1 atomic% or less, and 0. The present invention comprises a casting step of casting a TiAl alloy raw material containing .05 atomic% or more and 0.3 atomic% or less B, and the balance being Ti and unavoidable impurities.
 本開示に係るTiAl合金の製造方法は、前記鋳造したTiAl合金を、1250℃以上1350℃以下、1時間以上5時間以下、158MPa以上186MPa以下で熱間等方加圧し、熱間等方加圧後に900℃まで炉冷し、900℃以下で急冷して熱間等方加圧処理する熱間等方加圧処理工程を備えていてもよい。 The method for producing a TiAl alloy according to the present disclosure is to hot-isotropically pressurize the cast TiAl alloy at 1250 ° C. or higher and 1350 ° C. or lower, 1 hour or longer and 5 hours or lower, 158 MPa or higher and 186 MPa or lower. It may be provided with a hot isotropic pressurizing process in which the alloy is later cooled to 900 ° C. and rapidly cooled to 900 ° C. or lower to perform hot isotropic pressurization.
 本開示に係るTiAl合金の製造方法は、前記熱間等方加圧処理したTiAl合金を、800℃以上950℃以下で1時間以上5時間以下保持して応力除去する応力除去工程を備えていてもよい。 The method for producing a TiAl alloy according to the present disclosure includes a stress removing step of holding the TiAl alloy subjected to hot isotropic pressure treatment at 800 ° C. or higher and 950 ° C. or lower for 1 hour or longer and 5 hours or shorter to relieve stress. May be good.
 上記構成のTiAl合金及びその製造方法によれば、TiAl合金の機械的強度と延性とをバランスよく向上させることが可能となる。 According to the TiAl alloy having the above configuration and the manufacturing method thereof, it is possible to improve the mechanical strength and ductility of the TiAl alloy in a well-balanced manner.
本開示の実施形態において、タービン翼の構成を示す図である。It is a figure which shows the structure of the turbine blade in the embodiment of this disclosure. 本開示の実施形態において、引張試験結果を示すグラフである。In the embodiment of the present disclosure, it is a graph which shows the tensile test result. 本開示の実施形態において、引張試験結果を示すグラフである。In the embodiment of the present disclosure, it is a graph which shows the tensile test result. 本開示の実施形態において、金属組織観察結果を示す写真である。It is a photograph which shows the metal structure observation result in embodiment of this disclosure. 本開示の実施形態において、引張試験結果を示すグラフである。In the embodiment of the present disclosure, it is a graph which shows the tensile test result. 本開示の実施形態において、クリープ試験結果を示すグラフである。In the embodiment of the present disclosure, it is a graph which shows the creep test result. 本開示の実施形態において、酸化試験後の断面観察結果を示す写真である。In the embodiment of the present disclosure, it is a photograph showing the cross-sectional observation result after the oxidation test. 本開示の実施形態において、示差熱分析結果を示すグラフである。It is a graph which shows the differential thermal analysis result in the embodiment of this disclosure.
 以下に本開示の実施の形態について図面を用いて詳細に説明する。本開示の実施形態に係るTiAl(チタンアルミナイド)合金は、48原子%以上50原子%以下のAlと、1原子%以上3原子%以下のNbと、0.3原子%以上1原子%以下のZrと、0.05原子%以上0.3原子%以下のBと、を含有し、残部が、Tiと不可避的不純物とから構成されている。次に、TiAl合金を構成する各合金成分の組成範囲を限定した理由について説明する。 The embodiments of the present disclosure will be described in detail below with reference to the drawings. The TiAl (titanium aluminide) alloy according to the embodiment of the present disclosure includes Al of 48 atomic% or more and 50 atomic% or less, Nb of 1 atomic% or more and 3 atomic% or less, and 0.3 atomic% or more and 1 atomic% or less. It contains Zr and B of 0.05 atomic% or more and 0.3 atomic% or less, and the balance is composed of Ti and unavoidable impurities. Next, the reason for limiting the composition range of each alloy component constituting the TiAl alloy will be described.
 Al(アルミニウム)は、機械的強度と、室温延性等の延性とを向上させる機能を有している。Alの含有率は、48原子%以上50原子%以下である。Alの含有率が48原子%より小さい場合には、延性が低下する。Alの含有率が50原子%より大きい場合には、延性が低下する。Alの含有率を49原子%以上50原子%以下とするとよく、Alの含有率を49原子%とするとよい。これにより、機械的強度と延性とをより向上させることができる。 Al (aluminum) has a function of improving mechanical strength and ductility such as room temperature ductility. The Al content is 48 atomic% or more and 50 atomic% or less. When the Al content is less than 48 atomic%, the ductility decreases. If the Al content is greater than 50 atomic%, the ductility is reduced. The Al content may be 49 atomic% or more and 50 atomic% or less, and the Al content may be 49 atomic%. Thereby, the mechanical strength and ductility can be further improved.
 Nb(ニオブ)は、耐酸化性と機械的強度とを向上させる機能を有している。Nbの含有率は、1原子%以上3原子%以下である。Nbの含有率が、1原子%より小さい場合には、耐酸化性と高温強度とが低下する。Nbの含有率が3原子%より大きい場合には、室温延性等の延性が低下する。 Nb (niobium) has a function of improving oxidation resistance and mechanical strength. The content of Nb is 1 atomic% or more and 3 atomic% or less. When the Nb content is less than 1 atomic%, the oxidation resistance and the high temperature strength are lowered. When the Nb content is greater than 3 atomic%, ductility such as room temperature ductility decreases.
 Zr(ジルコニウム)は、耐酸化性と機械的強度とを向上させる機能を有している。Zrの含有率は、0.3原子%以上1原子%以下である。Zrの含有率が0.3原子%より小さい場合には、耐酸化性、室温延性等の延性、高温強度等の機械的強度が低下する。また、Zrの含有率が0.3原子%より小さい場合には、鋳造性が低下する。Zrの含有率が1原子%より大きい場合には、偏析が生じる場合がある。Zrの偏析が生じると、機械的強度や延性が低下する可能性がある。Zrの含有率は、0.3原子%以上0.5原子%以下としてもよい。 Zr (zirconium) has a function of improving oxidation resistance and mechanical strength. The Zr content is 0.3 atomic% or more and 1 atomic% or less. When the Zr content is less than 0.3 atomic%, the ductility such as oxidation resistance and room temperature ductility, and the mechanical strength such as high temperature strength are lowered. Further, when the Zr content is less than 0.3 atomic%, the castability is lowered. If the Zr content is greater than 1 atomic%, segregation may occur. When Zr segregation occurs, mechanical strength and ductility may decrease. The Zr content may be 0.3 atomic% or more and 0.5 atomic% or less.
 B(ホウ素)は、結晶粒を微細化することにより、室温延性等の延性を高める機能を有している。Bの含有率は、0.05原子%以上0.3原子%以下である。Bの含有率が0.05原子%より小さくなると、結晶粒が粗大化して延性が低下する。Bの含有率が0.3原子%より大きくなると、衝撃特性が低下する場合がある。Bの含有率を0.05原子%以上0.3原子%以下とすることにより、結晶粒径が200μm以下の微細な結晶粒で構成されるので、延性を向上させることができる。 B (boron) has a function of increasing ductility such as room temperature ductility by refining crystal grains. The content of B is 0.05 atomic% or more and 0.3 atomic% or less. When the content of B is smaller than 0.05 atomic%, the crystal grains become coarse and the ductility decreases. If the B content is greater than 0.3 atomic%, the impact characteristics may deteriorate. By setting the content of B to 0.05 atomic% or more and 0.3 atomic% or less, the ductility can be improved because it is composed of fine crystal grains having a crystal grain size of 200 μm or less.
 Bは、後述する熱間等方加圧処理により、結晶粒内に微細な硼化物を析出させて、機械的強度を向上させる機能を有している。微細な硼化物は、粒径が0.1μm以下のものを含んで形成されている。微細な硼化物は、TiB、TiB等で構成されている。結晶粒内に微細な硼化物が析出することにより、引張強度、疲労強度、クリープ強度等の機械的強度を向上させることができる。 B has a function of precipitating fine boride in crystal grains by hot isotropic pressure treatment, which will be described later, to improve mechanical strength. The fine boride is formed including those having a particle size of 0.1 μm or less. The fine boride is composed of TiB, TiB 2 , and the like. By precipitating fine boride in the crystal grains, it is possible to improve mechanical strength such as tensile strength, fatigue strength, and creep strength.
 TiAl合金の残部は、Tiと不可避的不純物とから構成されている。不可避的不純物とは、意図的に添加しなくても混入する可能性がある不純物である。TiAl合金は、Cr(クロム)を含有していないので、機械的強度の低下を抑制できる。TiAl合金は、V(バナジウム)を含有していないので、機械的強度の低下や耐酸化性の低下を抑制できる。TiAl合金は、Mo(モリブデン)を含有していないので比強度の低下を抑制できる。 The rest of the TiAl alloy is composed of Ti and unavoidable impurities. Inevitable impurities are impurities that can be mixed in without intentional addition. Since the TiAl alloy does not contain Cr (chromium), it is possible to suppress a decrease in mechanical strength. Since the TiAl alloy does not contain V (vanadium), it is possible to suppress a decrease in mechanical strength and a decrease in oxidation resistance. Since the TiAl alloy does not contain Mo (molybdenum), a decrease in specific strength can be suppressed.
 次に、本開示の実施形態に係るTiAl合金の製造方法について説明する。 Next, a method for producing a TiAl alloy according to the embodiment of the present disclosure will be described.
 TiAl合金の製造方法は、48原子%以上50原子%以下のAlと、1原子%以上3原子%以下のNbと、0.3原子%以上1原子%以下のZrと、0.05原子%以上0.3原子%以下のBと、を含有し、残部が、Tiと不可避的不純物とからなるTiAl合金原料を溶解して鋳造する鋳造工程を備えている。このTiAl合金原料を、真空誘導炉等で溶解して鋳造し、インゴット(鋳塊)等を形成する。TiAl合金原料の鋳造には、一般的な金属材料の鋳造で用いられている鋳造装置を使用することができる。 The method for producing a TiAl alloy is as follows: Al of 48 atomic% or more and 50 atomic% or less, Nb of 1 atomic% or more and 3 atomic% or less, Zr of 0.3 atomic% or more and 1 atomic% or less, and 0.05 atomic%. The present invention comprises a casting step of melting and casting a TiAl alloy raw material containing B of 0.3 atomic% or less and the balance of Ti and unavoidable impurities. This TiAl alloy raw material is melted and cast in a vacuum induction furnace or the like to form an ingot (ingot) or the like. For casting the TiAl alloy raw material, a casting apparatus used for casting a general metal material can be used.
 このTiAl合金は、従来のTiAl合金よりも凝固温度が低いので、鋳造時に湯廻り性を向上させることができる。このTiAl合金は、示差熱分析(DTA)で測定したときに、固液共存温度域を1440℃から1510℃にすることができる。これにより、タービン翼等のTiAl合金部品を、ネットシェイプやニアネットシェイプで形成することができるので、製造コストを低減することが可能である。また、このTiAl合金によれば、スーパーヒートを取る必要がないので、鋳造性が向上する。 Since this TiAl alloy has a lower solidification temperature than the conventional TiAl alloy, it is possible to improve the hot water circulation during casting. This TiAl alloy can have a solid-liquid coexistence temperature range of 1440 ° C. to 1510 ° C. as measured by differential thermal analysis (DTA). As a result, TiAl alloy parts such as turbine blades can be formed with a net shape or a near net shape, so that the manufacturing cost can be reduced. Further, according to this TiAl alloy, it is not necessary to take super heat, so that castability is improved.
 TiAl合金の製造方法は、鋳造したTiAl合金を、1250℃以上1350℃以下、1時間以上5時間以下、158MPa以上186MPa以下で熱間等方加圧(HIP)し、熱間等方加圧後に900℃まで炉冷し、900℃以下で急冷して熱間等方加圧処理する熱間等方加圧処理工程を備えていてもよい。熱間等方加圧処理により、ボイド等の鋳造欠陥の抑制と、金属組織の制御とを行うことができる。 The TiAl alloy is produced by hot isotropic pressurization (HIP) of the cast TiAl alloy at 1250 ° C. or higher and 1350 ° C. or lower, 1 hour or higher and 5 hours or lower, 158 MPa or higher and 186 MPa or lower, and after hot isotropic pressurization. It may be provided with a hot isotropic pressurizing process in which the alloy is cooled to 900 ° C. and rapidly cooled to 900 ° C. or lower to perform hot isotropic pressurization. By the hot isotropic pressure treatment, casting defects such as voids can be suppressed and the metal structure can be controlled.
 より詳細には、鋳造したTiAl合金を、1250℃以上1350℃以下、1時間以上5時間以下、158MPa以上186MPa以下で熱間等方加圧することにより、主に、鋳造したTiAl合金に含まれるボイド等の内部欠陥などの鋳造欠陥を抑制できる。また、熱間等方加圧後に圧力を開放して900℃まで炉冷し、900℃以下で急冷することにより、主に、金属組織を制御することができる。なお、900℃からの急冷は、空冷以上の冷却速度とするとよく、ガスファン冷却等で行うことが可能である。 More specifically, the cast TiAl alloy is hot and isotropically pressurized at 1250 ° C. or higher and 1350 ° C. or lower, 1 hour or higher and 5 hours or lower, 158 MPa or higher and 186 MPa or lower, so that the voids mainly contained in the cast TiAl alloy are contained. Casting defects such as internal defects such as, etc. can be suppressed. Further, the metal structure can be mainly controlled by releasing the pressure after hot isotropic pressurization, cooling the furnace to 900 ° C., and quenching at 900 ° C. or lower. It should be noted that rapid cooling from 900 ° C. is preferably performed at a cooling rate higher than that of air cooling, and can be performed by gas fan cooling or the like.
 TiAl合金の製造方法は、熱間等方加圧処理したTiAl合金を、800℃以上950℃以下で1時間以上5時間以下保持して応力除去する応力除去工程を備えていてもよい。熱間等方加圧処理したTiAl合金を熱処理して応力除去することにより、残留応力等を除去することができる。これによりTiAl合金の延性を、更に向上させることができる。 The method for producing a TiAl alloy may include a stress removing step of holding the TiAl alloy subjected to hot isotropic pressure treatment at 800 ° C. or higher and 950 ° C. or lower for 1 hour or more and 5 hours or less to remove stress. Residual stress and the like can be removed by heat-treating the TiAl alloy subjected to the hot isotropic pressure treatment to remove the stress. Thereby, the ductility of the TiAl alloy can be further improved.
 熱間等方加圧処理や応力除去は、酸化防止のために、真空雰囲気中や、アルゴンガス等による不活性ガス雰囲気中で行われるとよい。熱間等方加圧には、一般的な金属材料の熱間等方加圧に用いられるHIP装置等を使用可能である。応力除去には、一般的な金属材料の応力除去焼きなましに用いられる雰囲気炉等を使用可能である。 The hot isotropic pressurization treatment and stress relief should be performed in a vacuum atmosphere or in an inert gas atmosphere such as argon gas to prevent oxidation. For hot isotropic pressurization, a HIP device or the like used for hot isotropic pressurization of a general metal material can be used. For stress relief, an atmosphere furnace or the like used for stress relief annealing of general metal materials can be used.
 次に、TiAl合金の金属組織について説明する。TiAl合金の金属組織は、結晶粒径が200μm以下の微細な結晶粒で構成されている。これにより、TiAl合金の延性を向上させることができる。また、TiAl合金の金属組織は、ラメラ粒と、γ粒とから構成されており、Zrの偏析がない。ラメラ粒は、TiAlからなるα相と、TiAlからなるγ相とが層状に規則的に配列して形成されている。γ粒は、TiAlで形成されている。γ粒の粒内には、粒径が0.1μm以下の硼化物を含んでいる。硼化物は、TiB、TiB等で針状等に構成されている。 Next, the metal structure of the TiAl alloy will be described. The metal structure of the TiAl alloy is composed of fine crystal grains having a crystal grain size of 200 μm or less. Thereby, the ductility of the TiAl alloy can be improved. Further, the metal structure of the TiAl alloy is composed of lamella grains and γ grains, and there is no segregation of Zr. The lamella grains are formed by regularly arranging α 2 phases made of Ti 3 Al and γ phases made of Ti Al in a layered manner. The γ grains are made of TiAl. Boride having a particle size of 0.1 μm or less is contained in the γ grains. The boride is made of TiB, TiB 2, etc. in a needle shape or the like.
 ラメラ粒は、引張強度、疲労強度、クリープ強度等の機械的強度を向上させることができる。γ粒は、延性と高温強度とを向上させることができる。粒径が0.1μm以下の微細な硼化物は、機械的強度を向上させることができる。TiAl合金の金属組織は、ラメラ粒とγ粒との合計の体積率を100体積%としたとき、ラメラ粒の体積率が50体積%以上であり、残部がγ粒であるとよい。TiAl合金の金属組織がラメラ粒を主体として構成されるので、機械的強度を向上させることができる。また、TiAl合金の金属組織は、Zrの偏析がないので、機械的強度や延性の低下を抑制することができる。 The lamella grains can improve mechanical strength such as tensile strength, fatigue strength, and creep strength. The γ grains can improve ductility and high temperature strength. A fine boride having a particle size of 0.1 μm or less can improve the mechanical strength. The metal structure of the TiAl alloy is preferably such that the volume fraction of the lamella grains is 50% by volume or more and the balance is γ grains, where the total volume fraction of the lamella grains and the γ grains is 100% by volume. Since the metal structure of the TiAl alloy is mainly composed of lamella grains, the mechanical strength can be improved. Further, since the metal structure of the TiAl alloy does not segregate Zr, it is possible to suppress a decrease in mechanical strength and ductility.
 次に、本開示の実施形態に係るTiAl合金の機械的特性について説明する。TiAl合金の室温における機械的特性は、JIS、ASTM等に準拠して引張試験を行ったとき、室温引張破断強度が400MPa以上であり、室温引張破断歪みが1.0%以上とすることができる。TiAl合金の高温クリープ特性は、JIS、ASTM等に準拠してクリープ試験を行ったとき、800℃、負荷応力150MPaにおいて、200時間経過後のクリープ歪みを2%以下にすることができる。また、TiAl合金の高温クリープ特性は、800℃、負荷応力150MPaにおいて、400時間経過後のクリープ歪みを5%以下にすることができる。更に、TiAl合金の高温クリープ特性は、800℃、負荷応力150MPaにおいて、600時間経過後のクリープ歪みを15%以下にすることができる。 Next, the mechanical properties of the TiAl alloy according to the embodiment of the present disclosure will be described. The mechanical properties of TiAl alloys at room temperature can be such that the room temperature tensile breaking strength is 400 MPa or more and the room temperature tensile breaking strain is 1.0% or more when a tensile test is performed in accordance with JIS, ASTM, etc. .. As for the high temperature creep characteristics of TiAl alloy, when a creep test is performed in accordance with JIS, ASTM, etc., the creep strain after 200 hours can be reduced to 2% or less at 800 ° C. and a load stress of 150 MPa. Further, the high temperature creep characteristic of the TiAl alloy can reduce the creep strain after 400 hours to 5% or less at 800 ° C. and a load stress of 150 MPa. Further, the high temperature creep characteristic of the TiAl alloy can reduce the creep strain after 600 hours to 15% or less at 800 ° C. and a load stress of 150 MPa.
 本開示の実施形態に係るTiAl合金は、航空機エンジン部品のタービン翼等への適用が可能である。図1は、タービン翼10の構成を示す図である。このTiAl合金は高温強度等の機械的強度が大きいので、タービン翼10の耐熱性を向上させることができる。また、このTiAl合金は室温延性等の延性に優れているので、タービン翼10の組立てや組付けをする場合でも、タービン翼10の破損を抑制できる。 The TiAl alloy according to the embodiment of the present disclosure can be applied to turbine blades and the like of aircraft engine parts. FIG. 1 is a diagram showing a configuration of turbine blades 10. Since this TiAl alloy has high mechanical strength such as high temperature strength, the heat resistance of the turbine blade 10 can be improved. Further, since this TiAl alloy is excellent in ductility such as room temperature ductility, damage to the turbine blade 10 can be suppressed even when the turbine blade 10 is assembled or assembled.
 以上、上記構成のTiAl合金は、48原子%以上50原子%以下のAlと、1原子%以上3原子%以下のNbと、0.3原子%以上1原子%以下のZrと、0.05原子%以上0.3原子%以下のBと、を含有し、残部がTiと不可避的不純物とからなる。これにより、TiAl合金の機械的強度と延性とをバランスよく向上させることができる。 As described above, the TiAl alloy having the above constitution includes Al of 48 atomic% or more and 50 atomic% or less, Nb of 1 atomic% or more and 3 atomic% or less, Zr of 0.3 atomic% or more and 1 atomic% or less, and 0.05. It contains B of atomic% or more and 0.3 atomic% or less, and the balance is composed of Ti and unavoidable impurities. As a result, the mechanical strength and ductility of the TiAl alloy can be improved in a well-balanced manner.
 上記構成のTiAl合金の製造方法は、48原子%以上50原子%以下のAlと、1原子%以上3原子%以下のNbと、0.3原子%以上1原子%以下のZrと、0.05原子%以上0.3原子%以下のBと、を含有し、残部がTiと不可避的不純物とからなるTiAl合金原料を鋳造する鋳造工程を備えている。これにより、機械的強度と延性とをバランスよく向上させたTiAl合金を製造できると共に、湯廻り性が良好なので、鋳造性を向上させることが可能となる。 The method for producing a TiAl alloy having the above constitution is as follows: Al of 48 atomic% or more and 50 atomic% or less, Nb of 1 atomic% or more and 3 atomic% or less, Zr of 0.3 atomic% or more and 1 atomic% or less, and 0. The present invention comprises a casting step of casting a TiAl alloy raw material containing B of 05 atomic% or more and 0.3 atomic% or less, and the balance of which is Ti and unavoidable impurities. As a result, it is possible to manufacture a TiAl alloy having improved mechanical strength and ductility in a well-balanced manner, and it is possible to improve castability because the hot water circulation property is good.
 まず、実施例1から2、参考例1から8、比較例1のTiAl合金について説明する。各TiAl合金の合金組成を表1に示す。 First, the TiAl alloys of Examples 1 to 2, Reference Examples 1 to 8, and Comparative Example 1 will be described. The alloy composition of each TiAl alloy is shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1のTiAl合金は、49.5原子%のAlと、2原子%のNbと、0.5原子%のZrと、0.2原子%のBとを含有し、残部がTiと不可避的不純物とした。実施例2のTiAl合金は、49.5原子%のAlと、2原子%のNbと、1原子%のZrと、0.2原子%のBとを含有し、残部がTiと不可避的不純物とした。参考例1のTiAl合金は、48原子%のAlと、1原子%のNbと、3原子%のZrと、0.1原子%のBとを含有し、残部がTiと不可避的不純物とした。参考例2のTiAl合金は、49原子%のAlと、1原子%のNbと、3原子%のZrと、0.1原子%のBとを含有し、残部がTiと不可避的不純物とした。 The TiAl alloy of Example 1 contains 49.5 atomic% Al, 2 atomic% Nb, 0.5 atomic% Zr, and 0.2 atomic% B, and the balance is inevitably Ti. As an impurity. The TiAl alloy of Example 2 contains 49.5 atomic% Al, 2 atomic% Nb, 1 atomic% Zr, and 0.2 atomic% B, and the balance is Ti and unavoidable impurities. And said. The TiAl alloy of Reference Example 1 contained 48 atomic% Al, 1 atomic% Nb, 3 atomic% Zr, and 0.1 atomic% B, and the balance was Ti and unavoidable impurities. .. The TiAl alloy of Reference Example 2 contained 49 atomic% Al, 1 atomic% Nb, 3 atomic% Zr, and 0.1 atomic% B, and the balance was Ti and unavoidable impurities. ..
 参考例3のTiAl合金は、48原子%のAlと、0.1原子%のBとを含有し、残部がTiと不可避的不純物とした。参考例4のTiAl合金は、49原子%のAlと、0.1原子%のBとを含有し、残部がTiと不可避的不純物とした。参考例5のTiAl合金は、50原子%のAlと、0.1原子%のBとを含有し、残部がTiと不可避的不純物とした。参考例6のTiAl合金は、49.5原子%のAlと、0.2原子%のBとを含有し、残部がTiと不可避的不純物とした。 The TiAl alloy of Reference Example 3 contained 48 atomic% Al and 0.1 atomic% B, and the balance was Ti and unavoidable impurities. The TiAl alloy of Reference Example 4 contained 49 atomic% Al and 0.1 atomic% B, and the balance was Ti and unavoidable impurities. The TiAl alloy of Reference Example 5 contained 50 atomic% Al and 0.1 atomic% B, and the balance was Ti and unavoidable impurities. The TiAl alloy of Reference Example 6 contained 49.5 atomic% Al and 0.2 atomic% B, and the balance was Ti and unavoidable impurities.
 参考例7のTiAl合金は、49.5原子%のAlと、4原子%のNbと、0.2原子%のZrと、0.2原子%のBとを含有し、残部がTiと不可避的不純物とした。参考例8のTiAl合金は、49.5原子%のAlと、4原子%のNbと、0.5原子%のZrと、0.2原子%のBとを含有し、残部がTiと不可避的不純物とした。比較例1のTiAl合金は、48原子%のAlと、2原子%のNbと、2原子%のCrとを含有し、残部がTiと不可避的不純物とした。 The TiAl alloy of Reference Example 7 contains 49.5 atomic% Al, 4 atomic% Nb, 0.2 atomic% Zr, and 0.2 atomic% B, and the balance is inevitably Ti. As an impurity. The TiAl alloy of Reference Example 8 contains 49.5 atomic% Al, 4 atomic% Nb, 0.5 atomic% Zr, and 0.2 atomic% B, and the balance is inevitably Ti. As an impurity. The TiAl alloy of Comparative Example 1 contained 48 atomic% Al, 2 atomic% Nb, and 2 atomic% Cr, and the balance was Ti and unavoidable impurities.
 表1に示す合金組成の各TiAl合金原料を高周波真空溶解炉にて溶解して鋳造し、各合金組成からなるTiAl合金のインゴットを形成した。各TiAl合金について、鋳造後に熱間等方加圧処理を行った。熱間等方加圧処理は、鋳造したTiAl合金を、1300±14℃、3±0.1時間、172±14MPaで熱間等方加圧し、熱間等方加圧後に900℃まで炉冷し、900℃以下でガスファン冷却により急冷して処理した。 Each TiAl alloy raw material having an alloy composition shown in Table 1 was melted and cast in a high-frequency vacuum melting furnace to form a TiAl alloy ingot having each alloy composition. Each TiAl alloy was subjected to hot isotropic pressure treatment after casting. In the hot isotropic pressurization treatment, the cast TiAl alloy is hot isotropically pressurized at 1300 ± 14 ° C. for 3 ± 0.1 hours at 172 ± 14 MPa, and then cooled to 900 ° C. after hot isotropic pressurization. Then, it was rapidly cooled by gas fan cooling at 900 ° C. or lower for processing.
 TiAl合金におけるAlの影響について評価した。参考例3から5のTiAl合金について、室温で引張試験を行った。引張試験は、ASTM E8に準拠して行った。図2は、引張試験結果を示すグラフである。図2のグラフでは、横軸にAlの含有率を取り、縦軸に歪みを取り、参考例3から5を白丸で表している。歪みは、破断歪みを示している。図2のグラフから、Alの含有率が48原子%より小さい場合や、Alの含有率が50原子%より大きい場合には、室温延性が低下することがわかった。また、参考例4,5は、参考例3より歪みが大きくなった。このことからAlの含有率が49原子%以上50原子%以下の場合には、室温延性がより高くなることがわかった。参考例4は、参考例3,5より歪みが大きくなった。このことからAlの含有率が49原子%の場合には、室温延性が更に高くなることがわかった。 The effect of Al on the TiAl alloy was evaluated. Tensile tests were performed on the TiAl alloys of Reference Examples 3 to 5 at room temperature. The tensile test was performed in accordance with ASTM E8. FIG. 2 is a graph showing the results of the tensile test. In the graph of FIG. 2, the horizontal axis represents the Al content, the vertical axis represents the strain, and Reference Examples 3 to 5 are represented by white circles. The strain indicates a breaking strain. From the graph of FIG. 2, it was found that the room temperature ductility decreases when the Al content is smaller than 48 atomic% or when the Al content is larger than 50 atomic%. In addition, Reference Examples 4 and 5 had a larger distortion than Reference Example 3. From this, it was found that the room temperature ductility becomes higher when the Al content is 49 atomic% or more and 50 atomic% or less. Reference Example 4 has a larger distortion than Reference Examples 3 and 5. From this, it was found that when the Al content was 49 atomic%, the room temperature ductility was further increased.
 TiAl合金におけるNb、Zrの影響について評価した。実施例1から2、参考例6から8のTiAl合金について、室温で引張試験を行った。引張試験は、ASTM E8に準拠して行った。図3は、引張試験結果を示すグラフである。図3のグラフでは、横軸にZrの含有率を取り、縦軸に0.2%耐力を取り、参考例6を黒丸、実施例1,2を黒四角形、参考例7、8を白菱形で示している。実施例1から2、参考例7から8は、参考例6よりも0.2%耐力が大きくなった。このことからNb、Zrの添加により、機械的強度は大きくなることがわかった。また、参考例8は、実施例1よりも室温延性が低下した。このことから、Nbの含有率が3原子%より大きくなると、TiAl合金の室温延性等の延性が低下することがわかった。 The effects of Nb and Zr on the TiAl alloy were evaluated. Tensile tests were performed on the TiAl alloys of Examples 1 and 2 and Reference Examples 6 to 8 at room temperature. The tensile test was performed in accordance with ASTM E8. FIG. 3 is a graph showing the results of the tensile test. In the graph of FIG. 3, the horizontal axis is the Zr content, the vertical axis is the 0.2% proof stress, Reference Example 6 is a black circle, Examples 1 and 2 are black squares, and Reference Examples 7 and 8 are white rhombuses. It is shown by. Examples 1 to 2 and Reference Examples 7 to 8 had a 0.2% higher yield strength than Reference Example 6. From this, it was found that the mechanical strength was increased by adding Nb and Zr. Further, in Reference Example 8, the room temperature ductility was lower than that in Example 1. From this, it was found that when the Nb content is larger than 3 atomic%, the ductility such as room temperature ductility of the TiAl alloy decreases.
 TiAl合金の金属組織について評価した。実施例1、2、参考例1、2のTiAl合金について、金属組織観察を行った。金属組織観察は、光学顕微鏡または走査型電子顕微鏡で行った。図4は、金属組織観察結果を示す写真であり、図4(a)は、実施例1の写真であり、図4(b)は、実施例2の写真であり、図4(c)は、参考例1の写真であり、図4(d)は、参考例2の写真である。 The metallographic structure of the TiAl alloy was evaluated. The metallographic structure of the TiAl alloys of Examples 1 and 2 and Reference Examples 1 and 2 was observed. The metallographic structure was observed with an optical microscope or a scanning electron microscope. 4A and 4B are photographs showing the results of observing the metallographic structure, FIG. 4A is a photograph of Example 1, FIG. 4B is a photograph of Example 2, and FIG. 4C is a photograph of Example 2. , It is a photograph of Reference Example 1, and FIG. 4D is a photograph of Reference Example 2.
 図4(a)及び図4(b)に示すように、実施例1、2の金属組織は、結晶粒径が200μm以下の微細な結晶粒で構成されていた。実施例1、2の金属組織は、ラメラ粒と、γ粒とから構成されており、γ粒の粒内に粒径が0.1μm以下の硼化物を含んでいた。実施例1、2の金属組織は、ラメラ粒とγ粒との合計の体積率を100体積%としたとき、ラメラ粒の体積率が50体積%以上であり、残部がγ粒から構成されていた。なお、各粒の体積率については、金属組織写真における各粒のコントラストの情報から画像処理により各粒の面積率を算出し、これを各粒の体積率とした。 As shown in FIGS. 4 (a) and 4 (b), the metallographic structures of Examples 1 and 2 were composed of fine crystal grains having a crystal grain size of 200 μm or less. The metallographic structure of Examples 1 and 2 was composed of lamella grains and γ grains, and contained boride having a particle size of 0.1 μm or less in the γ grains. In the metal structures of Examples 1 and 2, when the total volume fraction of the lamella grains and the γ grains is 100% by volume, the volume fraction of the lamella grains is 50% by volume or more, and the balance is composed of γ grains. It was. Regarding the volume fraction of each grain, the area fraction of each grain was calculated by image processing from the contrast information of each grain in the metallographic photograph, and this was used as the volume fraction of each grain.
 また、図4(a)及び図4(b)に示すように、実施例1、2の金属組織には、Zrの偏析が認められなかった。これに対して、図4(c)及び図4(d)に示すように、参考例1,2の金属組織では、白矢印で示すようにZrの偏析が認められた。この結果からZrの含有率が1原子%より大きくなると、Zrが偏析することがわかった。したがって、Zrの含有率は、1原子%以下がよいことが明らかとなった。 Further, as shown in FIGS. 4 (a) and 4 (b), no segregation of Zr was observed in the metal structures of Examples 1 and 2. On the other hand, as shown in FIGS. 4 (c) and 4 (d), segregation of Zr was observed in the metallographic structures of Reference Examples 1 and 2 as shown by the white arrows. From this result, it was found that when the Zr content was larger than 1 atomic%, Zr segregated. Therefore, it was clarified that the Zr content should be 1 atomic% or less.
 TiAl合金の室温機械特性について評価した。実施例1、比較例1のTiAl合金について、室温で引張試験を行った。引張試験は、ASTM E8に準拠して行った。図5は、引張試験結果を示すグラフである。図5では、横軸に歪みを取り、縦軸に応力を取り、各TiAl合金の応力―歪み曲線を示している。実施例1は、比較例1よりも室温強度が大きくなった。また、実施例1は、比較例1よりも室温延性が大きくなった。より詳細には、実施例1の室温引張破断強度は、400MPa以上であり、室温引張破断歪みは、1.0%以上であった。 The room temperature mechanical properties of the TiAl alloy were evaluated. The TiAl alloys of Example 1 and Comparative Example 1 were subjected to a tensile test at room temperature. The tensile test was performed in accordance with ASTM E8. FIG. 5 is a graph showing the results of the tensile test. In FIG. 5, strain is taken on the horizontal axis and stress is taken on the vertical axis, and the stress-strain curve of each TiAl alloy is shown. Example 1 had a higher room temperature intensity than Comparative Example 1. In addition, Example 1 had a higher room temperature ductility than Comparative Example 1. More specifically, the room temperature tensile breaking strength of Example 1 was 400 MPa or more, and the room temperature tensile breaking strain was 1.0% or more.
 TiAl合金の高温機械特性について評価した。実施例1、比較例1のTiAl合金について、高温でクリープ試験を行った。クリープ試験は、ASTM E139に準拠して行った。クリープ試験条件は、試験温度800℃、負荷応力150MPaとした。図6は、クリープ試験結果を示すグラフである。図6では、横軸にクリープ時間を取り、縦軸にクリープ歪みを取り、各TiAl合金のクリープ曲線を示している。実施例1は、比較例1よりも5倍以上の高温クリープ特性が得られた。実施例1は、比較例1よりも高温クリープ特性が向上した。より詳細には、実施例1の高温クリープ特性は、試験温度800℃、負荷応力150MPaのとき200時間経過後のクリープ歪みが2%以下であった。また、実施例1の高温クリープ特性は、試験温度800℃、負荷応力150MPaのとき400時間経過後のクリープ歪みが5%以下であった。更に、実施例1の高温クリープ特性は、試験温度800℃、負荷応力150MPaのとき600時間経過後のクリープ歪みが15%以下であった。 The high temperature mechanical properties of TiAl alloy were evaluated. The TiAl alloys of Example 1 and Comparative Example 1 were subjected to a creep test at a high temperature. The creep test was performed in accordance with ASTM E139. The creep test conditions were a test temperature of 800 ° C. and a load stress of 150 MPa. FIG. 6 is a graph showing the results of the creep test. In FIG. 6, the creep time is taken on the horizontal axis and the creep strain is taken on the vertical axis, and the creep curve of each TiAl alloy is shown. In Example 1, a high temperature creep characteristic of 5 times or more was obtained as compared with Comparative Example 1. Example 1 has improved high temperature creep characteristics as compared with Comparative Example 1. More specifically, in the high temperature creep characteristics of Example 1, when the test temperature was 800 ° C. and the load stress was 150 MPa, the creep strain after 200 hours had passed was 2% or less. Further, as for the high temperature creep characteristics of Example 1, when the test temperature was 800 ° C. and the load stress was 150 MPa, the creep strain after 400 hours was 5% or less. Further, as for the high temperature creep characteristics of Example 1, when the test temperature was 800 ° C. and the load stress was 150 MPa, the creep strain after 600 hours had passed was 15% or less.
 図5及び図6に示すように、実施例1のTiAl合金は、機械的強度と延性とが優れており、機械的強度と延性とがバランスよく向上していることが明らかとなった。これに対して比較例1のTiAl合金は、実施例1のTiAl合金より、室温機械特性及び高温機械特性が低下した。この理由は、比較例1のTiAl合金に含まれるCrの影響等によると考えられる。 As shown in FIGS. 5 and 6, it was clarified that the TiAl alloy of Example 1 was excellent in mechanical strength and ductility, and the mechanical strength and ductility were improved in a well-balanced manner. On the other hand, the TiAl alloy of Comparative Example 1 had lower room temperature mechanical properties and high temperature mechanical properties than the TiAl alloy of Example 1. The reason for this is considered to be the influence of Cr contained in the TiAl alloy of Comparative Example 1.
 TiAl合金の耐酸化性について評価した。実施例1、比較例1のTiAl合金について、酸化試験を行った。酸化試験は、大気雰囲気中で750℃、200時間の連続酸化により行った。酸化試験後に断面観察を行って、酸化皮膜の厚みを評価した。図7は、酸化試験後の断面観察結果を示す写真であり、図7(a)は、実施例1の写真であり、図7(b)は、比較例1の写真である。実施例1の酸化皮膜の厚みは、2.1μmであった。比較例1の酸化皮膜の厚みは、4.3μmであった。この結果から、実施例1は、比較例1よりも耐酸化性に優れていることがわかった。 The oxidation resistance of the TiAl alloy was evaluated. Oxidation tests were carried out on the TiAl alloys of Example 1 and Comparative Example 1. The oxidation test was carried out by continuous oxidation at 750 ° C. for 200 hours in the atmosphere. After the oxidation test, a cross section was observed to evaluate the thickness of the oxide film. FIG. 7 is a photograph showing a cross-sectional observation result after the oxidation test, FIG. 7 (a) is a photograph of Example 1, and FIG. 7 (b) is a photograph of Comparative Example 1. The thickness of the oxide film of Example 1 was 2.1 μm. The thickness of the oxide film of Comparative Example 1 was 4.3 μm. From this result, it was found that Example 1 was superior in oxidation resistance to Comparative Example 1.
 TiAl合金の鋳造性について評価した。実施例1、比較例1のTiAl合金について、固液共存温度域を評価した。固液共存温度域の評価は、示差熱分析(DTA)により行った。図8は、示差熱分析結果を示すグラフである。図8は、横軸に各TiAl合金を取り、縦軸に温度を取り、各TiAl合金の固液共存温度域を四角形で示している。図8に示すグラフから、実施例1は、比較例1よりも凝固温度が低いことがわかった。より詳細には、実施例1は、示差熱分析(DTA)で測定したときに、固液共存温度域が1440℃から1510℃であった。これにより実施例1は、比較例1よりも鋳込み温度を低く設定できるので、鋳型反応欠陥を抑制できることが明らかとなった。 The castability of TiAl alloy was evaluated. The solid-liquid coexistence temperature range was evaluated for the TiAl alloys of Example 1 and Comparative Example 1. The evaluation of the solid-liquid coexistence temperature range was performed by differential thermal analysis (DTA). FIG. 8 is a graph showing the results of differential thermal analysis. In FIG. 8, each TiAl alloy is taken on the horizontal axis, the temperature is taken on the vertical axis, and the solid-liquid coexistence temperature range of each TiAl alloy is indicated by a quadrangle. From the graph shown in FIG. 8, it was found that Example 1 had a lower solidification temperature than Comparative Example 1. More specifically, in Example 1, the solid-liquid coexistence temperature range was 1440 ° C to 1510 ° C as measured by differential thermal analysis (DTA). As a result, it was clarified that in Example 1, since the casting temperature can be set lower than that in Comparative Example 1, mold reaction defects can be suppressed.
 本開示は、TiAl合金の機械的強度と延性とをバランスよく向上させることが可能となることから、航空機エンジン部品のタービン翼等への適用が可能である。 Since the present disclosure can improve the mechanical strength and ductility of TiAl alloy in a well-balanced manner, it can be applied to turbine blades and the like of aircraft engine parts.

Claims (9)

  1.  TiAl合金であって、
     48原子%以上50原子%以下のAlと、
     1原子%以上3原子%以下のNbと、
     0.3原子%以上1原子%以下のZrと、
     0.05原子%以上0.3原子%以下のBと、を含有し、残部がTiと不可避的不純物とからなる、TiAl合金。
    It is a TiAl alloy
    Al of 48 atomic% or more and 50 atomic% or less,
    Nb of 1 atomic% or more and 3 atomic% or less,
    Zr of 0.3 atomic% or more and 1 atomic% or less,
    A TiAl alloy containing B of 0.05 atomic% or more and 0.3 atomic% or less, and the balance of which is Ti and unavoidable impurities.
  2.  請求項1に記載のTiAl合金であって、
     Alの含有率は、49原子%以上50原子%以下である、TiAl合金。
    The TiAl alloy according to claim 1.
    A TiAl alloy having an Al content of 49 atomic% or more and 50 atomic% or less.
  3.  請求項1または2に記載のTiAl合金であって、
     金属組織は、ラメラ粒とγ粒とから構成されており、Zrの偏析がない、TiAl合金。
    The TiAl alloy according to claim 1 or 2.
    The metallographic structure is a TiAl alloy that is composed of lamella grains and γ grains and has no Zr segregation.
  4.  請求項3に記載のTiAl合金であって、
     前記金属組織は、ラメラ粒とγ粒との合計の体積率を100体積%としたとき、ラメラ粒の体積率が50体積%以上である、TiAl合金。
    The TiAl alloy according to claim 3, wherein the TiAl alloy is used.
    The metal structure is a TiAl alloy having a volume fraction of lamella grains of 50% by volume or more, where the total volume fraction of lamella grains and γ grains is 100% by volume.
  5.  請求項1から4のいずれか1つに記載のTiAl合金であって、
     室温引張破断強度が400MPa以上であり、室温引張破断歪みが1.0%以上である、TiAl合金。
    The TiAl alloy according to any one of claims 1 to 4.
    A TiAl alloy having a room temperature tensile breaking strength of 400 MPa or more and a room temperature tensile breaking strain of 1.0% or more.
  6.  請求項1から5のいずれか1つに記載のTiAl合金であって、
     800℃、負荷応力150MPaのとき、200時間経過後のクリープ歪みが2%以下である、TiAl合金。
    The TiAl alloy according to any one of claims 1 to 5.
    A TiAl alloy having a creep strain of 2% or less after 200 hours at 800 ° C. and a load stress of 150 MPa.
  7.  TiAl合金の製造方法であって、
     48原子%以上50原子%以下のAlと、
     1原子%以上3原子%以下のNbと、
     0.3原子%以上1原子%以下のZrと、
     0.05原子%以上0.3原子%以下のBと、を含有し、残部がTiと不可避的不純物とからなるTiAl合金原料を鋳造する鋳造工程を備える、TiAl合金の製造方法。
    It is a manufacturing method of TiAl alloy.
    Al of 48 atomic% or more and 50 atomic% or less,
    Nb of 1 atomic% or more and 3 atomic% or less,
    Zr of 0.3 atomic% or more and 1 atomic% or less,
    A method for producing a TiAl alloy, comprising a casting step of casting a TiAl alloy raw material containing 0.05 atomic% or more and 0.3 atomic% or less of B, and the balance being Ti and unavoidable impurities.
  8.  請求項7に記載のTiAl合金の製造方法であって、
     前記鋳造したTiAl合金を、1250℃以上1350℃以下、1時間以上5時間以下、158MPa以上186MPa以下で熱間等方加圧し、熱間等方加圧後に900℃まで炉冷し、900℃以下で急冷して熱間等方加圧処理する熱間等方加圧処理工程を備える、TiAl合金の製造方法。
    The method for producing a TiAl alloy according to claim 7.
    The cast TiAl alloy is hot isotropically pressurized at 1250 ° C. or higher and 1350 ° C. or lower, 1 hour or longer and 5 hours or lower, 158 MPa or higher and 186 MPa or lower, and after hot isotropic pressurization, the furnace is cooled to 900 ° C. A method for producing a TiAl alloy, which comprises a hot isotropic pressure treatment step of quenching and hot isotropic pressure treatment.
  9.  請求項8に記載のTiAl合金の製造方法であって、
     前記熱間等方加圧処理したTiAl合金を、800℃以上950℃以下で1時間以上5時間以下保持して応力除去する応力除去工程を備える、TiAl合金の製造方法。
    The method for producing a TiAl alloy according to claim 8.
    A method for producing a TiAl alloy, comprising a stress removing step of holding the hot isotropic pressure-treated TiAl alloy at 800 ° C. or higher and 950 ° C. or lower for 1 hour or more and 5 hours or less to remove stress.
PCT/JP2020/011935 2019-05-23 2020-03-18 Tial alloy and production method therefor WO2020235200A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021520073A JP7226535B2 (en) 2019-05-23 2020-03-18 TiAl alloy and its manufacturing method
EP20808685.0A EP3974551B1 (en) 2019-05-23 2020-03-18 Tial alloy and method of manufacturing the same
US17/449,133 US20220017995A1 (en) 2019-05-23 2021-09-28 TiAl ALLOY AND METHOD OF MANUFACTURING THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-096648 2019-05-23
JP2019096648 2019-05-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/449,133 Continuation US20220017995A1 (en) 2019-05-23 2021-09-28 TiAl ALLOY AND METHOD OF MANUFACTURING THE SAME

Publications (1)

Publication Number Publication Date
WO2020235200A1 true WO2020235200A1 (en) 2020-11-26

Family

ID=73458588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011935 WO2020235200A1 (en) 2019-05-23 2020-03-18 Tial alloy and production method therefor

Country Status (4)

Country Link
US (1) US20220017995A1 (en)
EP (1) EP3974551B1 (en)
JP (1) JP7226535B2 (en)
WO (1) WO2020235200A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022260026A1 (en) * 2021-06-09 2022-12-15 株式会社Ihi Tial alloy, tial alloy powder, tial alloy component, and method for producing same
CN115584412A (en) * 2022-10-08 2023-01-10 中南大学 Bimodal grain structure TiAl alloy and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11923661B2 (en) 2018-07-20 2024-03-05 Sony Semiconductor Solutions Corporation Surface emitting laser and method of manufacturing the same
JP7226536B2 (en) * 2019-05-23 2023-02-21 株式会社Ihi TiAl alloy and its manufacturing method
CN114959361B (en) * 2022-06-17 2023-11-28 芜湖天科航空科技有限公司 TiAl alloy capable of precipitating a large amount of ordered omega phases and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03226538A (en) * 1990-01-30 1991-10-07 Nkk Corp Ti-al base heat resistant alloy and its manufacture
JPH0617211A (en) * 1990-12-21 1994-01-25 General Electric Co <Ge> Production of aluminized titanium containing chromium, niobium and boron
US5997808A (en) * 1997-07-05 1999-12-07 Rolls-Royce Plc Titanium aluminide alloys
JP2001316743A (en) * 2000-02-23 2001-11-16 Mitsubishi Heavy Ind Ltd TiAl ALLOY, ITS MANUFACTURING METHOD, AND MOVING BLADE USING IT
JP2003533594A (en) * 2000-05-17 2003-11-11 ゲーエフエー メタレ ウント マテリアーリエン ゲゼルシャフト ミット ベシュレンクテル ハフツング .GAMMA.-TiAl alloy-based material with multiple regions consisting of graded microstructure
JP2013209750A (en) 2012-03-24 2013-10-10 General Electric Co <Ge> Titanium aluminide intermetallic compositions

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19933633A1 (en) * 1999-07-17 2001-01-18 Abb Alstom Power Ch Ag High temperature titanium alloy for highly-stressed components of heat engines, comprises titanium, aluminum, and e.g. boron silicon and e.g. tungsten
DE102007060587B4 (en) * 2007-12-13 2013-01-31 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH titanium aluminide
RU2606368C1 (en) * 2015-10-15 2017-01-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Intermetallic titanium-based alloy and article made therefrom
EP3269838B1 (en) * 2016-07-12 2021-09-01 MTU Aero Engines AG High temperature resistant tial alloy, method for production of a composent from a corresponding tial alloy, component from a corresponding tial alloy
RU2633135C1 (en) * 2016-11-11 2017-10-11 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Intermetallic tial-based alloy
JP7226536B2 (en) * 2019-05-23 2023-02-21 株式会社Ihi TiAl alloy and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03226538A (en) * 1990-01-30 1991-10-07 Nkk Corp Ti-al base heat resistant alloy and its manufacture
JPH0617211A (en) * 1990-12-21 1994-01-25 General Electric Co <Ge> Production of aluminized titanium containing chromium, niobium and boron
US5997808A (en) * 1997-07-05 1999-12-07 Rolls-Royce Plc Titanium aluminide alloys
JP2001316743A (en) * 2000-02-23 2001-11-16 Mitsubishi Heavy Ind Ltd TiAl ALLOY, ITS MANUFACTURING METHOD, AND MOVING BLADE USING IT
JP2003533594A (en) * 2000-05-17 2003-11-11 ゲーエフエー メタレ ウント マテリアーリエン ゲゼルシャフト ミット ベシュレンクテル ハフツング .GAMMA.-TiAl alloy-based material with multiple regions consisting of graded microstructure
JP2013209750A (en) 2012-03-24 2013-10-10 General Electric Co <Ge> Titanium aluminide intermetallic compositions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3974551A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022260026A1 (en) * 2021-06-09 2022-12-15 株式会社Ihi Tial alloy, tial alloy powder, tial alloy component, and method for producing same
CN115584412A (en) * 2022-10-08 2023-01-10 中南大学 Bimodal grain structure TiAl alloy and preparation method thereof
CN115584412B (en) * 2022-10-08 2023-06-13 中南大学 TiAl alloy with bimodal grain structure and preparation method thereof

Also Published As

Publication number Publication date
EP3974551A4 (en) 2023-01-25
JP7226535B2 (en) 2023-02-21
EP3974551B1 (en) 2023-12-13
US20220017995A1 (en) 2022-01-20
JPWO2020235200A1 (en) 2020-11-26
EP3974551A1 (en) 2022-03-30

Similar Documents

Publication Publication Date Title
WO2020235200A1 (en) Tial alloy and production method therefor
JP6687118B2 (en) TiAl alloy and method for producing the same
JP5512964B2 (en) Titanium aluminide alloy, titanium aluminide alloy manufacturing method, and structural component using the titanium aluminide alloy
CN113106299B (en) Method for producing Ni-based wrought alloy material
US20130206287A1 (en) Co-based alloy
US10208360B2 (en) Hot-forged TiAl-based alloy and method for producing the same
JP6826879B2 (en) Manufacturing method of Ni-based super heat-resistant alloy
JP3915324B2 (en) Titanium aluminide alloy material and castings thereof
US20210404042A1 (en) Titanium aluminide alloy material for hot forging, forging method for titanium aluminide alloy material, and forged body
WO2020235201A1 (en) Tial alloy and production method therefor
JP7188577B2 (en) Method for producing TiAl alloy and TiAl alloy
WO2017123186A1 (en) Tial-based alloys having improved creep strength by strengthening of gamma phase
WO2020129840A1 (en) Hot-forged tial-based alloy, method for producing same, and uses for same
WO2022260026A1 (en) Tial alloy, tial alloy powder, tial alloy component, and method for producing same
JP7188576B2 (en) TiAl alloy material, manufacturing method thereof, and hot forging method for TiAl alloy material
JP7233658B2 (en) Titanium aluminide alloy material for hot forging and method for forging titanium aluminide alloy material
JP7126915B2 (en) Aluminum alloy extruded material and its manufacturing method
JP6861363B2 (en) Ni-based intermetallic compound alloy and its manufacturing method
JP2022045612A (en) Titanium alloy, and manufacturing method of the same, and engine component using the same
JP3331625B2 (en) Method for producing Ti-Al-based intermetallic compound-based alloy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20808685

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021520073

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020808685

Country of ref document: EP

Effective date: 20211223