JP2004143596A - Tenacious metallic nano-crystalline bulk material with high hardness and high strength, and its manufacturing method - Google Patents

Tenacious metallic nano-crystalline bulk material with high hardness and high strength, and its manufacturing method Download PDF

Info

Publication number
JP2004143596A
JP2004143596A JP2003342103A JP2003342103A JP2004143596A JP 2004143596 A JP2004143596 A JP 2004143596A JP 2003342103 A JP2003342103 A JP 2003342103A JP 2003342103 A JP2003342103 A JP 2003342103A JP 2004143596 A JP2004143596 A JP 2004143596A
Authority
JP
Japan
Prior art keywords
metal
bulk material
nanocrystalline
powder
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003342103A
Other languages
Japanese (ja)
Inventor
Harumatsu Miura
三浦 春松
Nobuaki Miyao
宮尾 信昭
Hidenori Ogawa
小川 英典
Kazuo Oda
小田 和生
Munehide Katsumura
勝村 宗英
Masaru Mizutani
水谷 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NANO GIJUTSU KENKYUSHO KK
Original Assignee
NANO GIJUTSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NANO GIJUTSU KENKYUSHO KK filed Critical NANO GIJUTSU KENKYUSHO KK
Priority to JP2003342103A priority Critical patent/JP2004143596A/en
Publication of JP2004143596A publication Critical patent/JP2004143596A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tenacious metallic nano-crystalline bulk material having high hardness/ high strength, and its manufacturing method. <P>SOLUTION: The metallic bulk material is composed of agglomerates of metallic nano-crystalline particles, and the oxides, nitrides, carbides, borides, etc., of metal or semimetal are allowed to exist as a grain growth inhibitor material between the respective nano-crystalline particles and/or in the inside of these particles. The respective fine powders of metallic nano-crystalline bulk material forming components are subjected to mechanical alloying (MA) using a ball mill etc. to prepare metal nano-powder, and the powder is then subjected to hot compaction, such as sheath rolling, spark plasma sintering and extrusion, or compaction treatment such as explosive forming to manufacture the tenacious metallic nano-crystalline bulk material having high hardness and high strength. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、金属、特に高硬度・高強度で強靱なナノ結晶金属バルク材及びその製造方法に関する。 The present invention relates to a metal, particularly a nanocrystalline metal bulk material having high hardness, high strength and toughness, and a method for producing the same.

 金属材料の強さ、硬さは、ペッチの関係式が示すように、結晶粒径Dが小さくなるほど増加し、このような関係はDが数十nm付近までは同じように成立するので、結晶粒径をナノサイズレベルまで超微細化することは、金属材料を強化する最も重要な手段の一つである。
 一方、結晶粒径をナノサイズレベルまで超微細化すると、多くの金属材料では、0.5Tm(Tm:融点(K))以上の温度域において超塑性という特異な現象を示すようになる。
 この現象を利用すると、高い融点ないし、融解温度のため、その塑性加工などが非常に難しい材料でも比較的低い温度でその変形加工処理が可能となる。
 さらにまた、鉄、コバルト、ニッケル等の磁性元素では、結晶粒径Dがミクロンのオーダの範囲にある場合とは逆に、ナノオーダの粒径範囲ではDは小になるほど、保磁力が低下し、軟磁性特性が向上するという報告もみられる。
The strength and hardness of the metal material increase as the crystal grain size D decreases, as shown by the Petch relational expression. Such a relationship is similarly established until D is around several tens of nm. Ultra-fine particle size reduction to the nanometer level is one of the most important means for strengthening metallic materials.
On the other hand, when the crystal grain size is made ultra-fine to the nano-size level, many metallic materials exhibit a unique phenomenon called superplasticity in a temperature range of 0.5 Tm (Tm: melting point (K)) or higher.
Utilizing this phenomenon, even a material whose plastic working is extremely difficult due to a high melting point or melting temperature can be deformed at a relatively low temperature.
Further, in magnetic elements such as iron, cobalt, and nickel, the coercive force decreases as D becomes smaller in the particle size range of nano-order, as opposed to the case where the crystal grain size D is in the range of micron-order, There are reports that soft magnetic properties are improved.

 しかし、溶解法で製造されている多くの金属材料の結晶粒径Dは、通常数ミクロン〜数千ミクロンであり、後処理によってもDをナノオーダにすることは難しく、例えば、鋼の結晶粒径微細化プロセスとして重要な制御圧延の場合でも、その到達できる粒径の下限は4〜5μm程度である。従って、このような通常の方法では、ナノサイズまでに粒径を微細化した材料は得られない。 However, the crystal grain size D of many metal materials manufactured by the melting method is usually several microns to several thousand microns, and it is difficult to make D into nano order even by post-processing. Even in the case of controlled rolling which is important as a refining process, the lower limit of the grain size that can be reached is about 4 to 5 μm. Therefore, with such a usual method, a material whose particle size is reduced to nano size cannot be obtained.

 本発明は上記課題を解決するものであって、下記の発明である。
 本発明は、基本的には、元素状の金属又は半金属の粉末単体、又はこれに他元素等を添加した混合粉末のボールミル等を用いたメカニカルミリング(MM)又はメカニカルアロイング(MA)処理と、それにより得られたナノ結晶微粉末の固化成形処理、又は同成形過程での超塑性を利用した方法により、結晶粒径をナノサイズのレベルまで微細化した場合に達成できるその限界に近い強さ(高強度)ないし硬さ(超硬質)及び耐食性をもつバルク材を提供することである。
The present invention solves the above problems, and is the following invention.
Basically, the present invention provides mechanical milling (MM) or mechanical alloying (MA) treatment using elemental metal or metalloid powder alone or a mixed powder obtained by adding another element or the like to a ball mill or the like. And, by solidification molding process of the nanocrystalline fine powder obtained thereby, or by a method utilizing superplasticity in the same molding process, near the limit that can be achieved when the crystal grain size is refined to the nano-size level It is an object of the present invention to provide a bulk material having strength (high strength) to hardness (ultra-hard) and corrosion resistance.

 すなわち、本発明は、下記構成のナノ結晶金属バルク材及びその製造方法である。
(1)金属ナノ結晶粒子の集合体よりなる金属バルク材であって、
前記各ナノ結晶粒子の粒子間及び/又は同粒子の内部に、結晶粒成長抑制物質として金属又は半金属の酸化物を存在させてなることを特徴とする高硬度・高強度で強靱なナノ結晶金属バルク材。
(2)金属ナノ結晶粒子の集合体よりなる金属バルク材であって、
前記各ナノ結晶粒子の粒子間及び/又は同粒子の内部に、結晶粒成長抑制物質として金属又は半金属の窒化物を存在させてなることを特徴とする高硬度・高強度で強靱なナノ結晶金属バルク材。
(3) 金属ナノ結晶粒子の集合体よりなる金属バルク材であって、
前記各ナノ結晶粒子の粒子間及び/又は同粒子の内部に、結晶粒成長抑制物質として金属又は半金属の炭化物を存在させてなることを特徴とする高硬度・高強度で強靱なナノ結晶金属バルク材。
(4)金属ナノ結晶粒子の集合体よりなる金属バルク材であって、
前記各ナノ結晶粒子の粒子間及び/又は同粒子の内部に、結晶粒成長抑制物質として金属又は半金属のケイ化物(シリサイド)を存在させてなることを特徴とする高硬度・高強度で強靱なナノ結晶金属バルク材。
That is, the present invention is a nanocrystalline metal bulk material having the following configuration and a method for producing the same.
(1) A metal bulk material comprising an aggregate of metal nanocrystal particles,
High hardness, high strength and tough nanocrystals characterized in that an oxide of a metal or metalloid is present as a crystal grain growth inhibitor between and / or inside the nanocrystal particles. Metal bulk material.
(2) a metal bulk material comprising an aggregate of metal nanocrystal particles,
A high-hardness, high-strength, tough nanocrystal characterized in that a metal or metalloid nitride is present as a crystal grain growth inhibitor between and / or inside the nanocrystal particles. Metal bulk material.
(3) A metal bulk material comprising an aggregate of metal nanocrystal particles,
A high-hardness, high-strength, tough nanocrystalline metal, characterized in that a metal or metalloid carbide is present as a crystal grain growth inhibitor between and / or inside the nanocrystalline particles. Bulk material.
(4) a metal bulk material comprising an aggregate of metal nanocrystal particles,
A metal or metalloid silicide (silicide) is present as a crystal grain growth inhibitor between and / or inside each nanocrystalline particle, characterized by high hardness, high strength and toughness. Nanocrystalline metal bulk material.

(5)金属ナノ結晶粒子の集合体よりなる金属バルク材であって、
前記各ナノ結晶粒子の粒子間及び/又は同粒子の内部に、結晶粒成長抑制物質として金属又は半金属の硼化物(ボライド)を存在させてなることを特徴とする高硬度・高強度で強靱なナノ結晶金属バルク材。
(6)金属ナノ結晶粒子の集合体よりなる金属バルク材であって、
前記各ナノ結晶粒子の粒子間及び/又は同粒子の内部に、結晶粒成長抑制物質として、〔1〕金属又は半金属の酸化物、〔2〕金属又は半金属の窒化物、〔3〕金属又は半金属の炭化物、〔4〕金属又は半金属のケイ化物(シリサイド)又は〔5〕金属又は半金属の硼化物(ボライド)から選ばれる2種以上の化合物を存在させてなることを特徴とする高硬度・高強度で強靱なナノ結晶金属バルク材。
(7)金属ナノ結晶粒子又はその集合体よりなるバルク材が、窒素を0.01〜5.0質量%含有するものであることを特徴とする前項(1)〜(6)のいずれか1項に記載の高硬度・高強度で強靱なナノ結晶金属バルク材。
(8)金属ナノ結晶粒子又はその集合体よりなるバルク材が、窒素を0.1〜2.0質量%含有するものであることを特徴とする前項(1)〜(6)のいずれか1項に記載の高硬度・高強度で強靱なナノ結晶金属バルク材。
(9)金属ナノ結晶粒子又はその集合体よりなるバルク材が、金属酸化物の形態で酸素を0.01〜1.0質量%含有したものであることを特徴とする前項(1)〜(8)のいずれか1項に記載の高硬度・高強度で強靱なナノ結晶金属バルク材。
(5) A metal bulk material comprising an aggregate of metal nanocrystal particles,
A high hardness, high strength and toughness characterized in that a metal or metalloid boride (boride) is present as a crystal grain growth inhibitor between and / or inside the nanocrystal particles. Nanocrystalline metal bulk material.
(6) A metal bulk material comprising an aggregate of metal nanocrystal particles,
Between and / or inside each of the nanocrystalline particles, as a crystal grain growth suppressing substance, [1] a metal or metalloid oxide, [2] a metal or metalloid nitride, [3] metal Or a metalloid metal carbide, [4] a metal or metalloid silicide (silicide), or [5] a metal or metalloid boride (boride). High hardness, high strength and tough nanocrystalline metal bulk material.
(7) Any one of the above items (1) to (6), wherein the bulk material composed of the metal nanocrystal particles or the aggregate thereof contains 0.01 to 5.0% by mass of nitrogen. High-hardness, high-strength, tough nanocrystalline metal bulk material as described in the item.
(8) Any one of the above items (1) to (6), wherein the bulk material composed of the metal nanocrystal particles or the aggregate thereof contains 0.1 to 2.0% by mass of nitrogen. High-hardness, high-strength, tough nanocrystalline metal bulk material as described in the item.
(9) The bulk material comprising metal nanocrystal particles or an aggregate thereof contains 0.01 to 1.0% by mass of oxygen in the form of a metal oxide, (1) to (1). 8) The nanocrystalline metal bulk material having high hardness, high strength and toughness according to any one of 8).

(10)金属ナノ結晶粒子の集合体の固化成形過程での脱窒を防ぐため、ナノ結晶金属より窒素との化学的親和力が大きい金属元素を含有せしめてなることを特徴とする前項(1)〜(9)のいずれか1項に記載の高硬度・高強度で強靱なナノ結晶金属バルク材。
(11)ナノ結晶金属形成成分が、アルミニウム、マグネシウム、亜鉛、チタン、カルシウム、ベリリウム、アンチモン、イットリウム、スカンジウム、インジウム、ウラン、金、銀、クロム、ジルコニウム、錫、タングステン、タンタル、鉄、ニッケル、コバルト、銅、ニオブ、白金、バナジウム、マンガン、モリブデン、ランタン、ロジウム、炭素、珪素、硼素、窒素、リンから選ばれる1種又は2種以上であることを特微とする前項(1)〜(10)のいずれか1項に記載の高硬度・高強度で強靱なナノ結晶金属バルク材。
(12)ナノ結晶金属形成成分が、歯科用白金属元素であることを特徴とする前項(1)〜(10)のいずれか1項に記載の高硬度・高強度で強靱なナノ結晶金属バルク材。
(13)ナノ結晶金属が、Ni3Al、Fe3Al、FeAl、Ti3Al、TiAl、TiAl3、ZrAl3、NbAl3、NiAl、Nb3Al、Nb2Al、MoSi2、Nb5Si3、Ti5Si3、Nb2Be17、Co3Ti、Ni3(Si、Ti)、SiC、Si34、AlN、TiNi、ZrB2、HfB2、Cr32、又はNi3Al−Ni3Nb金属間化合物から選ばれるいずれか1種又は2種以上であることを特徴とする前項(1)〜(10)のいずれか1項に記載の高硬度・高強度で強靱なナノ結晶金属バルク材。
(14)金属ナノ結晶粒子が、ボールミル等を用いるメカニカルミリング(MM)又はメカニカルアロイング(MA)によって得られたものであることを特徴とする前項(1)〜(13)のいずれか1項に記載の高硬度・高強度で強靱なナノ結晶金属バルク材。
(10) In order to prevent denitrification in the process of solidifying and forming an aggregate of metal nanocrystal particles, a metal element having a higher chemical affinity with nitrogen than nanocrystalline metal is contained. The high-hardness, high-strength, tough nanocrystalline metal bulk material according to any one of (1) to (9).
(11) The nanocrystalline metal forming component is aluminum, magnesium, zinc, titanium, calcium, beryllium, antimony, yttrium, scandium, indium, uranium, gold, silver, chromium, zirconium, tin, tungsten, tantalum, iron, nickel, The preceding items (1) to (1) to (1) to (1) to (1) to (1) to (1), which are one or more selected from cobalt, copper, niobium, platinum, vanadium, manganese, molybdenum, lanthanum, rhodium, carbon, silicon, boron, nitrogen, and phosphorus. The nanocrystalline metal bulk material having high hardness, high strength and toughness according to any one of 10).
(12) The nanocrystalline metal bulk having high hardness, high strength and toughness according to any one of the above items (1) to (10), wherein the nanocrystalline metal forming component is a dental white metal element. Wood.
(13) The nanocrystalline metal is Ni 3 Al, Fe 3 Al, FeAl, Ti 3 Al, TiAl, TiAl 3 , ZrAl 3 , NbAl 3 , NiAl, Nb 3 Al, Nb 2 Al, MoSi 2 , Nb 5 Si 3 , Ti 5 Si 3, Nb 2 Be 17, Co 3 Ti, Ni 3 (Si, Ti), SiC, Si 3 N 4, AlN, TiNi, ZrB 2, HfB 2, Cr 3 C 2, or Ni 3 Al- High hardness, high strength and tough nanocrystals according to any one of (1) to (10) above, wherein the nanocrystals are at least one selected from the group consisting of Ni 3 Nb intermetallic compounds. Metal bulk material.
(14) The metal nanocrystal particles obtained by mechanical milling (MM) using a ball mill or the like or mechanical alloying (MA), any one of the above items (1) to (13). High hardness, high strength and tough nanocrystalline metal bulk material according to 1.

(15)ナノ結晶金属形成成分の各微粉末を、
ボールミル等を用いてメカニカルアロイング(MA)することによって、ナノ結晶金属粉末を製造した後、
同金属粉末をシース圧延(Sheath Rolling)、放電プラズマ焼結(Spark Plasma Sintering)、押出し成形等の熱間固化成形又は爆発成形などの固化成形処理することにより高硬度・高強度で強靱な金属バルク材となすことを特微とするナノ結晶金属バルク材の製造方法。
(16)ナノ結晶金属形成成分の各微粉末を、
窒素源となる物質とともに混合し、
ボールミル等を用いてメカニカルアロイング(MA)することによって、高窒素濃度ナノ結晶金属粉末を製造した後、
同金属粉末をシース圧延(Sheath Rolling)、放電プラズマ焼結(Spark Plasma Sintering)、押出し成形等の熱間固化成形又は爆発成形などの固化成形処理することにより高硬度・高強度で強靱な金属バルク材となすことを特微とするナノ結晶金属バルク材の製造方法。
(17)窒素源となる物質が、金属窒化物であることを特徴とする前項(16)に記載のナノ結晶金属バルク材の製造方法。
(18)窒素源となる物質が、N2ガス又はNH3ガスであることを特徴とする前項(16)記載のナノ結晶金属バルク材の製造方法。
(19)メカニカルミリング又はメカニカルアロイングを施す雰囲気が、〔1〕アルゴンガスなどの不活性ガス、〔2〕N2ガス、又は〔3〕NH3ガスから選ばれるいずれか1種、又は〔4〕〔1〕〜〔3〕から選ばれる2種以上の混合ガスの雰囲気であることを特徴とする前項(15)〜(18)のいずれか1項に記載のナノ結晶金属バルク材の製造方法。
(20)メカニカルミリング又はメカニカルアロイングを施す雰囲気が、若干のH2ガスなどの還元性物質を加えたガスの雰囲気であることを特徴とする前項(19)に記載のナノ結晶金属バルク材の製造方法。
(21)メカニカルミリング又はメカニカルアロイングを施す雰囲気が、真空又は真空中に若干のH2ガスなどの還元性物質を加えた真空又は還元雰囲気であることを特徴とする前項(15)又は(16)に記載のナノ結晶金属バルク材の製造方法。
(22)ナノ結晶金属形成成分の各微粉末と、金属窒化物を1〜10体積%又はナノ結晶金属より窒素との化学的親和力の大きい窒素親和性金属を0.5〜10質量%を、
窒素源となる物質とともに混合し、
ボールミル等を用いてメカニカルアロイング(MA)することによって、高窒素ナノ結晶金属粉末を製造した後、
同金属粉末をシース圧延、放電プラズマ焼結、押出し成形等の熱間固化成形又は爆発成形などの固化成形処理し、
その際のメカニカルアロイング(MA)過程及びメカニカルアロイング(MA)処理粉末の固化成形過程で前記添加窒化物を分散させるか又は前記金属元素の窒化物、炭窒化物等を析出・分散させ、
高硬度・高強度で強靱な金属バルク材となすことを特微とする前項(16)〜(21)のいずれか1項に記載のナノ結晶金属バルク材の製造方法。
(23)ナノ結晶金属の配合組成が、他元素を0〜40質量%含有するものであり、その固化成形の温度が融点ないし融解温度より10%以上低い温度であることを特微とする前項(15)〜(22)のいずれか1項に記載のナノ結晶金属バルク材の製造方法。
(15) Each fine powder of the nanocrystalline metal forming component is
After manufacturing nanocrystalline metal powder by mechanical alloying (MA) using a ball mill or the like,
High hardness, high strength and tough metal bulk by subjecting the same metal powder to hot rolling such as sheath rolling, spark plasma sintering, or extrusion molding or solidification molding such as explosion molding. A method for producing a nanocrystalline metal bulk material characterized in that the material is a material.
(16) Each fine powder of the nanocrystalline metal forming component is
Mix with the nitrogen source material,
After manufacturing a high nitrogen concentration nanocrystalline metal powder by mechanical alloying (MA) using a ball mill or the like,
High hardness, high strength and tough metal bulk by subjecting the same metal powder to hot rolling such as sheath rolling, spark plasma sintering, or extrusion molding or solidification molding such as explosion molding. A method for producing a nanocrystalline metal bulk material characterized in that the material is a material.
(17) The method for producing a bulk nanocrystalline metal material according to the above (16), wherein the substance serving as a nitrogen source is a metal nitride.
(18) The method for producing a bulk nanocrystalline metal material according to the above (16), wherein the substance serving as a nitrogen source is N 2 gas or NH 3 gas.
(19) The atmosphere in which mechanical milling or mechanical alloying is performed is [1] an inert gas such as an argon gas, [2] an N 2 gas, or [3] an NH 3 gas, or [4] ] The method for producing a nanocrystalline metal bulk material according to any one of the above items (15) to (18), wherein the atmosphere is a mixed gas atmosphere of two or more kinds selected from [1] to [3]. .
(20) The nanocrystalline metal bulk material according to (19), wherein the atmosphere in which the mechanical milling or mechanical alloying is performed is a gas atmosphere to which a reducing substance such as a slight amount of H 2 gas is added. Production method.
(21) The above item (15) or (16), wherein the atmosphere in which the mechanical milling or the mechanical alloying is performed is a vacuum or a reducing atmosphere in which a reducing substance such as H 2 gas is slightly added to a vacuum. The method for producing a nanocrystalline metal bulk material according to (1).
(22) 1 to 10% by volume of each fine powder of the nanocrystalline metal forming component and 0.5 to 10% by mass of a nitrogen-affinity metal having a higher chemical affinity with nitrogen than the nanocrystal metal,
Mix with the nitrogen source material,
After manufacturing high nitrogen nanocrystalline metal powder by mechanical alloying (MA) using a ball mill etc.,
The metal powder is subjected to solidification molding such as sheath rolling, spark plasma sintering, hot solidification molding such as extrusion molding or explosion molding,
In the mechanical alloying (MA) process and the solidification molding process of the mechanical alloying (MA) treated powder, the added nitride is dispersed or the metal element nitride, carbonitride, or the like is precipitated and dispersed.
The method for producing a nanocrystalline metal bulk material according to any one of the above items (16) to (21), which is characterized by forming a high hardness, high strength, and tough metal bulk material.
(23) The preceding paragraph, characterized in that the composition of the nanocrystalline metal contains 0 to 40% by mass of other elements, and the solidification molding temperature is at least 10% lower than the melting point or the melting temperature. (15) The method for producing a bulk nanocrystalline metal material according to any one of (22) to (22).

(24)ナノ結晶の鋼形成成分の各粉末をボールミル等を用いてメカニカルアロイング(MA)することによって、ナノ結晶鋼粉末を製造した後、
同鋼粉末を放電プラズマ焼結、ホットプレス、押出し成形、圧延等の熱間固化成形又は爆発成形などで超塑性発現温度近傍の温度で固化成形処理することを特徴とする高硬度・高強度で強靱なナノ結晶鋼バルク材の製造方法。
(25)ナノ結晶の鋳鉄形成成分の各粉末をボールミル等を用いてメカニカルアロイング(MA)することによって、ナノ結晶鋳鉄粉末を製造した後、
同鋳鉄粉末を放電プラズマ焼結、ホットプレス、押出し成形、圧延等の熱間固化成形又は爆発成形などで超塑性発現温度近傍の温度で固化成形処理することを特徴とするナノ結晶鋳鉄バルク材の製造方法。
(26)ナノ結晶の鋼形成成分の各粉末をボールミル等を用いてメカニカルアロイング(MA)することによって、ナノ結晶鋼粉末を製造した後、
同ナノ結晶鋼粉末を放電プラズマ焼結、ホットプレス、押出し成形、圧延等の熱間固化成形又は爆発成形などで固化成形処理して鋼バルク材となし、
その後前記鋼バルク材を超塑性発現温度近傍の温度で成形加工することを特徴とする高硬度・高強度で強靱なナノ結晶鋼成形体の製造方法。
(27)ナノ結晶の鋳鉄形成成分の各微粉末をボールミル等を用いてメカニカルアロイング(MA)することによって、ナノ結晶鋳鉄粉末を製造した後、
同ナノ結晶鋳鉄粉末を放電プラズマ焼結、ホットプレス、押出し成形、圧延等の熱間固化成形又は爆発成形などで固化成形処理して鋳鉄バルク材となし、
その後前記鋳鉄バルク材を超塑性発現温度近傍の温度で成形加工することを特徴とする高硬度・高強度で強靱なナノ結晶鋳鉄成形体の製造方法。
(24) Nanocrystalline steel powder is produced by subjecting each powder of the nanocrystalline steel-forming component to mechanical alloying (MA) using a ball mill or the like,
High hardness and high strength characterized by subjecting the same steel powder to solidification molding at a temperature near the superplastic expression temperature by hot solidification molding such as spark plasma sintering, hot pressing, extrusion molding, rolling or explosive molding etc. Manufacturing method of tough nanocrystalline steel bulk material.
(25) Nanocrystalline cast iron powder is manufactured by subjecting each powder of the nanocrystalline cast iron forming component to mechanical alloying (MA) using a ball mill or the like.
The nano-crystalline cast iron bulk material is characterized in that the cast iron powder is subjected to solidification molding at a temperature near the superplastic expression temperature by hot solidification molding such as discharge plasma sintering, hot pressing, extrusion molding, rolling or explosion molding. Production method.
(26) Nanocrystalline steel powder is produced by subjecting each powder of the nanocrystalline steel-forming component to mechanical alloying (MA) using a ball mill or the like,
The same nanocrystalline steel powder is solidified and formed by discharge plasma sintering, hot pressing, extrusion molding, hot solidification molding such as rolling, or explosion molding to form a steel bulk material,
A method for producing a high-hardness, high-strength and tough nanocrystalline steel molded body, comprising forming the bulk steel material at a temperature near the superplastic temperature.
(27) After producing nanocrystalline cast iron powder by subjecting each fine powder of the nanocrystalline cast iron forming component to mechanical alloying (MA) using a ball mill or the like,
The same nanocrystalline cast iron powder is solidified by discharge plasma sintering, hot pressing, extrusion molding, hot solidification molding such as rolling, or explosion molding to form a cast iron bulk material,
A method for producing a high-hardness, high-strength and tough nanocrystalline cast iron molded body, comprising forming the cast iron bulk material at a temperature near the superplasticity manifestation temperature.

 以上述べたとおり、本発明によれば、金属単体又はこれに他元素を添加した粉末材料をメカニカルミリング(MM)又はメカニカルアロイング(MA)処理すると、いずれも超微細結晶粒組織をもつ粉末となり、同粉末の融点ないし融解温度より10%低い温度以下での固化成形により、そのバルク材の製造をより容易に達成できる。
 鉄、コバルト、ニッケル、アルミニウムなどの実用金属単体の粉末に炭素、ニオブ、チタンなどを添加した混合粉末をメカニカルアロイング(MA)処理すると、より超微細な結晶粒組織となり、前記のような固化成形により、容易にナノ結晶粒組織をもつバルク材となって、その強さ、硬さは溶解法よるものに比べ、はるかに高い値を示す。
 また、ナノ結晶材料においては、その結晶粒の大きさ、組成などの適当な選択により、超塑性が発現され、この現象は、MA粉末の固化成形プロセスに効果的に適用できる。
As described above, according to the present invention, when a metal simple substance or a powder material obtained by adding another element to the metal element is subjected to mechanical milling (MM) or mechanical alloying (MA) treatment, each of the powders has an ultrafine grain structure. By the solidification molding at a temperature of 10% lower than the melting point or the melting temperature of the powder, the production of the bulk material can be more easily achieved.
When a mixed powder obtained by adding carbon, niobium, titanium, etc. to a powder of a practical metal such as iron, cobalt, nickel, aluminum, etc., is subjected to mechanical alloying (MA) treatment, an ultrafine crystal grain structure is obtained, and the solidification as described above is performed. By molding, it becomes a bulk material having a nanocrystalline structure easily, and its strength and hardness show much higher values than those obtained by the melting method.
In addition, in the nanocrystalline material, superplasticity is developed by appropriate selection of the size, composition, and the like of the crystal grains, and this phenomenon can be effectively applied to the solidification molding process of the MA powder.

 次に本発明の実施の形態について説明する。
 本発明では、鉄、コバルト、ニッケル、アルミニウム、銅などの単体金属の元素状粉末又はこれらの単体金属の粉末に他元素を添加したものをボールミル等を用いて、アルゴンガスなどの雰囲気中にて室温でのメカニカルミリング(MM)又はメカニカルアロイング(MA)処理を施す。
 MM又はMA処理された粉末は、ボールミルによって付加された機械的エネルギーにより、10〜20nm前後の結晶粒径まで容易に微細化し、例えば粒径約25nmまで微細化した鉄のビッカース硬さは1000程度となる。
 次いで、そのようなMM、MA処理粉末を約7mm内径のステンレス鋼チューブ(シース)に真空封入し、これを融点ないし融解温度より10%低い温度以下で圧延機を用いたシース圧延により固化成形すると、例えば鉄の場合は1.5GPa以上の耐力を示す厚さ1.5mm程度のシートを容易に製造することができる。
 また、鉄、コバルト、ニッケル、アルミニウム、銅などの元素状粉末に炭素、ニオブ、チタンなど他元素等を0.5から15質量%程度添加した混合粉末に、ボールミル等を用いたメカニカルアロイング(MA)処理を施すと、MA過程での微細化は一層促進され、その結晶粒径は数ナノオーダのものとなる。
Next, an embodiment of the present invention will be described.
In the present invention, iron, cobalt, nickel, aluminum, elemental powder of a single metal such as copper or a powder obtained by adding other elements to the powder of these single metals using a ball mill or the like in an atmosphere such as argon gas. A mechanical milling (MM) or a mechanical alloying (MA) treatment is performed at room temperature.
The MM or MA-treated powder is easily refined to a crystal grain size of about 10 to 20 nm by mechanical energy added by a ball mill. For example, the Vickers hardness of iron refined to a grain size of about 25 nm is about 1000. It becomes.
Next, such MM and MA-treated powder is vacuum-sealed in a stainless steel tube (sheath) having an inner diameter of about 7 mm, and solidified and formed by sheath rolling using a rolling mill at a temperature not higher than the melting point or 10% lower than the melting temperature. For example, in the case of iron, a sheet having a thickness of about 1.5 mm and a proof stress of 1.5 GPa or more can be easily manufactured.
Also, a mechanical alloying using a ball mill or the like is performed on a mixed powder obtained by adding about 0.5 to 15% by mass of other elements such as carbon, niobium, and titanium to elemental powders such as iron, cobalt, nickel, aluminum, and copper ( When the MA) process is performed, the miniaturization in the MA process is further promoted, and the crystal grain size is on the order of several nanometers.

 また、前項に記載のメカニカルアロイング(MA)処理粉末に通常、MA処理過程で酸化鉄の形態で必然的に混入する酸素の量を0.5質量%程度までに調整し、固化成形過程での結晶粒粗大化を抑制する。このような抑制効果を高めるため、メカニカルアロイング(MA)処理粉末にAlN、NbNなどの粒子分散剤を1〜10体積%、特に3〜5体積%添加することはより好ましい。 In addition, the amount of oxygen necessarily inevitably mixed in the form of iron oxide during the MA treatment process into the mechanical alloying (MA) treated powder described in the preceding paragraph is adjusted to about 0.5% by mass, and the solidification molding process is performed. To suppress coarsening of crystal grains. In order to enhance such a suppression effect, it is more preferable to add 1 to 10% by volume, particularly 3 to 5% by volume, of a particle dispersant such as AlN and NbN to the powder of mechanical alloying (MA).

 本発明では、鉄、コバルト、ニッケル、アルミニウム、銅など単体金属の粉末又はこれらの単体金属の粉末に他元素を添加したものをメカニカルミリング(MM)又はメカニカルアロイング(MA)処理して、ナノサイズの結晶粒組織の粉末を製造し、これにシース圧延、押出し加工などの固化成形を施すと、メカニカルミリング(MM)又はメカニカルアロイング(MA)処理過程で必然的に生成する若干量の酸化鉄を、酸素量として0.5質量%程度まで調整することによって、その酸化鉄などの結晶粒界に対するピン止め効果(pinning effect)により、結晶粒の粗大化が抑制されて、ナノ結晶材料の製造をより効果的に行うことができる。 In the present invention, a powder of a single metal such as iron, cobalt, nickel, aluminum, or copper, or a powder obtained by adding other elements to a powder of such a single metal, is subjected to a mechanical milling (MM) or a mechanical alloying (MA) treatment to obtain a nano-particle. When a powder having a grain structure of a size is produced and subjected to solidification molding such as sheath rolling and extrusion, a slight amount of oxidation that is inevitably generated during the mechanical milling (MM) or mechanical alloying (MA) treatment process is performed. By adjusting iron to about 0.5% by mass as an oxygen content, the pinning effect on crystal grain boundaries of iron oxide or the like is suppressed, so that coarsening of crystal grains is suppressed. Manufacturing can be performed more effectively.

 以下、本発明の実施例について添付図面を参照しながら説明する。
 実施例1:
 図1は、鉄、コバルト、ニッケルの各元素の粉末に他元素(A)として炭素(C)、ニオブ(Nb)、タンタル(Ta)、チタン(Ti)などを15原子%加えたM8515(原子%)(M=鉄、コバルト又はニッケル)組成の元素状混合粉末を50h(時間)メカニカルアロイング(MA)処理したときの鉄、コバルト、ニッケルの各元素の平均結晶粒径の変化を示すグラフ図である。
 ここでDFe、DCo、DNiはそれぞれ鉄、コバルト、ニッケルの平均結晶粒径(nm)である。本図より、鉄、コバルト、ニッケルの各元素の結晶粒微細化は、炭素、ニオブ、タンタル、チタンなどによって、より効果的に促進され、三元素とも数ナノオーダの粒径まで微細化されることが解る。
 また、銅、アルミニウム、チタンの場合も、他元素添加により、結晶粒の微細化が促進され、これらの元素においては、とくに炭素、リン、ホウ素の効果が大きかった。
 他元素A:炭素(C)、ニオブ(Nb)、タンタル(Ta)、リン(P)、ホウ素(B)など(図中、窒素Nデータは鉄のみに関するもの)。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
Example 1
FIG. 1 shows M 85 A obtained by adding 15 atomic% of carbon (C), niobium (Nb), tantalum (Ta), titanium (Ti), or the like as another element (A) to powder of each element of iron, cobalt, and nickel. 15 Change in average grain size of each element of iron, cobalt and nickel when mechanically alloying (MA) treatment of elemental mixed powder of (atomic%) (M = iron, cobalt or nickel) for 50h (hour) FIG.
Here, D Fe , D Co , and D Ni are the average crystal grain sizes (nm) of iron, cobalt, and nickel, respectively. According to this figure, the grain refinement of each element of iron, cobalt, and nickel is more effectively promoted by carbon, niobium, tantalum, titanium, etc., and the grain size of all three elements is reduced to several nano-orders. I understand.
Also in the case of copper, aluminum, and titanium, the addition of other elements promoted the refinement of crystal grains, and in these elements, the effects of carbon, phosphorus, and boron were particularly large.
Other elements A: carbon (C), niobium (Nb), tantalum (Ta), phosphorus (P), boron (B), etc. (in the figure, nitrogen N data relates to iron only).

 図2は鉄の結晶粒径DFeと添加元素(A)の鉄中における粒界偏析因子βの常用対数logβの値との関係を示すグラフ図である。
 添加元素Aは炭素(C)、窒素(N)、タンタル(Ta)、バナジウム(V)などである。
 本図よりlogβの大きいものほどMA処理過程での結晶の微細化効果が大きいことが解る。
FIG. 2 is a graph showing the relationship between the crystal grain diameter D Fe of iron and the value of the logarithmic log β of the grain boundary segregation factor β in iron of the additive element (A).
The additional element A is carbon (C), nitrogen (N), tantalum (Ta), vanadium (V), or the like.
From this figure, it can be seen that the larger the log β, the greater the crystal refining effect in the MA process.

 図3はコバルトの結晶粒径DCoと添加元素(A)のコバルト中における粒界偏析因子βの常用対数logβの値との関係を示すグラフ図である。
 添加元素Aは炭素(C)、ニオブ(Nb)、タンタル(Ta)などである。
 本図より、この場合もlogβの値の大きいものほどMA処理過程での結晶粒の微細化効果が大きいことが解る。
FIG. 3 is a graph showing the relationship between the crystal grain size D Co of cobalt and the value of the logarithmic log β of the grain boundary segregation factor β in the cobalt of the additive element (A).
The additional element A is carbon (C), niobium (Nb), tantalum (Ta), or the like.
From this figure, it can be seen that, also in this case, the larger the value of logβ, the greater the effect of crystal grain refinement in the MA treatment process.

 実施例2:
 図4は、鉄、クロム、ニッケル、タンタルの元素状混合粉末を窒化鉄とともに100hMA処理して得たFe64-yCr18Ni8Tay10(原子%)(y=0〜15)試料の平均結晶粒径D(nm)とタンタルの添加量y(原子%)の関係を示したグラフ図である。
 本図より、鉄と添加元素との二成分系材料において、その粒界偏析因子βの大きい元素は、鉄との多成系材料においても、MA処理過程での結晶粒の微細化効果が大きいことが示されている。
Example 2:
4, iron, chromium, nickel, elemental mixed powder Fe 64-y Cr 18 Ni 8 Ta y N 10 ( atomic%) obtained by 100hMA treated with iron nitride tantalum (y = 0 to 15) Samples FIG. 4 is a graph showing the relationship between the average crystal grain size D (nm) and the amount of tantalum added y (atomic%).
According to this figure, in the binary material of iron and the additive element, an element having a large grain boundary segregation factor β has a large effect of refining the crystal grains in the MA treatment process even in a polycrystalline material with iron. It has been shown.

 実施例3:
 鉄と炭素の元素状混合粉末をメカニカルアロイング(MA)処理(MA処理時間:200h)して、Fe99.80.2(質量%)の粉末試料を取得した。次いで、それをステンレス鋼チューブ(Sheath)へ真空封入した後、シース圧延(Sheath Rolling)(成形圧力:98MPa、成形温度:900℃)して、下記表1に示す固化成形体(バルク材)を得た。

Example 3
The elemental mixed powder of iron and carbon was subjected to mechanical alloying (MA) treatment (MA treatment time: 200 h) to obtain a powder sample of Fe 99.8 C 0.2 (% by mass). Next, after vacuum-encapsulating it in a stainless steel tube (Sheath), it was subjected to sheath rolling (forming pressure: 98 MPa, forming temperature: 900 ° C.) to obtain a solidified molded body (bulk material) shown in Table 1 below. Obtained.

 以上の実施例3、表1からみて、本発明によれば、MA処理による結晶粒のナノオーダまでの超微細化により、そのビッカース硬さHvは高炭素鋼のマルテンサイト組織を有する焼入れ材以上の硬さを示すものとなることが解った。 According to the above Example 3 and Table 1, according to the present invention, the Vickers hardness Hv is higher than that of a quenched material having a martensitic structure of high carbon steel due to ultrafine refining of crystal grains to the nano order by MA treatment. It turned out that it shows hardness.

 実施例4:
 鉄、クロム、ニッケル及びタンタルの各成分の元素状粉末と窒化鉄(含有窒素:8.51質量%)の混合粉末から、ボールミルを用いたメカニカルアロイング(MA)(雰囲気:アルゴンガス)により、(a)Fe86Cr131(質量%)及び(b)Fe69.25Cr20Ni8Ta20.75(質量%)合金粉末をつくった。
 次いで、これらの合金粉末を内径40mmの黒鉛製ダイスに装填して、真空において900℃にて放電プラズマ焼結(SPS)した後、同温度にて更に熱間圧延加工を加え、これを焼なまし(1150℃×15分間)してから水冷処理して得られた固化成形試料の平均結晶粒径d、硬さHv、引張強さσB、伸びδ及び酸素・窒素分析値は表2のとおりである。

 表2からみて、熱間固化成形及び焼なまし過程でかなり大きな結晶粒の成長が生じているが、両成形体試料ともナノサイズレベルの結晶粒組織は保持されている。これは、MA処理した合金粉末中に含まれている酸素即ち金属酸化物の結晶粒界に対するピニング効果によるものと解釈される。
 また、両合金において、窒素固溶と結晶粒の超微細化の両効果によって、硬さHv、引張強さσBとも極めて大きな値になっていることが解った。
Example 4:
From a mixed powder of elemental powder of each component of iron, chromium, nickel and tantalum and iron nitride (containing nitrogen: 8.51% by mass), by mechanical alloying (MA) using a ball mill (atmosphere: argon gas), (A) Fe 86 Cr 13 N 1 (% by mass) and (b) Fe 69.25 Cr 20 Ni 8 Ta 2 N 0.75 (% by mass) alloy powder were prepared.
Next, these alloy powders were loaded into a graphite die having an inner diameter of 40 mm, and were subjected to discharge plasma sintering (SPS) at 900 ° C. in vacuum, followed by further hot rolling at the same temperature and annealing. The average crystal grain size d, hardness Hv, tensile strength σ B , elongation δ, and oxygen / nitrogen analysis values of the solidified molded sample obtained by cooling (1150 ° C. × 15 minutes) and then water-cooling are shown in Table 2. It is as follows.

As can be seen from Table 2, quite large crystal grains have grown during the hot solidification molding and annealing processes, but the crystal structure at the nano-size level is retained in both the molded product samples. This is interpreted as being due to the pinning effect on the crystal grain boundaries of oxygen contained in the MA-treated alloy powder, that is, the metal oxide.
Further, it was found that in both alloys, both the hardness Hv and the tensile strength σ B were extremely large due to the effects of both the solid solution of nitrogen and the ultra-fine crystal grains.

 粉末材料の固化成形に超塑性を利用するには、まず材料における結晶粒が超微細であることと、超塑性による変形過程で結晶粒の成長を極力抑制することが最も重要となる。
 本発明によれば、原料粉末のメカニカルアロイング(MA)処理によりナノサイズの超微細な結晶粒の粉末が容易に得られ、また同MA処理粉末に必然的に生成する金属酸化物がその固化成形過程での粒成長を抑制するので超塑性を利用した固化成形加工が容易になる。
 以上に、本発明で超塑性を利用した固化成形実施例について、添付の図表を参照しながら説明する。
In order to utilize superplasticity in solidification molding of a powder material, it is most important that the crystal grains in the material be ultrafine and that the growth of crystal grains be suppressed as much as possible during the deformation process due to superplasticity.
According to the present invention, a powder of nano-sized ultrafine crystal grains can be easily obtained by mechanical alloying (MA) treatment of the raw material powder, and a metal oxide inevitably generated in the MA-treated powder is solidified. Since the grain growth during the forming process is suppressed, the solidification forming process utilizing superplasticity is facilitated.
In the above, an embodiment of solidification molding utilizing superplasticity in the present invention will be described with reference to the attached drawings.

 実施例5:
 本発明によれば、炭素鋼組成の材料では、炭素含有量が0.765〜2.14%(質量)の過共析鋼組成のメカニカルアロイング(MA)処理粉末において、超塑性を利用した固化成形を効果的に達成できた。以下にその1例について説明する。
 鉄、炭素、クロム、マンガン及びケイ素の各成分の元素状粉末と窒化鉄(含有窒素:8.51質量%)の混合粉末から、ボールミルを用いたメカニカルアロイング(MA)処理(雰囲気:アルゴンガス)により、過共析鋼組成のFe96.1-X1.5Cr1.7Mn0.50.2SiX(質量%)(x=1〜3)合金粉末を作り、同粉末を内径40mmの黒鉛製ダイスに充填して、真空中において750℃にて成形圧力60MPaの下で15分間のホットプレスを行い、直径40mm、厚さ約5mmの仮焼結体とした。
 次いで、800℃において、同焼結体の厚さ方向に歪速度10-4/s(秒)にて、30分間、圧縮荷重を加えて得た固化成形体の各Si濃度(x)(質量%)における平均結晶粒径d、硬さHv、引張強さσB、伸びδ、及び酸素・窒素分析値は表3のとおりである。
 なお、本合金試料に窒素を含有させているのは、その強度を増大させるためである。
 表3によると、800℃でのこれらの試料の固化過程は常温での硬さHvの値から判断して、Si濃度2%(質量)からより効果的になることが解る。
 Si濃度は、好ましくは2〜3.5%(質量)である。

Example 5:
According to the present invention, in a material having a carbon steel composition, superplasticity is used in a mechanically alloying (MA) -treated powder having a hypereutectoid steel composition having a carbon content of 0.765 to 2.14% (mass). Solidification molding could be achieved effectively. An example will be described below.
Mechanical alloying (MA) treatment using a ball mill from a mixed powder of elemental powder of each component of iron, carbon, chromium, manganese and silicon and iron nitride (containing nitrogen: 8.51% by mass) (atmosphere: argon gas by), the over-eutectoid steel composition Fe 96.1-X C 1.5 Cr 1.7 Mn 0.5 N 0.2 Si X ( mass%) (x = 1 to 3) make the alloy powder, filling the same powder graphite die having an inner diameter of 40mm Then, hot pressing was performed in a vacuum at 750 ° C. under a molding pressure of 60 MPa for 15 minutes to obtain a temporary sintered body having a diameter of 40 mm and a thickness of about 5 mm.
Next, at 800 ° C., the respective Si concentrations (x) (mass) of the solidified compact obtained by applying a compressive load for 30 minutes at a strain rate of 10 −4 / s (second) in the thickness direction of the same sintered compact. %), The average crystal grain size d, hardness Hv, tensile strength σ B , elongation δ, and oxygen / nitrogen analysis values are as shown in Table 3.
The reason why the alloy sample contains nitrogen is to increase the strength.
According to Table 3, it can be seen that the solidification process of these samples at 800 ° C. becomes more effective when the Si concentration is 2% (mass), judging from the value of the hardness Hv at room temperature.
The Si concentration is preferably 2 to 3.5% (mass).

 実施例6:
 本発明によれば、鋳鉄組成の材料では、炭素の含有量が2.2〜4.3%(質量)の白鋳鉄組成のメカニカルアロイング(MA)処理粉末において、超塑性を利用した固化成形を効果的に達成できた。以下にその1例について説明する。
 前記実施例5と同様の方法により、鉄、炭素及びクロムの各成分の元素状粉末と窒化鉄(含有窒素:8.51質量%)の混合粉末からメカニカルアロイング(MA)によって、鋳鉄組成のFe94.33.5Cr20.2(質量%)合金粉末をつくり、同粉末を内径40mmの黒鉛製ダイスに充填して、真空中700℃にて、成形圧力60MPaの下で、15分間のホットプレスにより、直径40mm、厚さ5mmの仮焼結体とした。
 次いで、550、600、650、700、750℃の各温度にて同焼結体の厚さ方向に歪速度10-4/sにて30分間圧縮荷重を与えて得た固化成形体の各成形温度Tにおける平均結晶粒径d、硬さHv、引張り強さσB、伸びδ及び酸素・窒素分析値は表4のとおりである。

 表4によると、各試料の固化過程は、常温におけるその硬さから判断して650℃以上の温度からより効果的になることが解る。
Example 6:
According to the present invention, for a material having a cast iron composition, solidification molding utilizing superplasticity is performed on a mechanically alloying (MA) treated powder having a white cast iron composition having a carbon content of 2.2 to 4.3% (mass). Was achieved effectively. An example will be described below.
In the same manner as in Example 5, a mixed powder of an elemental powder of each component of iron, carbon and chromium and iron nitride (containing nitrogen: 8.51% by mass) was subjected to mechanical alloying (MA) to form a cast iron composition. Fe 94.3 C 3.5 Cr 2 N 0.2 (mass%) alloy powder was prepared, and the powder was filled in a graphite die having an inner diameter of 40 mm, and hot pressed at 700 ° C. in vacuum at a molding pressure of 60 MPa for 15 minutes. As a result, a temporary sintered body having a diameter of 40 mm and a thickness of 5 mm was obtained.
Then, at each temperature of 550, 600, 650, 700, and 750 ° C., a compression load is applied for 30 minutes at a strain rate of 10 −4 / s in the thickness direction of the sintered body to form each of the solidified molded bodies. Table 4 shows the average crystal grain size d, hardness Hv, tensile strength σ B , elongation δ, and oxygen / nitrogen analysis values at the temperature T.

According to Table 4, it can be seen that the solidification process of each sample becomes more effective from a temperature of 650 ° C. or more, judging from its hardness at room temperature.

 実施例7:
 前記実施例6と同様の方法により、チタン、タンタル、ニオブ、ジルコニウム及び鉄の各成分の元素状粉末の混合粉体からメカニカルアロイング(MA)によって、(a)Ti88Ta6Nb4Fe2(質量%)、(b)Ti88Nb6Zr4Fe2(質量%)及び(c)Ti88Zr6Ta4Fe2(質量%)合金粉末を作り、同粉末を内径40mmの黒鉛ダイスに装填して、真空中850℃にて成形圧力60MPaの下で15分間ホットプレスにより直径40mm、厚さ5mm、の仮焼結体とした。
 次いで、種々の温度で同焼結体の厚さ方向に歪速度10-4/sにて15分間圧縮荷重を与え、その焼結体の常温での硬さが急激に上昇し始める温度を超塑性の開始温度Tspとして求めた。結果は表5のとおりであった。

 表5は、Tspより50℃高い温度で、10-4/sの歪み速度にて30分間圧縮荷重を加えて得た固化成形体の平均結晶粒径d、硬さHv、引張強さσB、伸びδ及び酸素の分析値である。
Example 7:
In the same manner as in Example 6, (a) Ti 88 Ta 6 Nb 4 Fe 2 was obtained from a mixed powder of elemental powders of titanium, tantalum, niobium, zirconium and iron by mechanical alloying (MA). (mass%), (b) Ti 88 Nb 6 Zr 4 Fe 2 ( wt%) and (c) Ti 88 Zr 6 Ta 4 Fe 2 ( wt%) make the alloy powder, the same powder graphite die having an inner diameter of 40mm It was charged and hot-pressed at 850 ° C. in a vacuum at a molding pressure of 60 MPa for 15 minutes to form a temporary sintered body having a diameter of 40 mm and a thickness of 5 mm.
Subsequently, a compressive load is applied at various temperatures in the thickness direction of the sintered body at a strain rate of 10 −4 / s for 15 minutes, and the temperature of the sintered body at room temperature exceeds the temperature at which the hardness starts to rapidly increase. It was obtained as the onset temperature T sp of plasticity. The results were as shown in Table 5.

Table 5 shows that the average crystal grain size d, hardness Hv, and tensile strength σ of the solidified compact obtained by applying a compressive load at a temperature higher by 50 ° C. than T sp at a strain rate of 10 −4 / s for 30 minutes for 30 minutes. B , analysis values of elongation δ and oxygen.

 実施例5(表3)、実施例6(表4)、実施例7(表5)からみて、ナノ結晶から構成されている固化成形体においては、その結晶粒の大きさ、組成などに応じて超塑性の起こる温度が存在し、その温度付近から発現する超塑性によって固化成形過程でのナノサイズレベルの結晶粒子間の結合がより効果的に起こり、このことが常温での極端に高いバルク材の硬さに反映されているものと解釈される。
 実施例5(表3)において、Si濃度が2質量%以上で固化過程がより効果的になるのは、Siによって、圧縮荷重のもとで、粒成長が大きく、抑制されることによるものと解釈される。
 また、実施例7(表5)からみて、Ti基のような高融解温度をもつ合金でも本発明によるとこれをMA処理によって、ナノサイズの結晶粒からなる粉末にし、比較的低い温度での固化成形処理によって、そのバルク材を製造することができることが解った。
In view of Example 5 (Table 3), Example 6 (Table 4), and Example 7 (Table 5), the solidified molded body composed of nanocrystals depends on the size, composition, and the like of the crystal grains. There is a temperature at which superplasticity occurs, and the superplasticity that develops around that temperature causes more effective bonding between crystal grains at the nano-size level in the solidification molding process, which results in extremely high bulk at room temperature. It is interpreted as being reflected in the hardness of the material.
In Example 5 (Table 3), the reason why the solidification process is more effective when the Si concentration is 2% by mass or more is that the grain growth is large and suppressed under the compressive load by Si. Will be interpreted.
According to Example 7 (Table 5), according to the present invention, even an alloy having a high melting temperature, such as a Ti group, is converted into a powder composed of nano-sized crystal grains by MA treatment, and the powder is formed at a relatively low temperature. It has been found that the bulk material can be manufactured by the solidification molding process.

 実施例8:
 メカニカルアロイング(MA)により作製した(a)Al93.5Cu6Zr0.5(質量%)、(b)Cu87Al10Fe3(質量%)、(c)Ni48.25Cr39Fe10Ti1.75Al1(質量%)の合金粉末は固化成形過程においてそれぞれ430℃、750℃、770℃付近の温度で超塑性を示し、その温度は溶解法でつくられたこれらの合金の超塑性開始温度より何れも約50℃ほど低かった。
 これは、本発明によるナノ結晶材料における結晶粒が超微細なことと、ナノ結晶粒子間及び/又は同粒子の内部に存在する金属酸化物などが結晶粒成長抑制に効果的に働いていることが大きな理由となっているものと解釈される。
Example 8:
(A) Al 93.5 Cu 6 Zr 0.5 (% by mass), (b) Cu 87 Al 10 Fe 3 (% by mass), (c) Ni 48.25 Cr 39 Fe 10 Ti 1.75 Al 1 produced by mechanical alloying (MA) (Mass%) alloy powder shows superplasticity at temperatures around 430 ° C., 750 ° C., and 770 ° C. in the solidification molding process, and the temperature is lower than the superplasticity onset temperature of these alloys produced by the melting method. It was as low as about 50 ° C.
This is because the crystal grains in the nanocrystalline material according to the present invention are ultra-fine, and the metal oxides present between and / or inside the nanocrystalline particles effectively work to suppress the crystal grain growth. Is interpreted as a major reason.

 本発明によれば、例えばその脆さのため、従来その用途が限られていた鋳鉄や
高融点材料又はチタン合金のような難加工材料もメカニカルアロイング(MA)処理によるナノ結晶粉末の製造と超塑性を利用した固化成形の方法の適用により、前記実施例6及び実施例7で述べたように、従来法では得られない高硬度・高強度で高靱性を有する新規な(ナノ結晶粒の集合体であるバルク材)材料を容易に製造できることが解った。
According to the present invention, difficult-to-work materials such as cast iron, high melting point materials or titanium alloys whose use has been conventionally limited due to their brittleness can be produced by mechanical alloying (MA) processing to produce nanocrystalline powders. By applying the method of solidification molding using superplasticity, as described in the above-mentioned Examples 6 and 7, a new (high-hardness, high-strength, high toughness (nanocrystalline It has been found that the bulk material, which is an aggregate, can be easily manufactured.

 前記本発明で得られたナノ結晶金属バルク材は、下記のような用途に好適に使用される。
(1)ベアリング(軸受)類、
 本発明によるナノ結晶金属バルク材を軸受の回転部に用いると、前記の強度特性から、その使用量を大幅に減らすことができるので、これにより、使用材料の節減になるばかりでなく、軸受転動体部の遠心力の大きな低下を通じて、軸受運転時の使用電力を大きく低減することができる。
(2)歯車類
歯車の材料に多く用いられている金属材料では、その表面部(歯面部)には耐摩耗性をもたせ、そして内部には強い靱性をもたせるという相矛盾する性質を一つの部品に与える必要があるため、この場合は、歯面部への浸炭などと焼入・焼きもどしとを組み合わせたかなり高度な技術と熟練を要する表面硬化処理が必要となるが、本発明による、例えば押し出し加工で製造した超硬質で強靱な特性を有するナノ結晶金属バルク材をこれに用いる場合は、そのような表面硬化などの処理は不要である。
(3)熱間加工用工具、押出工具類
 例えば、高温切削工具材として多く用いられているモリブデン系の高速度鋼のような焼入れ・焼きもどし材では、そのマトリックスが昇温域で不安定な焼きもどしマルテンサイト相からなるために、400℃付近の温度以上では急激に軟化する性質をもっている。しかし本発明によるナノ結晶金属バルク材は、そのマトリックス自体が安定相からなるため、そのような温度域で急激な軟化を示すことはないので、より優れた熱間加工向けの工具材料として用いることができる。
 また、本発明によるナノ結晶金属バルク材は、上記のような熱的に比較的安定なマトリックスからなるため、使用時に熱的変化の激しい押出し工具などにも、より効果的に用いることができる。
(4)医療器具類その他
チタン系バルク材や高窒素クロム−マンガン系オーステナイト鋼は、ニッケルを含有するクロム−ニッケル系オーステナイトステンレス鋼と異なり、人体に皮膚炎などの疾病をひき起こすことがなく、外科医が用いるメス、医療用低温器具類、その他一般用のナイフ、工具類の材料としても有望といえる。
The nanocrystalline metal bulk material obtained in the present invention is suitably used for the following applications.
(1) bearings,
When the nanocrystalline metal bulk material according to the present invention is used for a rotating part of a bearing, the above-mentioned strength characteristics can greatly reduce the amount of the material used. Through a large decrease in the centrifugal force of the moving body, it is possible to greatly reduce the power consumption during the operation of the bearing.
(2) Gears Metallic materials that are widely used as materials for gears have the contradictory properties of having abrasion resistance on the surface (tooth surface) and strong toughness inside, as one component. In this case, it is necessary to apply a highly advanced technique combining quenching and tempering with carburizing of the tooth surface and quenching and tempering, and a surface hardening treatment that requires skill is required. In the case where a nanocrystalline metal bulk material having ultra-hard and tough properties produced by processing is used for this, such a treatment as surface hardening is not required.
(3) Hot working tools and extrusion tools For example, in the case of a quenched and tempered material such as molybdenum-based high-speed steel, which is often used as a high-temperature cutting tool material, the matrix is unstable in a temperature rising region. Because of the tempered martensite phase, it has the property of rapidly softening at temperatures above 400 ° C. However, since the nanocrystalline metal bulk material according to the present invention does not show rapid softening in such a temperature range because the matrix itself is composed of a stable phase, it should be used as a tool material for better hot working. Can be.
In addition, since the nanocrystalline metal bulk material according to the present invention is composed of a matrix that is relatively thermally stable as described above, it can be more effectively used for an extrusion tool or the like that undergoes a severe thermal change during use.
(4) Medical equipment and other titanium-based bulk materials and high-nitrogen chromium-manganese austenitic steels, unlike chromium-nickel-based austenitic stainless steels containing nickel, do not cause dermatitis or other diseases on the human body. It is also promising as a material for scalpels, medical cryogenic instruments, other general-purpose knives and tools used by surgeons.

本発明実施例で用いられる鉄、コバルト、ニッケル各元素の粉末に他元素(A)を15原子%添加し、50hメカニカルアロイング(MA)処理したときの各元素の平均結晶粒径を示すグラフ図である。Graph showing the average crystal grain size of each element when the other element (A) is added to the powder of each element of iron, cobalt, and nickel used in the examples of the present invention at 15 atomic% and subjected to mechanical alloying (MA) treatment for 50 hours. FIG. 本発明実施例で用いられる鉄の結晶粒径DFeと添加した溶質元素の粒界偏析因子βの対数logβとの関係を示すグラフ図である。FIG. 4 is a graph showing the relationship between the crystal grain diameter D Fe of iron used in Examples of the present invention and the logarithmic log β of the grain boundary segregation factor β of the added solute element. 本発明実施例で用いられるコバルトの結晶粒径DCoと添加した溶質元素の粒界偏析因子βの対数logβとの関係を示すグラフ図である。FIG. 3 is a graph showing the relationship between the crystal grain size D Co of cobalt used in Examples of the present invention and the logarithm log β of the grain boundary segregation factor β of an added solute element. 本発明実施例で用いられる試料の結晶粒径Dとタンタルの添加量(原子%)との関係を示すグラフ図である。It is a graph which shows the relationship between the crystal grain size D of the sample used in this invention Example, and the addition amount (atomic%) of tantalum.

Claims (27)

 金属ナノ結晶粒子の集合体よりなる金属バルク材であって、前記各ナノ結晶粒子の粒子間及び/又は同粒子の内部に、結晶粒成長抑制物質として金属又は半金属の酸化物を存在させてなることを特徴とする高硬度・高強度で強靱なナノ結晶金属バルク材。 A metal bulk material consisting of an aggregate of metal nanocrystal particles, wherein a metal or metalloid oxide is present as a crystal grain growth inhibitor between and / or inside the nanocrystal particles. High hardness, high strength and tough nanocrystalline metal bulk material characterized by becoming  金属ナノ結晶粒子の集合体よりなる金属バルク材であって、前記各ナノ結晶粒子の粒子間及び/又は同粒子の内部に、結晶粒成長抑制物質として金属又は半金属の窒化物を存在させてなることを特徴とする高硬度・高強度で強靱なナノ結晶金属バルク材。 A metal bulk material comprising an aggregate of metal nanocrystal particles, wherein a metal or metalloid nitride is present as a crystal grain growth suppressing substance between and / or inside the nanocrystal particles. High hardness, high strength and tough nanocrystalline metal bulk material characterized by becoming  金属ナノ結晶粒子の集合体よりなる金属バルク材であって、前記各ナノ結晶粒子の粒子間及び/又は同粒子の内部に、結晶粒成長抑制物質として金属又は半金属の炭化物を存在させてなることを特徴とする高硬度・高強度で強靱なナノ結晶金属バルク材。 A metal bulk material comprising an aggregate of metal nanocrystal particles, wherein a metal or metalloid carbide is present as a crystal grain growth suppressing substance between and / or inside each of the nanocrystal particles. A high-hardness, high-strength, tough nanocrystalline metal bulk material characterized by the following features:  金属ナノ結晶粒子の集合体よりなる金属バルク材であって、前記各ナノ結晶粒子の粒子間及び/又は同粒子の内部に、結晶粒成長抑制物質として金属又は半金属のケイ化物(シリサイド)を存在させてなることを特徴とする高硬度・高強度で強靱なナノ結晶金属バルク材。 A metal bulk material composed of an aggregate of metal nanocrystal particles, wherein a metal or metalloid silicide (silicide) is used as a crystal grain growth inhibitor between and / or inside the nanocrystal particles. High hardness, high strength and tough nanocrystalline metal bulk material characterized by being made to exist.  金属ナノ結晶粒子の集合体よりなる金属バルク材であって、前記各ナノ結晶粒子の粒子間及び/又は同粒子の内部に、結晶粒成長抑制物質として金属又は半金属の硼化物(ボライド)を存在させてなることを特徴とする高硬度・高強度で強靱なナノ結晶金属バルク材。 A metal bulk material composed of an aggregate of metal nanocrystal particles, wherein a metal or metalloid boride (boride) is used as a crystal grain growth inhibitor between and / or inside the nanocrystal particles. High hardness, high strength and tough nanocrystalline metal bulk material characterized by being made to exist.  金属ナノ結晶粒子の集合体よりなる金属バルク材であって、前記各ナノ結晶粒子の粒子間及び/又は同粒子の内部に、結晶粒成長抑制物質として、(1)金属又は半金属の酸化物、(2)金属又は半金属の窒化物、(3)金属又は半金属の炭化物、(4)金属又は半金属のケイ化物(シリサイド)又は(5)金属又は半金属の硼化物(ボライド)から選ばれる2種以上の化合物を存在させてなることを特徴とする高硬度・高強度で強靱なナノ結晶金属バルク材。 A metal bulk material comprising an aggregate of metal nanocrystal particles, wherein between each and / or inside of each nanocrystal particle, as a crystal grain growth suppressing substance, (1) a metal or metalloid oxide From (2) metal or metalloid nitrides, (3) metal or metalloid carbides, (4) metal or metalloid silicides (silicides) or (5) metal or metalloid borides (borides). A high-hardness, high-strength, tough nanocrystalline metal bulk material characterized by the presence of two or more selected compounds.  金属ナノ結晶粒子又はその集合体よりなるバルク材が、窒素を0.01〜5.0質量%含有するものであることを特徴とする請求項1〜6のいずれか1項に記載の高硬度・高強度で強靱なナノ結晶金属バルク材。 The high hardness according to any one of claims 1 to 6, wherein the bulk material comprising the metal nanocrystal particles or the aggregate thereof contains 0.01 to 5.0% by mass of nitrogen.・ High strength and tough nanocrystalline metal bulk material.  金属ナノ結晶粒子又はその集合体よりなるバルク材が、窒素を0.1〜2.0質量%含有するものであることを特徴とする請求項1〜6のいずれか1項に記載の高硬度・高強度で強靱なナノ結晶金属バルク材。 The high hardness according to any one of claims 1 to 6, wherein the bulk material comprising the metal nanocrystal particles or the aggregate thereof contains 0.1 to 2.0% by mass of nitrogen.・ High strength and tough nanocrystalline metal bulk material.  金属ナノ結晶粒子又はその集合体よりなるバルク材が、金属酸化物の形態で酸素を0.01〜1.0質量%含有したものであることを特徴とする請求項1〜8のいずれか1項に記載の高硬度・高強度で強靱なナノ結晶金属バルク材。 9. A bulk material comprising metal nanocrystal particles or an aggregate thereof contains 0.01 to 1.0% by mass of oxygen in the form of a metal oxide. High-hardness, high-strength, tough nanocrystalline metal bulk material as described in the item.  金属ナノ結晶粒子の集合体の固化成形過程での脱窒を防ぐため、ナノ結晶金属より窒素との化学的親和力が大きい金属元素を含有せしめてなることを特徴とする請求項1〜9のいずれか1項に記載の高硬度・高強度で強靱なナノ結晶金属バルク材。 The method according to any one of claims 1 to 9, wherein a metal element having a higher chemical affinity for nitrogen than the nanocrystalline metal is contained to prevent denitrification in the process of solidifying and forming the aggregate of the metal nanocrystal particles. 2. A nanocrystalline metal bulk material having high hardness, high strength and toughness according to claim 1.  ナノ結晶金属形成成分が、
アルミニウム、マグネシウム、亜鉛、チタン、カルシウム、ベリリウム、アンチモン、イットリウム、スカンジウム、インジウム、ウラン、金、銀、クロム、ジルコニウム、錫、タングステン、タンタル、鉄、ニッケル、コバルト、銅、ニオブ、白金、バナジウム、マンガン、モリブデン、ランタン、ロジウム、炭素、珪素、硼素、窒素、リンから選ばれる1種又は2種以上であることを特微とする請求項1〜10のいずれか1項に記載の高硬度・高強度で強靱なナノ結晶金属バルク材。
The nanocrystalline metal forming component is
Aluminum, magnesium, zinc, titanium, calcium, beryllium, antimony, yttrium, scandium, indium, uranium, gold, silver, chromium, zirconium, tin, tungsten, tantalum, iron, nickel, cobalt, copper, niobium, platinum, vanadium, High hardness according to any one of claims 1 to 10, characterized in that it is at least one selected from manganese, molybdenum, lanthanum, rhodium, carbon, silicon, boron, nitrogen and phosphorus. High strength and tough nanocrystalline metal bulk material.
 ナノ結晶金属形成成分が、
歯科用白金属元素であることを特徴とする請求項1〜10のいずれか1項に記載の高硬度・高強度で強靱なナノ結晶金属バルク材。
The nanocrystalline metal forming component is
The high-hardness, high-strength, tough nanocrystalline metal bulk material according to any one of claims 1 to 10, which is a dental white metal element.
 ナノ結晶金属が、Ni3Al、Fe3Al、FeAl、Ti3Al、TiAl、TiAl3、ZrAl3、NbAl3、NiAl、Nb3Al、Nb2Al、MoSi2、Nb5Si3、Ti5Si3、Nb2Be17、Co3Ti、Ni3(Si、Ti)、SiC、Si34、AlN、TiNi、ZrB2、HfB2、Cr32、又はNi3Al−Ni3Nb金属間化合物から選ばれるいずれか1種又は2種以上であることを特徴とする請求項1〜10のいずれか1項に記載の高硬度・高強度で強靱なナノ結晶金属バルク材。 When the nanocrystalline metal is Ni 3 Al, Fe 3 Al, FeAl, Ti 3 Al, TiAl, TiAl 3 , ZrAl 3 , NbAl 3 , NiAl, Nb 3 Al, Nb 2 Al, MoSi 2 , Nb 5 Si 3 , Ti 5 Si 3 , Nb 2 Be 17 , Co 3 Ti, Ni 3 (Si, Ti), SiC, Si 3 N 4 , AlN, TiNi, ZrB 2 , HfB 2 , Cr 3 C 2 , or Ni 3 Al—Ni 3 Nb The high-hardness, high-strength, tough nanocrystalline metal bulk material according to any one of claims 1 to 10, wherein the material is at least one selected from intermetallic compounds.  金属ナノ結晶粒子が、ボールミル等を用いるメカニカルミリング(MM)又はメカニカルアロイング(MA)によって得られたものであることを特徴とする請求項1〜13のいずれか1項に記載の高硬度・高強度で強靱なナノ結晶金属バルク材。 The high-hardness metal alloy according to any one of claims 1 to 13, wherein the metal nanocrystal particles are obtained by mechanical milling (MM) using a ball mill or the like or mechanical alloying (MA). High strength and tough nanocrystalline metal bulk material.  ナノ結晶金属形成成分の各微粉末を、
ボールミル等を用いてメカニカルアロイング(MA)することによって、ナノ結晶金属粉末を製造した後、
同金属粉末をシース圧延(Sheath Rolling)、放電プラズマ焼結(Spark Plasma Sintering)、押出し成形等の熱間固化成形又は爆発成形などの固化成形処理することにより高硬度・高強度で強靱な金属バルク材となすことを特微とするナノ結晶金属バルク材の製造方法。
Each fine powder of the nanocrystalline metal forming component is
After manufacturing nanocrystalline metal powder by mechanical alloying (MA) using a ball mill or the like,
High hardness, high strength and tough metal bulk by subjecting the same metal powder to hot rolling such as sheath rolling, spark plasma sintering, or extrusion molding or solidification molding such as explosion molding. A method for producing a nanocrystalline metal bulk material characterized in that the material is a material.
 ナノ結晶金属形成成分の各微粉末を、
窒素源となる物質とともに混合し、
ボールミル等を用いてメカニカルアロイング(MA)することによって、高窒素濃度ナノ結晶金属粉末を製造した後、
同金属粉末をシース圧延(Sheath Rolling)、放電プラズマ焼結(Spark Plasma Sintering)、押出し成形等の熱間固化成形又は爆発成形などの固化成形処理することにより高硬度・高強度で強靱な金属バルク材となすことを特微とするナノ結晶金属バルク材の製造方法。
Each fine powder of the nanocrystalline metal forming component is
Mix with the nitrogen source material,
After manufacturing a high nitrogen concentration nanocrystalline metal powder by mechanical alloying (MA) using a ball mill or the like,
High hardness, high strength and tough metal bulk by subjecting the same metal powder to hot rolling such as sheath rolling, spark plasma sintering, or extrusion molding or solidification molding such as explosion molding. A method for producing a nanocrystalline metal bulk material characterized in that the material is a material.
 窒素源となる物質が、金属窒化物であることを特徴とする請求項16に記載のナノ結晶金属バルク材の製造方法。 17. The method according to claim 16, wherein the substance serving as a nitrogen source is a metal nitride.  窒素源となる物質が、N2ガス又はNH3ガスであることを特徴とする請求項16記載のナノ結晶金属バルク材の製造方法。 Nitrogen sources and becomes material, manufacturing method of the nanocrystalline metal bulk material according to claim 16, wherein the a N 2 gas or NH 3 gas.  メカニカルミリング又はメカニカルアロイングを施す雰囲気が、(1)アルゴンガスなどの不活性ガス、(2)N2ガス、又は(3)NH3ガスから選ばれるいずれか1種、又は(4)(1)〜(3)から選ばれる2種以上の混合ガスの雰囲気であることを特徴とする請求項15〜18のいずれか1項に記載のナノ結晶金属バルク材の製造方法。 The atmosphere in which the mechanical milling or mechanical alloying is performed is any one selected from (1) an inert gas such as an argon gas, (2) N 2 gas, or (3) NH 3 gas, or (4) (1) The method for producing a nanocrystalline metal bulk material according to any one of claims 15 to 18, wherein the atmosphere is a mixed gas atmosphere of two or more kinds selected from (3) to (3).  メカニカルミリング又はメカニカルアロイングを施す雰囲気が、若干のH2ガスなどの還元性物質を加えたガスの雰囲気であることを特徴とする請求項19に記載のナノ結晶金属バルク材の製造方法。 Method for producing a nanocrystalline metal bulk material according to claim 19, wherein the atmosphere subjected to mechanical milling or mechanical alloying is the atmosphere was added a reducing substance, such as some of the H 2 gas gas.  メカニカルミリング又はメカニカルアロイングを施す雰囲気が、真空又は真空中に若干のH2ガスなどの還元性物質を加えた真空又は還元雰囲気であることを特徴とする請求項15又は16に記載のナノ結晶金属バルク材の製造方法。 Atmosphere performing mechanical milling or mechanical alloying is Nanocrystal according to claim 15 or 16, characterized in that a vacuum or a reducing atmosphere was added a reducing substance, such as some of the H 2 gas in a vacuum or vacuum Manufacturing method of metal bulk material.  ナノ結晶金属形成成分の各微粉末と、金属窒化物を1〜10体積%又はナノ結晶金属より窒素との化学的親和力の大きい窒素親和性金属を0.5〜10質量%を、
窒素源となる物質とともに混合し、
ボールミル等を用いてメカニカルアロイング(MA)することによって、高窒素ナノ結晶金属粉末を製造した後、
同金属粉末をシース圧延、放電プラズマ焼結、押出し成形等の熱間固化成形又は爆発成形などの固化成形処理し、
その際のメカニカルアロイング(MA)過程及びメカニカルアロイング(MA)処理粉末の固化成形過程で前記添加窒化物を分散させるか又は前記金属元素の窒化物、炭窒化物等を析出・分散させ、
高硬度・高強度で強靱な金属バルク材となすことを特微とする請求項16〜21のいずれか1項に記載のナノ結晶金属バルク材の製造方法。
Each fine powder of the nanocrystalline metal-forming component and 1 to 10% by volume of a metal nitride or 0.5 to 10% by mass of a nitrogen affinity metal having a higher chemical affinity with nitrogen than the nanocrystal metal,
Mix with the nitrogen source material,
After manufacturing high nitrogen nanocrystalline metal powder by mechanical alloying (MA) using a ball mill etc.,
The metal powder is subjected to solidification molding such as sheath rolling, spark plasma sintering, hot solidification molding such as extrusion molding or explosion molding,
In the mechanical alloying (MA) process and the solidification molding process of the mechanical alloying (MA) treated powder, the added nitride is dispersed or the metal element nitride, carbonitride, or the like is precipitated and dispersed.
The method for producing a nanocrystalline metal bulk material according to any one of claims 16 to 21, characterized in that the bulk material is a high hardness, high strength, and tough metal bulk material.
 ナノ結晶金属の配合組成が、他元素を0〜40質量%含有するものであり、その固化成形の温度が融点ないし融解温度より10%以上低い温度であることを特微とする請求項15〜22のいずれか1項に記載のナノ結晶金属バルク材の製造方法。 The composition according to claim 15, wherein the composition of the nanocrystalline metal contains 0 to 40% by mass of another element, and the solidification molding temperature is at least 10% lower than the melting point or the melting temperature. 23. The method for producing a bulk nanocrystalline metal material according to any one of 22.  ナノ結晶の鋼形成成分の各粉末をボールミル等を用いてメカニカルアロイング(MA)することによって、ナノ結晶鋼粉末を製造した後、
同鋼粉末を放電プラズマ焼結、ホットプレス、押出し成形、圧延等の熱間固化成形又は爆発成形などで超塑性発現温度近傍の温度で固化成形処理することを特徴とする高硬度・高強度で強靱なナノ結晶鋼バルク材の製造方法。
After the nano-crystalline steel powder is manufactured by subjecting each powder of the nano-crystalline steel forming component to mechanical alloying (MA) using a ball mill or the like,
High hardness and high strength characterized by subjecting the same steel powder to solidification molding at a temperature near the superplastic expression temperature by hot solidification molding such as spark plasma sintering, hot pressing, extrusion molding, rolling or explosive molding etc. Manufacturing method of tough nanocrystalline steel bulk material.
 ナノ結晶の鋳鉄形成成分の各粉末をボールミル等を用いてメカニカルアロイング(MA)することによって、ナノ結晶鋳鉄粉末を製造した後、
同鋳鉄粉末を放電プラズマ焼結、ホットプレス、押出し成形、圧延等の熱間固化成形又は爆発成形などで超塑性発現温度近傍の温度で固化成形処理することを特徴とするナノ結晶鋳鉄バルク材の製造方法。
After manufacturing nanocrystalline cast iron powder by subjecting each powder of the nanocrystalline cast iron forming component to mechanical alloying (MA) using a ball mill or the like,
The nano-crystalline cast iron bulk material is characterized in that the cast iron powder is subjected to solidification molding at a temperature near the superplastic expression temperature by hot solidification molding such as discharge plasma sintering, hot pressing, extrusion molding, rolling or explosion molding. Production method.
 ナノ結晶の鋼形成成分の各粉末をボールミル等を用いてメカニカルアロイング(MA)することによって、ナノ結晶鋼粉末を製造した後、
同ナノ結晶鋼粉末を放電プラズマ焼結、ホットプレス、押出し成形、圧延等の熱間固化成形又は爆発成形などで固化成形処理して鋼バルク材となし、
その後前記鋼バルク材を超塑性発現温度近傍の温度で成形加工することを特徴とする高硬度・高強度で強靱なナノ結晶鋼成形体の製造方法。
After the nano-crystalline steel powder is manufactured by subjecting each powder of the nano-crystalline steel forming component to mechanical alloying (MA) using a ball mill or the like,
The same nanocrystalline steel powder is solidified and formed by discharge plasma sintering, hot pressing, extrusion molding, hot solidification molding such as rolling, or explosion molding to form a steel bulk material,
A method for producing a high-hardness, high-strength and tough nanocrystalline steel molded body, comprising forming the bulk steel material at a temperature near the superplastic temperature.
 ナノ結晶の鋳鉄形成成分の各粉末をボールミル等を用いてメカニカルアロイング(MA)することによって、ナノ結晶鋳鉄粉末を製造した後、
同ナノ結晶鋳鉄粉末を放電プラズマ焼結、ホットプレス、押出し成形、圧延等の熱間固化成形又は爆発成形などで固化成形処理して鋳鉄バルク材となし、
その後前記鋳鉄バルク材を超塑性発現温度近傍の温度で成形加工することを特徴とする高硬度・高強度で強靱なナノ結晶鋳鉄成形体の製造方法。

After manufacturing nanocrystalline cast iron powder by subjecting each powder of the nanocrystalline cast iron forming component to mechanical alloying (MA) using a ball mill or the like,
The same nanocrystalline cast iron powder is solidified by discharge plasma sintering, hot pressing, extrusion molding, hot solidification molding such as rolling, or explosion molding to form a cast iron bulk material,
A method for producing a high-hardness, high-strength and tough nanocrystalline cast iron molded body, comprising forming the cast iron bulk material at a temperature near the superplasticity manifestation temperature.

JP2003342103A 2002-09-30 2003-09-30 Tenacious metallic nano-crystalline bulk material with high hardness and high strength, and its manufacturing method Pending JP2004143596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003342103A JP2004143596A (en) 2002-09-30 2003-09-30 Tenacious metallic nano-crystalline bulk material with high hardness and high strength, and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002287950 2002-09-30
JP2003342103A JP2004143596A (en) 2002-09-30 2003-09-30 Tenacious metallic nano-crystalline bulk material with high hardness and high strength, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004143596A true JP2004143596A (en) 2004-05-20

Family

ID=32473316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003342103A Pending JP2004143596A (en) 2002-09-30 2003-09-30 Tenacious metallic nano-crystalline bulk material with high hardness and high strength, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004143596A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052430A (en) * 2004-08-10 2006-02-23 Chokoon Zairyo Kenkyusho:Kk Bolt and nut members made from stainless steel for pressure vessel, and manufacturing method therefor
JP2009293985A (en) * 2008-06-03 2009-12-17 Nippon Steel Corp Standard sample for quantification in glow discharge emission analysis, and glow discharge emission analysis method using the same
WO2011037127A3 (en) * 2009-09-25 2011-06-03 日本発條株式会社 Nanocrystal titanium alloy and production method for same
JP2013231214A (en) * 2012-04-27 2013-11-14 Kyb Co Ltd Method for producing sliding member
JP2016074032A (en) * 2013-12-11 2016-05-12 ザ・ボーイング・カンパニーThe Boeing Company Method for production of performance enhanced metallic materials
CN106011592A (en) * 2016-06-08 2016-10-12 燕山大学 Method for preparing super-strong ultrahigh-heat-stability bulk nanocrystalline steel
CN106566947A (en) * 2016-10-31 2017-04-19 无锡市永兴金属软管有限公司 Preparation method for titanium alloy material used for corrugated pipes
CN108817387A (en) * 2018-07-09 2018-11-16 合肥工业大学 A kind of preparation method of the tungsten-based composite material with high rigidity and high temperature oxidation resistance

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052430A (en) * 2004-08-10 2006-02-23 Chokoon Zairyo Kenkyusho:Kk Bolt and nut members made from stainless steel for pressure vessel, and manufacturing method therefor
JP4508771B2 (en) * 2004-08-10 2010-07-21 株式会社超高温材料研究所 Stainless steel bolt and nut material for pressure vessel and manufacturing method thereof
JP2009293985A (en) * 2008-06-03 2009-12-17 Nippon Steel Corp Standard sample for quantification in glow discharge emission analysis, and glow discharge emission analysis method using the same
WO2011037127A3 (en) * 2009-09-25 2011-06-03 日本発條株式会社 Nanocrystal titanium alloy and production method for same
TWI485264B (en) * 2009-09-25 2015-05-21 Nhk Spring Co Ltd Nano-crystalline titanium alloy, and producing method thereof
US9260773B2 (en) 2009-09-25 2016-02-16 Nhk Spring Co., Ltd. Nanocrystal titanium alloy and production method for same
JP2013231214A (en) * 2012-04-27 2013-11-14 Kyb Co Ltd Method for producing sliding member
JP2016074032A (en) * 2013-12-11 2016-05-12 ザ・ボーイング・カンパニーThe Boeing Company Method for production of performance enhanced metallic materials
CN106011592A (en) * 2016-06-08 2016-10-12 燕山大学 Method for preparing super-strong ultrahigh-heat-stability bulk nanocrystalline steel
CN106011592B (en) * 2016-06-08 2017-10-20 燕山大学 A kind of preparation method of superpower superelevation heat endurance bulk nano-crystalline steel
CN106566947A (en) * 2016-10-31 2017-04-19 无锡市永兴金属软管有限公司 Preparation method for titanium alloy material used for corrugated pipes
CN108817387A (en) * 2018-07-09 2018-11-16 合肥工业大学 A kind of preparation method of the tungsten-based composite material with high rigidity and high temperature oxidation resistance

Similar Documents

Publication Publication Date Title
RU2324576C2 (en) Nanocristallic metal material with austenic structure possessing high firmness, durability and viscosity, and method of its production
McNeese et al. Processing of TiNi from elemental powders by hot isostatic pressing
WO2004029312A1 (en) Nano-crystal austenitic steel bulk material having ultra-hardness and toughness and excellent corrosion resistance, and method for production thereof
Zhu et al. Characterization of Fe3Al-based intermetallic alloys fabricated by mechanical alloying and HIP consolidation
JP2009074173A (en) Ultra-hard composite material and method for manufacturing the same
WO2010008004A1 (en) Hard powder, method for producing hard powder and sintered hard alloy
Alem et al. Development of metal matrix composites and nanocomposites via double-pressing double-sintering (DPDS) method
JP3271040B2 (en) Molybdenum alloy and method for producing the same
JP3367269B2 (en) Aluminum alloy and method for producing the same
JP2008208401A (en) Martensitic nanocrystal alloy steel powder, bulk material thereof, and method for producing them
WO2005092543A1 (en) Nano crystalline white cast iron powder having high hardness and nano crystalline white cast iron bulk material having high hardness, high strength and high toughness, and method for production thereof
CN107075624A (en) The application of steel and this kind of steel with high wearability, hardness, corrosion resistance and low heat conductivity
JP2006274323A (en) Nanocrystal alloy steel powder having high hardness and excellent corrosion resistance and nanocrystal alloy steel bulk material having high strength/toughness and excellent corrosion resistance and production method thereof
JP2013170285A (en) Method for producing high toughness cemented carbide
JP2004143596A (en) Tenacious metallic nano-crystalline bulk material with high hardness and high strength, and its manufacturing method
WO2005092542A1 (en) High carbon nano crystalline iron alloy powder and bulk material having high hardness, and method for production thereof
KR102429733B1 (en) Corrosion resistant article and methods of making
Shulong et al. Effect of Y addition on microstructure and mechanical properties of TiAl-based alloys prepared by SPS
JP6805454B2 (en) Cemented carbide and its manufacturing method, and cemented carbide tools
JP4281857B2 (en) Sintered tool steel and manufacturing method thereof
JPWO2008123258A1 (en) Binary aluminum alloy powder sintered material and method for producing the same
Hagiwara et al. Blended elemental P/M synthesis of Ti-6Al-1.7 Fe-0.1 Si alloy with improved high cycle fatigue strength
Lee et al. Properties of TiC-Mo 2 C-WC-Ni Cermets by a High-Energy Ball Milling/Spark Plasma Sintering
JP2852414B2 (en) Particle-reinforced titanium-based composite material and method for producing the same
Raynova Study on low-cost alternatives for synthesising powder metallurgy titanium and titanium alloys

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080514