WO2022260026A1 - Tial alloy, tial alloy powder, tial alloy component, and method for producing same - Google Patents

Tial alloy, tial alloy powder, tial alloy component, and method for producing same Download PDF

Info

Publication number
WO2022260026A1
WO2022260026A1 PCT/JP2022/022883 JP2022022883W WO2022260026A1 WO 2022260026 A1 WO2022260026 A1 WO 2022260026A1 JP 2022022883 W JP2022022883 W JP 2022022883W WO 2022260026 A1 WO2022260026 A1 WO 2022260026A1
Authority
WO
WIPO (PCT)
Prior art keywords
atomic
tial alloy
content
solidification
less
Prior art date
Application number
PCT/JP2022/022883
Other languages
French (fr)
Japanese (ja)
Inventor
祐太朗 大田
優斗 宮澤
圭司 久布白
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to EP22820205.7A priority Critical patent/EP4353855A1/en
Priority to JP2023527865A priority patent/JPWO2022260026A1/ja
Publication of WO2022260026A1 publication Critical patent/WO2022260026A1/en
Priority to US18/521,082 priority patent/US20240110261A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/004Filling molds with powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • B22F2301/205Titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present disclosure relates to TiAl alloys, TiAl alloy powders, TiAl alloy parts, and methods of manufacturing the same.
  • a TiAl (titanium aluminide) alloy is an alloy formed of an intermetallic compound of Ti and Al. TiAl alloys have excellent heat resistance, are lighter in weight and have a higher specific strength than Ni-based alloys, and are therefore applied to aircraft engine parts such as turbine blades.
  • a TiAl alloy containing Cr and Nb is used as such a TiAl alloy (see Patent Document 1).
  • the Nb content is 1 atomic%
  • the Al content is 47 atomic% or more and 48 atomic% or less
  • the Zr content is 2 atomic% or more and 4 atomic%. It may be below.
  • the Nb content is 1 atomic%
  • the Al content is 47 atomic% or more and 48 atomic% or less
  • the Zr content is 2 atomic% or more and 3 atomic%. It may be below.
  • the Nb content is 2 atomic%
  • the Al content is 47 atomic% or more and 49 atomic% or less
  • the Zr content is 2 atomic% or more and 3 atomic%. It may be below.
  • the Nb content is 2 atomic%
  • the Al content is 47 atomic% or more and 48 atomic% or less
  • the Zr content is 2 atomic% or more and 4 atomic%. It may be below.
  • the Al content may be 47 atomic % or more and 48 atomic % or less, and the Zr content may be 2 atomic % or more and 4 atomic % or less.
  • the Al content may be 47 atomic % or more and 48 atomic % or less, and the Zr content may be 2 atomic % or more and 3 atomic % or less.
  • the TiAl alloy according to the present disclosure preferably has a room temperature tensile strength at break of 600 MPa or more and a room temperature tensile strain at break of 1.2% or more.
  • the TiAl alloy powder according to the present disclosure is made of the TiAl alloy described above.
  • a TiAl alloy component according to the present disclosure is formed of the TiAl alloy described above.
  • a method for manufacturing a TiAl alloy component according to the present disclosure includes a sealing step of filling a metal sheath with the TiAl alloy powder formed of the TiAl alloy described above and sealing the TiAl alloy powder sealed with the metal sheath, and a hot isostatic pressing step of performing hot isostatic pressing at 1200° C. or higher and 1300° C. or lower and 150 MPa or higher.
  • FIG. 4 is a diagram showing the relationship between the Al and Zr contents when the Nb content is 1 atomic % in the embodiment of the present disclosure
  • FIG. 4 is a diagram showing the relationship between the Al and Zr contents when the Nb content is 1 atomic % in the embodiment of the present disclosure
  • FIG. 4 is a diagram showing the relationship between the Al and Zr contents when the Nb content is 2 atomic % in the embodiment of the present disclosure
  • FIG. 4 is a diagram showing the relationship between the Al and Zr contents when the Nb content is 2 atomic % in the embodiment of the present disclosure
  • FIG. 4 is a diagram showing the relationship between the Al and Zr contents when the Nb content is 1 atomic % or more and 2 atomic % or less in the embodiment of the present disclosure.
  • FIG. 4 is a diagram showing the relationship between the Al and Zr contents when the Nb content is 1 atomic % or more and 2 atomic % or less in the embodiment of the present disclosure.
  • FIG. 2 is a graph showing the solidification morphology of TiAl alloys of Examples 1 to 9, in an embodiment of the present disclosure
  • FIG. 4 is a graph showing the solidification morphology of TiAl alloys of Examples 10 to 18, in embodiments of the present disclosure
  • FIG. 4 is a photograph showing the results of metallographic observation by an optical microscope of the specimens of Examples A and B in the embodiment of the present disclosure.
  • 4 is a graph showing tensile test results in an embodiment of the present disclosure
  • 4 is a graph showing creep test results in an embodiment of the present disclosure;
  • the TiAl (titanium aluminide) alloy according to the embodiment of the present disclosure includes 47 atomic % to 50 atomic % Al (aluminum), 1 atomic % to 2 atomic % Nb (niobium), and 2 atomic % to 5 Zr (zirconium) of atomic % or less and B (boron) of 0.05 atomic % or more and 0.3 atomic % or less are contained, and the balance is composed of Ti (titanium) and unavoidable impurities .
  • Al has the function of improving mechanical strength and ductility such as room temperature ductility.
  • the content of Al is 47 atomic % or more and 50 atomic % or less. When the content of Al is less than 47 atomic %, the content of Ti or the like, which has a higher density than that of Al, increases, resulting in a decrease in specific strength. If the Al content is greater than 50 atomic %, the ductility is lowered.
  • the Al content may be 47 atomic % or more and 49 atomic % or less. This can further improve the mechanical strength and ductility of the TiAl alloy.
  • Nb (niobium) has the function of improving oxidation resistance and mechanical strength.
  • the content of Nb is 1 atomic % or more and 2 atomic % or less. If the Nb content is less than 1 atomic %, the oxidation resistance and high-temperature strength may deteriorate. When the Nb content is more than 2 atomic %, the density of Nb is higher than the densities of Al and Ti, so the specific strength is lowered.
  • Zr zirconium has the function of improving oxidation resistance and mechanical strength.
  • Zr is an element that stabilizes the ⁇ phase and contributes to improving ductility such as room temperature ductility. Zr also contributes to the improvement of creep strength by reducing the diffusion rate.
  • the content of Zr is 2 atomic % or more and 5 atomic % or less. If the Zr content is less than 2 atomic %, oxidation resistance, ductility such as room-temperature ductility, and mechanical strength such as high-temperature strength may decrease. If the Zr content is greater than 5 atomic %, segregation may occur. The occurrence of Zr segregation may reduce the mechanical strength and ductility.
  • B has the function of precipitating fine borides in crystal grains by heat treatment or the like to improve the mechanical strength.
  • Fine borides are formed including those having a particle size of 0.1 ⁇ m or less.
  • Fine borides consist of TiB, TiB2, and so on . Precipitation of fine borides in crystal grains can improve mechanical strength such as tensile strength, fatigue strength, and creep strength.
  • the solidification morphology of TiAl alloys is related to the Al, Zr and Nb contents.
  • the solidification mode of the TiAl alloy changes to ⁇ solidification, ⁇ solidification, ⁇ solidification, and ⁇ solidification + ⁇ solidification.
  • Alpha solidification is a solidification morphology in which the solidification process of a TiAl alloy passes through the alpha single phase region.
  • ⁇ -solidification is a solidification morphology in which the solidification process of TiAl alloys passes through the ⁇ -single-phase region.
  • ⁇ solidification is a form of solidification in which the solidification process of TiAl alloys passes through a ⁇ single phase region.
  • ⁇ -solidification + ⁇ -solidification is a solidification mode in which the solidification process of the TiAl alloy passes through the ⁇ + ⁇ two-phase region.
  • ⁇ solidification columnar coarse crystal grains are formed, so the anisotropy of the metal structure becomes stronger.
  • ⁇ solidification or ⁇ solidification since equiaxed crystal grains are formed, the isotropy of the metal structure becomes stronger and the anisotropy of the metal structure becomes weaker.
  • ⁇ solidification + ⁇ solidification equiaxed crystal grains and columnar crystal grains are formed. Become. Since B precipitates fine borides in crystal grains, it hardly affects the solidification morphology of the TiAl alloy.
  • the solidification mode of the TiAl alloy tends to be ⁇ -solidification.
  • the solidification mode of the TiAl alloy tends to be ⁇ -solidification+ ⁇ -solidification, ⁇ -solidification or ⁇ -solidification.
  • the Zr content increases, the solidification morphology of the TiAl alloy tends to be gamma solidification.
  • the solidification morphology of the TiAl alloy tends to be ⁇ -solidification+ ⁇ -solidification, ⁇ -solidification or ⁇ -solidification.
  • the solidification mode of the TiAl alloy tends to be ⁇ -solidification+ ⁇ -solidification, ⁇ -solidification or ⁇ -solidification.
  • the solidification morphology of the TiAl alloy tends to be gamma solidification.
  • FIG. 1 is a diagram showing the relationship between the Al and Zr contents when the Nb content is 1 atomic %.
  • the TiAl alloy has a Nb content of 1 atomic %, and an Al and Zr content of R1 point (Al: 47 atomic %, Zr: 2 atomic %) and R2 point (Al: 48 atomic %) shown in FIG. %, Zr: 2 atomic %), R3 point (Al: 48 atomic %, Zr: 4 atomic %), R4 point (Al: 47 atomic %, Zr: 5 atomic %). may be configured.
  • FIG. 2 is a diagram showing the relationship between the Al and Zr contents when the Nb content is 1 atomic %.
  • the TiAl alloy has a Nb content of 1 atomic %, and an Al and Zr content of point S1 (Al: 47 atomic %, Zr: 2 atomic %) and point S2 (Al: 48 atomic %) shown in FIG. %, Zr: 2 atomic %), S3 point (Al: 48 atomic %, Zr: 3 atomic %), S4 point (Al: 47 atomic %, Zr: 5 atomic %). may be configured.
  • the TiAl alloy is surrounded by 1 atomic % of Nb, 0.05 atomic % or more and 0.3 atomic % or less of B, and the four points S1, S2, S3, and S4 shown in FIG. Al and Zr having a composition range may be contained, and the balance may be composed of Ti and unavoidable impurities.
  • the solidification mode can be alpha solidification only. This further suppresses the anisotropy of the metal structure because the solidification morphology does not include gamma solidification. By further suppressing the anisotropy of the metal structure, the mechanical properties of the TiAl alloy become more isotropic.
  • such a TiAl alloy contains 1 atomic percent Nb, 0.05 atomic percent to 0.3 atomic percent B, 47 atomic percent to 48 atomic percent Al, and 2 atomic percent to 3 atomic percent % or less Zr, and the balance may be composed of Ti and unavoidable impurities.
  • FIG. 3 is a diagram showing the relationship between the Al and Zr contents when the Nb content is 2 atomic %.
  • the TiAl alloy has a Nb content of 2 atomic %, and an Al and Zr content of T1 point (Al: 47 atomic %, Zr: 2 atomic %) and T2 point (Al: 49 atomic %) shown in FIG. %, Zr: 2 atomic %), T3 point (Al: 49 atomic %, Zr: 3 atomic %), T4 point (Al: 48 atomic %, Zr: 4 atomic %), T5 point (Al: 47 atomic %, Zr: 4 atomic %).
  • the TiAl alloy has 2 atomic % of Nb, 0.05 atomic % or more and 0.3 atomic % or less of B, and five points of T1 point, T2 point, T3 point, T4 point, and T5 point shown in FIG. Al and Zr from the enclosed composition range may be contained, and the balance may be composed of Ti and unavoidable impurities.
  • the solidification mode can be ⁇ -solidification only or ⁇ -solidification + ⁇ -solidification. As a result, the anisotropy of the metal structure is suppressed more than when the solidification mode consists only of ⁇ solidification.
  • such a TiAl alloy contains 2 atomic percent Nb, 0.05 atomic percent to 0.3 atomic percent B, 47 atomic percent to 49 atomic percent Al, and 2 atomic percent to 3 atomic percent % or less Zr, and the balance may be composed of Ti and unavoidable impurities.
  • such a TiAl alloy contains 2 atomic % Nb, 0.05 atomic % to 0.3 atomic % B, 47 atomic % to 48 atomic % Al, and 2 atomic % to 4 atomic % % or less Zr, and the balance may be composed of Ti and unavoidable impurities.
  • FIG. 4 is a diagram showing the relationship between the Al and Zr contents when the Nb content is 2 atomic %.
  • the TiAl alloy has a Nb content of 2 atomic %, and an Al and Zr content of W1 point (Al: 47 atomic %, Zr: 2 atomic %) and W2 point (Al: 49 atomic %) shown in FIG. %, Zr: 2 atomic %), W3 point (Al: 48 atomic %, Zr: 4 atomic %), W4 point (Al: 47 atomic %, Zr: 4 atomic %). may be configured.
  • the TiAl alloy is surrounded by 2 atomic % Nb, 0.05 atomic % or more and 0.3 atomic % or less B, and four points W1, W2, W3, and W4 shown in FIG. Al and Zr having a composition range may be contained, and the balance may be composed of Ti and unavoidable impurities.
  • the solidification mode can be alpha solidification only. This further suppresses the anisotropy of the metal structure because the solidification morphology does not include gamma solidification. By further suppressing the anisotropy of the metal structure, the mechanical properties of the TiAl alloy become more isotropic.
  • such a TiAl alloy contains 2 atomic percent Nb, 0.05 atomic percent to 0.3 atomic percent B, 47 atomic percent to 48 atomic percent Al, and 2 atomic percent to 4 atomic percent % or less Zr, and the balance may be composed of Ti and unavoidable impurities.
  • FIG. 5 is a diagram showing the relationship between the Al and Zr contents when the Nb content is 1 atomic % or more and 2 atomic % or less.
  • the Al and Zr contents are X1 point (Al: 47 atomic %, Zr: 2 atomic %) and X2 shown in FIG.
  • point Al: 48 atomic %, Zr: 2 atomic %)
  • X3 point Al: 48 atomic %, Zr: 4 atomic %)
  • X4 point Al: 47 atomic %, Zr: 4 atomic %) It may consist of the enclosed composition range.
  • the TiAl alloy contains 1 atomic % or more and 2 atomic % or less of Nb, 0.05 atomic % or more and 0.3 atomic % or less of B, and 4 points of X1 point, X2 point, X3 point, and X4 point shown in FIG. Al and Zr in the composition range enclosed by dots may be contained, and the balance may be composed of Ti and unavoidable impurities.
  • such a TiAl alloy contains 1 atomic % to 2 atomic % Nb, 0.05 atomic % to 0.3 atomic % B, 47 atomic % to 48 atomic % Al, 2 and Zr in an amount of atomic % to 4 atomic %, and the balance may be composed of Ti and unavoidable impurities.
  • FIG. 6 is a diagram showing the relationship between the Al and Zr contents when the Nb content is 1 atomic % or more and 2 atomic % or less.
  • the Al and Zr contents are Y1 point (Al: 47 atomic %, Zr: 2 atomic %), Y2 Point (Al: 48 atomic %, Zr: 2 atomic %), Y3 point (Al: 48 atomic %, Zr: 3 atomic %), Y4 point (Al: 47.5 atomic %, Zr: 4 atomic %), Y5 It may be configured in a composition range surrounded by five points (Al: 47 atomic %, Zr: 4 atomic %).
  • the composition range surrounded by the five points Y1, Y2, Y3, Y4, and Y5 shown in FIG. 6 is the four points S1, S2, S3, and S4 shown in FIG.
  • the enclosed composition range and the composition range enclosed by four points of W1 point, W2 point, W3 point, and W4 point shown in FIG. 4 overlap each other.
  • the solidification mode can be alpha solidification only. This further suppresses the anisotropy of the metal structure because the solidification morphology does not include gamma solidification. By further suppressing the anisotropy of the metal structure, the mechanical properties of the TiAl alloy become more isotropic.
  • such a TiAl alloy contains 1 atomic % to 2 atomic % Nb, 0.05 atomic % to 0.3 atomic % B, 47 atomic % to 48 atomic % Al, 2 and Zr in an amount of atomic % or more and 3 atomic % or less, and the balance may be composed of Ti and unavoidable impurities.
  • the metal structure of the TiAl alloy is composed of fine crystal grains with a crystal grain size of 100 ⁇ m or less. This can improve the ductility of the TiAl alloy.
  • the metal structure of the TiAl alloy is composed of lamellar grains and ⁇ grains, and there is no segregation of Zr.
  • Lamellar grains are formed by regularly arranging an ⁇ 2 phase composed of Ti 3 Al and a ⁇ phase composed of TiAl in layers.
  • the ⁇ grains are made of TiAl.
  • the ⁇ -grains are, for example, equiaxed ⁇ -grains.
  • the grains of the ⁇ grains contain borides with a grain size of 0.1 ⁇ m or less.
  • the boride is composed of TiB, TiB2, etc., and is needle - like.
  • Lamellar grains can improve mechanical strength such as tensile strength, fatigue strength, and creep strength. ⁇ grains can improve ductility and high temperature strength. Fine borides having a particle size of 0.1 ⁇ m or less can improve mechanical strength.
  • the volume ratio of ⁇ grains is preferably 80% by volume or more, and the remainder is lamellar grains. Since the metal structure of the TiAl alloy is mainly composed of ⁇ grains, it is possible to improve mechanical strength and ductility in a well-balanced manner. In addition, since the metal structure of the TiAl alloy does not have Zr segregation, it is possible to suppress deterioration in mechanical strength and ductility.
  • the mechanical properties of the TiAl alloy according to the embodiment of the present disclosure will be explained.
  • the room temperature tensile breaking strength is 600 MPa or more, and the room temperature tensile breaking strain is 1.2% or more.
  • the TiAl alloy according to the embodiment of the present disclosure it is possible to improve mechanical strength and ductility in a well-balanced manner.
  • FIG. 7 is a diagram showing the configuration of a TiAl alloy component 10 that is a turbine blade. Since the TiAl alloy described above has high mechanical strength such as high-temperature strength, the heat resistance of the TiAl alloy component 10 can be improved. In addition, since the TiAl alloy described above is excellent in ductility such as room temperature ductility, even when the TiAl alloy component 10 is assembled or assembled, damage to the TiAl alloy component 10 can be suppressed.
  • the TiAl alloy parts are not limited to aircraft engine parts, and may be, for example, turbocharger parts such as turbocharger turbine wheels, vehicle parts such as automobile engine valves, and the like.
  • TiAl alloy parts can be cast by melting the above TiAl alloy.
  • TiAl alloy parts can be cast by melting the above TiAl alloy in a vacuum induction furnace or the like.
  • a casting apparatus used for casting general metal materials can be used.
  • the TiAl alloy parts are formed by powder compacting by metal powder injection molding (MIM method), hot isostatic pressing (HIP method), or the like, using TiAl alloy powder formed from the above TiAl alloy as raw material powder. good too.
  • the TiAl alloy powder is formed of the TiAl alloy described above, and can be produced by a firing synthesis method, a mechanical alloying method, a plasma rotating electrode method, an atomizing method (water atomizing method, gas atomizing method), or the like.
  • the TiAl alloy powder is preferably a rapidly solidified powder. Since the rapidly solidified powder is produced by rapidly solidifying alloy droplets, segregation of Zr contained in the TiAl alloy can be further suppressed.
  • FIG. 8 is a flow chart showing the configuration of a method for manufacturing a TiAl alloy component.
  • the method for manufacturing a TiAl alloy component includes a sealing step (S10) and a hot isostatic pressing step (S12).
  • the sealing step (S10) is a step of filling the metal sheath with the TiAl alloy powder formed of the TiAl alloy described above and sealing.
  • TiAl alloy powder made of the TiAl alloy described above is used as the raw material powder.
  • As the TiAl alloy powder it is preferable to use a rapidly solidified powder produced by a gas atomization method or the like.
  • the TiAl alloy powder is packed in a metal sheath and sealed.
  • a titanium sheath made of pure titanium is preferably used as the metal sheath.
  • the thickness of the titanium sheath is preferably 1 mm, for example.
  • the TiAl alloy powder filled in the metal sheath is sealed by electron beam welding or the like after vacuum degassing.
  • the hot isostatic pressing step (S12) is a step of hot isostatic pressing the TiAl alloy powder filled in the metal sheath at 1200°C or higher and 1300°C or lower and 150 MPa or higher.
  • a TiAl alloy component is molded by subjecting the TiAl alloy powder filled in the metal sheath to hot isostatic pressing.
  • the hot isostatic pressure treatment can be performed at a heating temperature of 1200° C. or higher and 1300° C. or lower and a pressure of 150 MPa or higher.
  • the pressure may be, for example, 150 MPa or more and 200 MPa or less.
  • the holding time at the heating temperature can be 3 hours or more.
  • the holding time at the heating temperature may be, for example, 3 hours or more and 5 hours or less.
  • the method for manufacturing a TiAl alloy component may include a stress relief step of holding at 800° C. or more and 950° C. or less for 1 hour or more and 5 hours or less to relieve stress after the hot isostatic pressing step (S12). .
  • a stress relief step of holding at 800° C. or more and 950° C. or less for 1 hour or more and 5 hours or less to relieve stress after the hot isostatic pressing step (S12). .
  • the hot isostatic pressure treatment and stress removal should be performed in a vacuum atmosphere or in an inert gas atmosphere such as argon gas to prevent oxidation.
  • a HIP apparatus or the like used for hot isostatic pressing of general metal materials can be used.
  • an atmosphere furnace or the like used for stress relief annealing of general metal materials can be used.
  • a heat treatment step for adjusting the metal structure may be provided after the hot isostatic pressing step (S12) and the stress removing step.
  • the TiAl alloy having the above configuration includes Al of 47 atomic % or more and 50 atomic % or less, Nb of 1 atomic % or more and 2 atomic % or less, Zr of 2 atomic % or more and 5 atomic % or less, and 0.05 atomic %. and 0.3 atomic % or less of B, and the balance is composed of Ti and unavoidable impurities.
  • the mechanical strength and ductility of the TiAl alloy can be improved in a well-balanced manner.
  • the solidification morphology of the TiAl alloy was evaluated.
  • the TiAl alloys of Examples 1 to 18 are described.
  • the TiAl alloys of Examples 1 to 18 contain Al, Nb, Zr, and B, and the balance is Ti and unavoidable impurities.
  • Table 1 shows the alloy composition of each TiAl alloy.
  • the TiAl alloys of Examples 1 to 9 had a Nb content of 1 atomic %, a B content of 0.2 atomic %, an Al content of 47 atomic % to 50 atomic %, and a Zr content of 3 atomic %. It was changed in the range of atomic % to 5 atomic %.
  • the TiAl alloys of Examples 10 to 18 had a Nb content of 2 atomic %, a B content of 0.2 atomic %, an Al content of 48 atomic % to 50 atomic %, and a Zr content of 2 atomic %. It was changed in the range of atomic % to 4 atomic %.
  • FIG. 9 is a photograph showing the observation results of the metal structures of the TiAl alloys of Examples 1-9.
  • FIG. 10 is a photograph showing the observation results of the metal structures of the TiAl alloys of Examples 10-18.
  • the solidification form of the TiAl alloys of Examples 1 and 2 was only ⁇ -solidification.
  • the TiAl alloy of Example 3 had a solidification mode of ⁇ solidification + ⁇ solidification.
  • the only solidification mode was gamma solidification.
  • the solidification morphology of the TiAl alloys of Examples 10 to 13 was alpha solidification only.
  • the TiAl alloy of Example 14 had a solidification mode of ⁇ -solidification + ⁇ -solidification.
  • the only solidification mode was gamma solidification.
  • FIG. 11 is a graph showing the solidification morphology of the TiAl alloys of Examples 1 to 9.
  • FIG. 12 is a graph showing the solidification morphology of the TiAl alloys of Examples 10-18.
  • the horizontal axis represents the amount of Zr (atomic %)
  • the vertical axis represents the amount of Al (atomic %).
  • FIG. 11 shows the four points R1, R2, R3, and R4 shown in FIG. 1 and the four points S1, S2, S3, and S4 shown in FIG. were described together.
  • five points T1, T2, T3, T4, and T5 shown in FIG. 3 and four points W1, W2, W3, and W4 shown in FIG. was described together with
  • the solidification morphology of the TiAl alloy tends to change from ⁇ -solidification or ⁇ -solidification + ⁇ -solidification to ⁇ -solidification.
  • the Nb content is 1 atomic %
  • the Zr content is 3 atomic % to 5 atomic %
  • the Al content is 49 atomic % or more and the solidified form is ⁇ Only coagulation occurred.
  • the Nb content is 2 atomic %
  • the Zr content is 2 atomic % to 4 atomic %
  • the Al content is 50 atomic % or more and the solidification form is ⁇ Only coagulation occurred.
  • the solidification morphology of the TiAl alloy tends to change from ⁇ -solidification or ⁇ -solidification + ⁇ -solidification to ⁇ -solidification.
  • the Nb content is 1 atomic % and the Al content is 48 atomic % as shown in FIG.
  • the Zr content was 5 atomic %
  • ⁇ solidification + ⁇ solidification occurred
  • the Zr content was 5 atomic %
  • only ⁇ solidification occurred.
  • the Nb content is 2 atomic % and the Al content is 49 atomic %
  • only ⁇ solidification is performed when the Zr content is 2 atomic %
  • the Zr content is 3 atomic %.
  • the content of Zr was 4 atomic %, only ⁇ solidification occurred.
  • the solidification morphology of the TiAl alloy tends to change from ⁇ -solidification to ⁇ -solidification + ⁇ -solidification or ⁇ -solidification.
  • the Al content is 49 atomic % and the Zr content is 3 atomic %
  • only ⁇ solidification occurs when the Nb content is 1 atomic % as shown in FIG.
  • the Nb content was 2 atomic %, ⁇ -solidification + ⁇ -solidification occurred.
  • the Nb content is 1 atomic %
  • the Al and Zr contents are R1 point (Al: 47 atomic %, Zr: 2 atomic %), R2 point ( Al: 48 atomic %, Zr: 2 atomic %), R3 point (Al: 48 atomic %, Zr: 4 atomic %), R4 point (Al: 47 atomic %, Zr: 5 atomic %) It was found that the coagulation morphology was ⁇ -coagulation only or ⁇ -coagulation + ⁇ -coagulation when the composition range was defined as follows.
  • R3 point (Al: 48 atomic %, Zr: 4 atomic %) is ⁇ solidification + ⁇ solidification
  • R4 point (Al: 47 atomic %, Zr: 5 atomic %) is ⁇ solidification only. is clear. Since the R1 point (Al: 47 atomic %, Zr: 2 atomic %) has a smaller Zr content than the R4 point (Al: 47 atomic %, Zr: 5 atomic %), only ⁇ solidification occurs.
  • Point R2 (Al: 48 atomic %, Zr: 2 atomic %) has a lower Zr content than the point (Al: 48 atomic %, Zr: 3 atomic %) in FIG. Therefore, when the Al and Zr contents are in the composition range surrounded by the four points R1, R2, R3, and R4 shown in FIG. Or it becomes ⁇ coagulation + ⁇ coagulation.
  • the Nb content is 1 atomic %
  • the Al and Zr contents are S1 point (Al: 47 atomic %, Zr: 2 atomic %), S2 point ( Al: 48 atomic %, Zr: 2 atomic %), S3 point (Al: 48 atomic %, Zr: 3 atomic %), S4 point (Al: 47 atomic %, Zr: 5 atomic %) It was found that the coagulation form was only ⁇ coagulation when it was composed in the composition range.
  • the content of Nb is 2 atomic %
  • the content of Al and Zr is T1 point (Al: 47 atomic %, Zr: 2 atomic %), T2 point ( Al: 49 atomic %, Zr: 2 atomic %), T3 point (Al: 49 atomic %, Zr: 3 atomic %), T4 point (Al: 48 atomic %, Zr: 4 atomic %), T5 point (Al: 47 atomic %, Zr: 4 atomic %), it was found that the solidification mode is ⁇ solidification only or ⁇ solidification + ⁇ solidification.
  • T2 point Al: 49 atomic %, Zr: 2 atomic %) and T4 point (Al: 48 atomic %, Zr: 4 atomic %) are only ⁇ solidification
  • T3 point Al: 49 atomic % , Zr: 3 atomic %) are ⁇ -coagulation + ⁇ -coagulation.
  • T1 Al: 47 atomic %, Zr: 2 atomic %)
  • the Al content is smaller than at point T2 (Al: 49 atomic %, Zr: 2 atomic %), so only ⁇ -solidification occurs.
  • the T5 point (Al: 47 atomic %, Zr: 4 atomic %) has a smaller Al content than the T4 point (Al: 48 atomic %, Zr: 4 atomic %), only ⁇ solidification occurs. Therefore, when the Al and Zr contents are in the composition range surrounded by the five points T1, T2, T3, T4, and T5 shown in FIG. ⁇ coagulation only or ⁇ coagulation + ⁇ coagulation.
  • the content of Nb is 2 atomic %
  • the content of Al and Zr is W1 point (Al: 47 atomic %, Zr: 2 atomic %), W2 point ( Al: 49 atomic %, Zr: 2 atomic %), W3 point (Al: 48 atomic %, Zr: 4 atomic %), W4 point (Al: 47 atomic %, Zr: 4 atomic %) It was found that the coagulation form was only ⁇ coagulation when it was composed in the composition range.
  • the W2 point (Al: 49 atomic %, Zr: 2 atomic %) and the W3 point (Al: 48 atomic %, Zr: 4 atomic %) are ⁇ solidification only. Since the W1 point (Al: 47 atomic %, Zr: 2 atomic %) has a smaller Al content than the W2 point (Al: 49 atomic %, Zr: 2 atomic %), only ⁇ solidification occurs. Since the W4 point (Al: 47 atomic %, Zr: 4 atomic %) has a smaller Al content than the W3 point (Al: 48 atomic %, Zr: 4 atomic %), only ⁇ solidification occurs. Therefore, when the Al and Zr contents are in the composition range surrounded by the four points W1, W2, W3, and W4 shown in FIG. become.
  • the Al and Zr contents are the X1 point (Al: 47 atomic %, Zr : 2 atomic %), X2 point (Al: 48 atomic %, Zr: 2 atomic %), X3 point (Al: 48 atomic %, Zr: 4 atomic %), X4 point (Al: 47 atomic %, Zr: 4 atomic %), it was found that the solidification mode is ⁇ -coagulation only or ⁇ -coagulation + ⁇ -coagulation.
  • the Al and Zr contents are the Y1 point (Al: 47 atomic %, Zr : 2 atomic %), Y2 point (Al: 48 atomic %, Zr: 2 atomic %), Y3 point (Al: 48 atomic %, Zr: 3 atomic %), Y4 point (Al: 47.5 atomic %, Zr : 4 atomic %), Y 5 points (Al: 47 atomic %, Zr: 4 atomic %), when the composition range is surrounded by 5 points, the solidification mode may be only ⁇ solidification. all right.
  • the pure titanium sheath was filled with TiAl alloy powder and sealed.
  • the TiAl alloy powder formed from the TiAl alloy of Example 1 was used.
  • the TiAl alloy powder formed from the TiAl alloy of Example 11 was used for the specimen of Example B.
  • a rapidly solidified powder produced by a gas atomization method was used as the TiAl alloy powder formed from the TiAl alloy in Examples 1 and 11, a rapidly solidified powder produced by a gas atomization method was used.
  • the TiAl alloy powder filled in the pure titanium sheath was sealed by electron beam welding after vacuum degassing.
  • the TiAl alloy powder filled in the pure titanium sheath was hot isostatically pressed at 1250°C and 172 MPa for 3 hours. After the hot isostatic pressurization, the pressure was released and the furnace was cooled to 900°C, followed by quenching below 900°C. Rapid cooling from 900° C. was performed by gas fan cooling. In this manner, specimens of Examples A and B were produced.
  • FIG. 13 is a photograph showing the results of metallographic observation of the specimens of Examples A and B with an optical microscope
  • FIG. 13(a) is a photograph of the specimen of Example A
  • FIG. 13(a) is a photograph of the specimen of Example A
  • FIG. and a photograph of a test piece of Example B.
  • the metal structures of the specimens of Examples A and B were composed of fine crystal grains with a crystal grain size of 100 ⁇ m or less.
  • the metal structures of the specimens of Examples A and B are composed of lamellar grains and equiaxed ⁇ grains, and borides having a grain size of 0.1 ⁇ m or less are contained within the equiaxed ⁇ grains. included.
  • the volume ratio of the equiaxed ⁇ grains was 80% by volume or more when the total volume ratio of the lamellar grains and the equiaxed ⁇ grains was 100% by volume. , and the remainder consisted of lamellar grains.
  • the area ratio of each grain was calculated by image processing from information on the contrast of each grain in the metal structure photograph obtained by an electron microscope, and this was used as the volume ratio of each grain. In addition, no segregation of Zr was observed in the metal structures of the specimens of Examples A and B.
  • the specimens of Examples A and B were subjected to a room temperature tensile test.
  • the specimen of Comparative Example A was subjected to a room temperature tensile test.
  • the specimen of Comparative Example A was made of a TiAl alloy containing 48 atomic % Al, 2 atomic % Nb, 2 atomic % Cr, and the balance consisting of Ti and unavoidable impurities.
  • FIG. 14 is a graph showing tensile test results.
  • the strain is plotted on the horizontal axis and the stress is plotted on the vertical axis, showing the stress-strain curve of each specimen.
  • the specimens of Examples A and B were larger than the specimen of Comparative Example A in room temperature tensile breaking strength and room temperature tensile breaking strain.
  • the specimens of Examples A and B had a room temperature tensile breaking strength of 600 MPa or more and a room temperature tensile breaking strain of 1.2% or more.
  • Example A had a room temperature tensile breaking strength of 700 MPa or more, and the specimen of Example B had a room temperature tensile breaking strain of 1.4% or more. From these results, it became clear that the specimens of Examples A and B were excellent in mechanical strength and ductility, and that the mechanical strength and ductility were improved in a well-balanced manner.
  • FIG. 15 is a graph showing creep test results.
  • the horizontal axis is the Larson-Miller parameter P
  • the vertical axis is the specific strength
  • the specimen of Example A is indicated by a square
  • the specimen of Comparative Example A is indicated by x.
  • T is the absolute temperature (K)
  • tr is the time to rupture (h)
  • C is a material constant.
  • the material constant C was set to 20.
  • the specimen of Example A was superior to the specimen of Comparative Example A in creep properties. From these results, it was found that the specimen of Example A was superior to the specimen of Comparative Example A in high-temperature strength characteristics.
  • the present disclosure can improve the mechanical strength and ductility of the TiAl alloy in a well-balanced manner, and is therefore useful for aircraft engine parts, turbine blades of gas turbines for power generation, and the like.

Abstract

This TiAl alloy contains 47–50 at% of Al, 1–2 at% of Nb, 2–5 at% of Zr, and 0.05–0.3 at% of B, with the remainder comprising Ti and unavoidable impurities.

Description

TiAl合金、TiAl合金粉末、TiAl合金部品及びその製造方法TiAl alloy, TiAl alloy powder, TiAl alloy part and method for producing the same
 本開示は、TiAl合金、TiAl合金粉末、TiAl合金部品及びその製造方法に関する。 The present disclosure relates to TiAl alloys, TiAl alloy powders, TiAl alloy parts, and methods of manufacturing the same.
 TiAl(チタンアルミナイド)合金は、TiとAlとの金属間化合物で形成されている合金である。TiAl合金は、耐熱性に優れており、Ni基合金よりも軽量で比強度が大きいことから、タービン翼等の航空機用エンジン部品等に適用されている。このようなTiAl合金には、CrとNbとを含有するTiAl合金が用いられている(特許文献1参照)。 A TiAl (titanium aluminide) alloy is an alloy formed of an intermetallic compound of Ti and Al. TiAl alloys have excellent heat resistance, are lighter in weight and have a higher specific strength than Ni-based alloys, and are therefore applied to aircraft engine parts such as turbine blades. A TiAl alloy containing Cr and Nb is used as such a TiAl alloy (see Patent Document 1).
特開2013-209750号公報JP 2013-209750 A
 ところで、タービン翼等のTiAl合金部品を軽量化するためには、TiAl合金をより高強度化して比強度を大きくすることが求められている。しかし、従来のTiAl合金では、機械的強度と延性とをバランスよく向上させて高強度化することは難しく、延性を大きくすると機械的強度が低下する可能性がある。 By the way, in order to reduce the weight of TiAl alloy parts such as turbine blades, it is required to increase the strength of the TiAl alloy to increase the specific strength. However, with conventional TiAl alloys, it is difficult to improve mechanical strength and ductility in a well-balanced manner to increase strength, and increasing ductility may reduce mechanical strength.
 そこで本開示の目的は、TiAl合金の機械的強度と延性とをバランスよく向上させることが可能なTiAl合金、TiAl合金粉末、TiAl合金部品及びその製造方法を提供することである。 Therefore, an object of the present disclosure is to provide a TiAl alloy, a TiAl alloy powder, a TiAl alloy part, and a method for manufacturing the same that can improve the mechanical strength and ductility of the TiAl alloy in a well-balanced manner.
 本開示に係るTiAl合金は、47原子%以上50原子%以下のAlと、1原子%以上2原子%以下のNbと、2原子%以上5原子%以下のZrと、0.05原子%以上0.3原子%以下のBと、を含有し、残部がTiと不可避的不純物とからなる。 The TiAl alloy according to the present disclosure contains 47 atomic % to 50 atomic % Al, 1 atomic % to 2 atomic % Nb, 2 atomic % to 5 atomic % Zr, and 0.05 atomic % or more 0.3 atomic % or less of B, and the balance consists of Ti and unavoidable impurities.
 本開示に係るTiAl合金において、Alの含有率は、47原子%以上49原子%以下としてもよい。 In the TiAl alloy according to the present disclosure, the Al content may be 47 atomic % or more and 49 atomic % or less.
 本開示に係るTiAl合金において、Nbの含有率は、1原子%であり、Alの含有率は、47原子%以上48原子%以下であり、Zrの含有率は、2原子%以上4原子%以下であってもよい。 In the TiAl alloy according to the present disclosure, the Nb content is 1 atomic%, the Al content is 47 atomic% or more and 48 atomic% or less, and the Zr content is 2 atomic% or more and 4 atomic%. It may be below.
 本開示に係るTiAl合金において、Nbの含有率は、1原子%であり、Alの含有率は、47原子%以上48原子%以下であり、Zrの含有率は、2原子%以上3原子%以下であってもよい。 In the TiAl alloy according to the present disclosure, the Nb content is 1 atomic%, the Al content is 47 atomic% or more and 48 atomic% or less, and the Zr content is 2 atomic% or more and 3 atomic%. It may be below.
 本開示に係るTiAl合金において、Nbの含有率は、2原子%であり、Alの含有率は、47原子%以上49原子%以下であり、Zrの含有率は、2原子%以上3原子%以下であってもよい。 In the TiAl alloy according to the present disclosure, the Nb content is 2 atomic%, the Al content is 47 atomic% or more and 49 atomic% or less, and the Zr content is 2 atomic% or more and 3 atomic%. It may be below.
 本開示に係るTiAl合金において、Nbの含有率は、2原子%であり、Alの含有率は、47原子%以上48原子%以下であり、Zrの含有率は、2原子%以上4原子%以下であってもよい。 In the TiAl alloy according to the present disclosure, the Nb content is 2 atomic%, the Al content is 47 atomic% or more and 48 atomic% or less, and the Zr content is 2 atomic% or more and 4 atomic%. It may be below.
 本開示に係るTiAl合金において、Alの含有率は、47原子%以上48原子%以下であり、Zrの含有率は、2原子%以上4原子%以下であってもよい。 In the TiAl alloy according to the present disclosure, the Al content may be 47 atomic % or more and 48 atomic % or less, and the Zr content may be 2 atomic % or more and 4 atomic % or less.
 本開示に係るTiAl合金において、Alの含有率は、47原子%以上48原子%以下であり、Zrの含有率は、2原子%以上3原子%以下であってもよい。 In the TiAl alloy according to the present disclosure, the Al content may be 47 atomic % or more and 48 atomic % or less, and the Zr content may be 2 atomic % or more and 3 atomic % or less.
 本開示に係るTiAl合金において、室温引張破断強度が600MPa以上であり、室温引張破断歪みが1.2%以上であるとよい。 The TiAl alloy according to the present disclosure preferably has a room temperature tensile strength at break of 600 MPa or more and a room temperature tensile strain at break of 1.2% or more.
 本開示に係るTiAl合金粉末は、上記に記載のTiAl合金で形成されている。 The TiAl alloy powder according to the present disclosure is made of the TiAl alloy described above.
 本開示に係るTiAl合金部品は、上記に記載のTiAl合金で形成されている。 A TiAl alloy component according to the present disclosure is formed of the TiAl alloy described above.
 本開示に係るTiAl合金部品の製造方法は、上記に記載のTiAl合金で形成されるTiAl合金粉末を金属シースに充填してシールするシール工程と、前記金属シースでシールされたTiAl合金粉末を、1200℃以上1300℃以下、150MPa以上で熱間等方圧加圧処理する熱間等方圧加圧工程と、を備える。 A method for manufacturing a TiAl alloy component according to the present disclosure includes a sealing step of filling a metal sheath with the TiAl alloy powder formed of the TiAl alloy described above and sealing the TiAl alloy powder sealed with the metal sheath, and a hot isostatic pressing step of performing hot isostatic pressing at 1200° C. or higher and 1300° C. or lower and 150 MPa or higher.
 上記構成によれば、TiAl合金の機械的強度と延性とをバランスよく向上させることが可能となる。 According to the above configuration, it is possible to improve the mechanical strength and ductility of the TiAl alloy in a well-balanced manner.
本開示の実施形態において、Nbの含有率が1原子%のときのAl及びZrの含有率の関係を示す図である。FIG. 4 is a diagram showing the relationship between the Al and Zr contents when the Nb content is 1 atomic % in the embodiment of the present disclosure; 本開示の実施形態において、Nbの含有率が1原子%のときのAl及びZrの含有率の関係を示す図である。FIG. 4 is a diagram showing the relationship between the Al and Zr contents when the Nb content is 1 atomic % in the embodiment of the present disclosure; 本開示の実施形態において、Nbの含有率が2原子%のときのAl及びZrの含有率の関係を示す図である。FIG. 4 is a diagram showing the relationship between the Al and Zr contents when the Nb content is 2 atomic % in the embodiment of the present disclosure; 本開示の実施形態において、Nbの含有率が2原子%のときのAl及びZrの含有率の関係を示す図である。FIG. 4 is a diagram showing the relationship between the Al and Zr contents when the Nb content is 2 atomic % in the embodiment of the present disclosure; 本開示の実施形態において、Nbの含有率が1原子%以上2原子%以下のときのAl及びZrの含有率の関係を示す図である。FIG. 4 is a diagram showing the relationship between the Al and Zr contents when the Nb content is 1 atomic % or more and 2 atomic % or less in the embodiment of the present disclosure. 本開示の実施形態において、Nbの含有率が1原子%以上2原子%以下のときのAl及びZrの含有率の関係を示す図である。FIG. 4 is a diagram showing the relationship between the Al and Zr contents when the Nb content is 1 atomic % or more and 2 atomic % or less in the embodiment of the present disclosure. 本開示の実施形態において、タービン翼からなるTiAl合金部品の構成を示す図である。1 is a diagram showing the configuration of a TiAl alloy component made up of a turbine blade in an embodiment of the present disclosure; FIG. 本開示の実施形態において、TiAl合金部品の製造方法の構成を示すフローチャートである。1 is a flow chart showing the configuration of a method for manufacturing a TiAl alloy component in an embodiment of the present disclosure; 本開示の実施形態において、実施例1から9のTiAl合金の金属組織観察結果を示す写真である。4 is a photograph showing the results of metallographic observation of TiAl alloys of Examples 1 to 9 in an embodiment of the present disclosure. 本開示の実施形態において、実施例10から18のTiAl合金の金属組織観察結果を示す写真である。FIG. 10 is a photograph showing the results of observing the metallographic structure of TiAl alloys of Examples 10 to 18 in an embodiment of the present disclosure; FIG. 本開示の実施形態において、実施例1から9のTiAl合金の凝固形態を示すグラフである。2 is a graph showing the solidification morphology of TiAl alloys of Examples 1 to 9, in an embodiment of the present disclosure; 本開示の実施形態において、実施例10から18のTiAl合金の凝固形態を示すグラフである。FIG. 4 is a graph showing the solidification morphology of TiAl alloys of Examples 10 to 18, in embodiments of the present disclosure; FIG. 本開示の実施形態において、実施例A、Bの供試体の光学顕微鏡による金属組織観察結果を示す写真である。4 is a photograph showing the results of metallographic observation by an optical microscope of the specimens of Examples A and B in the embodiment of the present disclosure. 本開示の実施形態において、引張試験結果を示すグラフである。4 is a graph showing tensile test results in an embodiment of the present disclosure; 本開示の実施形態において、クリープ試験結果を示すグラフである。4 is a graph showing creep test results in an embodiment of the present disclosure;
 以下に本開示の実施形態について図面を用いて詳細に説明する。本開示の実施形態に係るTiAl(チタンアルミナイド)合金は、47原子%以上50原子%以下のAl(アルミニウム)と、1原子%以上2原子%以下のNb(ニオブ)と、2原子%以上5原子%以下のZr(ジルコニウム)と、0.05原子%以上0.3原子%以下のB(ホウ素)と、を含有し、残部が、Ti(チタン)と不可避的不純物とから構成されている。次に、TiAl合金を構成する各合金成分の組成範囲を限定した理由について説明する。 The embodiments of the present disclosure will be described in detail below with reference to the drawings. The TiAl (titanium aluminide) alloy according to the embodiment of the present disclosure includes 47 atomic % to 50 atomic % Al (aluminum), 1 atomic % to 2 atomic % Nb (niobium), and 2 atomic % to 5 Zr (zirconium) of atomic % or less and B (boron) of 0.05 atomic % or more and 0.3 atomic % or less are contained, and the balance is composed of Ti (titanium) and unavoidable impurities . Next, the reason why the composition range of each alloy component constituting the TiAl alloy is limited will be explained.
 Al(アルミニウム)は、機械的強度と、室温延性等の延性とを向上させる機能を有している。Alの含有率は、47原子%以上50原子%以下である。Alの含有率が47原子%より小さい場合には、Alより密度が大きいTi等の含有率がより大きくなるので比強度が低下する。Alの含有率が50原子%より大きい場合には、延性が低下する。Alの含有率は、47原子%以上49原子%以下としてもよい。これにより、TiAl合金の機械的強度と延性とをより向上させることができる。 Al (aluminum) has the function of improving mechanical strength and ductility such as room temperature ductility. The content of Al is 47 atomic % or more and 50 atomic % or less. When the content of Al is less than 47 atomic %, the content of Ti or the like, which has a higher density than that of Al, increases, resulting in a decrease in specific strength. If the Al content is greater than 50 atomic %, the ductility is lowered. The Al content may be 47 atomic % or more and 49 atomic % or less. This can further improve the mechanical strength and ductility of the TiAl alloy.
 Nb(ニオブ)は、耐酸化性と機械的強度とを向上させる機能を有している。Nbの含有率は、1原子%以上2原子%以下である。Nbの含有率が、1原子%より小さい場合には、耐酸化性と高温強度とが低下する可能性がある。Nbの含有率が2原子%より大きい場合には、Nbの密度はAl、Tiの密度より大きいので、比強度が低下する。 Nb (niobium) has the function of improving oxidation resistance and mechanical strength. The content of Nb is 1 atomic % or more and 2 atomic % or less. If the Nb content is less than 1 atomic %, the oxidation resistance and high-temperature strength may deteriorate. When the Nb content is more than 2 atomic %, the density of Nb is higher than the densities of Al and Ti, so the specific strength is lowered.
 Zr(ジルコニウム)は、耐酸化性と機械的強度とを向上させる機能を有している。Zrは、γ相を安定化させる元素であり、室温延性等の延性向上に寄与する。またZrは、拡散速度を低下させることでクリープ強度の向上に寄与する。Zrの含有率は、2原子%以上5原子%以下である。Zrの含有率が2原子%より小さい場合には、耐酸化性、室温延性等の延性、高温強度等の機械的強度が低下する可能性がある。Zrの含有率が5原子%より大きい場合には、偏析が生じる場合がある。Zrの偏析が生じると、機械的強度や延性が低下する可能性がある。 Zr (zirconium) has the function of improving oxidation resistance and mechanical strength. Zr is an element that stabilizes the γ phase and contributes to improving ductility such as room temperature ductility. Zr also contributes to the improvement of creep strength by reducing the diffusion rate. The content of Zr is 2 atomic % or more and 5 atomic % or less. If the Zr content is less than 2 atomic %, oxidation resistance, ductility such as room-temperature ductility, and mechanical strength such as high-temperature strength may decrease. If the Zr content is greater than 5 atomic %, segregation may occur. The occurrence of Zr segregation may reduce the mechanical strength and ductility.
 B(ホウ素)は、結晶粒を微細化することにより、室温延性等の延性を高める機能を有している。Bの含有率は、0.05原子%以上0.3原子%以下である。Bの含有率が0.05原子%より小さくなると、結晶粒が粗大化して延性が低下する可能性がある。Bの含有率が0.3原子%より大きくなると、耐衝撃特性が低下する場合がある。Bの含有率を0.05原子%以上0.3原子%以下とすることにより、結晶粒径が100μm以下の微細な結晶粒で構成されるので、延性を向上させることができる。 B (boron) has the function of increasing ductility such as room temperature ductility by refining crystal grains. The content of B is 0.05 atomic % or more and 0.3 atomic % or less. If the B content is less than 0.05 atomic %, crystal grains may become coarse and ductility may decrease. If the B content exceeds 0.3 atomic %, the impact resistance may deteriorate. By setting the B content to 0.05 atomic % or more and 0.3 atomic % or less, the steel is composed of fine crystal grains having a crystal grain size of 100 μm or less, so that ductility can be improved.
 Bは、熱処理等により結晶粒内に微細な硼化物を析出させて、機械的強度を向上させる機能を有している。微細な硼化物は、粒径が0.1μm以下のものを含んで形成されている。微細な硼化物は、TiB、TiB等で構成されている。結晶粒内に微細な硼化物が析出することにより、引張強度、疲労強度、クリープ強度等の機械的強度を向上させることができる。 B has the function of precipitating fine borides in crystal grains by heat treatment or the like to improve the mechanical strength. Fine borides are formed including those having a particle size of 0.1 μm or less. Fine borides consist of TiB, TiB2, and so on . Precipitation of fine borides in crystal grains can improve mechanical strength such as tensile strength, fatigue strength, and creep strength.
 TiAl合金の残部は、Tiと不可避的不純物とから構成されている。不可避的不純物とは、意図的に添加しなくても混入する可能性がある不純物である。TiAl合金は、Cr(クロム)を含有していないので、機械的強度の低下を抑制できる。TiAl合金は、V(バナジウム)を含有していないので、機械的強度の低下や耐酸化性の低下を抑制できる。TiAl合金は、Mo(モリブデン)を含有していないので比強度の低下を抑制できる。 The balance of the TiAl alloy is composed of Ti and unavoidable impurities. An unavoidable impurity is an impurity that may be mixed even if it is not added intentionally. Since the TiAl alloy does not contain Cr (chromium), it is possible to suppress a decrease in mechanical strength. Since the TiAl alloy does not contain V (vanadium), it is possible to suppress deterioration in mechanical strength and oxidation resistance. Since the TiAl alloy does not contain Mo (molybdenum), a decrease in specific strength can be suppressed.
 次に、TiAl合金の凝固形態について説明する。TiAl合金の凝固形態は、Al、Zr及びNbの含有率と関係している。Al、Zr及びNbの含有率を変えることにより、TiAl合金の凝固形態がα凝固、β凝固、γ凝固、α凝固+γ凝固に変化する。α凝固は、TiAl合金の凝固過程がα単相領域を通る凝固形態である。β凝固は、TiAl合金の凝固過程がβ単相領域を通る凝固形態である。γ凝固は、TiAl合金の凝固過程がγ単相領域を通る凝固形態である。α凝固+γ凝固は、TiAl合金の凝固過程がα+γ2相領域を通る凝固形態である。γ凝固の場合には、柱状の粗大な結晶粒が形成されるので、金属組織の異方性が強くなる。一方、α凝固やβ凝固の場合には、等軸状の結晶粒が形成されるので、金属組織の等方性が強くなり、金属組織の異方性が弱くなる。α凝固+γ凝固の場合には、等軸状の結晶粒と、柱状の結晶粒とが形成されるので、α凝固の金属組織と、γ凝固の金属組織との間の中間の金属組織になる。なお、Bは、結晶粒内に微細な硼化物を析出するので、TiAl合金の凝固形態には殆ど影響を及ぼさない。 Next, the solidification morphology of the TiAl alloy will be explained. The solidification morphology of TiAl alloys is related to the Al, Zr and Nb contents. By changing the contents of Al, Zr and Nb, the solidification mode of the TiAl alloy changes to α solidification, β solidification, γ solidification, and α solidification + γ solidification. Alpha solidification is a solidification morphology in which the solidification process of a TiAl alloy passes through the alpha single phase region. β-solidification is a solidification morphology in which the solidification process of TiAl alloys passes through the β-single-phase region. γ solidification is a form of solidification in which the solidification process of TiAl alloys passes through a γ single phase region. α-solidification + γ-solidification is a solidification mode in which the solidification process of the TiAl alloy passes through the α+γ two-phase region. In the case of γ solidification, columnar coarse crystal grains are formed, so the anisotropy of the metal structure becomes stronger. On the other hand, in the case of α solidification or β solidification, since equiaxed crystal grains are formed, the isotropy of the metal structure becomes stronger and the anisotropy of the metal structure becomes weaker. In the case of α solidification + γ solidification, equiaxed crystal grains and columnar crystal grains are formed. Become. Since B precipitates fine borides in crystal grains, it hardly affects the solidification morphology of the TiAl alloy.
 Alの含有率がより大きくなると、TiAl合金の凝固形態がγ凝固になり易くなる。Alの含有率がより小さくなると、TiAl合金の凝固形態が、α凝固+γ凝固や、α凝固またはβ凝固になり易くなる。Zrの含有率がより大きくなると、TiAl合金の凝固形態がγ凝固になり易くなる。Zrの含有率がより小さくなると、TiAl合金の凝固形態が、α凝固+γ凝固や、α凝固またはβ凝固になり易くなる。Nbの含有率がより大きくなると、TiAl合金の凝固形態が、α凝固+γ凝固や、α凝固またはβ凝固になり易くなる。Nbの含有率がより小さくなると、TiAl合金の凝固形態がγ凝固になり易くなる。 As the Al content increases, the solidification mode of the TiAl alloy tends to be γ-solidification. As the Al content becomes smaller, the solidification mode of the TiAl alloy tends to be α-solidification+γ-solidification, α-solidification or β-solidification. As the Zr content increases, the solidification morphology of the TiAl alloy tends to be gamma solidification. As the Zr content becomes smaller, the solidification morphology of the TiAl alloy tends to be α-solidification+γ-solidification, α-solidification or β-solidification. As the Nb content increases, the solidification mode of the TiAl alloy tends to be α-solidification+γ-solidification, α-solidification or β-solidification. As the Nb content becomes smaller, the solidification morphology of the TiAl alloy tends to be gamma solidification.
 図1は、Nbの含有率が1原子%のときのAl及びZrの含有率の関係を示す図である。TiAl合金は、Nbの含有率が1原子%であり、Al及びZrの含有率が、図1に示すR1点(Al:47原子%、Zr:2原子%)、R2点(Al:48原子%、Zr:2原子%)、R3点(Al:48原子%、Zr:4原子%)、R4点(Al:47原子%、Zr:5原子%)の4点で囲まれた組成範囲で構成されていてもよい。すなわちTiAl合金は、1原子%のNbと、0.05原子%以上0.3原子%以下のBと、図1に示すR1点、R2点、R3点、R4点の4点で囲まれた組成範囲からなるAl及びZrと、を含有し、残部が、Tiと不可避的不純物とから構成されていてもよい。TiAl合金がこの合金組成で構成されている場合には、凝固形態をα凝固のみまたはα凝固+γ凝固にすることができる。これにより凝固形態がγ凝固のみからなる場合よりも、金属組織の異方性が抑制される。そして金属組織の異方性が抑制されることにより、TiAl合金の機械特性等が、より等方性になる。例えば、このようなTiAl合金は、1原子%のNbと、0.05原子%以上0.3原子%以下のBと、47原子%以上48原子%以下のAlと、2原子%以上4原子%以下のZrと、を含有し、残部が、Tiと不可避的不純物とから構成されていてもよい。 FIG. 1 is a diagram showing the relationship between the Al and Zr contents when the Nb content is 1 atomic %. The TiAl alloy has a Nb content of 1 atomic %, and an Al and Zr content of R1 point (Al: 47 atomic %, Zr: 2 atomic %) and R2 point (Al: 48 atomic %) shown in FIG. %, Zr: 2 atomic %), R3 point (Al: 48 atomic %, Zr: 4 atomic %), R4 point (Al: 47 atomic %, Zr: 5 atomic %). may be configured. That is, the TiAl alloy is surrounded by 1 atomic % of Nb, 0.05 atomic % or more and 0.3 atomic % or less of B, and the four points R1, R2, R3, and R4 shown in FIG. Al and Zr having a composition range may be contained, and the balance may be composed of Ti and unavoidable impurities. When the TiAl alloy is composed of this alloy composition, the solidification mode can be α-solidification only or α-solidification + γ-solidification. As a result, the anisotropy of the metal structure is suppressed more than when the solidification mode consists only of γ solidification. By suppressing the anisotropy of the metal structure, the mechanical properties and the like of the TiAl alloy become more isotropic. For example, such a TiAl alloy contains 1 atomic percent Nb, 0.05 atomic percent to 0.3 atomic percent B, 47 atomic percent to 48 atomic percent Al, and 2 atomic percent to 4 atomic percent % or less Zr, and the balance may be composed of Ti and unavoidable impurities.
 図2は、Nbの含有率が1原子%のときのAl及びZrの含有率の関係を示す図である。TiAl合金は、Nbの含有率が1原子%であり、Al及びZrの含有率が、図2に示すS1点(Al:47原子%、Zr:2原子%)、S2点(Al:48原子%、Zr:2原子%)、S3点(Al:48原子%、Zr:3原子%)、S4点(Al:47原子%、Zr:5原子%)の4点で囲まれた組成範囲で構成されていてもよい。すなわちTiAl合金は、1原子%のNbと、0.05原子%以上0.3原子%以下のBと、図2に示すS1点、S2点、S3点、S4点の4点で囲まれた組成範囲からなるAl及びZrと、を含有し、残部が、Tiと不可避的不純物とから構成されていてもよい。TiAl合金がこの合金組成で構成されている場合には、凝固形態をα凝固のみにすることができる。これにより凝固形態にγ凝固が含まれていないので、金属組織の異方性が更に抑制される。そして金属組織の異方性が更に抑制されることにより、TiAl合金の機械特性等が、更に等方性になる。例えば、このようなTiAl合金は、1原子%のNbと、0.05原子%以上0.3原子%以下のBと、47原子%以上48原子%以下のAlと、2原子%以上3原子%以下のZrと、を含有し、残部が、Tiと不可避的不純物とから構成されていてもよい。 FIG. 2 is a diagram showing the relationship between the Al and Zr contents when the Nb content is 1 atomic %. The TiAl alloy has a Nb content of 1 atomic %, and an Al and Zr content of point S1 (Al: 47 atomic %, Zr: 2 atomic %) and point S2 (Al: 48 atomic %) shown in FIG. %, Zr: 2 atomic %), S3 point (Al: 48 atomic %, Zr: 3 atomic %), S4 point (Al: 47 atomic %, Zr: 5 atomic %). may be configured. That is, the TiAl alloy is surrounded by 1 atomic % of Nb, 0.05 atomic % or more and 0.3 atomic % or less of B, and the four points S1, S2, S3, and S4 shown in FIG. Al and Zr having a composition range may be contained, and the balance may be composed of Ti and unavoidable impurities. When the TiAl alloy is composed of this alloy composition, the solidification mode can be alpha solidification only. This further suppresses the anisotropy of the metal structure because the solidification morphology does not include gamma solidification. By further suppressing the anisotropy of the metal structure, the mechanical properties of the TiAl alloy become more isotropic. For example, such a TiAl alloy contains 1 atomic percent Nb, 0.05 atomic percent to 0.3 atomic percent B, 47 atomic percent to 48 atomic percent Al, and 2 atomic percent to 3 atomic percent % or less Zr, and the balance may be composed of Ti and unavoidable impurities.
 図3は、Nbの含有率が2原子%のときのAl及びZrの含有率の関係を示す図である。TiAl合金は、Nbの含有率が2原子%であり、Al及びZrの含有率が、図3に示すT1点(Al:47原子%、Zr:2原子%)、T2点(Al:49原子%、Zr:2原子%)、T3点(Al:49原子%、Zr:3原子%)、T4点(Al:48原子%、Zr:4原子%)、T5点(Al:47原子%、Zr:4原子%)の5点で囲まれた組成範囲で構成されていてもよい。すなわちTiAl合金は、2原子%のNbと、0.05原子%以上0.3原子%以下のBと、図3に示すT1点、T2点、T3点、T4点、T5点の5点で囲まれた組成範囲からなるAl及びZrと、を含有し、残部が、Tiと不可避的不純物とから構成されていてもよい。TiAl合金がこの合金組成で構成されている場合には、凝固形態をα凝固のみまたはα凝固+γ凝固にすることができる。これにより凝固形態がγ凝固のみからなる場合よりも、金属組織の異方性が抑制される。そして金属組織の異方性が抑制されることにより、TiAl合金の機械特性等が、より等方性になる。例えば、このようなTiAl合金は、2原子%のNbと、0.05原子%以上0.3原子%以下のBと、47原子%以上49原子%以下のAlと、2原子%以上3原子%以下のZrと、を含有し、残部が、Tiと不可避的不純物とから構成されていてもよい。また、このようなTiAl合金は、2原子%のNbと、0.05原子%以上0.3原子%以下のBと、47原子%以上48原子%以下のAlと、2原子%以上4原子%以下のZrと、を含有し、残部が、Tiと不可避的不純物とから構成されていてもよい。 FIG. 3 is a diagram showing the relationship between the Al and Zr contents when the Nb content is 2 atomic %. The TiAl alloy has a Nb content of 2 atomic %, and an Al and Zr content of T1 point (Al: 47 atomic %, Zr: 2 atomic %) and T2 point (Al: 49 atomic %) shown in FIG. %, Zr: 2 atomic %), T3 point (Al: 49 atomic %, Zr: 3 atomic %), T4 point (Al: 48 atomic %, Zr: 4 atomic %), T5 point (Al: 47 atomic %, Zr: 4 atomic %). That is, the TiAl alloy has 2 atomic % of Nb, 0.05 atomic % or more and 0.3 atomic % or less of B, and five points of T1 point, T2 point, T3 point, T4 point, and T5 point shown in FIG. Al and Zr from the enclosed composition range may be contained, and the balance may be composed of Ti and unavoidable impurities. When the TiAl alloy is composed of this alloy composition, the solidification mode can be α-solidification only or α-solidification + γ-solidification. As a result, the anisotropy of the metal structure is suppressed more than when the solidification mode consists only of γ solidification. By suppressing the anisotropy of the metal structure, the mechanical properties and the like of the TiAl alloy become more isotropic. For example, such a TiAl alloy contains 2 atomic percent Nb, 0.05 atomic percent to 0.3 atomic percent B, 47 atomic percent to 49 atomic percent Al, and 2 atomic percent to 3 atomic percent % or less Zr, and the balance may be composed of Ti and unavoidable impurities. In addition, such a TiAl alloy contains 2 atomic % Nb, 0.05 atomic % to 0.3 atomic % B, 47 atomic % to 48 atomic % Al, and 2 atomic % to 4 atomic % % or less Zr, and the balance may be composed of Ti and unavoidable impurities.
 図4は、Nbの含有率が2原子%のときのAl及びZrの含有率の関係を示す図である。TiAl合金は、Nbの含有率が2原子%であり、Al及びZrの含有率が、図4に示すW1点(Al:47原子%、Zr:2原子%)、W2点(Al:49原子%、Zr:2原子%)、W3点(Al:48原子%、Zr:4原子%)、W4点(Al:47原子%、Zr:4原子%)の4点で囲まれた組成範囲で構成されていてもよい。すなわちTiAl合金は、2原子%のNbと、0.05原子%以上0.3原子%以下のBと、図4に示すW1点、W2点、W3点、W4点の4点で囲まれた組成範囲からなるAl及びZrと、を含有し、残部が、Tiと不可避的不純物とから構成されていてもよい。TiAl合金がこの合金組成で構成されている場合には、凝固形態をα凝固のみにすることができる。これにより凝固形態にγ凝固が含まれていないので、金属組織の異方性が更に抑制される。そして金属組織の異方性が更に抑制されることにより、TiAl合金の機械特性等が、更に等方性になる。例えば、このようなTiAl合金は、2原子%のNbと、0.05原子%以上0.3原子%以下のBと、47原子%以上48原子%以下のAlと、2原子%以上4原子%以下のZrと、を含有し、残部が、Tiと不可避的不純物とから構成されていてもよい。 FIG. 4 is a diagram showing the relationship between the Al and Zr contents when the Nb content is 2 atomic %. The TiAl alloy has a Nb content of 2 atomic %, and an Al and Zr content of W1 point (Al: 47 atomic %, Zr: 2 atomic %) and W2 point (Al: 49 atomic %) shown in FIG. %, Zr: 2 atomic %), W3 point (Al: 48 atomic %, Zr: 4 atomic %), W4 point (Al: 47 atomic %, Zr: 4 atomic %). may be configured. That is, the TiAl alloy is surrounded by 2 atomic % Nb, 0.05 atomic % or more and 0.3 atomic % or less B, and four points W1, W2, W3, and W4 shown in FIG. Al and Zr having a composition range may be contained, and the balance may be composed of Ti and unavoidable impurities. When the TiAl alloy is composed of this alloy composition, the solidification mode can be alpha solidification only. This further suppresses the anisotropy of the metal structure because the solidification morphology does not include gamma solidification. By further suppressing the anisotropy of the metal structure, the mechanical properties of the TiAl alloy become more isotropic. For example, such a TiAl alloy contains 2 atomic percent Nb, 0.05 atomic percent to 0.3 atomic percent B, 47 atomic percent to 48 atomic percent Al, and 2 atomic percent to 4 atomic percent % or less Zr, and the balance may be composed of Ti and unavoidable impurities.
 図5は、Nbの含有率が1原子%以上2原子%以下のときのAl及びZrの含有率の関係を示す図である。TiAl合金は、Nbの含有率が1原子%以上2原子%以下であるとき、Al及びZrの含有率が、図5に示すX1点(Al:47原子%、Zr:2原子%)、X2点(Al:48原子%、Zr:2原子%)、X3点(Al:48原子%、Zr:4原子%)、X4点(Al:47原子%、Zr:4原子%)の4点で囲まれた組成範囲で構成されていてもよい。すなわちTiAl合金は、1原子%以上2原子%以下のNbと、0.05原子%以上0.3原子%以下のBと、図5に示すX1点、X2点、X3点、X4点の4点で囲まれた組成範囲からなるAl及びZrと、を含有し、残部が、Tiと不可避的不純物とから構成されていてもよい。 FIG. 5 is a diagram showing the relationship between the Al and Zr contents when the Nb content is 1 atomic % or more and 2 atomic % or less. In the TiAl alloy, when the Nb content is 1 atomic % or more and 2 atomic % or less, the Al and Zr contents are X1 point (Al: 47 atomic %, Zr: 2 atomic %) and X2 shown in FIG. At four points: point (Al: 48 atomic %, Zr: 2 atomic %), X3 point (Al: 48 atomic %, Zr: 4 atomic %), X4 point (Al: 47 atomic %, Zr: 4 atomic %) It may consist of the enclosed composition range. That is, the TiAl alloy contains 1 atomic % or more and 2 atomic % or less of Nb, 0.05 atomic % or more and 0.3 atomic % or less of B, and 4 points of X1 point, X2 point, X3 point, and X4 point shown in FIG. Al and Zr in the composition range enclosed by dots may be contained, and the balance may be composed of Ti and unavoidable impurities.
 なお、図5に示すX1点、X2点、X3点、X4点の4点で囲まれた組成範囲は、図1に示すR1点、R2点、R3点、R4点の4点で囲まれた組成範囲と、図3に示すT1点、T2点、T3点、T4点、T5点の5点で囲まれた組成範囲との重なった組成範囲を示している。TiAl合金がこの合金組成で構成されている場合には、凝固形態をα凝固のみまたはα凝固+γ凝固にすることができる。これにより凝固形態がγ凝固のみからなる場合よりも、金属組織の異方性が抑制される。そして金属組織の異方性が抑制されることにより、TiAl合金の機械特性等が、より等方性になる。例えば、このようなTiAl合金は、1原子%以上2原子%以下のNbと、0.05原子%以上0.3原子%以下のBと、47原子%以上48原子%以下のAlと、2原子%以上4原子%以下のZrと、を含有し、残部が、Tiと不可避的不純物とから構成されていてもよい。 The composition range surrounded by the four points X1, X2, X3, and X4 shown in FIG. 5 is surrounded by the four points R1, R2, R3, and R4 shown in FIG. The composition range overlaps with the composition range surrounded by five points T1, T2, T3, T4, and T5 shown in FIG. When the TiAl alloy is composed of this alloy composition, the solidification mode can be α-solidification only or α-solidification + γ-solidification. As a result, the anisotropy of the metal structure is suppressed more than when the solidification mode consists only of γ solidification. By suppressing the anisotropy of the metal structure, the mechanical properties and the like of the TiAl alloy become more isotropic. For example, such a TiAl alloy contains 1 atomic % to 2 atomic % Nb, 0.05 atomic % to 0.3 atomic % B, 47 atomic % to 48 atomic % Al, 2 and Zr in an amount of atomic % to 4 atomic %, and the balance may be composed of Ti and unavoidable impurities.
 図6は、Nbの含有率が1原子%以上2原子%以下のときのAl及びZrの含有率の関係を示す図である。TiAl合金は、Nbの含有率が1原子%以上2原子%以下であるとき、Al及びZrの含有率が、図6に示すY1点(Al:47原子%、Zr:2原子%)、Y2点(Al:48原子%、Zr:2原子%)、Y3点(Al:48原子%、Zr:3原子%)、Y4点(Al:47.5原子%、Zr:4原子%)、Y5点(Al:47原子%、Zr:4原子%)、の5点で囲まれた組成範囲で構成されていてもよい。すなわちTiAl合金は、1原子%以上2原子%以下のNbと、0.05原子%以上0.3原子%以下のBと、図6に示すY1点、Y2点、Y3点、Y4点、Y5点の5点で囲まれた組成範囲からなるAl及びZrと、を含有し、残部が、Tiと不可避的不純物とから構成されていてもよい。 FIG. 6 is a diagram showing the relationship between the Al and Zr contents when the Nb content is 1 atomic % or more and 2 atomic % or less. In the TiAl alloy, when the Nb content is 1 atomic % or more and 2 atomic % or less, the Al and Zr contents are Y1 point (Al: 47 atomic %, Zr: 2 atomic %), Y2 Point (Al: 48 atomic %, Zr: 2 atomic %), Y3 point (Al: 48 atomic %, Zr: 3 atomic %), Y4 point (Al: 47.5 atomic %, Zr: 4 atomic %), Y5 It may be configured in a composition range surrounded by five points (Al: 47 atomic %, Zr: 4 atomic %). That is, the TiAl alloy contains Nb of 1 atomic % or more and 2 atomic % or less, B of 0.05 atomic % or more and 0.3 atomic % or less, and Y1 point, Y2 point, Y3 point, Y4 point, Y5 point shown in FIG. It may contain Al and Zr in a composition range surrounded by five points, and the balance may be composed of Ti and unavoidable impurities.
 なお、図6に示すY1点、Y2点、Y3点、Y4点、Y5点の5点で囲まれた組成範囲は、図2に示すS1点、S2点、S3点、S4点の4点で囲まれた組成範囲と、図4に示すW1点、W2点、W3点、W4点の4点で囲まれた組成範囲との重なった組成範囲を示している。TiAl合金がこの合金組成で構成されている場合には、凝固形態をα凝固のみにすることができる。これにより凝固形態にγ凝固が含まれていないので、金属組織の異方性が更に抑制される。そして金属組織の異方性が更に抑制されることにより、TiAl合金の機械特性等が、更に等方性になる。例えば、このようなTiAl合金は、1原子%以上2原子%以下のNbと、0.05原子%以上0.3原子%以下のBと、47原子%以上48原子%以下のAlと、2原子%以上3原子%以下のZrと、を含有し、残部が、Tiと不可避的不純物とから構成されていてもよい。 The composition range surrounded by the five points Y1, Y2, Y3, Y4, and Y5 shown in FIG. 6 is the four points S1, S2, S3, and S4 shown in FIG. The enclosed composition range and the composition range enclosed by four points of W1 point, W2 point, W3 point, and W4 point shown in FIG. 4 overlap each other. When the TiAl alloy is composed of this alloy composition, the solidification mode can be alpha solidification only. This further suppresses the anisotropy of the metal structure because the solidification morphology does not include gamma solidification. By further suppressing the anisotropy of the metal structure, the mechanical properties of the TiAl alloy become more isotropic. For example, such a TiAl alloy contains 1 atomic % to 2 atomic % Nb, 0.05 atomic % to 0.3 atomic % B, 47 atomic % to 48 atomic % Al, 2 and Zr in an amount of atomic % or more and 3 atomic % or less, and the balance may be composed of Ti and unavoidable impurities.
 次に、TiAl合金の金属組織について説明する。TiAl合金の金属組織は、結晶粒径が100μm以下の微細な結晶粒で構成されている。これにより、TiAl合金の延性を向上させることができる。また、TiAl合金の金属組織は、ラメラ粒と、γ粒とから構成されており、Zrの偏析がない。ラメラ粒は、TiAlからなるα相と、TiAlからなるγ相とが層状に規則的に配列して形成されている。γ粒は、TiAlで形成されている。γ粒は、例えば、等軸状のγ粒である。γ粒の粒内には、粒径が0.1μm以下の硼化物を含んでいる。硼化物は、TiB、TiB等で針状等に構成されている。 Next, the metallographic structure of the TiAl alloy will be described. The metal structure of the TiAl alloy is composed of fine crystal grains with a crystal grain size of 100 μm or less. This can improve the ductility of the TiAl alloy. Moreover, the metal structure of the TiAl alloy is composed of lamellar grains and γ grains, and there is no segregation of Zr. Lamellar grains are formed by regularly arranging an α 2 phase composed of Ti 3 Al and a γ phase composed of TiAl in layers. The γ grains are made of TiAl. The γ-grains are, for example, equiaxed γ-grains. The grains of the γ grains contain borides with a grain size of 0.1 μm or less. The boride is composed of TiB, TiB2, etc., and is needle - like.
 ラメラ粒は、引張強度、疲労強度、クリープ強度等の機械的強度を向上させることができる。γ粒は、延性と高温強度とを向上させることができる。粒径が0.1μm以下の微細な硼化物は、機械的強度を向上させることができる。TiAl合金の金属組織は、ラメラ粒とγ粒との合計の体積率を100体積%としたとき、γ粒の体積率が80体積%以上であり、残部がラメラ粒であるとよい。TiAl合金の金属組織がγ粒を主体として構成されるので、機械的強度と延性とをバランスよく向上させることができる。また、TiAl合金の金属組織は、Zrの偏析がないので、機械的強度や延性の低下を抑制することができる。 Lamellar grains can improve mechanical strength such as tensile strength, fatigue strength, and creep strength. γ grains can improve ductility and high temperature strength. Fine borides having a particle size of 0.1 μm or less can improve mechanical strength. In the metal structure of the TiAl alloy, when the total volume ratio of lamellar grains and γ grains is 100% by volume, the volume ratio of γ grains is preferably 80% by volume or more, and the remainder is lamellar grains. Since the metal structure of the TiAl alloy is mainly composed of γ grains, it is possible to improve mechanical strength and ductility in a well-balanced manner. In addition, since the metal structure of the TiAl alloy does not have Zr segregation, it is possible to suppress deterioration in mechanical strength and ductility.
 次に、本開示の実施形態に係るTiAl合金の機械的特性について説明する。TiAl合金の室温における機械的特性は、JIS、ASTM等に準拠して引張試験を行ったとき、室温引張破断強度が600MPa以上であり、室温引張破断歪みが1.2%以上とすることができる。このように本開示の実施形態に係るTiAl合金によれば、機械的強度と延性とをバランスよく向上させることが可能となる。 Next, the mechanical properties of the TiAl alloy according to the embodiment of the present disclosure will be explained. As for the mechanical properties at room temperature of the TiAl alloy, when a tensile test is performed in accordance with JIS, ASTM, etc., the room temperature tensile breaking strength is 600 MPa or more, and the room temperature tensile breaking strain is 1.2% or more. . Thus, according to the TiAl alloy according to the embodiment of the present disclosure, it is possible to improve mechanical strength and ductility in a well-balanced manner.
 次に、本開示の実施形態に係るTiAl合金を用いたTiAl合金部品について説明する。TiAl合金部品は、航空機エンジン部品や発電用ガスタービンのタービン翼等への適用が可能である。図7は、タービン翼からなるTiAl合金部品10の構成を示す図である。上記のTiAl合金は高温強度等の機械的強度が大きいので、TiAl合金部品10の耐熱性を向上させることができる。また、上記のTiAl合金は室温延性等の延性に優れているので、TiAl合金部品10の組立てや組付けをする場合でも、TiAl合金部品10の破損を抑制できる。なおTiAl合金部品は、航空機エンジン部品に限定されず、例えば、過給機用タービンホイール等の過給機部品、自動車エンジンバルブ等の車両用部品等であってもよい。 Next, a TiAl alloy part using a TiAl alloy according to an embodiment of the present disclosure will be described. TiAl alloy parts can be applied to aircraft engine parts, turbine blades of gas turbines for power generation, and the like. FIG. 7 is a diagram showing the configuration of a TiAl alloy component 10 that is a turbine blade. Since the TiAl alloy described above has high mechanical strength such as high-temperature strength, the heat resistance of the TiAl alloy component 10 can be improved. In addition, since the TiAl alloy described above is excellent in ductility such as room temperature ductility, even when the TiAl alloy component 10 is assembled or assembled, damage to the TiAl alloy component 10 can be suppressed. The TiAl alloy parts are not limited to aircraft engine parts, and may be, for example, turbocharger parts such as turbocharger turbine wheels, vehicle parts such as automobile engine valves, and the like.
 TiAl合金部品は、上記のTiAl合金を溶解して鋳造することができる。TiAl合金部品は、上記のTiAl合金を真空誘導炉等で溶解して鋳造することが可能である。鋳造には、一般的な金属材料の鋳造で用いられている鋳造装置を使用することができる。 TiAl alloy parts can be cast by melting the above TiAl alloy. TiAl alloy parts can be cast by melting the above TiAl alloy in a vacuum induction furnace or the like. For casting, a casting apparatus used for casting general metal materials can be used.
 TiAl合金部品は、上記のTiAl合金で形成されるTiAl合金粉末を原料粉末に用いて、金属粉末射出成形法(MIM法)や熱間等方圧加圧法(HIP法)等により粉末成形してもよい。TiAl合金粉末は、上記のTiAl合金で形成されており、焼成合成法、メカニカルアロイング法、プラズマ回転電極法、アトマイズ法(水アトマイズ法、ガスアトマイズ法)等により製造可能である。TiAl合金粉末は、急冷凝固粉末とするとよい。急冷凝固粉末は、合金液滴を急冷凝固して製造されるので、TiAl合金中に含まれるZrの偏析を更に抑制することができる。 The TiAl alloy parts are formed by powder compacting by metal powder injection molding (MIM method), hot isostatic pressing (HIP method), or the like, using TiAl alloy powder formed from the above TiAl alloy as raw material powder. good too. The TiAl alloy powder is formed of the TiAl alloy described above, and can be produced by a firing synthesis method, a mechanical alloying method, a plasma rotating electrode method, an atomizing method (water atomizing method, gas atomizing method), or the like. The TiAl alloy powder is preferably a rapidly solidified powder. Since the rapidly solidified powder is produced by rapidly solidifying alloy droplets, segregation of Zr contained in the TiAl alloy can be further suppressed.
 次に、例として、熱間等方圧加圧法(HIP法)によりTiAl合金部品を製造する方法について説明する。図8は、TiAl合金部品の製造方法の構成を示すフローチャートである。TiAl合金部品の製造方法は、シール工程(S10)と、熱間等方圧加圧工程(S12)と、を備えている。 Next, as an example, a method for manufacturing a TiAl alloy part by hot isostatic pressing (HIP method) will be described. FIG. 8 is a flow chart showing the configuration of a method for manufacturing a TiAl alloy component. The method for manufacturing a TiAl alloy component includes a sealing step (S10) and a hot isostatic pressing step (S12).
 シール工程(S10)は、上記のTiAl合金で形成されるTiAl合金粉末を金属シースに充填してシールする工程である。原料粉末には、上記のTiAl合金で形成されるTiAl合金粉末が用いられる。TiAl合金粉末には、ガスアトマイズ法等により製造された急冷凝固粉末を用いるとよい。TiAl合金粉末は、金属シースに充填されてシールされる。金属シースには、純チタンで形成されたチタンシースを用いるとよい。チタンシースの厚みは、例えば、1mmとするとよい。金属シースに充填されたTiAl合金粉末は、真空脱気した後に、電子ビーム溶接等でシールされる。 The sealing step (S10) is a step of filling the metal sheath with the TiAl alloy powder formed of the TiAl alloy described above and sealing. TiAl alloy powder made of the TiAl alloy described above is used as the raw material powder. As the TiAl alloy powder, it is preferable to use a rapidly solidified powder produced by a gas atomization method or the like. The TiAl alloy powder is packed in a metal sheath and sealed. A titanium sheath made of pure titanium is preferably used as the metal sheath. The thickness of the titanium sheath is preferably 1 mm, for example. The TiAl alloy powder filled in the metal sheath is sealed by electron beam welding or the like after vacuum degassing.
 熱間等方圧加圧工程(S12)は、金属シースに充填されたTiAl合金粉末を、1200℃以上1300℃以下、150MPa以上で熱間等方圧加圧処理する工程である。金属シースに充填されたTiAl合金粉末を熱間等方圧加圧処理することにより、TiAl合金部品が成形される。熱間等方圧加圧処理は、加熱温度が1200℃以上1300℃以下、圧力が150MPa以上で行うことができる。圧力は、例えば、150MPa以上200MPa以下とするとよい。加熱温度での保持時間は、3時間以上とすることができる。加熱温度での保持時間は、例えば、3時間以上5時間以下とするとよい。熱間等方圧加圧後には、圧力を開放して900℃まで炉冷し、900℃以下で急冷するとよい。このような冷却方法を行うことにより、TiAl合金部品の割れを抑制することができる。900℃からの急冷は、空冷以上の冷却速度とするとよく、ガスファン冷却等で行うことが可能である。 The hot isostatic pressing step (S12) is a step of hot isostatic pressing the TiAl alloy powder filled in the metal sheath at 1200°C or higher and 1300°C or lower and 150 MPa or higher. A TiAl alloy component is molded by subjecting the TiAl alloy powder filled in the metal sheath to hot isostatic pressing. The hot isostatic pressure treatment can be performed at a heating temperature of 1200° C. or higher and 1300° C. or lower and a pressure of 150 MPa or higher. The pressure may be, for example, 150 MPa or more and 200 MPa or less. The holding time at the heating temperature can be 3 hours or more. The holding time at the heating temperature may be, for example, 3 hours or more and 5 hours or less. After the hot isostatic pressurization, the pressure is released, the furnace is cooled to 900° C., and then quenched at 900° C. or less. By performing such a cooling method, cracking of the TiAl alloy component can be suppressed. Rapid cooling from 900° C. should be performed at a cooling rate faster than air cooling, and can be performed by gas fan cooling or the like.
 TiAl合金部品の製造方法は、熱間等方圧加圧工程(S12)の後に、800℃以上950℃以下で1時間以上5時間以下保持して応力除去する応力除去工程を備えていてもよい。これによりTiAl合金部品の残留応力等が除去されるので、TiAl合金部品の延性を向上させることができる。 The method for manufacturing a TiAl alloy component may include a stress relief step of holding at 800° C. or more and 950° C. or less for 1 hour or more and 5 hours or less to relieve stress after the hot isostatic pressing step (S12). . As a result, residual stress and the like in the TiAl alloy parts are removed, so that the ductility of the TiAl alloy parts can be improved.
 熱間等方圧加圧処理や応力除去は、酸化防止のために、真空雰囲気中や、アルゴンガス等による不活性ガス雰囲気中で行われるとよい。熱間等方圧加圧処理には、一般的な金属材料の熱間等方圧加圧に用いられるHIP装置等を使用可能である。応力除去には、一般的な金属材料の応力除去焼きなましに用いられる雰囲気炉等を使用可能である。なお、熱間等方圧加圧工程(S12)や応力除去工程の後に、金属組織を調整するための熱処理工程を設けてもよい。  The hot isostatic pressure treatment and stress removal should be performed in a vacuum atmosphere or in an inert gas atmosphere such as argon gas to prevent oxidation. For the hot isostatic pressing treatment, a HIP apparatus or the like used for hot isostatic pressing of general metal materials can be used. For stress relief, an atmosphere furnace or the like used for stress relief annealing of general metal materials can be used. A heat treatment step for adjusting the metal structure may be provided after the hot isostatic pressing step (S12) and the stress removing step.
 以上、上記構成のTiAl合金は、47原子%以上50原子%以下のAlと、1原子%以上2原子%以下のNbと、2原子%以上5原子%以下のZrと、0.05原子%以上0.3原子%以下のBと、を含有し、残部がTiと不可避的不純物とから構成されている。これにより、TiAl合金の機械的強度と延性とをバランスよく向上させることができる。 As described above, the TiAl alloy having the above configuration includes Al of 47 atomic % or more and 50 atomic % or less, Nb of 1 atomic % or more and 2 atomic % or less, Zr of 2 atomic % or more and 5 atomic % or less, and 0.05 atomic %. and 0.3 atomic % or less of B, and the balance is composed of Ti and unavoidable impurities. Thereby, the mechanical strength and ductility of the TiAl alloy can be improved in a well-balanced manner.
 TiAl合金の凝固形態について評価した。実施例1から18のTiAl合金について説明する。実施例1から18のTiAl合金は、Alと、Nbと、Zrと、Bと、を含み、残部がTiと不可避的不純物とから構成されている。各TiAl合金の合金組成を表1に示す。 The solidification morphology of the TiAl alloy was evaluated. The TiAl alloys of Examples 1 to 18 are described. The TiAl alloys of Examples 1 to 18 contain Al, Nb, Zr, and B, and the balance is Ti and unavoidable impurities. Table 1 shows the alloy composition of each TiAl alloy.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1から9のTiAl合金は、Nbの含有率を1原子%、Bの含有率を0.2原子%とし、Alの含有率を47原子%から50原子%、Zrの含有率を3原子%から5原子%の範囲で変化させた。実施例10から18のTiAl合金は、Nbの含有率を2原子%、Bの含有率を0.2原子%とし、Alの含有率を48原子%から50原子%、Zrの含有率を2原子%から4原子%の範囲で変化させた。 The TiAl alloys of Examples 1 to 9 had a Nb content of 1 atomic %, a B content of 0.2 atomic %, an Al content of 47 atomic % to 50 atomic %, and a Zr content of 3 atomic %. It was changed in the range of atomic % to 5 atomic %. The TiAl alloys of Examples 10 to 18 had a Nb content of 2 atomic %, a B content of 0.2 atomic %, an Al content of 48 atomic % to 50 atomic %, and a Zr content of 2 atomic %. It was changed in the range of atomic % to 4 atomic %.
 表1に示す合金組成の各TiAl合金原料を高周波真空溶解炉にて溶解して鋳造し、各合金組成からなるTiAl合金のインゴットを形成した。そしてTiAl合金の金属組織観察を行って、凝固形態を評価した。図9は、実施例1から9のTiAl合金の金属組織観察結果を示す写真である。図10は、実施例10から18のTiAl合金の金属組織観察結果を示す写真である。 Each TiAl alloy raw material having the alloy composition shown in Table 1 was melted and cast in a high-frequency vacuum melting furnace to form a TiAl alloy ingot having each alloy composition. Then, the metal structure of the TiAl alloy was observed to evaluate the solidification morphology. FIG. 9 is a photograph showing the observation results of the metal structures of the TiAl alloys of Examples 1-9. FIG. 10 is a photograph showing the observation results of the metal structures of the TiAl alloys of Examples 10-18.
 実施例1から2のTiAl合金は、凝固形態がα凝固のみであった。実施例3のTiAl合金は、凝固形態がα凝固+γ凝固であった。実施例4から9のTiAl合金は、凝固形態がγ凝固のみであった。実施例10から13のTiAl合金は、凝固形態がα凝固のみであった。実施例14のTiAl合金は、凝固形態がα凝固+γ凝固であった。実施例15から18のTiAl合金は、凝固形態がγ凝固のみであった。 The solidification form of the TiAl alloys of Examples 1 and 2 was only α-solidification. The TiAl alloy of Example 3 had a solidification mode of α solidification + γ solidification. In the TiAl alloys of Examples 4 to 9, the only solidification mode was gamma solidification. The solidification morphology of the TiAl alloys of Examples 10 to 13 was alpha solidification only. The TiAl alloy of Example 14 had a solidification mode of α-solidification + γ-solidification. In the TiAl alloys of Examples 15 to 18, the only solidification mode was gamma solidification.
 図11は、実施例1から9のTiAl合金の凝固形態を示すグラフである。図12は、実施例10から18のTiAl合金の凝固形態を示すグラフである。図11及び図12のグラフでは、横軸にZr量(原子%)を取り、縦軸にAl量(原子%)を取り、凝固形態がα凝固のみを丸、凝固形態がα凝固+γ凝固を三角形、凝固形態がγ凝固のみを四角形で示している。なお、図11には、上述した図1に示すR1点、R2点、R3点、R4点の4点と、上述した図2に示すS1点、S2点、S3点、S4点の4点とを合わせて記載した。図12には、上述した図3に示すT1点、T2点、T3点、T4点、T5点の5点と、上述した図4に示すW1点、W2点、W3点、W4点の4点とを合わせて記載した。 FIG. 11 is a graph showing the solidification morphology of the TiAl alloys of Examples 1 to 9. FIG. 12 is a graph showing the solidification morphology of the TiAl alloys of Examples 10-18. In the graphs of FIGS. 11 and 12, the horizontal axis represents the amount of Zr (atomic %), and the vertical axis represents the amount of Al (atomic %). are indicated by triangles, and only γ coagulation is indicated by squares. FIG. 11 shows the four points R1, R2, R3, and R4 shown in FIG. 1 and the four points S1, S2, S3, and S4 shown in FIG. were described together. In FIG. 12, five points T1, T2, T3, T4, and T5 shown in FIG. 3 and four points W1, W2, W3, and W4 shown in FIG. was described together with
 Alの含有率が大きくなると、TiAl合金の凝固形態が、α凝固やα凝固+γ凝固からγ凝固に変化する傾向があることが明らかとなった。例えば、図11に示すようにNbの含有率が1原子%の場合には、Zrの含有率が3原子%から5原子%のとき、Alの含有率が49原子%以上で凝固形態がγ凝固のみとなった。また、図12に示すようにNbの含有率が2原子%の場合には、Zrの含有率が2原子%から4原子%のとき、Alの含有率が50原子%以上で凝固形態がγ凝固のみとなった。 It became clear that when the Al content increases, the solidification morphology of the TiAl alloy tends to change from α-solidification or α-solidification + γ-solidification to γ-solidification. For example, as shown in FIG. 11, when the Nb content is 1 atomic %, when the Zr content is 3 atomic % to 5 atomic %, the Al content is 49 atomic % or more and the solidified form is γ Only coagulation occurred. As shown in FIG. 12, when the Nb content is 2 atomic %, when the Zr content is 2 atomic % to 4 atomic %, the Al content is 50 atomic % or more and the solidification form is γ Only coagulation occurred.
 Zrの含有率が大きくなると、TiAl合金の凝固形態が、α凝固やα凝固+γ凝固からγ凝固に変化する傾向があることが明らかとなった。例えば、図11に示すようにNbの含有率が1原子%、Alの含有率が48原子%の場合では、Zrの含有率が3原子%のときがα凝固のみ、Zrの含有率が4原子%のときがα凝固+γ凝固、Zrの含有率が5原子%のときがγ凝固のみとなった。また、図12に示すようにNbの含有率が2原子%、Alの含有率が49原子%の場合では、Zrの含有率が2原子%のときがα凝固のみ、Zrの含有率が3原子%のときがα凝固+γ凝固、Zrの含有率が4原子%のときがγ凝固のみとなった。 It became clear that when the Zr content increases, the solidification morphology of the TiAl alloy tends to change from α-solidification or α-solidification + γ-solidification to γ-solidification. For example, when the Nb content is 1 atomic % and the Al content is 48 atomic % as shown in FIG. When the Zr content was 5 atomic %, α solidification + γ solidification occurred, and when the Zr content was 5 atomic %, only γ solidification occurred. Further, as shown in FIG. 12, when the Nb content is 2 atomic % and the Al content is 49 atomic %, only α solidification is performed when the Zr content is 2 atomic %, and the Zr content is 3 atomic %. When the content of Zr was 4 atomic %, only γ solidification occurred.
 Nbの含有率が大きくなると、TiAl合金の凝固形態が、γ凝固からα凝固+γ凝固やα凝固に変化する傾向があることが明らかとなった。例えば、Alの含有率が49原子%、Zrの含有率が3原子%の場合では、図11に示すようにNbの含有率が1原子%のときがγ凝固のみとなり、図12に示すようにNbの含有率が2原子%のときがα凝固+γ凝固となった。 It became clear that when the Nb content increases, the solidification morphology of the TiAl alloy tends to change from γ-solidification to α-solidification + γ-solidification or α-solidification. For example, when the Al content is 49 atomic % and the Zr content is 3 atomic %, only γ solidification occurs when the Nb content is 1 atomic % as shown in FIG. Furthermore, when the Nb content was 2 atomic %, α-solidification + γ-solidification occurred.
 図11のグラフから、Nbの含有率が1原子%であり、Al及びZrの含有率が、上述した図1に示すR1点(Al:47原子%、Zr:2原子%)、R2点(Al:48原子%、Zr:2原子%)、R3点(Al:48原子%、Zr:4原子%)、R4点(Al:47原子%、Zr:5原子%)の4点で囲まれた組成範囲で構成されている場合には、凝固形態がα凝固のみまたはα凝固+γ凝固になることがわかった。 From the graph of FIG. 11, the Nb content is 1 atomic %, and the Al and Zr contents are R1 point (Al: 47 atomic %, Zr: 2 atomic %), R2 point ( Al: 48 atomic %, Zr: 2 atomic %), R3 point (Al: 48 atomic %, Zr: 4 atomic %), R4 point (Al: 47 atomic %, Zr: 5 atomic %) It was found that the coagulation morphology was α-coagulation only or α-coagulation + γ-coagulation when the composition range was defined as follows.
 次に、この理由について説明する。まず図11からR3点(Al:48原子%、Zr:4原子%)がα凝固+γ凝固であり、R4点(Al:47原子%、Zr:5原子%)がα凝固のみであることは明らかである。R1点(Al:47原子%、Zr:2原子%)は、R4点(Al:47原子%、Zr:5原子%)よりもZrの含有率が小さいのでα凝固のみになる。R2点(Al:48原子%、Zr:2原子%)は、図11の点(Al:48原子%、Zr:3原子%)よりもZrの含有率が小さいのでα凝固のみになる。したがってAl及びZrの含有率が、上述した図1に示すR1点、R2点、R3点、R4点の4点で囲まれた組成範囲で構成されている場合には、凝固形態がα凝固のみまたはα凝固+γ凝固になる。 Next, I will explain the reason for this. First, from FIG. 11, R3 point (Al: 48 atomic %, Zr: 4 atomic %) is α solidification + γ solidification, and R4 point (Al: 47 atomic %, Zr: 5 atomic %) is α solidification only. is clear. Since the R1 point (Al: 47 atomic %, Zr: 2 atomic %) has a smaller Zr content than the R4 point (Al: 47 atomic %, Zr: 5 atomic %), only α solidification occurs. Point R2 (Al: 48 atomic %, Zr: 2 atomic %) has a lower Zr content than the point (Al: 48 atomic %, Zr: 3 atomic %) in FIG. Therefore, when the Al and Zr contents are in the composition range surrounded by the four points R1, R2, R3, and R4 shown in FIG. Or it becomes α coagulation + γ coagulation.
 図11のグラフから、Nbの含有率が1原子%であり、Al及びZrの含有率が、上述した図2に示すS1点(Al:47原子%、Zr:2原子%)、S2点(Al:48原子%、Zr:2原子%)、S3点(Al:48原子%、Zr:3原子%)、S4点(Al:47原子%、Zr:5原子%)の4点で囲まれた組成範囲で構成されている場合には、凝固形態がα凝固のみになることがわかった。 From the graph of FIG. 11, the Nb content is 1 atomic %, and the Al and Zr contents are S1 point (Al: 47 atomic %, Zr: 2 atomic %), S2 point ( Al: 48 atomic %, Zr: 2 atomic %), S3 point (Al: 48 atomic %, Zr: 3 atomic %), S4 point (Al: 47 atomic %, Zr: 5 atomic %) It was found that the coagulation form was only α coagulation when it was composed in the composition range.
 次に、この理由について説明する。まず図11からS3点(Al:48原子%、Zr:3原子%)及びS4点(Al:47原子%、Zr:5原子%)が、α凝固のみであることは明らかである。S1点(Al:47原子%、Zr:2原子%)は、S4点(Al:47原子%、Zr:5原子%)よりもZrの含有率が小さいのでα凝固のみになる。また、S2点(Al:48原子%、Zr:2原子%)は、S3点(Al:48原子%、Zr:3原子%)よりもZrの含有率が小さいのでα凝固のみになる。したがってAl及びZrの含有率が、上述した図2に示すS1点、S2点、S3点、S4点の4点で囲まれた組成範囲で構成されている場合には、凝固形態がα凝固のみになる。 Next, I will explain the reason for this. First, it is clear from FIG. 11 that only α solidification occurs at points S3 (Al: 48 atomic %, Zr: 3 atomic %) and S4 points (Al: 47 atomic %, Zr: 5 atomic %). At point S1 (Al: 47 atomic %, Zr: 2 atomic %), the Zr content is smaller than at point S4 (Al: 47 atomic %, Zr: 5 atomic %), so only α solidification occurs. Also, since the S2 point (Al: 48 atomic %, Zr: 2 atomic %) has a smaller Zr content than the S3 point (Al: 48 atomic %, Zr: 3 atomic %), only α solidification occurs. Therefore, when the Al and Zr contents are in the composition range surrounded by the four points S1, S2, S3, and S4 shown in FIG. become.
 図12のグラフから、Nbの含有率が2原子%であり、Al及びZrの含有率が、上述した図3に示すT1点(Al:47原子%、Zr:2原子%)、T2点(Al:49原子%、Zr:2原子%)、T3点(Al:49原子%、Zr:3原子%)、T4点(Al:48原子%、Zr:4原子%)、T5点(Al:47原子%、Zr:4原子%)の5点で囲まれた組成範囲で構成されている場合には、凝固形態がα凝固のみまたはα凝固+γ凝固になることがわかった。 From the graph of FIG. 12, the content of Nb is 2 atomic %, and the content of Al and Zr is T1 point (Al: 47 atomic %, Zr: 2 atomic %), T2 point ( Al: 49 atomic %, Zr: 2 atomic %), T3 point (Al: 49 atomic %, Zr: 3 atomic %), T4 point (Al: 48 atomic %, Zr: 4 atomic %), T5 point (Al: 47 atomic %, Zr: 4 atomic %), it was found that the solidification mode is α solidification only or α solidification + γ solidification.
 次に、この理由について説明する。まず図12からT2点(Al:49原子%、Zr:2原子%)及びT4点(Al:48原子%、Zr:4原子%)がα凝固のみであり、T3点(Al:49原子%、Zr:3原子%)がα凝固+γ凝固であることは明らかである。T1点(Al:47原子%、Zr:2原子%)は、T2点(Al:49原子%、Zr:2原子%)よりもAlの含有率が小さいのでα凝固のみになる。また、T5点(Al:47原子%、Zr:4原子%)は、T4点(Al:48原子%、Zr:4原子%)よりもAlの含有率が小さいのでα凝固のみになる。したがってAl及びZrの含有率が、上述した図3に示すT1点、T2点、T3点、T4点、T5点の5点で囲まれた組成範囲で構成されている場合には、凝固形態がα凝固のみまたはα凝固+γ凝固になる。 Next, I will explain the reason for this. First, from FIG. 12, T2 point (Al: 49 atomic %, Zr: 2 atomic %) and T4 point (Al: 48 atomic %, Zr: 4 atomic %) are only α solidification, T3 point (Al: 49 atomic % , Zr: 3 atomic %) are α-coagulation + γ-coagulation. At point T1 (Al: 47 atomic %, Zr: 2 atomic %), the Al content is smaller than at point T2 (Al: 49 atomic %, Zr: 2 atomic %), so only α-solidification occurs. Also, since the T5 point (Al: 47 atomic %, Zr: 4 atomic %) has a smaller Al content than the T4 point (Al: 48 atomic %, Zr: 4 atomic %), only α solidification occurs. Therefore, when the Al and Zr contents are in the composition range surrounded by the five points T1, T2, T3, T4, and T5 shown in FIG. α coagulation only or α coagulation + γ coagulation.
 図12のグラフから、Nbの含有率が2原子%であり、Al及びZrの含有率が、上述した図4に示すW1点(Al:47原子%、Zr:2原子%)、W2点(Al:49原子%、Zr:2原子%)、W3点(Al:48原子%、Zr:4原子%)、W4点(Al:47原子%、Zr:4原子%)の4点で囲まれた組成範囲で構成されている場合には、凝固形態がα凝固のみになることがわかった。 From the graph of FIG. 12, the content of Nb is 2 atomic %, and the content of Al and Zr is W1 point (Al: 47 atomic %, Zr: 2 atomic %), W2 point ( Al: 49 atomic %, Zr: 2 atomic %), W3 point (Al: 48 atomic %, Zr: 4 atomic %), W4 point (Al: 47 atomic %, Zr: 4 atomic %) It was found that the coagulation form was only α coagulation when it was composed in the composition range.
 次に、この理由について説明する。まず図12からW2点(Al:49原子%、Zr:2原子%)及びW3点(Al:48原子%、Zr:4原子%)がα凝固のみであることは明らかである。W1点(Al:47原子%、Zr:2原子%)は、W2点(Al:49原子%、Zr:2原子%)よりもAlの含有率が小さいのでα凝固のみになる。W4点(Al:47原子%、Zr:4原子%)は、W3点(Al:48原子%、Zr:4原子%)よりもAlの含有率が小さいのでα凝固のみになる。したがってAl及びZrの含有率が、上述した図4に示すW1点、W2点、W3点、W4点の4点で囲まれた組成範囲で構成されている場合には、凝固形態がα凝固のみになる。 Next, I will explain the reason for this. First, it is clear from FIG. 12 that the W2 point (Al: 49 atomic %, Zr: 2 atomic %) and the W3 point (Al: 48 atomic %, Zr: 4 atomic %) are α solidification only. Since the W1 point (Al: 47 atomic %, Zr: 2 atomic %) has a smaller Al content than the W2 point (Al: 49 atomic %, Zr: 2 atomic %), only α solidification occurs. Since the W4 point (Al: 47 atomic %, Zr: 4 atomic %) has a smaller Al content than the W3 point (Al: 48 atomic %, Zr: 4 atomic %), only α solidification occurs. Therefore, when the Al and Zr contents are in the composition range surrounded by the four points W1, W2, W3, and W4 shown in FIG. become.
 図11及び図12のグラフから、Nbの含有率が1原子%以上2原子%以下であるとき、Al及びZrの含有率が、上述した図5に示すX1点(Al:47原子%、Zr:2原子%)、X2点(Al:48原子%、Zr:2原子%)、X3点(Al:48原子%、Zr:4原子%)、X4点(Al:47原子%、Zr:4原子%)、の4点で囲まれた組成範囲で構成されている場合には、凝固形態がα凝固のみまたはα凝固+γ凝固になることがわかった。 From the graphs of FIGS. 11 and 12, when the Nb content is 1 atomic % or more and 2 atomic % or less, the Al and Zr contents are the X1 point (Al: 47 atomic %, Zr : 2 atomic %), X2 point (Al: 48 atomic %, Zr: 2 atomic %), X3 point (Al: 48 atomic %, Zr: 4 atomic %), X4 point (Al: 47 atomic %, Zr: 4 atomic %), it was found that the solidification mode is α-coagulation only or α-coagulation + γ-coagulation.
 図11及び図12のグラフから、Nbの含有率が1原子%以上2原子%以下であるとき、Al及びZrの含有率が、上述した図6に示すY1点(Al:47原子%、Zr:2原子%)、Y2点(Al:48原子%、Zr:2原子%)、Y3点(Al:48原子%、Zr:3原子%)、Y4点(Al:47.5原子%、Zr:4原子%)、Y5点(Al:47原子%、Zr:4原子%)、の5点で囲まれた組成範囲で構成されている場合には、凝固形態がα凝固のみになることがわかった。 From the graphs of FIGS. 11 and 12, when the Nb content is 1 atomic % or more and 2 atomic % or less, the Al and Zr contents are the Y1 point (Al: 47 atomic %, Zr : 2 atomic %), Y2 point (Al: 48 atomic %, Zr: 2 atomic %), Y3 point (Al: 48 atomic %, Zr: 3 atomic %), Y4 point (Al: 47.5 atomic %, Zr : 4 atomic %), Y 5 points (Al: 47 atomic %, Zr: 4 atomic %), when the composition range is surrounded by 5 points, the solidification mode may be only α solidification. all right.
 次に、実施例1、11のTiAl合金で形成したTiAl合金粉末を用いて実施例A、Bの供試体を作製し、機械特性等を評価した。まず、実施例A、Bの供試体の作製方法について説明する。実施例A、Bの供試体は、熱間等方圧加圧法により粉末成形して作製した。 Next, using the TiAl alloy powders formed from the TiAl alloys of Examples 1 and 11, specimens of Examples A and B were produced, and their mechanical properties and the like were evaluated. First, the method of manufacturing the specimens of Examples A and B will be described. The specimens of Examples A and B were prepared by powder molding by hot isostatic pressing.
 まず、TiAl合金粉末を純チタンシースに充填してシールした。実施例Aの供試体には、実施例1のTiAl合金で形成されたTiAl合金粉末を用いた。実施例Bの供試体には、実施例11のTiAl合金で形成されたTiAl合金粉末を用いた。実施例1、11のTiAl合金で形成されたTiAl合金粉末には、ガスアトマイズ法により製造された急冷凝固粉末を用いた。純チタンシースに充填されたTiAl合金粉末は、真空脱気した後に、電子ビーム溶接でシールした。 First, the pure titanium sheath was filled with TiAl alloy powder and sealed. For the specimen of Example A, the TiAl alloy powder formed from the TiAl alloy of Example 1 was used. The TiAl alloy powder formed from the TiAl alloy of Example 11 was used for the specimen of Example B. As the TiAl alloy powder formed from the TiAl alloy in Examples 1 and 11, a rapidly solidified powder produced by a gas atomization method was used. The TiAl alloy powder filled in the pure titanium sheath was sealed by electron beam welding after vacuum degassing.
 純チタンシースに充填されたTiAl合金粉末を、1250℃、172MPa、3時間で熱間等方圧加圧処理した。熱間等方圧加圧後には、圧力を開放して900℃まで炉冷し、900℃以下で急冷した。900℃からの急冷は、ガスファン冷却で行った。このようにして実施例A、Bの供試体を作製した。 The TiAl alloy powder filled in the pure titanium sheath was hot isostatically pressed at 1250°C and 172 MPa for 3 hours. After the hot isostatic pressurization, the pressure was released and the furnace was cooled to 900°C, followed by quenching below 900°C. Rapid cooling from 900° C. was performed by gas fan cooling. In this manner, specimens of Examples A and B were produced.
 実施例A、Bの供試体について、金属組織観察を行った。金属組織観察は、光学顕微鏡及び電子顕微鏡で行った。図13は、実施例A、Bの供試体の光学顕微鏡による金属組織観察結果を示す写真であり、図13(a)は、実施例Aの供試体の写真であり、図13(b)は、実施例Bの供試体の写真である。 For the specimens of Examples A and B, metallographic observation was performed. Metal structure observation was performed with an optical microscope and an electron microscope. FIG. 13 is a photograph showing the results of metallographic observation of the specimens of Examples A and B with an optical microscope, FIG. 13(a) is a photograph of the specimen of Example A, and FIG. , and a photograph of a test piece of Example B. FIG.
 実施例A、Bの供試体の金属組織は、結晶粒径が100μm以下の微細な結晶粒で構成されていた。実施例A、Bの供試体の金属組織は、ラメラ粒と、等軸状のγ粒とから構成されており、等軸状のγ粒の粒内に粒径が0.1μm以下の硼化物を含んでいた。実施例1、11の金属組織は、ラメラ粒と、等軸状のγ粒との合計の体積率を100体積%としたとき、等軸状のγ粒の体積率が80体積%以上であり、残部がラメラ粒から構成されていた。なお、各粒の体積率については、電子顕微鏡による金属組織写真における各粒のコントラストの情報から画像処理により各粒の面積率を算出し、これを各粒の体積率とした。また実施例A、Bの供試体の金属組織には、Zrの偏析が認められなかった。 The metal structures of the specimens of Examples A and B were composed of fine crystal grains with a crystal grain size of 100 μm or less. The metal structures of the specimens of Examples A and B are composed of lamellar grains and equiaxed γ grains, and borides having a grain size of 0.1 μm or less are contained within the equiaxed γ grains. included. In the metal structures of Examples 1 and 11, the volume ratio of the equiaxed γ grains was 80% by volume or more when the total volume ratio of the lamellar grains and the equiaxed γ grains was 100% by volume. , and the remainder consisted of lamellar grains. Regarding the volume ratio of each grain, the area ratio of each grain was calculated by image processing from information on the contrast of each grain in the metal structure photograph obtained by an electron microscope, and this was used as the volume ratio of each grain. In addition, no segregation of Zr was observed in the metal structures of the specimens of Examples A and B.
 次に、実施例A、Bの供試体の室温機械特性について評価した。実施例A、Bの供試体について、室温引張試験を行った。同様に、比較例Aの供試体について、室温引張試験を行った。比較例Aの供試体は、48原子%のAlと、2原子%のNbと、2原子%のCrと、を含み、残部がTiと不可避的不純物とからなるTiAl合金で形成した。 Next, the room temperature mechanical properties of the specimens of Examples A and B were evaluated. The specimens of Examples A and B were subjected to a room temperature tensile test. Similarly, the specimen of Comparative Example A was subjected to a room temperature tensile test. The specimen of Comparative Example A was made of a TiAl alloy containing 48 atomic % Al, 2 atomic % Nb, 2 atomic % Cr, and the balance consisting of Ti and unavoidable impurities.
 引張試験は、ASTM E8に準拠して行った。図14は、引張試験結果を示すグラフである。図14では、横軸に歪みを取り、縦軸に応力を取り、各供試体の応力―歪み曲線を示している。実施例A、Bの供試体は、比較例Aの供試体よりも、室温引張破断強度及び室温引張破断歪みが大きくなった。実施例A、Bの供試体は、室温引張破断強度が600MPa以上であり、室温引張破断歪みが1.2%以上であった。また、実施例Aの供試体は、室温引張破断強度が700MPa以上であり、実施例Bの供試体は、室温引張破断歪みが1.4%以上であった。この結果から、実施例A、Bの供試体は、機械的強度と延性とが優れており、機械的強度と延性とがバランスよく向上していることが明らかとなった。 The tensile test was performed according to ASTM E8. FIG. 14 is a graph showing tensile test results. In FIG. 14, the strain is plotted on the horizontal axis and the stress is plotted on the vertical axis, showing the stress-strain curve of each specimen. The specimens of Examples A and B were larger than the specimen of Comparative Example A in room temperature tensile breaking strength and room temperature tensile breaking strain. The specimens of Examples A and B had a room temperature tensile breaking strength of 600 MPa or more and a room temperature tensile breaking strain of 1.2% or more. Further, the specimen of Example A had a room temperature tensile breaking strength of 700 MPa or more, and the specimen of Example B had a room temperature tensile breaking strain of 1.4% or more. From these results, it became clear that the specimens of Examples A and B were excellent in mechanical strength and ductility, and that the mechanical strength and ductility were improved in a well-balanced manner.
 実施例A、比較例Aの供試体について、クリープ試験を行った。クリープ試験は、JIS Z 2271に準拠して行った。図15は、クリープ試験結果を示すグラフである。図15のグラフにおいて、横軸にラーソンミラーパラメータ(Larson-Miller parameter)Pを取り、縦軸に比強度を取り、実施例Aの供試体を四角形、比較例Aの供試体を×で示している。なお、ラーソンミラーパラメータPは、P=T×log(t+C)で表されるパラメータである。Tは、絶対温度(K)であり、tは、破断時間(h)であり、Cは、材料定数である。なお、材料定数Cは、20とした。図15に示すように、実施例Aの供試体は、比較例Aの供試体よりもクリープ特性に優れていた。この結果から実施例Aの供試体は、比較例Aの供試体よりも高温強度特性に優れていることがわかった。 The specimens of Example A and Comparative Example A were subjected to a creep test. A creep test was performed in accordance with JIS Z 2271. FIG. 15 is a graph showing creep test results. In the graph of FIG. 15, the horizontal axis is the Larson-Miller parameter P, the vertical axis is the specific strength, the specimen of Example A is indicated by a square, and the specimen of Comparative Example A is indicated by x. there is Note that the Larson-Miller parameter P is a parameter represented by P=T×log(t r +C). T is the absolute temperature (K), tr is the time to rupture (h), and C is a material constant. The material constant C was set to 20. As shown in FIG. 15, the specimen of Example A was superior to the specimen of Comparative Example A in creep properties. From these results, it was found that the specimen of Example A was superior to the specimen of Comparative Example A in high-temperature strength characteristics.
 本開示は、TiAl合金の機械的強度と延性とをバランスよく向上させることができるので、航空機エンジン部品や発電用ガスタービンのタービン翼等に有用なものである。 The present disclosure can improve the mechanical strength and ductility of the TiAl alloy in a well-balanced manner, and is therefore useful for aircraft engine parts, turbine blades of gas turbines for power generation, and the like.

Claims (12)

  1.  47原子%以上50原子%以下のAlと、
     1原子%以上2原子%以下のNbと、
     2原子%以上5原子%以下のZrと、
     0.05原子%以上0.3原子%以下のBと、を含有し、
     残部がTiと不可避的不純物とからなる、TiAl合金。
    47 atomic % or more and 50 atomic % or less of Al;
    1 atomic % or more and 2 atomic % or less of Nb;
    2 atomic % or more and 5 atomic % or less of Zr;
    0.05 atomic % or more and 0.3 atomic % or less of B,
    A TiAl alloy with the balance being Ti and unavoidable impurities.
  2.  請求項1に記載のTiAl合金であって、
     Alの含有率は、47原子%以上49原子%以下である、TiAl合金。
    A TiAl alloy according to claim 1,
    A TiAl alloy having an Al content of 47 atomic % or more and 49 atomic % or less.
  3.  請求項1に記載のTiAl合金であって、
     Nbの含有率は、1原子%であり、
     Alの含有率は、47原子%以上48原子%以下であり、
     Zrの含有率は、2原子%以上4原子%以下である、TiAl合金。
    A TiAl alloy according to claim 1,
    The content of Nb is 1 atomic %,
    Al content is 47 atomic % or more and 48 atomic % or less,
    A TiAl alloy having a Zr content of 2 atomic % or more and 4 atomic % or less.
  4.  請求項1に記載のTiAl合金であって、
     Nbの含有率は、1原子%であり、
     Alの含有率は、47原子%以上48原子%以下であり、
     Zrの含有率は、2原子%以上3原子%以下である、TiAl合金。
    A TiAl alloy according to claim 1,
    The content of Nb is 1 atomic %,
    Al content is 47 atomic % or more and 48 atomic % or less,
    A TiAl alloy having a Zr content of 2 atomic % or more and 3 atomic % or less.
  5.  請求項1に記載のTiAl合金であって、
     Nbの含有率は、2原子%であり、
     Alの含有率は、47原子%以上49原子%以下であり、
     Zrの含有率は、2原子%以上3原子%以下である、TiAl合金。
    A TiAl alloy according to claim 1,
    The content of Nb is 2 atomic %,
    Al content is 47 atomic % or more and 49 atomic % or less,
    A TiAl alloy having a Zr content of 2 atomic % or more and 3 atomic % or less.
  6.  請求項1に記載のTiAl合金であって、
     Nbの含有率は、2原子%であり、
     Alの含有率は、47原子%以上48原子%以下であり、
     Zrの含有率は、2原子%以上4原子%以下である、TiAl合金。
    A TiAl alloy according to claim 1,
    The content of Nb is 2 atomic %,
    Al content is 47 atomic % or more and 48 atomic % or less,
    A TiAl alloy having a Zr content of 2 atomic % or more and 4 atomic % or less.
  7.  請求項1に記載のTiAl合金であって、
     Alの含有率は、47原子%以上48原子%以下であり、
     Zrの含有率は、2原子%以上4原子%以下である、TiAl合金。
    A TiAl alloy according to claim 1,
    Al content is 47 atomic % or more and 48 atomic % or less,
    A TiAl alloy having a Zr content of 2 atomic % or more and 4 atomic % or less.
  8.  請求項1に記載のTiAl合金であって、
     Alの含有率は、47原子%以上48原子%以下であり、
     Zrの含有率は、2原子%以上3原子%以下である、TiAl合金。
    A TiAl alloy according to claim 1,
    Al content is 47 atomic % or more and 48 atomic % or less,
    A TiAl alloy having a Zr content of 2 atomic % or more and 3 atomic % or less.
  9.  請求項1から8のいずれか1つに記載のTiAl合金であって、
     室温引張破断強度が600MPa以上であり、室温引張破断歪みが1.2%以上である、TiAl合金。
    A TiAl alloy according to any one of claims 1 to 8,
    A TiAl alloy having a room temperature tensile strength at break of 600 MPa or more and a room temperature tensile strain at break of 1.2% or more.
  10.  請求項1から8のいずれか1つに記載のTiAl合金で形成される、TiAl合金粉末。 A TiAl alloy powder formed from the TiAl alloy according to any one of claims 1 to 8.
  11.  請求項1から8のいずれか1つに記載のTiAl合金で形成される、TiAl合金部品。 A TiAl alloy part formed of the TiAl alloy according to any one of claims 1 to 8.
  12.  TiAl合金部品の製造方法であって、
     請求項1から8のいずれか1つに記載のTiAl合金で形成されるTiAl合金粉末を金属シースに充填してシールするシール工程と、
     前記金属シースでシールされたTiAl合金粉末を、1200℃以上1300℃以下、150MPa以上で熱間等方圧加圧処理する熱間等方圧加圧工程と、
     を備える、TiAl合金部品の製造方法。
    A method for manufacturing a TiAl alloy part, comprising:
    a sealing step of filling a metal sheath with TiAl alloy powder formed of the TiAl alloy according to any one of claims 1 to 8 and sealing the metal sheath;
    A hot isostatic pressing step of subjecting the TiAl alloy powder sealed with the metal sheath to hot isostatic pressing at 1200° C. or higher and 1300° C. or lower and 150 MPa or higher;
    A method for manufacturing a TiAl alloy component, comprising:
PCT/JP2022/022883 2021-06-09 2022-06-07 Tial alloy, tial alloy powder, tial alloy component, and method for producing same WO2022260026A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22820205.7A EP4353855A1 (en) 2021-06-09 2022-06-07 Tial alloy, tial alloy powder, tial alloy component, and method for producing same
JP2023527865A JPWO2022260026A1 (en) 2021-06-09 2022-06-07
US18/521,082 US20240110261A1 (en) 2021-06-09 2023-11-28 TiAl ALLOY, TiAl ALLOY POWDER, TiAl ALLOY COMPONENT, AND PRODUCTION METHOD OF THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021096660 2021-06-09
JP2021-096660 2021-06-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/521,082 Continuation US20240110261A1 (en) 2021-06-09 2023-11-28 TiAl ALLOY, TiAl ALLOY POWDER, TiAl ALLOY COMPONENT, AND PRODUCTION METHOD OF THE SAME

Publications (1)

Publication Number Publication Date
WO2022260026A1 true WO2022260026A1 (en) 2022-12-15

Family

ID=84424988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022883 WO2022260026A1 (en) 2021-06-09 2022-06-07 Tial alloy, tial alloy powder, tial alloy component, and method for producing same

Country Status (4)

Country Link
US (1) US20240110261A1 (en)
EP (1) EP4353855A1 (en)
JP (1) JPWO2022260026A1 (en)
WO (1) WO2022260026A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03173017A (en) * 1989-11-30 1991-07-26 Sumitomo Electric Ind Ltd Oxide superconducting wire-rod manufacture and coil manufacture
JPH05230568A (en) * 1990-05-04 1993-09-07 Asea Brown Boveri Ag High-temperature alloy based on contaminated tial for machine part
JPH05255827A (en) * 1992-03-13 1993-10-05 Sumitomo Metal Ind Ltd Production of alloy based on tial intermetallic compound
US5997808A (en) * 1997-07-05 1999-12-07 Rolls-Royce Plc Titanium aluminide alloys
JP2009144247A (en) * 2007-12-13 2009-07-02 Gkss-Forschungszentrum Geesthacht Gmbh Titanium aluminide alloy and working method thereof, and structural parts produced using the titanium aluminide alloy
JP2013209750A (en) 2012-03-24 2013-10-10 General Electric Co <Ge> Titanium aluminide intermetallic compositions
JP2020152945A (en) * 2019-03-19 2020-09-24 国立大学法人島根大学 Manufacturing method of heat-resistant lightweight high strength sintered body
WO2020235200A1 (en) * 2019-05-23 2020-11-26 株式会社Ihi Tial alloy and production method therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03173017A (en) * 1989-11-30 1991-07-26 Sumitomo Electric Ind Ltd Oxide superconducting wire-rod manufacture and coil manufacture
JPH05230568A (en) * 1990-05-04 1993-09-07 Asea Brown Boveri Ag High-temperature alloy based on contaminated tial for machine part
JPH05255827A (en) * 1992-03-13 1993-10-05 Sumitomo Metal Ind Ltd Production of alloy based on tial intermetallic compound
US5997808A (en) * 1997-07-05 1999-12-07 Rolls-Royce Plc Titanium aluminide alloys
JP2009144247A (en) * 2007-12-13 2009-07-02 Gkss-Forschungszentrum Geesthacht Gmbh Titanium aluminide alloy and working method thereof, and structural parts produced using the titanium aluminide alloy
JP2013209750A (en) 2012-03-24 2013-10-10 General Electric Co <Ge> Titanium aluminide intermetallic compositions
JP2020152945A (en) * 2019-03-19 2020-09-24 国立大学法人島根大学 Manufacturing method of heat-resistant lightweight high strength sintered body
WO2020235200A1 (en) * 2019-05-23 2020-11-26 株式会社Ihi Tial alloy and production method therefor

Also Published As

Publication number Publication date
US20240110261A1 (en) 2024-04-04
EP4353855A1 (en) 2024-04-17
JPWO2022260026A1 (en) 2022-12-15

Similar Documents

Publication Publication Date Title
JP6931545B2 (en) Heat treatment method for Ni-based alloy laminated model, manufacturing method for Ni-based alloy laminated model, Ni-based alloy powder for laminated model, and Ni-based alloy laminated model
US20130206287A1 (en) Co-based alloy
JP7226535B2 (en) TiAl alloy and its manufacturing method
EP2479302A1 (en) Ni-based heat resistant alloy, gas turbine component and gas turbine
JP6687118B2 (en) TiAl alloy and method for producing the same
KR20200002965A (en) Precipitation Hardening Cobalt-Nickel Base Superalloys and Articles Made therefrom
JP2017179592A (en) MANUFACTURING METHOD OF Ni-BASED HEAT-RESISTANT SUPERALLOY
JPH0116292B2 (en)
EP3042973B1 (en) A nickel alloy
JP7233659B2 (en) Titanium aluminide alloy material for hot forging, method for forging titanium aluminide alloy material, and forged body
JP7226536B2 (en) TiAl alloy and its manufacturing method
WO2022260026A1 (en) Tial alloy, tial alloy powder, tial alloy component, and method for producing same
WO2020059846A1 (en) Ni-based alloy for hot die, and hot forging die obtained using same
US5015305A (en) High temperature hydrogenation of gamma titanium aluminide
CN112004953A (en) Cobalt-based alloy powder, cobalt-based alloy sintered body, and method for producing cobalt-based alloy sintered body
WO2017123186A1 (en) Tial-based alloys having improved creep strength by strengthening of gamma phase
KR102163011B1 (en) Nickel base superalloy for high temperature fastening member and method for manufacturing the same
JP7188577B2 (en) Method for producing TiAl alloy and TiAl alloy
US5067988A (en) Low temperature hydrogenation of gamma titanium aluminide
RU2771192C9 (en) Cobalt-based alloy powder, cobalt-based alloy sintered body, and method for producing cobalt-based alloy sintered body
KR102490974B1 (en) Co-based alloy structure and manufacturing method thereof
US20230332278A1 (en) Alloy Material, Alloy Product Formed of Alloy Material, and Mechanical Device Including Alloy Product
KR20190102392A (en) Nickel base superalloyfor high temperature fastening member and method for manufacturing the same
US6068714A (en) Process for making a heat resistant nickel-base polycrystalline superalloy forged part
JPH05345943A (en) Production of cast and forged gammar titanium-aluminum alloy modified by boron, chromium and tantalum

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22820205

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023527865

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022820205

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022820205

Country of ref document: EP

Effective date: 20240109