JP2020152945A - Manufacturing method of heat-resistant lightweight high strength sintered body - Google Patents

Manufacturing method of heat-resistant lightweight high strength sintered body Download PDF

Info

Publication number
JP2020152945A
JP2020152945A JP2019051005A JP2019051005A JP2020152945A JP 2020152945 A JP2020152945 A JP 2020152945A JP 2019051005 A JP2019051005 A JP 2019051005A JP 2019051005 A JP2019051005 A JP 2019051005A JP 2020152945 A JP2020152945 A JP 2020152945A
Authority
JP
Japan
Prior art keywords
powder
heat
sintered body
less
lightweight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019051005A
Other languages
Japanese (ja)
Other versions
JP7334896B2 (en
Inventor
文夫 遠山
Fumio Toyama
文夫 遠山
伸樹 宮本
Nobuki Miyamoto
伸樹 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kiguchi Technics Inc
Shimane University
Original Assignee
Kiguchi Technics Inc
Shimane University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kiguchi Technics Inc, Shimane University filed Critical Kiguchi Technics Inc
Priority to JP2019051005A priority Critical patent/JP7334896B2/en
Publication of JP2020152945A publication Critical patent/JP2020152945A/en
Application granted granted Critical
Publication of JP7334896B2 publication Critical patent/JP7334896B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

To provide a technology for obtaining a high strength lightweight Ti-Al based alloy having heat resistance.SOLUTION: A manufacturing method of a high strength lightweight sintered body characterized in that each of powder-like Al, TiN, and Ti is mixed, by weight ratio, at Al:TiN:Ti=1:0.01 to 1.5:x (where, x is 0 or larger, and a sum with a ratio of TiN is a value to be 0.3 or larger and 6.0 or smaller), a mixed powder is heated at 660°C to 1350°C under vacuum or an oxygen-free atmosphere while pressurizing to obtain.SELECTED DRAWING: Figure 2

Description

本発明は、製造が容易であって、耐熱性を有する高強度で軽量なTi−Al系合金を得る方法に関する。 The present invention relates to a method for obtaining a high-strength and lightweight Ti—Al alloy that is easy to manufacture and has heat resistance.

従来、Ti−Al系金属間化合物は耐熱性がある軽量材料として知られ、比強度、クリープ強度も高いことから航空機エンジン部品などに使用されている。 Conventionally, Ti-Al intermetallic compounds are known as lightweight materials having heat resistance, and are used for aircraft engine parts and the like because of their high specific strength and creep strength.

しかしながら、Ti−Al系合金は製造コストが高く、用途が限定されるという問題点があった。高コストの要因として、Ti自体が高価であるほか、融点が1700℃程度と高くほとんど全てのるつぼ材と反応してしまい、水冷銅るつぼを用いるスカル溶解といった特殊な溶解鋳造法をとらざるを得ない点があげられる。加えて、素材由来の難切削性や低靭性が影響し、加工費増を招来してしまう。 However, the Ti—Al alloy has a problem that the manufacturing cost is high and the use is limited. As a factor of high cost, Ti itself is expensive, and the melting point is as high as about 1700 ° C, and it reacts with almost all crucible materials, so we have to take a special melting casting method such as skull melting using a water-cooled copper crucible. There is no point. In addition, the difficult-to-cut property and low toughness derived from the material have an effect, which leads to an increase in processing cost.

一方、従来のTi−Al系合金は、900℃超にて著しい強度低下が見られ、使用温度範囲がせいぜい1000℃未満に限定されるという問題点があった。 On the other hand, the conventional Ti—Al alloy has a problem that the strength is significantly lowered above 900 ° C. and the operating temperature range is limited to less than 1000 ° C. at most.

なお、本願発明と同様にNを含むTi−Al系合金も知られているが、Alの溶融温度以下の低温焼結素材に過ぎない(非特許文献1,2)。
また、特許文献1では、Alは焼結助剤として用いられているに過ぎず本願発明と異なる。
A Ti—Al alloy containing N is also known as in the present invention, but it is only a low-temperature sintered material having a melting temperature of Al or less (Non-Patent Documents 1 and 2).
Further, in Patent Document 1, Al is only used as a sintering aid and is different from the present invention.

特開平8−225879Japanese Patent Application Laid-Open No. 8-225879

香山滉一郎ら「反応焼結によるAl−Ti−N系合金作成」粉体および粉体冶金,(1992),823Koichiro Kayama et al. "Preparation of Al-Ti-N alloys by reaction sintering" Powder and powder metallurgy, (1992), 823 A.K.Rayら、’Fabrication of TiN Reinforced Aluminum MMC’,Mager.Sci.Eng.,2002,A338A. K. Ray et al.,'Fabrication of TiN Reinforced Aluminum MMC', Mager. Sci. Eng. , 2002, A338

本発明は、製造が容易であって(換言すれば製造コストが安く)、耐熱性を有する高強度で軽量なTi−Al系合金を得る技術を提供することを目的とする。 An object of the present invention is to provide a technique for obtaining a high-strength and lightweight Ti—Al alloy having heat resistance, which is easy to manufacture (in other words, the manufacturing cost is low).

請求項1に係る発明は、それぞれ粉末状のAl、TiN、Tiを重量比にてAl:TiN:Ti=1:0.01〜1.5:x(ただし、xは0以上でありTiNの比率との和が0.3以上6.0以下となる値)として混合し、真空または無酸素雰囲気下にてこの混合粉末を加圧しながら660℃〜1350℃で加熱して得ることを特徴とする耐熱軽量高強度焼結体製造方法である。
この範囲は、図5に示すTi−Al−N系三元状態図の網掛け部となる。
なお、Oを不可避的不純物元素として、上限を3wt%として可能な限り低くするように制御ないし調整することが好ましい。
同様に、P,S,Si,Mn,Sn,Zn,Fe,Ni,Co,Cu,Mo,W,または,Hfは含有元素として許容されるが、これらも上限を各3wt%、合計10wt%として制御ないし調整することが好ましい。
In the invention according to claim 1, powdered Al, TiN, and Ti are divided by weight into Al: TiN: Ti = 1: 0.01 to 1.5: x (where x is 0 or more and TiN. The mixture is mixed as a sum of 0.3 or more and 6.0 or less), and the mixed powder is heated at 660 ° C to 1350 ° C while pressurizing in a vacuum or oxygen-free atmosphere. This is a method for producing a heat-resistant, lightweight, high-strength sintered body.
This range is the shaded portion of the Ti-Al-N system ternary phase diagram shown in FIG.
It is preferable to control or adjust O as an unavoidable impurity element with an upper limit of 3 wt% as low as possible.
Similarly, P, S, Si, Mn, Sn, Zn, Fe, Ni, Co, Cu, Mo, W, or Hf are allowed as contained elements, but these also have an upper limit of 3 wt% each, for a total of 10 wt%. It is preferable to control or adjust as.

混合するとは均一な状態に混ぜ合わせることをいう。
加熱とは、所定の昇温工程が含まれていてもよいものとする。加熱して焼結体をえる手段は特に限定されないが、ホットプレス、放電プラズマ焼結、HIP(熱間等方加圧)を挙げることができる。
焼結体は合金と言い換えることもできる。
Al1に対し、TiNが0.01を下回ると所期の添加効果がえられず、1.5を超えると窒化物量が増えすぎて靭性が低下し実用材料として適当でなくなる。同様に、Tiとしての合計添加量が0.3に満たないと低融点層が生じて高温における機械的特性が不足し、6.0を超えると目的とするTi−Al系化合物に対してTi(α)量が増加し所期の特性が得られにくくなる。
Mixing means mixing in a uniform state.
The heating may include a predetermined temperature raising step. The means for obtaining the sintered body by heating is not particularly limited, and examples thereof include hot pressing, discharge plasma sintering, and HIP (hot isotropic pressurization).
The sintered body can be rephrased as an alloy.
If TiN is less than 0.01 with respect to Al1, the desired addition effect cannot be obtained, and if it exceeds 1.5, the amount of nitride increases too much and the toughness decreases, making it unsuitable as a practical material. Similarly, if the total amount of Ti added is less than 0.3, a low melting point layer is formed and the mechanical properties at high temperatures are insufficient. If it exceeds 6.0, Ti is obtained with respect to the target Ti—Al compound. The amount of (α) increases and it becomes difficult to obtain the desired characteristics.

請求項2に係る発明は、Al粉末の平均粒径を1μm以上1mm以下、および/または、TiN粉末の平均粒径を50μm以下とすることを特徴とする請求項1に記載の耐熱軽量高強度焼結体製造方法である。 The invention according to claim 2 is the heat-resistant, lightweight and high-strength according to claim 1, wherein the average particle size of the Al powder is 1 μm or more and 1 mm or less, and / or the average particle size of the TiN powder is 50 μm or less. This is a method for producing a sintered body.

Alの平均粒径が1μmを下回ると粉末表面積の増加により不純物元素である酸素量が過多となる。一方1mmを超えると焼結時にAlと内部まで反応せずTiAl等の化合物の殻を生じて不均一組織となり、後の高温拡散時に空隙等の欠陥要因となる。また、TiNの平均粒径が50μmを超えると粗大なTiNが未反応のまま残留しやすくなり、靭性等の機械的特性の低下を招く。 When the average particle size of Al is less than 1 μm, the amount of oxygen, which is an impurity element, becomes excessive due to the increase in the surface area of the powder. On the other hand, if it exceeds 1 mm, it does not react with Al to the inside at the time of sintering, and a shell of a compound such as TiAl 3 is formed to form a non-uniform structure, which causes defects such as voids at the time of subsequent high temperature diffusion. Further, when the average particle size of TiN exceeds 50 μm, coarse TiN tends to remain unreacted, which causes deterioration of mechanical properties such as toughness.

請求項3に係る発明は、Cr、Nb、V、Zr、Bを特性調整用元素とし、重量比でAl1に対し、Cr粉末もしくはCrN粉末を0.5以下、Nb粉末もしくはNbN粉末を1.0以下、V粉末もしくはVN粉末を0.3以下、Zr粉末もしくはZrN粉末を0.3以下、または、B粉末もしくはBN粉末を0.1以下、添加した混合粉末を用いることを特徴とする請求項1または2に記載の耐熱軽量高強度焼結体製造方法である。 In the invention according to claim 3, Cr, Nb, V, Zr, and B are used as characteristic adjusting elements, Cr powder or CrN powder is 0.5 or less, and Nb powder or NbN powder is 1. A claim characterized in that a mixed powder containing 0 or less, V powder or VN powder of 0.3 or less, Zr powder or ZrN powder of 0.3 or less, or B powder or BN powder of 0.1 or less is used. Item 2. The method for producing a heat-resistant, lightweight, high-strength sintered body according to Item 1 or 2.

なお、窒化物すなわち、CrN(本願ではCrNと表記する際にはCrNを含むものとする)、NbN、VN、ZrNまたはBNを添加する場合には、請求項1に関しては、Al:TiN+CrN+NbN+VN+ZrN+BN=1:0.001〜1.0となるように、TiNの添加量を調整する。 Incidentally, nitride i.e., (assumed to include a Cr 2 N is when expressed as CrN in this application) CrN, NbN, VN, in the case of adding ZrN or BN is, for claim 1, Al: TiN + CrN + NbN + VN + ZrN + BN = 1 The amount of TiN added is adjusted so as to be 0.001 to 1.0.

請求項4に係る発明は、特性調整用元素として添加する粉末の平均粒径を100μm以下とすることを特徴とする請求項3記載の耐熱軽量高強度焼結体製造方法である。 The invention according to claim 4 is the method for producing a heat-resistant, lightweight, high-strength sintered body according to claim 3, wherein the average particle size of the powder added as an element for adjusting the characteristics is 100 μm or less.

請求項5に係る発明は、加熱に際し、加圧しながら660〜1000℃の範囲にて加熱する第一工程を経た後、1000〜1350℃の範囲にて拡散熱処理を施す第二工程を経ることを特徴とする請求項1〜4のいずれか一つに記載の耐熱軽量高強度焼結体製造方法である。 The invention according to claim 5 is to undergo a first step of heating in the range of 660 to 1000 ° C. while pressurizing, and then a second step of performing diffusion heat treatment in the range of 1000 to 1350 ° C. The heat-resistant, lightweight, high-strength sintered body manufacturing method according to any one of claims 1 to 4.

請求項6に係る発明は、第一工程と第二工程との間に、鍛造、切削その他の整形工程を含ませることを特徴とする請求項5に記載の耐熱軽量高強度焼結体製造方法である。 The method for producing a heat-resistant, lightweight, high-strength sintered body according to claim 5, wherein the invention according to claim 6 includes a forging, cutting, or other shaping step between the first step and the second step. Is.

請求項7に係る発明は、加熱温度を1100〜1350℃として、圧延、鍛造、押出しその他の熱間加工工程を含ませることを特徴とする請求項1〜4のいずれか一つに記載の耐熱軽量高強度焼結体製造方法である。 The heat resistance according to any one of claims 1 to 4, wherein the invention according to claim 7 has a heating temperature of 1100 to 1350 ° C. and includes rolling, forging, extrusion and other hot working steps. This is a method for producing a lightweight and high-strength sintered body.

請求項8に係る発明は、Alの融点を含み680℃までの反応温度領域における圧力より、前記反応温度を超えた温度領域における圧力を高めた加圧とすることを特徴とする請求項1〜7のいずれか一つに記載の耐熱軽量高強度焼結体製造方法である。 The invention according to claim 8 is characterized in that the pressure is increased in the temperature region exceeding the reaction temperature from the pressure in the reaction temperature region up to 680 ° C. including the melting point of Al. The method for producing a heat-resistant, lightweight, high-strength sintered body according to any one of 7.

反応温度領域とは、Alの融点である660℃を下回り、Al粉とTi粉との接触界面にてAl−Ti合金が形成されはじめる温度(条件にも依存するが600℃程度以上)から680℃までをいう。
圧力の目安は、反応温度領域では5MPa〜20MPa、反応温度を超えてからは30MPa〜100MPaの例を挙げることができる。
The reaction temperature region is below the melting point of Al, 660 ° C, and is 680 from the temperature at which the Al—Ti alloy begins to form at the contact interface between the Al powder and the Ti powder (depending on the conditions, about 600 ° C or higher). Up to ℃.
As a guideline of the pressure, an example of 5 MPa to 20 MPa in the reaction temperature range and 30 MPa to 100 MPa after the reaction temperature is exceeded can be given.

本発明によれば、耐熱性を有する高強度で軽量なTi−Al−N系合金を、容易に製造ないし安価に製造することができる。 According to the present invention, a high-strength and lightweight Ti—Al—N-based alloy having heat resistance can be easily or inexpensively produced.

実施例1の合金の光学顕微鏡写真である。It is an optical micrograph of the alloy of Example 1. 実施例2の合金の光学顕微鏡写真である。It is an optical micrograph of the alloy of Example 2. 各種耐熱合金における温度と比強度との関係を示した相図である。It is a phase diagram which showed the relationship between the temperature and the specific strength in various heat-resistant alloys. 比較例の合金の光学顕微鏡写真である。It is an optical micrograph of the alloy of the comparative example. Al−Ti−Nの三元状態図上に請求項1の範囲を図示したものである。The scope of claim 1 is illustrated on the ternary phase diagram of Al-Ti-N. Thermo−Calcによる計算例である。This is a calculation example by Thermo-Calc. Thermo−Calcによる計算例である。This is a calculation example by Thermo-Calc.

Al−Tiの二元合金を製造する際には、Alが融解すると、型の隙間から流れ出てしまい、Al融点を超えた温度での焼結は積極的に検討されてこなかった経緯がある。
加えて、融点を若干下回る温度にて、Al粉とTi粉との接触界面でAl−Ti合金が形成され、これが強固な殻となりその後の効率的な反応が進みにくいという側面がある。場合により、殻の中に空隙が残存してしまうこともある。いずれにせよ、Al融点付近以上の焼結ないし合金形成に関しては、ミクロな組成の不均一性が解消されにくく、機械的特性が期待されるほど発揮されない。
When producing a binary alloy of Al—Ti, when Al melts, it flows out from the gap of the mold, and sintering at a temperature exceeding the melting point of Al has not been positively studied.
In addition, at a temperature slightly below the melting point, an Al—Ti alloy is formed at the contact interface between the Al powder and the Ti powder, which forms a strong shell, which makes it difficult for the subsequent efficient reaction to proceed. In some cases, voids may remain in the shell. In any case, with respect to sintering or alloy formation above the Al melting point, it is difficult to eliminate the non-uniformity of the microcomposition, and the mechanical properties are not exhibited as expected.

本願発明者らは鋭意検討の結果、従来TiN粉末はこれまで比較的安定な化合物としてしか認識されていなかったところ、これにAlに対する反応焼結原料としての有用性を発見し本発明をなしたものでる。
具体的には、本願発明者らは、TiN粉末を混和して加熱すると、Alの溶融とほぼ同時にTiNが反応して融点上昇を導き、型からの漏れ出しが事実上生じず、また、Al融点以上の高温域における安定した加圧焼結および拡散処理が可能となることを発見した。
また、AlとTiNとの混合原料に、Ti粉末が存在していても、TiN粉末の存在下では、同様の原理で反応が好適に進行することも確認した。
これらの知見をもとに、以下、本発明の実施例を説明する。
As a result of diligent studies, the inventors of the present application have made the present invention by discovering the usefulness of TiN powder as a reaction sintering raw material for Al, which has been conventionally recognized only as a relatively stable compound. It's a thing.
Specifically, when the TiN powder is mixed and heated, the inventors of the present application react with TiN almost at the same time as the melting of Al, leading to an increase in the melting point, and virtually no leakage from the mold occurs, and Al It was discovered that stable pressure sintering and diffusion treatment are possible in the high temperature range above the melting point.
It was also confirmed that even if Ti powder is present in the mixed raw material of Al and TiN, the reaction proceeds favorably in the presence of TiN powder by the same principle.
Based on these findings, examples of the present invention will be described below.

≪実施例1≫
平均粒径約100μmのAl粉末1に対し、平均粒径約0.8μmのTiN粉末を0.67の重量割合で混合した後、黒鉛型を使用した放電プラズマ焼結(SPS)を行ない、組織観察、硬さ試験、抗折試験を行なって特性を確認した。
<SPSの条件>
・加圧条件:初期加圧10MPa,800℃到達時以降50MPa
・加熱条件:RT〜600℃[30℃/分]→600℃〜800℃[10℃/分]→800℃×30分保持→800℃〜1050℃[10℃/分]→1050℃〜1100℃[2.5℃/分]→1100℃×60分保持→その後冷却
<< Example 1 >>
TiN powder having an average particle size of about 0.8 μm was mixed with Al powder 1 having an average particle size of about 100 μm at a weight ratio of 0.67, and then discharge plasma sintering (SPS) using a graphite mold was performed to obtain a structure. The characteristics were confirmed by observing, hardness test, and bending test.
<SPS conditions>
・ Pressurization conditions: Initial pressurization 10 MPa, 50 MPa after reaching 800 ° C
-Heating conditions: RT to 600 ° C [30 ° C / min] → 600 ° C to 800 ° C [10 ° C / min] → 800 ° C x 30 minutes holding → 800 ° C to 1050 ° C [10 ° C / min] → 1050 ° C to 1100 ℃ [2.5 ℃ / min] → 1100 ℃ × 60 minutes holding → then cooling

<組織観察>
光学顕微鏡写真を図1に示した。写真から明らかなように、十分均質であるまではいえず、空隙も見られる。これは、原料粉末の粒子サイズの差が大きく、また、拡散処理温度が低めだったためと考えられた。また、Al自体の粒径が大きい影響とも考えられた。
なお、細かく観察したところ、AlをベースとするFCC(面心立方格子構造)相、AlTi相、および、AlTi相がマトリックスを構成し、Ti(Al)N複合窒化物が析出する形となっていた。
<Tissue observation>
An optical micrograph is shown in FIG. As is clear from the photograph, it is not sufficiently homogeneous, and voids can be seen. It was considered that this was because the difference in particle size of the raw material powder was large and the diffusion treatment temperature was low. It was also considered that the particle size of Al itself was large.
Upon close observation, the FCC (face-centered cubic lattice structure) phase based on Al, the Al 3 Ti phase, and the Al 2 Ti phase form a matrix, and Ti (Al) N composite nitride is precipitated. It was in shape.

<硬さ>
微小硬さ分布は757HV0.5〜946HV0.5であり、平均値は836HV0.5であった。この値は実用鉄合金の最高硬さ(粉末ハイスの熱処理最高硬さ)に匹敵するレベルであり、高硬度素材であることが確認できた。
<Hardness>
The micro-hardness distribution was 757 HV0.5 to 946 HV0.5, and the average value was 836 HV0.5. This value is at a level comparable to the maximum hardness of a practical iron alloy (the maximum heat treatment hardness of powdered ferroalloy), and it was confirmed that it is a high hardness material.

<抗折試験>
次に、比抗折強度測定をおこなった。
まず、抗折試験をおこない、その結果を表1に示す。
<Anti-fold test>
Next, the specific bending strength was measured.
First, a folding test was performed, and the results are shown in Table 1.

本試験材(試験材1)の比重は3.7g/cmであった(軽合金といえる)。
従って、比抗折強度は次のとおりである。
常温:97MPa/(Mg/m)、
1000℃:86MPa/(Mg/m
この値は、実用特性として、軽量でありながら鉄合金の最高硬さに匹敵し、耐熱強度も備えているといえる。従って、軽量耐熱耐摩耗材として広い用途に有望な素材であることが確認できた。
The specific gravity of this test material (test material 1) was 3.7 g / cm 3 (it can be said to be a light alloy).
Therefore, the specific bending strength is as follows.
Room temperature: 97MPa / (Mg / m 3 ),
1000 ° C: 86 MPa / (Mg / m 3 )
As a practical characteristic, this value is comparable to the maximum hardness of iron alloys while being lightweight, and it can be said that it also has heat resistance. Therefore, it was confirmed that it is a promising material for a wide range of applications as a lightweight heat-resistant and abrasion-resistant material.

≪実施例2≫
平均粒径約75μmのAl粉末1に対し、平均粒径約0.8μm粒径のTiN粉末を0.65、平均粒径約40μmのTi粉末を1.8の重量割合として混合し、更に、平均粒径約5μmのCrN粉末を0.03加えてよく混合した後、黒鉛型を使用した放電プラズマ焼結(SPS)を行ない、組織観察、硬さ試験、抗折試験を行って特性を確認した。
<SPSの条件>
・加圧条件:初期加圧10MPa,800℃到達時以降50MPa
・加熱条件:RT〜600℃[30℃/分]→600℃〜800℃[10℃/分]→800℃×30分保持→800℃〜1150℃[10℃/分]→1150〜1200℃[2.5℃/分]→1200℃×60分保持→その後冷却
<< Example 2 >>
TiN powder having an average particle size of about 0.8 μm was mixed with an Al powder 1 having an average particle size of about 75 μm as a weight ratio of 0.65, and Ti powder having an average particle size of about 40 μm was mixed as a weight ratio of 1.8. After adding 0.03 of CrN powder with an average particle size of about 5 μm and mixing well, discharge plasma sintering (SPS) using a graphite mold is performed, and structure observation, hardness test, and bending test are performed to confirm the characteristics. did.
<SPS conditions>
・ Pressurization conditions: Initial pressurization 10 MPa, 50 MPa after reaching 800 ° C
-Heating conditions: RT to 600 ° C [30 ° C / min] → 600 ° C to 800 ° C [10 ° C / min] → 800 ° C x 30 minutes holding → 800 ° C to 1150 ° C [10 ° C / min] → 1150 to 1200 ° C [2.5 ° C / min] → 1200 ° C x 60 minutes holding → then cooling

<組織観察>
光学顕微鏡写真を図2に示した。写真から明らかなように、50μm径程度以下の未固溶TiN粒子が若干確認されるものの、大部分はTiAl(微量のCrを含む)とTiAlを主体とするマトリックスであり、これに、個々には識別できない微細(1μmオーダー)なTiAlNが析出した状態となっていた。全体として橙色を帯びた比較的均質な組織が形成されているといえる。
<Tissue observation>
An optical micrograph is shown in FIG. As it is evident from the photograph, although 50μm diameter of about less undissolved TiN particles is confirmed slightly, the majority is a matrix mainly composed of Ti 3 Al and TiAl (including Cr traces), in which, Fine particles (on the order of 1 μm) that could not be individually identified were precipitated in Ti 2 AlN. It can be said that a relatively homogeneous structure with an orange tinge is formed as a whole.

<硬さ>
微少硬さ分布は420HV0.5〜540HV0.5であり、平均値は466HV0.5であった。この値は、焼入れ焼戻しを施した鉄鋼の硬さに相当する。
<Hardness>
The fine hardness distribution was 420HV0.5 to 540HV0.5, and the average value was 466HV0.5. This value corresponds to the hardness of hardened and tempered steel.

<抗折試験>
次に、比抗折強度測定をおこなった。
まず、抗折試験をおこない、その結果を表2に示す。
<Anti-fold test>
Next, the specific bending strength was measured.
First, a folding test was conducted, and the results are shown in Table 2.

本試験材(試験材2)の比重は4.03g/cmであった(軽合金といえる)。
従って、比抗折強度は次のとおりである。
常温:146MPa/(Mg/m)、
1000℃:118MPa/(Mg/m
図3に、各種耐熱合金における温度と比強度との関係を示した。1000℃における試験材2の比抗折強度は、図示した従来得られているTiAl二元合金の最高値と同等以上であるといえる。
The specific gravity of this test material (test material 2) was 4.03 g / cm 3 (it can be said to be a light alloy).
Therefore, the specific bending strength is as follows.
Room temperature: 146 MPa / (Mg / m 3 ),
1000 ° C: 118 MPa / (Mg / m 3 )
FIG. 3 shows the relationship between the temperature and the specific strength of various heat-resistant alloys. It can be said that the specific bending strength of the test material 2 at 1000 ° C. is equal to or higher than the maximum value of the conventionally obtained TiAl binary alloy shown in the figure.

≪比較例≫
次に、比較例として、Ti−48at%Al合金(二元合金)を説明する。
平均粒径約75μm粒径のAl粉末1に対し、平均粒径約40μmのTi粉末を0.5の重量割合で混合した後、黒鉛型を使用した放電プラズマ焼結(SPS)を行ない、組織観察、硬さ試験をおこなった。
を確認した。焼結条件は実施例2と同じとした。
≪Comparison example≫
Next, as a comparative example, a Ti-48 at% Al alloy (binary alloy) will be described.
Ti powder with an average particle size of about 40 μm is mixed with Al powder 1 having an average particle size of about 75 μm at a weight ratio of 0.5, and then discharge plasma sintering (SPS) using a graphite mold is performed to obtain a structure. Observation and hardness test were conducted.
It was confirmed. The sintering conditions were the same as in Example 2.

<組織観察>
光学顕微鏡写真を図4に示した。一見うまく焼結されているように見えるが詳細に観察したところ、原料のAl粒がほぼそのままとなっており(Al富化部として残存し)、外殻の化合物領域に覆われた、均質化の不十分なミクロ組織が形成されていることを確認した。
<Tissue observation>
An optical micrograph is shown in FIG. At first glance, it seems that it is sintered well, but when observed in detail, the Al grains of the raw material remain almost as they are (remaining as an Al enriched part), and the homogenization is covered with the compound region of the outer shell. It was confirmed that an inadequate microstructure was formed.

<硬さ>
ビッカース硬さ試験を実施した結果、234HV0.5〜480HV0.5であり、平均値は285HV0.5であった。実施例1,2と比較すると硬さは低く、局所的な硬化層が存在してばらつきも大きい。すなわち、本発明(実施例)の方が、均質であり、高硬度であるといえる。
<Hardness>
As a result of carrying out the Vickers hardness test, it was 234HV0.5 to 480HV0.5, and the average value was 285HV0.5. Compared with Examples 1 and 2, the hardness is low, a locally hardened layer is present, and the variation is large. That is, it can be said that the present invention (Example) is more homogeneous and has higher hardness.

以上の実施例および比較例から、本発明の方法は、従来のTiAl合金における特殊な溶解鋳造法によることなく、低コストな製造方法であるといえる。また、得られる合金は、取扱性に優れ均質であって、従来品より高硬度かつ1000℃程度の高温域において同等以上の比強度を有するものである。 From the above Examples and Comparative Examples, it can be said that the method of the present invention is a low-cost manufacturing method without using a special melt casting method for a conventional TiAl alloy. Further, the obtained alloy has excellent handleability and is homogeneous, has a higher hardness than the conventional product, and has a specific strength equal to or higher than that in a high temperature range of about 1000 ° C.

なお、本発明の温度域等について補足する。
図5は、Al−Ti−Nの三元状態図である。本発明の製造方法における原料の組成範囲は、図中の(1)〜(5)で示した黒丸印(5箇所)を頂点とする五角形内である。なお、図では実施例と比較例の組成点も記している。
The temperature range and the like of the present invention will be supplemented.
FIG. 5 is a ternary phase diagram of Al—Ti—N. The composition range of the raw material in the production method of the present invention is within a pentagon having the black circles (5 points) shown by (1) to (5) in the figure as vertices. In the figure, the composition points of Examples and Comparative Examples are also shown.

焼結体を製造する際の焼結温度ないし熱拡散温度は、660℃〜1350℃である。660℃はAlの融点であり、1350℃はTi−Al−N三元状態図上で液相を生じうる温度である(後述)。 The sintering temperature or heat diffusion temperature at the time of producing the sintered body is 660 ° C. to 1350 ° C. 660 ° C. is the melting point of Al, and 1350 ° C. is the temperature at which a liquid phase can be formed on the Ti—Al—N ternary phase diagram (described later).

反応焼結原料としてTiの全部または一部をTiNで代替することにより、焼結性向上が認められるが、CrNを添加使用した場合にもその効果が認められ、このほか、Cr単体、もしくは、Nb、V、Zr、Bまたはこれらの窒化物でも同等の効果がみとめられる。この現象は、概略的に言えば、TiとAlとの化合物のみからなる粉末の外殻構造を生成する反応に対し、窒素の存在によりAlNなどの微細な窒化物生成反応が加わることによって焼結温度が高温化し、Al融点付近での焼結反応を生ずるため、最終製品の均一性が得られやすくなると解釈される。 By substituting TiN for all or part of Ti as the reaction sintering raw material, the sinterability is improved, but the effect is also recognized when CrN is added and used. In addition, Cr alone or Cr alone or Equivalent effects can be seen with Nb, V, Zr, B or nitrides thereof. Roughly speaking, this phenomenon is sintered by the addition of a fine nitride formation reaction such as AlN due to the presence of nitrogen to the reaction of forming a powder outer shell structure consisting only of a compound of Ti and Al. It is interpreted that the uniformity of the final product can be easily obtained because the temperature rises and a sintering reaction occurs near the melting point of Al.

また、このような窒化物を原料に使用すると、製品の強度も向上する。先に示した様に、従来のTiAl(代表組成として48at%Al−52at%Ti)合金では、約250HV程度のところ、Tiの重量分率で約1/3をTiNで置換えると、焼結まま製品で約450HV−500HVとなり、圧縮強度に換算すると2倍強のレベルとなる。 Further, when such a nitride is used as a raw material, the strength of the product is also improved. As shown above, in the conventional TiAl (48at% Al-52at% Ti as a representative composition) alloy, when about 250HV is replaced with about 1/3 of the weight fraction of Ti with TiN, it is sintered. As it is, the product will be about 450HV-500HV, which is more than double the compression strength.

更に、窒化物を原料に使用すると、耐熱性、即ち熱間強度と耐酸化性が向上する。マトリックスを形成するTi−Al系化合物相のみならず窒化チタン及び合金窒化物の添加で生じる窒素化合物(AlN、Ti2AlNや準安定相として存在しうるTiNなど)は、従来の熱力学データからいずれも1350℃以上まで極めて安定な層であると考えられる。マトリックスのγTiAl相などへ侵入窒素による固溶強化と微細窒化物の析出強化の効果をもたらし、同時に耐酸化性も向上させることが確認される。 Further, when a nitride is used as a raw material, heat resistance, that is, hot strength and oxidation resistance are improved. Not only the Ti—Al compound phase forming the matrix, but also the nitrogen compounds (AlN, Ti2AlN, TiN that can exist as a metastable phase, etc.) generated by the addition of titanium nitride and alloy nitride are all from the conventional thermodynamic data. It is considered that the layer is extremely stable up to 1350 ° C. or higher. It is confirmed that the effect of solid solution strengthening by invading nitrogen into the γTiAl phase of the matrix and the precipitation strengthening of fine nitrides is brought about, and at the same time, the oxidation resistance is also improved.

なお、図6および図7に、Thrmo−Calc(サーモカルクソフトウェア社によるソフトウェア)による計算例を示した。本発明により得られる合金は周辺の領域において、TiAl、TiAl、TiAl、AlN、TiAlN及び平衡しうるマトリックスのAlベースのFCC相、Ti(α)ベースのHCP相、更に準安定相として若干量残留しうると考えられるTiNまで含め、主要な構成相が全て約1350℃まで安定と考えられる。但し、現実の製品はアルミニウム粉末の表面に形成される酸化相による5mass%以下の酸素混入があるなどの要因で、一定の誤差を生じうる。 In addition, FIG. 6 and FIG. 7 show a calculation example by Thrmo-Calc (software by Thermocalc Software Co., Ltd.). The alloys obtained by the present invention have TiAl, Ti 3 Al, TiAl 3 , AlN, Ti 2 AlN and an equilibrium matrix Al-based FCC phase, Ti (α) -based HCP phase, and metastable in the surrounding regions. It is considered that all the main constituent phases are stable up to about 1350 ° C., including TiN, which is considered to be able to remain in a small amount as a phase. However, in an actual product, a certain error may occur due to factors such as oxygen contamination of 5 mass% or less due to the oxidation phase formed on the surface of the aluminum powder.

次に、二段階の焼結工程について説明する。第一段階の焼結工程は660℃〜1000℃の所定温度における所定時間の保持であり、第二段階の焼結工程は1000℃(場合によっては1100℃)〜1350℃の所定温度における所定時間の保持である。
1000℃以下の短時間加圧焼結では原料粒子サイズに起因する不均一性が残存し、合金化と硬化が十分でない部分が存在しうるため、この段階での焼結体は、目標となる耐熱強度を有するに至っていない。しかしながら、中間体として切削加工や塑性加工を行なうには有利な場合もある。従って、中間体を加工してから拡散処理を行なうのが製品の成形に有利な場合がある。もっとも、第一段階(低温側)の焼結後、そのまま冷却せずに第二段階(高温側)の焼結すなわち、拡散加圧焼結に移行してもよい。
Next, the two-step sintering process will be described. The first-stage sintering step is holding at a predetermined temperature of 660 ° C. to 1000 ° C. for a predetermined time, and the second-stage sintering step is a predetermined time at a predetermined temperature of 1000 ° C. (1100 ° C.) to 1350 ° C. Is the retention of.
In the short-time pressure sintering at 1000 ° C. or lower, non-uniformity due to the raw material particle size remains, and there may be a portion where alloying and curing are not sufficient. Therefore, the sintered body at this stage is a target. It does not have heat resistance. However, it may be advantageous to perform cutting or plastic working as an intermediate. Therefore, it may be advantageous for molding the product to process the intermediate and then perform the diffusion treatment. However, after the first stage (low temperature side) sintering, the second stage (high temperature side) sintering, that is, diffusion pressure sintering may be performed without cooling as it is.

拡散処理、或いは高温側での加圧焼結の目的は、Ti−Al−N系耐熱化合物、即ちTiAl、TiAl,TiAlN,AlN等の耐熱平衡相の析出による耐熱性の付与と高強度化及び均質化の実現である。Ti−Al−N系では1000℃程度を境にして平衡する高温相と低温相の種類が若干変わる傾向があるので、約1000℃以上で保持することが有効である。但し、1350℃を超えると液相が生じる危険性があり、拡散処理は1000〜1350℃の範囲とする。 The purpose of diffusion treatment or pressure sintering on the high temperature side is to impart heat resistance by precipitating heat-resistant equilibrium phases such as Ti—Al—N heat-resistant compounds, that is, TiAl, Ti 3 Al, Ti 2 AlN, and AlN. Achievement of high strength and homogenization. In the Ti—Al—N system, the types of the high temperature phase and the low temperature phase that equilibrate at about 1000 ° C. tend to change slightly, so it is effective to keep the temperature at about 1000 ° C. or higher. However, if the temperature exceeds 1350 ° C, there is a risk of a liquid phase being formed, and the diffusion treatment is in the range of 1000 to 1350 ° C.

仕様の態様によっては、1100℃以上の高温領域で熱間鍛造や熱間圧延といった塑性加工が行われうる。この場合も材温が1350℃を超えると液相が生じまた組織が粗大化するため、熱間鍛造や熱間圧延は1100〜1350℃の温度範囲で行なうことが望ましい。 Depending on the aspect of the specifications, plastic working such as hot forging or hot rolling can be performed in a high temperature region of 1100 ° C. or higher. In this case as well, if the material temperature exceeds 1350 ° C., a liquid phase is formed and the structure becomes coarse. Therefore, it is desirable to perform hot forging and hot rolling in the temperature range of 1100 to 1350 ° C.

次に、特性調整用元素について説明する。Cr、Nb、V、Zr、Bは、Ti−Al合金に添加すると、酸化性と高温での組織安定性を向上させることが可能であり、これら、または、これらの窒化物を本発明の方法によるAl−Ti−N系合金の製造に際し添加すれば、同様の効果が得られるほか、焼結初期にTiN粉末と同様のAlとの反応性を利用できる(焼結性の調整が可能となる)。 Next, the element for adjusting the characteristics will be described. When Cr, Nb, V, Zr, and B are added to the Ti—Al alloy, it is possible to improve the oxidizing property and the structure stability at high temperature, and these or these nitrides can be used in the method of the present invention. If it is added in the production of an Al—Ti—N alloy according to the above, the same effect can be obtained, and the same reactivity with Al as the TiN powder can be utilized at the initial stage of sintering (the sinterability can be adjusted). ).

Crの場合は、上述の成形性向上効果が顕著であり、耐酸化性向上効果もあるが、多すぎると低融点化合物を生成しやすくなるため、Alの重量1に対してCr又はCrNを0.5以下とする。
Nbは耐酸化性効果が大きいが、多すぎると比重を大きくし、粗大窒化物を作り好ましくないのでAlの重量1に対してNb又はNbNを1.0以下とする。
Zr,Vについては耐酸化性及び熱間強度向上の効果が認められるが、多すぎると比重を大きくし、また粗大窒化物を作り好ましくないのでAlの重量1に対してZr又はZrN、V又はVNとも0.3以下とする。
Bについては微量で組織の安定化効果、熱間強度向上効果が認められるが、多すぎると粗大窒化物を作り好ましくないのでAlの重量1に対してB又はBN0.1以下とする。
In the case of Cr, the above-mentioned effect of improving moldability is remarkable, and there is also an effect of improving oxidation resistance. However, if the amount is too large, a low melting point compound is likely to be produced. Therefore, Cr or CrN is set to 0 with respect to 1 weight of Al. It shall be 5.5 or less.
Nb has a large oxidation resistance effect, but if it is too large, the specific gravity is increased and it is not preferable to form a coarse nitride. Therefore, Nb or NbN is set to 1.0 or less with respect to 1 weight of Al.
Regarding Zr and V, the effects of improving oxidation resistance and hot strength are recognized, but if it is too much, the specific gravity will be increased and coarse nitrides will be formed, which is not preferable. Therefore, Zr or ZrN, V or Both VN shall be 0.3 or less.
A small amount of B has a structure stabilizing effect and a hot strength improving effect, but if it is too large, coarse nitrides are formed, which is not preferable. Therefore, B or BN is 0.1 or less with respect to 1 weight of Al.

なお、これら、特性調整用元素粉末(窒化物を含む)の平均粒径は、100μm以下とするのが好ましい。100μmを超えると、その元素の拡散に時間がかかり、製品のミクロ組織が不均質となって、所期の各種特性が得られにくくなるからである The average particle size of these element powders for adjusting characteristics (including nitrides) is preferably 100 μm or less. This is because if it exceeds 100 μm, it takes time to diffuse the element, the microstructure of the product becomes inhomogeneous, and it becomes difficult to obtain various desired characteristics.

O(酸素)は微細粉末を使用するのである程度の混入は不可避であるが、多くなりすぎると材料の脆化が顕著となるので最終製品(合金)の組成において3wt%以下で且つ極力低減する必要がある。 Since fine powder is used for O (oxygen), it is unavoidable to mix it to some extent, but if it is too large, the material becomes embrittled, so it is necessary to reduce the composition of the final product (alloy) to 3 wt% or less as much as possible. There is.

また、P,S,Si,Mn,Sn,Zn,Fe,Ni,Co,Cu,Ag,Mo,W,Hfは、本発明に見られる合金の基本的な作用機序を成立させる範囲で許容されうる。上記の各元素について、0.5wt%のレベルで顕著な有害性は確認されない。個別の上限として3wt%、合計で10wt%を超える場合には本発明合金の基本特性が維持されにくい。従って、最終製品の組成として、個別に3wt%以下、合計で10wt%以下の範囲で混入または添加する。 Further, P, S, Si, Mn, Sn, Zn, Fe, Ni, Co, Cu, Ag, Mo, W and Hf are allowed as long as the basic mechanism of action of the alloy found in the present invention is established. Can be done. No significant toxicity has been identified at the 0.5 wt% level for each of the above elements. When the individual upper limit exceeds 3 wt%, and the total exceeds 10 wt%, it is difficult to maintain the basic characteristics of the alloy of the present invention. Therefore, the composition of the final product is individually mixed or added in the range of 3 wt% or less, that is, 10 wt% or less in total.

本発明によれば、従来の航空機エンジン部品のほか、高温環境下で強度が要求されるおよび/または軽量であることが要求される構造材を安価に提供できる。 According to the present invention, in addition to conventional aircraft engine parts, structural materials that are required to be strong and / or lightweight in a high temperature environment can be provided at low cost.

Claims (8)

それぞれ粉末状のAl、TiN、Tiを重量比にてAl:TiN:Ti=1:0.01〜1.5:x(ただし、xは0以上でありTiNの比率との和が0.3以上6.0以下となる値)として混合し、
真空または無酸素雰囲気下にてこの混合粉末を加圧しながら660℃〜1350℃で加熱して得ることを特徴とする耐熱軽量高強度焼結体製造方法。
Powdered Al, TiN, and Ti in weight ratio of Al: TiN: Ti = 1: 0.01 to 1.5: x (where x is 0 or more and the sum with the TiN ratio is 0.3. Mix as (a value that is greater than or equal to 6.0 or less).
A method for producing a heat-resistant, lightweight, high-strength sintered body, which is obtained by heating the mixed powder at 660 ° C. to 1350 ° C. while pressurizing it in a vacuum or an oxygen-free atmosphere.
Al粉末の平均粒径を1μm以上1mm以下、および/または、TiN粉末の平均粒径を50μm以下とすることを特徴とする請求項1に記載の耐熱軽量高強度焼結体製造方法。 The method for producing a heat-resistant, lightweight, high-strength sintered body according to claim 1, wherein the average particle size of the Al powder is 1 μm or more and 1 mm or less, and / or the average particle size of the TiN powder is 50 μm or less. Cr、Nb、V、Zr、Bを特性調整用元素とし、
重量比でAl1に対し、
Cr粉末もしくはCrN粉末を0.5以下、
Nb粉末もしくはNbN粉末を1.0以下、
V粉末もしくはVN粉末を0.3以下、
Zr粉末もしくはZrN粉末を0.3以下、または、
B粉末もしくはBN粉末を0.1以下、
添加した混合粉末を用いることを特徴とする請求項1または2に記載の耐熱軽量高強度焼結体製造方法。
Cr, Nb, V, Zr, B are used as the element for adjusting the characteristics.
By weight ratio to Al1
Cr powder or CrN powder 0.5 or less,
Nb powder or NbN powder 1.0 or less,
V powder or VN powder 0.3 or less,
Zr powder or ZrN powder 0.3 or less, or
B powder or BN powder 0.1 or less,
The method for producing a heat-resistant, lightweight, high-strength sintered body according to claim 1 or 2, wherein the added mixed powder is used.
特性調整用元素として添加する粉末の平均粒径を100μm以下とすることを特徴とする請求項3記載の耐熱軽量高強度焼結体製造方法。 The method for producing a heat-resistant, lightweight, high-strength sintered body according to claim 3, wherein the average particle size of the powder added as an element for adjusting the characteristics is 100 μm or less. 加熱に際し、
加圧しながら660〜1000℃の範囲にて加熱する第一工程を経た後、
1000〜1350℃の範囲にて拡散熱処理を施す第二工程を経ることを特徴とする請求項1〜4のいずれか一つに記載の耐熱軽量高強度焼結体製造方法。
When heating
After going through the first step of heating in the range of 660 to 1000 ° C while pressurizing,
The method for producing a heat-resistant, lightweight, high-strength sintered body according to any one of claims 1 to 4, wherein the second step of performing diffusion heat treatment in the range of 1000 to 1350 ° C. is performed.
第一工程と第二工程との間に、鍛造、切削その他の整形工程を含ませることを特徴とする請求項5に記載の耐熱軽量高強度焼結体製造方法。 The heat-resistant, lightweight, high-strength sintered body manufacturing method according to claim 5, wherein a forging, cutting, or other shaping step is included between the first step and the second step. 加熱温度を1100〜1350℃として、圧延、鍛造、押出しその他の熱間加工工程を含ませることを特徴とする請求項1〜4のいずれか一つに記載の耐熱軽量高強度焼結体製造方法。 The method for producing a heat-resistant, lightweight, high-strength sintered body according to any one of claims 1 to 4, wherein the heating temperature is 1,100 to 1350 ° C., and rolling, forging, extrusion, and other hot working steps are included. .. Alの融点を含み680℃までの反応温度領域における圧力より、前記反応温度を超えた温度領域における圧力を高めた加圧とすることを特徴とする請求項1〜7のいずれか一つに記載の耐熱軽量高強度焼結体製造方法。 The invention according to any one of claims 1 to 7, wherein the pressure is increased in the temperature region exceeding the reaction temperature from the pressure in the reaction temperature region up to 680 ° C. including the melting point of Al. Heat resistant, lightweight and high strength sintered body manufacturing method.
JP2019051005A 2019-03-19 2019-03-19 Heat-resistant, lightweight, high-strength sintered body manufacturing method Active JP7334896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019051005A JP7334896B2 (en) 2019-03-19 2019-03-19 Heat-resistant, lightweight, high-strength sintered body manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019051005A JP7334896B2 (en) 2019-03-19 2019-03-19 Heat-resistant, lightweight, high-strength sintered body manufacturing method

Publications (2)

Publication Number Publication Date
JP2020152945A true JP2020152945A (en) 2020-09-24
JP7334896B2 JP7334896B2 (en) 2023-08-29

Family

ID=72557902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019051005A Active JP7334896B2 (en) 2019-03-19 2019-03-19 Heat-resistant, lightweight, high-strength sintered body manufacturing method

Country Status (1)

Country Link
JP (1) JP7334896B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112342421A (en) * 2020-10-20 2021-02-09 长安大学 Vanadium nitride multi-field coupling preparation process and device
WO2022260026A1 (en) * 2021-06-09 2022-12-15 株式会社Ihi Tial alloy, tial alloy powder, tial alloy component, and method for producing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49104807A (en) * 1973-02-09 1974-10-03
JPH02200743A (en) * 1989-01-30 1990-08-09 Sumitomo Light Metal Ind Ltd Method for compacting ti-al series intermetallic compound member
JPH08225879A (en) * 1995-02-15 1996-09-03 Agency Of Ind Science & Technol Titanium nitrode sintered compact using aluminum as auxiliary and its production
JPH11172351A (en) * 1997-12-12 1999-06-29 Agency Of Ind Science & Technol Ti-al alloy, production of the alloy, and method for joining the alloy
CN1944338A (en) * 2006-10-24 2007-04-11 武汉理工大学 Synthesizing dense titanium aluminum nitride-titanium nitride composite block material by in site thermal press process
CN103846438A (en) * 2014-02-20 2014-06-11 福州阿石创光电子材料有限公司 Method for manufacturing TiAlN metal ceramic composite target

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49104807A (en) * 1973-02-09 1974-10-03
JPH02200743A (en) * 1989-01-30 1990-08-09 Sumitomo Light Metal Ind Ltd Method for compacting ti-al series intermetallic compound member
JPH08225879A (en) * 1995-02-15 1996-09-03 Agency Of Ind Science & Technol Titanium nitrode sintered compact using aluminum as auxiliary and its production
JPH11172351A (en) * 1997-12-12 1999-06-29 Agency Of Ind Science & Technol Ti-al alloy, production of the alloy, and method for joining the alloy
CN1944338A (en) * 2006-10-24 2007-04-11 武汉理工大学 Synthesizing dense titanium aluminum nitride-titanium nitride composite block material by in site thermal press process
CN103846438A (en) * 2014-02-20 2014-06-11 福州阿石创光电子材料有限公司 Method for manufacturing TiAlN metal ceramic composite target

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112342421A (en) * 2020-10-20 2021-02-09 长安大学 Vanadium nitride multi-field coupling preparation process and device
WO2022260026A1 (en) * 2021-06-09 2022-12-15 株式会社Ihi Tial alloy, tial alloy powder, tial alloy component, and method for producing same

Also Published As

Publication number Publication date
JP7334896B2 (en) 2023-08-29

Similar Documents

Publication Publication Date Title
JP6261618B2 (en) Method for producing titanium material and nitrogen solid solution titanium powder material
Bolzoni et al. Quantifying the properties of low-cost powder metallurgy titanium alloys
CN109848420B (en) 440C stainless steel metal powder injection molding method and product thereof
ES2698523T3 (en) Procedure to produce a construction element from a composite material with a metallic matrix and intermetallic phases incorporated
KR20190143164A (en) High entropy alloys with intermetallic compound precipitates for strengthening and method for manufacturing the same
WO2013047511A1 (en) Fe-based powder-densely-solidified molding having excellent high-temperature strength
JP2010532822A (en) Titanium aluminide alloy manufacturing method, titanium aluminide alloy structural material manufacturing method, and titanium aluminide alloy structural material
JP7334896B2 (en) Heat-resistant, lightweight, high-strength sintered body manufacturing method
WO2013162658A2 (en) Oxygen-enriched ti-6ai-4v alloy and process for manufacture
JP5759426B2 (en) Titanium alloy and manufacturing method thereof
JP6011946B2 (en) Nickel-based intermetallic compound composite sintered material and method for producing the same
JP2021121690A (en) TiAl-BASED ALLOY AND MANUFACTURING METHOD THEREOF
US5000910A (en) Method of manufacturing intermetallic compound
US20160207110A1 (en) Corrosion resistant article and methods of making
JP2014169471A (en) Ni-BASED INTERMETALLIC COMPOUND SINTERED BODY, AND PRODUCING METHOD THEREFOR
JP6667264B2 (en) Manufacturing method of high-rigidity iron-based sintered alloy
KR102429733B1 (en) Corrosion resistant article and methods of making
JPH04325648A (en) Production of sintered aluminum alloy
CN109311086B (en) Method for producing titanium or titanium alloy components by powder metallurgy
JP2004143596A (en) Tenacious metallic nano-crystalline bulk material with high hardness and high strength, and its manufacturing method
Zhang et al. The sintering densification, microstructure and mechanical properties of Ti–48Al–2Cr–2Nb by a small addition of Sn–Al powder
WO2020032235A1 (en) NITRIDE-DISPERSED MOLDED BODY WHICH IS FORMED OF Ni-BASED ALLOY
JP2019014920A (en) Co-BASED ALLOY POWDER FOR ELECTRON BEAM LAMINATION MOLDING
WO2017077923A1 (en) Nitrogen-solid-soluted titanium sintered compact and method for producing same
CN113597476B (en) Method for manufacturing Co-based alloy structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230207

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230808

R150 Certificate of patent or registration of utility model

Ref document number: 7334896

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150