JPH04325648A - Production of sintered aluminum alloy - Google Patents

Production of sintered aluminum alloy

Info

Publication number
JPH04325648A
JPH04325648A JP3124846A JP12484691A JPH04325648A JP H04325648 A JPH04325648 A JP H04325648A JP 3124846 A JP3124846 A JP 3124846A JP 12484691 A JP12484691 A JP 12484691A JP H04325648 A JPH04325648 A JP H04325648A
Authority
JP
Japan
Prior art keywords
weight
powder
aluminum alloy
aluminum
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3124846A
Other languages
Japanese (ja)
Other versions
JP3095026B2 (en
Inventor
Tetsuya Hayashi
哲也 林
Yoshinobu Takeda
義信 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP03124846A priority Critical patent/JP3095026B2/en
Publication of JPH04325648A publication Critical patent/JPH04325648A/en
Application granted granted Critical
Publication of JP3095026B2 publication Critical patent/JP3095026B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce a sintered aluminum alloy having high precision and high density, excellent in mechanical properties and physical properties, and also having superior wear resistance by means of normal pressure sintering while obviating the necessity of plastic working. CONSTITUTION:A molten metal which has a composition consisting of, by weight, 6.0-40.0% Si, 2.0-8.0% Cu, 0.2-2.0% Mg, and the balance essentially aluminum and further containing, if necessary, <=8% of one or more components selected from Fe, Ni, Mn, Ti, Cr, V, Mo, Zr, and Zn is powdered at >=10<2> deg.C/sec solidification rate. The resulting rapidly solidified aluminum alloy powder is subjected, if necessary, to annealing at 250-450 deg.C and then cold-compacted to >=70% density ratio. The resulting green compact is subjected to normal pressure sintering in a nonoxidizing atmosphere with <=-10 deg.C dew point at 500-580 deg.C and also at a temp. between the Al-Si eutectic temp. and the Al-Si-Cu-Mg liquid-phase-forming temp. to >=90% density ratio.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、常圧焼結によりアルミ
ニウム焼結合金を製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an aluminum sintered alloy by pressureless sintering.

【0002】0002

【従来の技術】アルミニウム粉末あるいはアルミニウム
合金粉末の表面には還元が不可能な強固な酸化膜が存在
しているため、アルミニウム焼結合金の製造するには、
この酸化膜を破り粉末同士の金属接触部を形成させて金
属原子の拡散を可能とさせる必要がある。
[Prior Art] Since there is a strong oxide film on the surface of aluminum powder or aluminum alloy powder that cannot be reduced, in order to produce an aluminum sintered alloy,
It is necessary to break this oxide film and form a metal contact area between the powders to enable diffusion of metal atoms.

【0003】従来、この方法は大きく次の2つの方法が
あった。
Conventionally, there have been two main methods for this.

【0004】先ず、第1の方法としては、アルミニウム
あるいは所要のアルミニウム合金組成の融点より低温側
で共晶液相を発生する合金成分を有する粉末を焼結助剤
として混合し、圧縮成形時に生成された粉末同士の金属
接触部から発生した液相が昇温過程中に発生し、アルミ
ニウム粉末表面を覆い、金属接触部の拡大を図り焼結を
進行させる方法である。例えば特開昭47−34006
号には、アルミニウム粉にCuまたはCu−Sn粉末を
混合した粉末成形体を無酸化あるいは還元性雰囲気で焼
結することを特徴とする焼結合金の製造方法が開示され
ている。また、特公昭51−13444号には、焼結助
剤としてマグネシウム、亜鉛等の粉末を添加配合する方
法が開示され、さらに、特開昭50−96409号には
焼結助剤として、Mg粉末あるいはCu−Mg母合金粉
末を焼結助剤として添加する方法が開示されている。同
様に特公昭61−17895号、特公昭61−5485
5号、特公昭61−6243号および特公昭62−66
26号には、Cu、Mg、Si、Zn等の元素粉末ある
いは合金粉末として混合する方法が開示されている。
First, in the first method, a powder having an alloy component that generates a eutectic liquid phase at a temperature lower than the melting point of aluminum or a desired aluminum alloy composition is mixed as a sintering aid, and the powder produced during compression molding is mixed as a sintering aid. In this method, a liquid phase generated from the metal contact area between the powders is generated during the heating process, covers the surface of the aluminum powder, expands the metal contact area, and progresses sintering. For example, JP-A-47-34006
No. 2, No. 2003-11-112 discloses a method for producing a sintered alloy, which is characterized by sintering a powder compact made by mixing aluminum powder with Cu or Cu-Sn powder in a non-oxidizing or reducing atmosphere. Furthermore, Japanese Patent Publication No. 51-13444 discloses a method of adding and blending powders such as magnesium and zinc as sintering aids, and JP-A No. 50-96409 discloses a method of adding and blending powders such as magnesium and zinc as sintering aids. Alternatively, a method of adding Cu-Mg master alloy powder as a sintering aid is disclosed. Similarly, Special Publication No. 61-17895, Special Publication No. 61-5485
5, Special Publication No. 61-6243 and Special Publication No. 62-66
No. 26 discloses a method of mixing elemental powders or alloy powders such as Cu, Mg, Si, and Zn.

【0005】また、Siを添加する例として、特公昭5
3−118209号には、共晶組成であるAl−11.
7Si近傍の組成を有したAl− Si二元合金粉末に
金属Si粉末と必要に応じて合金元素粉末を混合してS
iを合計で20〜50%含有した焼結体の製造方法が開
示され、さらに、特公昭60−38442号には、Al
またはAl−Si合金粉末にAl−Cu−Mg、Al−
Cu−Mg−Si、Cu−Mg−Si合金粉末を焼結助
剤として30重量%未満の配合率で混合し、圧縮成形後
550〜 650℃の温度範囲で焼結することを特徴と
する2.1 %Si以下の低Si含有低密度焼結体の製
造方法が提唱されている。また、特開昭53−1285
12号には、Al−10 〜35Si粉末にCu、Mg
、Si成分を単組成粉末あるいは合金粉末として添加配
合する高Si含有焼結体の製造方法が示されている。他
に、特開平3−28336号には、強度改善を目的とし
てCuを2.0 重量%以下及びMgを0.5 重量%
以下含有したAl−10〜45重量%Si−Cu−Mg
系合金粉末に潤滑剤を添加した混合粉末を、液相発生温
度以下での固相拡散により焼結させた後に再圧縮し、特
にSi量が20重量%の場合は再圧縮後に再焼結させる
高Si焼結体の製造方法が提示されている。Cu及びM
g量は焼結性の観点からは低い方が良く実施例中ではそ
れぞれ0.5重量%以下である。
[0005] Furthermore, as an example of adding Si,
No. 3-118209 has a eutectic composition of Al-11.
Al-Si binary alloy powder having a composition near 7Si is mixed with metallic Si powder and alloying element powder as necessary to form S.
A method for producing a sintered body containing 20 to 50% of Al in total is disclosed, and furthermore, Japanese Patent Publication No. 60-38442 discloses that Al
Or Al-Si alloy powder with Al-Cu-Mg, Al-
2, characterized in that Cu-Mg-Si, Cu-Mg-Si alloy powder is mixed as a sintering aid at a blending ratio of less than 30% by weight, and sintered at a temperature range of 550 to 650°C after compression molding. A method for manufacturing a low-density sintered body with a low Si content of .1% Si or less has been proposed. Also, JP-A-53-1285
No. 12 contains Cu, Mg in Al-10 to 35Si powder.
, a method for producing a high Si-containing sintered body is disclosed in which a Si component is added and blended as a monocomposition powder or an alloy powder. In addition, JP-A No. 3-28336 discloses that for the purpose of improving strength, Cu is added to 2.0% by weight or less and Mg is added to 0.5% by weight.
Al-10 to 45% by weight Si-Cu-Mg containing:
A mixed powder made by adding a lubricant to a system alloy powder is sintered by solid-phase diffusion below the liquid phase generation temperature, and then re-compressed. Especially when the Si content is 20% by weight, it is re-sintered after re-compression. A method for manufacturing a high-Si sintered body is presented. Cu and M
From the viewpoint of sinterability, the lower the amount of g, the better, and in the examples, each amount is 0.5% by weight or less.

【0006】次に、第2の方法としては、近年に新しい
粉末冶金技術として開発されてきたアルミニウム合金の
製造法がある。これは粉末同士の結合を図るために粉末
に強力な塑性加工を加えることで粉末を塑性変形させて
粉末表面の酸化膜を分断させて金属接触部を生成させる
方法である。塑性加工方法としては、ホットプレス法、
粉末鍛造法、粉末押出法、粉末圧延法等があり、例えば
特開昭60−121203号には、アルミニウム合金粉
末を温度250 〜550 ℃で押出比4:1〜15:
1にて押出する方法が開示され、特開昭61−1366
02号には、アルミニウム合金粉末を加熱成形後にホッ
トプレスする方法が開示されている。
Next, as a second method, there is an aluminum alloy manufacturing method that has been developed as a new powder metallurgy technology in recent years. This is a method in which the powders are subjected to strong plastic processing in order to bond them together, causing the powders to be plastically deformed and severing the oxide film on the powder surface to form metal contact areas. Plastic working methods include hot press method,
There are powder forging methods, powder extrusion methods, powder rolling methods, etc. For example, in JP-A-60-121203, aluminum alloy powder is extruded at a temperature of 250 to 550°C at an extrusion ratio of 4:1 to 15:1.
No. 1 discloses an extrusion method, and JP-A-61-1366
No. 02 discloses a method of hot pressing aluminum alloy powder after heat forming.

【0007】[0007]

【発明が解決しようとする課題】ところが、アルミニウ
ム焼結合金を製造する上記2つの従来法には次の問題が
あった。
[Problems to be Solved by the Invention] However, the above two conventional methods for producing aluminum sintered alloys have the following problems.

【0008】先ず、焼結助剤の役割を果たす共晶液相を
発生する合成成分を有する粉末を混合し、圧縮成形後に
焼結させる前記第1の方法では、焼結助剤を混合法で分
散させるため共晶液相の発生個所が偏在し、組成的にも
濃度斑や偏析が生じ易い上、粉末の焼結状態の均質性も
悪く、粗大な気孔や流出孔が残り易いため高精度・高密
度焼結体が得難い。また、金属接触部分を増やし共晶液
相発生個所の頻度を増大させたり、寸法精度等を改善す
るために成形体密度を上げようとした際に、例えば高S
i粉末等の硬い粉末の場合、高圧力が必要となる。また
、この方法で得られた焼結体は急冷凝固により生成され
た微細析出物が粗大化しており、機械的特性が塑性加工
法による焼結体に比較して大きく劣る。
[0008] First, in the first method, a powder containing a synthetic component that generates a eutectic liquid phase that acts as a sintering aid is mixed, and the powder is sintered after compression molding. Because of the dispersion, the eutectic liquid phase is unevenly distributed, which tends to cause concentration unevenness and segregation due to the composition.The homogeneity of the sintered state of the powder is also poor, and coarse pores and outflow pores tend to remain, resulting in high precision.・Difficult to obtain high-density sintered bodies. In addition, when trying to increase the density of the compact in order to increase the number of metal contact areas and increase the frequency of eutectic liquid phase occurrence points or to improve dimensional accuracy, for example, high S
In the case of hard powders such as i-powder, high pressure is required. In addition, the sintered body obtained by this method has coarsened fine precipitates generated by rapid solidification, and its mechanical properties are significantly inferior to the sintered body obtained by the plastic working method.

【0009】また、特開平3−28336号に提示され
ている様な固相拡散により焼結させるAl−Si−Cu
−Mg系合金粉末の焼結方法は、粉末同士の結合が弱く
強度が20kg/mm2に達しない低強度材しか得られ
ない。
In addition, Al-Si-Cu sintered by solid phase diffusion as disclosed in Japanese Patent Application Laid-Open No. 3-28336.
- The method of sintering Mg-based alloy powder can only produce a low-strength material whose strength does not reach 20 kg/mm2 because the bond between the powders is weak.

【0010】一方、前記第2の方法としての塑性加工法
による焼結は、比較的低温度域で処理できるため、急冷
凝固粉末を用いた場合、粉末の持つ急冷の効果をある程
度維持した高密度材料が得られるため特性的には優れる
ものの、設備が高価で製造コストが高い上、形状的制約
があり、従来の粉末冶金法の特徴であるニアネットシェ
イプ材の製造が困難であり材料歩留まりが低い。また、
Al−Si系合金では材料中のSi晶径が小さく、同程
度のSiが含有される鋳造材に比較して耐摩耗性に劣る
On the other hand, since sintering by the plastic working method as the second method can be processed at a relatively low temperature range, when rapidly solidified powder is used, it is possible to achieve high density while maintaining the rapid cooling effect of the powder to some extent. Although it has excellent properties because it provides a material, the equipment is expensive, manufacturing costs are high, and there are shape constraints, making it difficult to produce near net shape materials that are characteristic of conventional powder metallurgy methods, and material yields are low. low. Also,
In Al-Si alloys, the Si crystal diameter in the material is small, and wear resistance is inferior to cast materials containing the same amount of Si.

【0011】この発明は、高精度・高密度で機械的特性
や物理的特性に優れ、かつ耐摩耗性に優れ、しかも、従
来の粉末冶金法のメリットであるニアネットシェイプ素
材を得ることができ、適当量の気孔を分布させた焼結体
とすればサイジングやコイニングによる高精度加工が可
能で、形状付与自由度の高い高精度のアルミニウム焼結
合金の製造方法を提供することを目的とする。
[0011] The present invention has high precision, high density, excellent mechanical properties and physical properties, and excellent wear resistance, and moreover, it is possible to obtain a near net shape material, which is an advantage of conventional powder metallurgy methods. The purpose of the present invention is to provide a method for manufacturing a high-precision aluminum sintered alloy with a high degree of freedom in shaping, which enables high-precision processing by sizing and coining if the sintered body has an appropriate amount of pores distributed. .

【0012】0012

【課題を解決するための手段】この発明者らは、鋭意研
究の末、共晶反応により液相を発生させて焼結させる従
来方法の問題は、この共晶液相をAl粉末あるいはAl
合金粉末と焼結助剤の界面において発生させて焼結を行
なうことに起因していることが判った。そこで、全く焼
結助剤を添加混合しないで焼結させる方法を発明するこ
とで焼結助剤添加法による焼結法の問題の解決を図った
。つまり、この発明者らは、個々の粉末内に液相を生成
させることで、成形体内に高密度・均質に液相を分布さ
せるようにした。ここで、粉末内に液相を生成させるに
は、まずSi、Cu、Mgを同時に含有する組成の溶湯
を粉末化に際して、急冷凝固させて所要の合金組成を融
点以下で液相が生じるような準安定相を形成させた粉末
を製造する。この合金はSi、Cu、Mgを含有させる
ことで熱処理による強度改善も図れる合金ともなる。
[Means for Solving the Problems] After extensive research, the inventors have discovered that the problem with the conventional method of generating a liquid phase through a eutectic reaction and sintering is that the eutectic liquid phase can be mixed with Al powder or Al powder.
It was found that this was caused by the occurrence of sintering at the interface between the alloy powder and the sintering aid. Therefore, by inventing a method of sintering without adding or mixing any sintering aid, we attempted to solve the problems of the sintering method using the sintering aid addition method. In other words, the inventors created a liquid phase within each powder, thereby distributing the liquid phase in a highly dense and homogeneous molded body. Here, in order to generate a liquid phase in the powder, first, when powdering a molten metal containing Si, Cu, and Mg at the same time, the required alloy composition is rapidly solidified so that a liquid phase is generated below the melting point. A powder is produced in which a metastable phase is formed. By containing Si, Cu, and Mg, this alloy becomes an alloy whose strength can be improved by heat treatment.

【0013】さらに引き続く研究により、上記粉末の加
熱工程中に発生した液相は、粉末表面の酸化膜を分断さ
せ金属接触部の拡大を図り焼結が進行するため、成形体
内の相状態が均質となり、低密度成形体であっても短時
間に均等に収縮し、組成斑や偏析がきわめて小さい高精
度・高密度焼結体を製造できることに成功した。しかも
、液相の生成を損なわない範囲での粉末焼鈍により粉末
を軟化させると、低圧で高密度の成形体が得ることがで
き焼結体の高精度化を図るに有効であり、特に高合金系
で粉末硬度の高い場合にはその効果が大きいことが判っ
た。
Further research has shown that the liquid phase generated during the heating process of the powder breaks up the oxide film on the powder surface, expands the metal contact area, and progresses sintering, resulting in a homogeneous phase state within the compact. As a result, even a low-density molded body shrinks uniformly in a short period of time, and we succeeded in manufacturing a high-precision, high-density sintered body with extremely low composition unevenness and segregation. Moreover, if the powder is softened by powder annealing within a range that does not impair the formation of the liquid phase, it is possible to obtain a compact with high density at low pressure, which is effective in achieving high precision of the sintered compact, and is particularly effective for achieving high precision of sintered compacts. It was found that the effect is large when the powder hardness is high in the system.

【0014】また、上記急冷凝固法によれば、素地の硬
化や耐熱性の改善あるいはSi晶の成長抑制を図るため
に、溶製法では少量しか添加できないFe、Ni、Mn
、Ti、Cr、V、Mo、Zr、Zn等を有効に含有さ
せることが可能であることが判った。
Further, according to the above-mentioned rapid solidification method, in order to harden the base material, improve heat resistance, or suppress the growth of Si crystals, Fe, Ni, and Mn, which can only be added in small amounts in the melting method, are added.
, Ti, Cr, V, Mo, Zr, Zn, etc., can be effectively contained therein.

【0015】特に機械的・物理的特性の改善が必要な場
合は、微細粒子の分散によって改善することができるが
、分散粒子の添加手段としては、粉末製造時に分散粒子
を含有した溶湯を粉末化する方法がある。また、混合に
より分散させることが低コストで容易であり物理的特性
値の改善には効果があり、更に混合粉末を機械的粉砕再
凝集処理でより分散粒子を微細化し均一かつ高密度に分
散すると大きな機械的特性値の改善が図れる。これらの
添加方法は公知の手法であるが、焼結合金の特性改善方
法として有効であることを見出して、この発明を完成す
るに至ったものである。
In particular, when mechanical and physical properties need to be improved, they can be improved by dispersing fine particles, but as a means of adding dispersed particles, it is possible to powder a molten metal containing dispersed particles during powder production. There is a way to do it. In addition, dispersion by mixing is low cost and easy, and is effective in improving physical properties.Furthermore, if the mixed powder is mechanically crushed and reagglomerated, the dispersed particles can be made finer and dispersed uniformly and densely. Great improvements in mechanical property values can be achieved. These methods of addition are known methods, but the present invention has been completed based on the discovery that they are effective methods for improving the properties of sintered alloys.

【0016】即ち、この発明は、Siを6.0 〜40
.0重量%、Cuを2.0 〜8.0 重量%、Mgを
0.2 〜2.0 重量%同時に含有し、さらに必要に
応じてFe、Ni、Mn、Ti、Cr、V、Mo、Zr
、Znの内選ばれた1種類以上の成分を8重量%以下含
有し、残りが実質的にアルミニウムからなる組成を有す
る溶湯を凝固速度が102℃/sec以上で粉末化した
急冷凝固アルミニウム合金粉末を必要に応じて250 
〜450 ℃の温度域で焼鈍した後に、冷間で密度比7
0%以上に圧縮成形し、この成形体を露点が−10 ℃
以下である非酸化性雰囲気中において500 〜580
 ℃の温度域でAl−Si系共晶温度以下、Al−Si
−Cu−Mg系液相出現温度以上、焼結体密度比90%
以上に常圧焼結することを特徴とするアルミニウム焼結
合金の製造方法に係るものである。
[0016] That is, in this invention, Si is 6.0 to 40
.. 0% by weight, 2.0 to 8.0% by weight of Cu, 0.2 to 2.0% by weight of Mg, and further contains Fe, Ni, Mn, Ti, Cr, V, Mo, Zr
, rapidly solidified aluminum alloy powder obtained by pulverizing a molten metal having a composition of 8% by weight or less of one or more selected components from Zn and the remainder substantially consisting of aluminum at a solidification rate of 102° C./sec or more. 250 if necessary
After annealing in the temperature range of ~450 °C, the density ratio is 7 in the cold.
0% or higher, and the molded body is compressed to a dew point of -10°C.
500 to 580 in a non-oxidizing atmosphere of
Below the Al-Si system eutectic temperature in the temperature range of °C, Al-Si
-Cu-Mg system liquid phase appearance temperature or higher, sintered compact density ratio 90%
The present invention relates to a method for producing an aluminum sintered alloy characterized by pressureless sintering.

【0017】また、機械的・物理的特性の改善を図るに
は、上記急冷凝固アルミニウム合金粉末は、上記の組成
を有し、かつ金属間化合物、炭化物、酸化物、窒化物、
ほう化物、硅化物から選ばれた少なくとも1種以上の粒
子を0.5 〜10体積%添加した溶湯を凝固速度が1
02 ℃/sec以上で粉末化した急冷凝固アルミニウ
ム合金粉末であるのが好ましい。
Further, in order to improve the mechanical and physical properties, the rapidly solidified aluminum alloy powder has the above composition and contains intermetallic compounds, carbides, oxides, nitrides,
A molten metal to which 0.5 to 10% by volume of at least one particle selected from borides and silicides has been added has a solidification rate of 1.
Preferably, the aluminum alloy powder is rapidly solidified aluminum alloy powder that has been pulverized at a temperature of 0.02° C./sec or higher.

【0018】さらに、機械的・物理的特性の改善を図る
製造方法としては、急冷凝固粉末製造から圧縮成形の工
程間に、急冷凝固アルミニウム合金粉末と金属間化合物
、炭化物、酸化物、窒化物、ほう化物、硅化物から選ば
れた少なくとも1種以上の粒子を0.5 〜10体積%
混合し、必要に応じて機械的粉砕再凝集処理によって該
アルミニウム合金粉末粒子中に微細均一に一体化する工
程を設けるのが好ましい。
Furthermore, as a manufacturing method for improving mechanical and physical properties, between the process of rapidly solidifying powder production and compression molding, rapidly solidified aluminum alloy powder is mixed with intermetallic compounds, carbides, oxides, nitrides, 0.5 to 10% by volume of at least one particle selected from borides and silicides
It is preferable to provide a step of mixing and finely and uniformly integrating the aluminum alloy powder particles into the aluminum alloy powder particles by mechanical crushing and reagglomeration treatment if necessary.

【0019】[0019]

【作用】以下に、組成及び製造条件の範囲限定の理由を
説明する。
[Operation] The reason for limiting the range of composition and manufacturing conditions will be explained below.

【0020】先ず、融点以下の温度域において液相を生
成する準安定相は、Si、Cu、Mgを同時に含有した
溶湯を102 ℃/sec以上の冷却速度で凝固させた
場合に生成できる。凝固速度が102 ℃/sec未満
であると準安定相が生成しなかったり、あるいは生成量
が少なくなり、焼結が十分には進行しないからである。
First, a metastable phase that forms a liquid phase in a temperature range below the melting point can be formed when a molten metal containing Si, Cu, and Mg at the same time is solidified at a cooling rate of 102° C./sec or higher. This is because if the solidification rate is less than 102° C./sec, the metastable phase will not be produced or the amount of metastable phase produced will be small, and sintering will not proceed sufficiently.

【0021】また、Siは液相生成のための必須成分で
あり、最低1.0 重量%程度は含有していれば良いが
、同時にSiの添加は熱膨張率の低下、剛性の向上、耐
摩耗性の改善等に効果がある。この効果は、Si添加量
が6.0 重量%以下では小さく、かつ一般の鋳造法で
も容易に添加できる量であるため、本発明では添加下限
量を6.0 重量%とした。Si添加量が40.0重量
%を越えると溶解温度が高くなる上、焼結体中のSi晶
径が大きくなり靭性が劣化し、被削性も悪化するため、
添加上限量を40.0重量%とした。Cu、Mgについ
ても焼結に必要な液相生成のための必須成分であり、特
にCuの存在は重要である。Cu量においては2.0 
重量%未満であると焼結に必要な液相発生量が不十分と
なる上、焼結温度範囲が狭くなる。Mg量においても0
.2 重量%未満であると液相量が減る他、充分な焼結
強度が得られない。また、Cu量が8.0 重量%、M
g量が2.0 重量%を越えると液相の発生量が多くな
りすぎて焼結体の寸法精度が悪くなり、素地の強度も劣
化させ、特にMg量は多くなり過ぎると焼結範囲を狭く
する。よって、Cu量は1.0 〜8.0重量%、Mg
量は0.4 〜4.0 重量%と定めた。これらの成分
を含有する合金は、溶体化・時効処理を施すことにより
機械的特性が改善できる。
[0021] Furthermore, Si is an essential component for liquid phase generation, and it is sufficient to contain it at least about 1.0% by weight. Effective in improving wear resistance, etc. This effect is small when the amount of Si added is 6.0% by weight or less, and since this is an amount that can be easily added using a general casting method, the lower limit of Si addition is set to 6.0% by weight in the present invention. If the amount of Si added exceeds 40.0% by weight, the melting temperature will increase, the Si crystal diameter in the sintered body will increase, the toughness will deteriorate, and the machinability will also deteriorate.
The upper limit of addition amount was set to 40.0% by weight. Cu and Mg are also essential components for producing a liquid phase necessary for sintering, and the presence of Cu is particularly important. 2.0 in Cu amount
If it is less than % by weight, the amount of liquid phase required for sintering will be insufficient and the sintering temperature range will be narrow. Also 0 in Mg amount
.. If it is less than 2% by weight, not only will the amount of liquid phase decrease, but also sufficient sintering strength will not be obtained. In addition, the amount of Cu is 8.0% by weight, M
If the amount of Mg exceeds 2.0% by weight, the amount of liquid phase generated will be too large, resulting in poor dimensional accuracy of the sintered body and deterioration of the strength of the substrate.In particular, if the amount of Mg is too large, the sintering range will be reduced. Make it narrower. Therefore, the amount of Cu is 1.0 to 8.0% by weight, Mg
The amount was determined to be 0.4 to 4.0% by weight. The mechanical properties of alloys containing these components can be improved by subjecting them to solution treatment and aging treatment.

【0022】また、急冷凝固粉末を用いれば、素地の強
度を改善したり、素地の硬度を上げて耐摩耗性を改善し
たり、耐熱性を改善を図るために、溶製法では少量しか
添加できないFe、Ni、Mn、Ti、Cr、V、Mo
、Zr、Zn等を有効に含有させることが可能である。 これらの成分の内アルミニウム中への固溶量の小さいも
のは、急冷凝固時においては微細な析出物を素地中に生
成し、生じた析出物は比較的高温度域においても安定で
あり焼結温度域においても粗大化の程度は小さく特性改
善に寄与する。また、これらの析出物はSi晶の粗大化
を抑制する働きがあり焼結体組織が微細になる。また、
固溶体成型のものや固溶量範囲内においても、固溶強化
による強度向上やMn、Zn等については少量の添加に
よっても熱処理による強度改善を助長する効果があり、
Mn等は0.5 重量%程度の含有量で効果は発現する
[0022] Furthermore, if rapidly solidified powder is used, it is possible to improve the strength of the base material, increase the hardness of the base material to improve wear resistance, and improve heat resistance by adding only a small amount in the melting method. Fe, Ni, Mn, Ti, Cr, V, Mo
, Zr, Zn, etc. can be effectively contained. Among these components, those with a small amount of solid solution in aluminum form fine precipitates in the matrix during rapid solidification, and the resulting precipitates are stable even in a relatively high temperature range and are difficult to sinter. Even in the temperature range, the degree of coarsening is small and contributes to improved characteristics. Furthermore, these precipitates have the function of suppressing coarsening of the Si crystals, resulting in a finer structure of the sintered body. Also,
Even with solid solution molding or within the solid solution amount range, strength improvement due to solid solution strengthening, and addition of small amounts of Mn, Zn, etc., have the effect of promoting strength improvement through heat treatment.
The effect of Mn etc. is exhibited at a content of about 0.5% by weight.

【0023】但し、添加量が8.0 重量%を越えると
粉末製造時に粗大な析出物を生ずるため焼結体の靭性が
低下するため、これを上限とした。
However, if the amount added exceeds 8.0% by weight, coarse precipitates are formed during powder production and the toughness of the sintered body is reduced, so this is set as the upper limit.

【0024】粉末の粒度は流動性、成形性、焼結性等の
各観点から最適分布があるが、通常は300 μm以下
が良く、特に緻密化を活発化するためや原料粉末の急冷
度を高めるために平均粒径が30μm程度の微粉末を使
うと良い。
[0024] The particle size of the powder has an optimum distribution from the viewpoint of fluidity, moldability, sinterability, etc., but it is usually 300 μm or less. In order to increase the particle size, it is recommended to use fine powder with an average particle size of about 30 μm.

【0025】Si添加量が17重量%前後の場合や添加
合金量の多い場合あるいは急冷度の高い場合では、粉末
硬度が高く成形性や圧縮性に劣るため、必要に応じて粉
末を250 〜450 ℃で焼鈍処理してこれらを改善
させる。焼鈍の温度が250 ℃未満では大きな改善効
果がなく、450 ℃を越えると準安定相が拡散による
安定化が進むため、焼鈍の温度範囲は250 〜450
 ℃とした。焼鈍の保持時間は特に必要はなく、目標温
度に達すれば効果は充分であるが、処理の均一性を確保
する場合は30〜60分の加熱を施すと良い。
[0025] When the amount of Si added is around 17% by weight, when the amount of added alloy is large, or when the degree of quenching is high, the powder hardness is high and the formability and compressibility are poor. These are improved by annealing at ℃. If the annealing temperature is less than 250 °C, there will be no significant improvement effect, and if it exceeds 450 °C, the metastable phase will be stabilized by diffusion, so the annealing temperature range is 250 to 450 °C.
℃. The holding time for annealing is not particularly necessary, and the effect is sufficient as long as the target temperature is reached, but in order to ensure uniformity of the process, it is preferable to heat for 30 to 60 minutes.

【0026】粉末は冷間成形により粉末成形体とするが
、この際成形密度比が70%未満であると成形体強度が
低くなるため密度比は70%以上と定めた。成形は温間
ですることも可能であるが通常は冷間で行なう。成形方
法としては金型成形や冷間静水圧成形がある。金型成形
の場合は、金型との焼き付きを防止したり粉末の流動性
を改善するために粉状の潤滑剤を混合したり、金型に潤
滑剤を塗布することが通例である。特に高い寸法精度が
求められる場合は、90〜95%程度の高密度に成形す
る必要があるが、高密度成形体では脱潤滑剤処理が困難
となるため、金型潤滑方法がより好ましい。但し、添加
した潤滑剤は焼結温度で酸化等の悪影響を与えないよう
に低温度域で気化する性質のものである必要がある。
[0026] The powder is formed into a powder compact by cold compaction, but at this time, the compact density ratio is set to be 70% or more, since the strength of the compact will be low if the compaction density ratio is less than 70%. Although molding can be done warm, it is usually done cold. Molding methods include die molding and cold isostatic pressing. In the case of mold molding, it is customary to mix a powdered lubricant or apply a lubricant to the mold in order to prevent sticking with the mold and improve the fluidity of the powder. When particularly high dimensional accuracy is required, it is necessary to mold to a high density of about 90 to 95%, but since it is difficult to remove lubricant with a high-density molded product, a mold lubrication method is more preferable. However, the added lubricant must have the property of vaporizing in a low temperature range so as not to cause adverse effects such as oxidation at the sintering temperature.

【0027】成形体は適正焼結温度に加熱される。この
際、準安定相の安定相への移行を抑えるため液相発生温
度域までの昇温速度は20℃/分以上であることが望ま
しい。焼結温度は500 〜580 ℃で、従来の焼結
温度範囲の550 〜650 ℃に比較して低温度域で
狭い範囲である。これはAl−Si−Cu−Mg系の準
安定相の液相生成温度域がこの範囲内にあるからである
。500 ℃未満では液相化しないため焼結現象が進行
せず、580 ℃を越えると合金自身が溶融してしまい
組織が粗大化し精度が著しく劣化する。焼結雰囲気は、
昇温過程中に粉末表面の吸着水分を充分に除去し、焼結
の妨げとなる酸化膜の成長を抑えるために、N2 ガス
、Arガス、真空等の非酸化性雰囲気中にて露点が−1
0 ℃以下望ましくは−30 ℃以下の低水蒸気分圧下
で焼結する必要がある。焼結時間は、目標の焼結体密度
により決まるが焼結温度に達すれば焼結は迅速に進行す
るため、10分程度の加熱でも十分焼結する。但し、実
際には処理の均一性を確保する必要から30〜120 
分の加熱を施すことになる。長時間側の加熱により、S
i晶が耐摩耗性に有効な大きさに成長し、緻密化が進行
するが、粒成長による焼結体強度の劣化が起こるため要
求特性値により適当な条件を選ぶ。
[0027] The compact is heated to an appropriate sintering temperature. At this time, in order to suppress the transition from the metastable phase to the stable phase, it is desirable that the temperature increase rate to the liquid phase generation temperature range be 20° C./min or more. The sintering temperature is 500 to 580°C, which is a lower temperature range and narrower than the conventional sintering temperature range of 550 to 650°C. This is because the liquid phase formation temperature range of the metastable phase of the Al-Si-Cu-Mg system is within this range. If the temperature is lower than 500°C, the sintering phenomenon will not proceed because it will not become a liquid phase, and if the temperature exceeds 580°C, the alloy itself will melt, the structure will become coarse, and the precision will deteriorate significantly. The sintering atmosphere is
In order to sufficiently remove adsorbed moisture on the powder surface during the temperature raising process and suppress the growth of an oxide film that impedes sintering, the dew point should be - - in a non-oxidizing atmosphere such as N2 gas, Ar gas, or vacuum 1
It is necessary to sinter at a low water vapor partial pressure of 0°C or lower, preferably -30°C or lower. The sintering time is determined by the target density of the sintered body, but since sintering proceeds quickly once the sintering temperature is reached, sufficient sintering can be achieved even with heating for about 10 minutes. However, in reality, it is 30 to 120 because of the need to ensure uniformity of processing.
It will be heated for several minutes. By heating on the long-term side, S
Although the i-crystals grow to a size effective for wear resistance and densification progresses, the strength of the sintered body deteriorates due to grain growth, so appropriate conditions are selected depending on the required characteristic values.

【0028】焼結体は、一般的な鋳造材強度である25
kg/mm2以上の強度を確保するため密度比で90%
以上とする。高強度の要求が強い場合98%以上の焼結
体の製造も可能であり、高精度の要求の強い場合は密度
比を95〜97%としてサイジングやコイニングにより
±10μm程度の精度を得ることも可能である。
The sintered body has a strength of 25, which is a general casting material strength.
90% density ratio to ensure strength of kg/mm2 or more
The above shall apply. If there is a strong demand for high strength, it is possible to manufacture a sintered body with a density of 98% or more, and if there is a strong demand for high precision, the density ratio can be set to 95-97% and an accuracy of about ±10 μm can be obtained by sizing or coining. It is possible.

【0029】しかし、粉末を高温度域で焼結により固化
するため急冷凝固による強度改善効果等は大部分損なわ
れてしまうため、特に機械的・物理的特性の改善が必要
な場合は、微細粒子の分散によって改善することができ
る。分散粒子としては、複合化することで熱膨張率・剛
性・強度・耐摩耗性等が改善できるものであればよく、
焼結で分解や拡散もしくは凝縮成長してはならない。こ
のために選ばれる粒子は一部の金属間化合物(遷移金属
アルミナイド、遷移金属間化合物)、炭化物(アルミカ
ーバイド、シリコンカーバイド、チタンカーバイド、ボ
ロンカーバイド等)、酸化物(アルミナ、シリカ、ムラ
イト、酸化亜鉛、イットリア等)、窒化物(アルミナイ
トライド、窒化珪素、チタンナイトライド)、ほう化物
(チタンボライド)、硅化物(モリブデンシリサイド)
等である。粒子の大きさは、分散強化を目的とした場合
、0.1 〜1 μm程度が、複合効果を狙った場合は
1〜20μm程度が、耐摩耗性改善には5 〜30μm
程度が望ましい。もちろん、複数種類や粒度分布をもた
せた粒子を分散させることもできる。分散量が0.5 
体積%未満であると粒子を添加した効果が得られず、1
0体積%を越えると被削性や靭性が劣るため、添加範囲
は0.5 〜10体積%とした。
However, since the powder is solidified by sintering in a high temperature range, the strength improvement effect of rapid solidification is largely lost. This can be improved by dispersing the Dispersed particles may be any particles that can improve thermal expansion coefficient, rigidity, strength, abrasion resistance, etc. by compounding.
It must not decompose, diffuse, or condensate during sintering. The particles selected for this purpose are some intermetallic compounds (transition metal aluminides, transition metal intermetallic compounds), carbides (aluminum carbide, silicon carbide, titanium carbide, boron carbide, etc.), oxides (alumina, silica, mullite, oxidized zinc, yttria, etc.), nitrides (aluminum nitride, silicon nitride, titanium nitride), borides (titanium boride), silicides (molybdenum silicide)
etc. The particle size is approximately 0.1 to 1 μm when aiming for dispersion reinforcement, approximately 1 to 20 μm when aiming for a composite effect, and 5 to 30 μm for improving wear resistance.
degree is desirable. Of course, it is also possible to disperse particles having multiple types and particle size distributions. Dispersion amount is 0.5
If the amount is less than 1% by volume, the effect of adding particles cannot be obtained, and 1
Since machinability and toughness will be poor if the content exceeds 0% by volume, the addition range is set to 0.5 to 10% by volume.

【0030】分散粒子の添加手段としては、混合法が経
済性に優れ容易であり、物理的特性値の改善には効果が
ある。しかし、単純な混合粉末の場合には分散粒子が旧
粉末粒界にのみ存在するため、分散強化が十分はかりに
くく、微細な粒子を分散する場合には粉末粒子間の焼結
結合を阻害するのでふさわしくない面がある。この解決
には粉末粒子内に分散粒子を分散させることが有効であ
り、その方法としては、粉末製造時において分散粒子を
含有させた溶湯を粉末化する方法と分散粒子を添加した
混合粉末を機械的粉砕再凝集処理する方法とがある。
As a means for adding dispersed particles, a mixing method is economical and easy, and is effective in improving physical property values. However, in the case of a simple mixed powder, the dispersed particles exist only at the grain boundaries of the old powder, so it is difficult to achieve sufficient dispersion strengthening, and when fine particles are dispersed, the sintering bond between the powder particles is inhibited. There are some aspects that are not appropriate. An effective way to solve this problem is to disperse dispersed particles within the powder particles.There are two methods for this: pulverizing molten metal containing dispersed particles during powder manufacturing, and machine-processing a mixed powder to which dispersed particles have been added. There is a method of pulverizing and re-agglomerating.

【0031】前者の方法では、粒子の偏析や凝集を防ぐ
ため溶解鋳造法により予め製造した分散粒子を均一に含
有するインゴットを溶解したり、溶湯中に分散粒子を添
加して撹拌能力の高い誘導溶解したりする必要があるが
、機械的粉砕再凝集処理と比較して優れた経済性を有し
ている。
In the former method, in order to prevent segregation and agglomeration of particles, an ingot uniformly containing dispersed particles prepared in advance by melting and casting is melted, or dispersed particles are added to the molten metal to induce high stirring ability. Although it requires melting, it has superior economic efficiency compared to mechanical crushing and reagglomeration treatment.

【0032】一方、機械的粉砕再凝集処理によって該ア
ルミニウム合金粉末粒子中に添加粒子を微細均一に一体
化すると、分散強化に寄与するような粒子径をもつ分散
粒子を微細化し均一かつ高密度に分散させた焼結体が得
られ大きな機械的特性値の改善がはかれる。炭化物、酸
化物あるいは金属間化合物は機械的粉砕再凝集処理によ
り生成分散させることも可能である。この機械的粉砕再
凝集処理方法は、従来のボールミル粉砕や混合のような
湿式法ではなく乾式で行なう。場合によってPCA(P
rocess Control Agent)としてス
テアリン酸やアルコールなどを少量添加することで過度
の凝集を防ぐことも有用であるが、処理温度条件などを
制御すれば必ずしも必要ではない。また、処理装置はい
わゆるアトライターが高速処理には適しているが大量処
理には適していない。ボールミルは長時間処理が必要で
あるが雰囲気制御が容易であり投入エネルギーの設計さ
え適切に行なえば比較的経済性に優れている。
On the other hand, when the additive particles are finely and uniformly integrated into the aluminum alloy powder particles by mechanical crushing and reagglomeration treatment, the dispersed particles having a particle size that contributes to dispersion strengthening are made fine and uniform and dense. A dispersed sintered body is obtained and the mechanical properties are greatly improved. Carbides, oxides, or intermetallic compounds can also be produced and dispersed by mechanical crushing and reagglomeration. This mechanical crushing and reagglomeration treatment method is carried out in a dry manner rather than in a conventional wet manner such as ball milling or mixing. In some cases, PCA (P
It is also useful to prevent excessive aggregation by adding a small amount of stearic acid, alcohol, etc. as a process control agent, but this is not always necessary if the processing temperature conditions are controlled. Further, as for the processing device, a so-called attritor is suitable for high-speed processing, but is not suitable for large-volume processing. Ball mills require long processing times, but the atmosphere can be easily controlled, and if the input energy is properly designed, it is relatively economical.

【0033】このようにして得られた処理粉末は含有さ
れていた分散粒子が微粉砕され粉末中に均一に分散して
おり、該粉末を焼結しても極微細は強化粒子を均一に偏
析なく分布したアルミニウム基粒子複合焼結合金を製造
することが可能となる。
In the thus obtained treated powder, the contained dispersed particles are finely pulverized and uniformly dispersed in the powder, and even when the powder is sintered, the extremely fine reinforcing particles are segregated uniformly. It becomes possible to produce an aluminum base particle composite sintered alloy with evenly distributed aluminum base particles.

【0034】[0034]

【実施例】以下、この発明の実施例を添付図面に基づい
て説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below with reference to the accompanying drawings.

【0035】実施例1 Al−24.5重量%Si−2.4 重量%Cu−1.
0 重量%Mg−0.5 重量%Mn−0.4 重量%
Fe合金溶湯からエアアトマイズ法により粒径が5 〜
300 μmの粉末を製造した。この粉末により粒径が
約300 μm、約100 μm及び約30μmの粉末
を取出した。粒径300 μmの粉末は再溶解し凝固速
度を変えて冷却させた。凝固速度は同一の方法で作製し
たAl−3.4 重量%Cu−1.2 重量%Mg−0
.6 重量%Mn合金粉末のDAS(Dendrite
 Arm Spacing) から測定した。各凝固速
度を持つ粉末を示差熱分析して生成された合金の融点以
下で液相発生状況を調べた。昇温速度は20℃/分とし
た。
Example 1 Al-24.5% by weight Si-2.4% by weight Cu-1.
0 wt%Mg-0.5 wt%Mn-0.4 wt%
The particle size is 5 ~ by air atomization method from Fe alloy molten metal.
A 300 μm powder was produced. From this powder, powders having particle sizes of about 300 μm, about 100 μm, and about 30 μm were taken out. The powder with a particle size of 300 μm was remelted and cooled by changing the solidification rate. The solidification rate was as follows: Al-3.4 wt% Cu-1.2 wt% Mg-0 prepared by the same method
.. 6 wt% Mn alloy powder DAS (Dendrite)
Arm Spacing). The state of liquid phase generation below the melting point of the produced alloy was investigated by differential thermal analysis of powders with various solidification rates. The temperature increase rate was 20°C/min.

【0036】表1に各粉末の推定凝固速度と液相発生状
況をまとめた。表1から判るように凝固速度が102 
℃/sec以上であると合金融点下で液相が生じる。表
1中の液相発生状況におけるA(約520 ℃),B(
約550 ℃),C(約580 ℃)を図1にそれぞれ
示す。但し、各相変化開始の温度を図1の微分変異点よ
り求めると若干低温側となる。
Table 1 summarizes the estimated solidification rate and liquid phase generation status of each powder. As can be seen from Table 1, the solidification rate is 102
C/sec or more, a liquid phase is generated below the merging point. A (approximately 520 °C) and B (in the liquid phase generation situation in Table 1)
(approximately 550°C) and C (approximately 580°C) are shown in Figure 1, respectively. However, if the temperature at which each phase change starts is determined from the differential variation point in FIG. 1, it will be slightly on the lower temperature side.

【0037】[0037]

【表1】[Table 1]

【0038】実施例2 Al−25.2重量%Si−3.3 重量%Cu−0.
6 重量%Mg−0.4 重量%Mn−0.8 重量%
Fe合金溶湯からエアアトマイズ法により粒径が5 〜
300 μmの粉末を製造した。この粉末にステアリン
酸を0.4 重量%添加して面圧4 〜6t/cm2で
φ22mm×30mmのタブレットに成形し密度比が7
5±2 %の成形体を作製し、真空中、N2 ガス中お
よび大気中で焼結した。N2 ガスの露点を−35 ℃
、−15 ℃、+5℃の3条件とした。炉内温度を50
0 ℃、530 ℃、560℃、590 ℃にした後に
成形体を炉入し、炉内での加熱時間は30分とした。表
2に焼結体の密度比を示す。表2の記号*で示す条件で
は93%以上の焼結体が得られた。また、記号※で示す
条件では、溶融したため汗かき現象が発生した。
Example 2 Al-25.2% by weight Si-3.3% by weight Cu-0.
6 wt%Mg-0.4 wt%Mn-0.8 wt%
The particle size is 5 ~ by air atomization method from Fe alloy molten metal.
A 300 μm powder was produced. 0.4% by weight of stearic acid was added to this powder, and it was molded into a φ22mm x 30mm tablet at a surface pressure of 4 to 6t/cm2 until the density ratio was 7.
A 5±2% compact was prepared and sintered in vacuum, N2 gas, and air. The dew point of N2 gas is -35℃
, -15°C, and +5°C. The temperature inside the furnace is 50
The molded body was placed in a furnace after being heated to 0°C, 530°C, 560°C, and 590°C, and the heating time in the furnace was 30 minutes. Table 2 shows the density ratio of the sintered bodies. Under the conditions indicated by the symbol * in Table 2, a sintered body of 93% or more was obtained. In addition, under the conditions indicated by the symbol *, a sweating phenomenon occurred due to melting.

【0039】[0039]

【表2】[Table 2]

【0040】この実施例2において、各焼結体とも真円
度は30μm程度であり、サイジングを実施したところ
真円度は8μmまで向上した。600 ℃での焼結体は
粉末粒内で完全に溶融したため焼結体表層にAl液相が
流出していた。図2(a)は大気中での575 ℃焼結
体組織の顕微鏡写真(100 倍拡大)を示し、図2(
b),(c),(d)はN2 ガス中(露点−15 ℃
)での500 ℃焼結体、575 ℃焼結体および60
0 ℃の焼結体の組織の顕微鏡写真(100 倍拡大)
をそれぞれ示す。
In this Example 2, the roundness of each sintered body was about 30 μm, and when sizing was carried out, the roundness improved to 8 μm. The sintered body at 600°C was completely melted within the powder grains, so that the Al liquid phase flowed out onto the surface layer of the sintered body. Figure 2(a) shows a micrograph (100x magnification) of the structure of the sintered body at 575°C in the atmosphere.
b), (c), and (d) in N2 gas (dew point -15 °C)
) 500 °C sintered body, 575 °C sintered body and 60 °C sintered body
Micrograph of the structure of the sintered body at 0°C (100x magnification)
are shown respectively.

【0041】実施例3 実施例2記載の粉末を用いてステアリン酸のアセトン溶
液を金型に塗布した後、面圧5t/cm2でφ800m
m ×50mmのタブレットを成形して密度比が80%
の成形体を作製した。成形体を露点−20 ℃のN2 
ガス中で焼結温度を550 ℃とし焼結時間60分で焼
結した結果、密度比は97%の焼結体が得られた。この
焼結体を510 ℃で溶体化処理したのちに水冷し、1
75 ℃で8時間の時効処理を施した。この熱処理体の
引張強度を測定し、リング−プレート摺動型焼き付き性
評価試験機で油中にて耐焼き付き性を評価した。比較材
とし同粉末を480 ℃で押出及び鍛造により焼結した
材料の熱処理材と同一組成の鋳造材の熱処理材の3種類
を用意した。
Example 3 After applying an acetone solution of stearic acid to a mold using the powder described in Example 2, it was molded to a diameter of 800 m with a surface pressure of 5 t/cm2.
m x 50mm tablets with a density ratio of 80%
A molded body was produced. The molded body was exposed to N2 at a dew point of -20°C.
As a result of sintering in gas at a sintering temperature of 550° C. for a sintering time of 60 minutes, a sintered body with a density ratio of 97% was obtained. This sintered body was solution-treated at 510 °C, then water-cooled, and
Aging treatment was performed at 75°C for 8 hours. The tensile strength of this heat-treated body was measured, and the seizure resistance was evaluated in oil using a ring-plate sliding type seizure evaluation tester. Three types of comparison materials were prepared: a heat-treated material made by extruding the same powder and sintering it by forging at 480° C., and a heat-treated material made from a cast material having the same composition.

【0042】表3に評価結果を示したが、引張強度は押
出材や鍛造材には及ばないものの同材質同士の焼き付き
荷重は極めて高い結果を得た。図3(a),(b),(
c),(d)はこの実施例3での焼結材、押出材、鍛造
材、鍛造材の組織結果を示す顕微鏡写真(100 倍拡
大)である。
The evaluation results are shown in Table 3, and although the tensile strength was not as high as that of extruded materials or forged materials, the seizure load between the same materials was extremely high. Figure 3(a),(b),(
c) and (d) are micrographs (100 times enlarged) showing the structure results of the sintered material, extruded material, forged material, and forged material in Example 3.

【0043】[0043]

【表3】[Table 3]

【0044】実施例4 表4に示す粉末(最大粒径:75μm)を用いて面圧4
t/cm2でφ22mm×30mmのタブレットを成形
し密度比が77%の成形体を作製した。成形体を露点−
20 ℃のN2ガス中で焼結温度はSi晶を粗大化させ
るために融点近くの560 ℃、焼結時間90分で焼結
し98%以上の密度比の焼結体を製造し、組織観察した
結果を図4(a)〜(d)に示した。図4(a)は表4
のNo. 1,図3(b)は表1のNo. 2,図3(
c)はNo. 3,図3(d)はNo. 4のそれぞれ
の組織観察の結果を示す顕微鏡写真(100 倍拡大)
 である。なお、表4中には実施例1で測定した各粉末
の示差熱分析によるA、B、C点の温度も記した。また
、焼結体の酸素量は0.3 重量%であった。焼結体の
引張強度は28〜36kg/mm2であり、No. 4
が最も低強度であった。
Example 4 Using the powder shown in Table 4 (maximum particle size: 75 μm), a surface pressure of 4
A tablet with a diameter of 22 mm x 30 mm was molded at t/cm2 to produce a molded product with a density ratio of 77%. The dew point of the molded body is -
The sintering temperature was 560 °C, near the melting point, in order to coarsen the Si crystals in N2 gas at 20 °C, and the sintering time was 90 minutes to produce a sintered body with a density ratio of 98% or more, and the structure was observed. The results are shown in FIGS. 4(a) to 4(d). Figure 4(a) is Table 4
No. 1, Figure 3(b) is No. 1 in Table 1. 2, Figure 3 (
c) is No. 3, Figure 3(d) is No. Micrographs (100x magnification) showing the results of each tissue observation in 4.
It is. In addition, Table 4 also lists the temperatures at points A, B, and C based on the differential thermal analysis of each powder measured in Example 1. Further, the amount of oxygen in the sintered body was 0.3% by weight. The tensile strength of the sintered body is 28 to 36 kg/mm2, and No. 4
had the lowest intensity.

【0045】[0045]

【表4】[Table 4]

【0046】実施例5 表5に示す粉末(最大粒径:350 μm)をN2 雰
囲気中で330 ℃にて焼鈍処理を施した後、ステアリ
ン酸のアセトン溶液を金型に塗布し、面圧8t/cm2
でφ22mm×30mmのタブレットを成形し、密度比
が91%の成形体を作製した。成形体を露点−20 ℃
のN2 ガス中で焼結温度を560 ℃とし、焼結時間
40分で焼結し、95〜97%の密度比の焼結体を製造
して、組織観察した結果を図5(a)〜(c)に示した
。図5(a)は表5のNo. 1、図4(b)はNo.
 2、図4(c)はNo. 3のそれぞれの組織観察の
結果を示す顕微鏡写真(100 倍拡大)である。遷移
元素の添加によりSi晶が微細化している。No. 1
について強度を評価したところ引張強度40kg/mm
2が得られた。
Example 5 After annealing the powder shown in Table 5 (maximum particle size: 350 μm) at 330°C in an N2 atmosphere, an acetone solution of stearic acid was applied to a mold, and a surface pressure of 8t was applied. /cm2
A tablet with a diameter of 22 mm x 30 mm was molded to produce a molded product having a density ratio of 91%. The molded body is heated to a dew point of -20°C.
The sintering temperature was set to 560 °C in N2 gas, and the sintering time was 40 minutes to produce a sintered body with a density ratio of 95 to 97%. The results of microstructural observation are shown in Figures 5(a) to 5(a). Shown in (c). FIG. 5(a) shows No. 5 in Table 5. 1, FIG. 4(b) is No.
2. Figure 4(c) is No. 3 is a micrograph (100 times magnification) showing the results of tissue observation for each of No. 3. The Si crystal becomes finer due to the addition of the transition element. No. 1
When the strength was evaluated, the tensile strength was 40 kg/mm.
2 was obtained.

【0047】[0047]

【表5】[Table 5]

【0048】実施例6 Al−17.2重量%Si−3.2 重量%Cu−1.
0 重量%Mg−0.5 重量%Mn−0.4 重量%
Fe合金溶湯中に、平均粒径が1.8 μmのAl2 
O3 粒子を4.0 体積%及び平均粒径が0.2 μ
mのSiC粒子を0.9 体積%添加した後に、Arガ
スアトマイズ法により粒径が5 〜300 μmの粉末
を製造した。この粉末にステアリン酸を0.4 重量%
添加して面圧4 t/cm2 でφ22mm×30mm
のタブレットに成形し、密度比が73%の成形体を作製
した。成形体は露点−35 ℃のN2 ガス中で焼結し
た。焼結温度は555 ℃で焼結時間は60分とした。 得られた焼結体の密度比は95%であった。図6に焼結
体組織の顕微鏡写真(100 倍拡大)を示した。実施
例3に記した熱処理後の引張強度は43kg/mm2で
あり、酸素量は0.23重量%であった。
Example 6 Al-17.2% by weight Si-3.2% by weight Cu-1.
0 wt%Mg-0.5 wt%Mn-0.4 wt%
Al2 with an average particle size of 1.8 μm is contained in the Fe alloy molten metal.
The O3 particles were 4.0% by volume and the average particle size was 0.2μ.
After adding 0.9% by volume of SiC particles of 500 µm, a powder having a particle size of 5 to 300 µm was produced by Ar gas atomization. Add 0.4% by weight of stearic acid to this powder.
φ22mm x 30mm with a surface pressure of 4t/cm2
A molded product with a density ratio of 73% was produced. The compacts were sintered in N2 gas with a dew point of -35°C. The sintering temperature was 555°C and the sintering time was 60 minutes. The density ratio of the obtained sintered body was 95%. FIG. 6 shows a micrograph (100 times enlarged) of the structure of the sintered body. The tensile strength after the heat treatment described in Example 3 was 43 kg/mm2, and the oxygen content was 0.23% by weight.

【0049】実施例7 Al−12.3重量%Si−5.6 重量%Cu−0.
4 重量%Mg−0.8 重量%Mn−4.7 重量%
Fe合金溶湯からエアアトマイズ法により背蔵した粉末
の150 μm以下の粉末に平均粒径0.1 μmのB
4 C粒子を2.1 体積%を混合したのちに高エネル
ギーボールミルを用いて機械的粉砕再凝集処理を行なっ
た。この粉末を350 ℃で焼鈍処理を施した後に面圧
4t/cm2で冷間静水圧成形機を用いてφ30×50
mmの密度比81%のタブレットに成形した。成形体は
露点−35 ℃のN2 ガス中で焼結した。焼結温度は
535 ℃で焼結時間は60分とし、焼結体の密度比は
91%であった。 焼結体はコイニング加工を施し真円度を10μmのタブ
レットとした。図7に焼結体の組織の顕微鏡写真(10
0 倍拡大)を示した。実施例3に記した熱処理後の引
張強度は41kg/mm2であり、酸素量は1.2 重
量%であった。
Example 7 Al-12.3% by weight Si-5.6% by weight Cu-0.
4 Weight%Mg-0.8 Weight%Mn-4.7 Weight%
B with an average particle size of 0.1 μm is added to the powder of 150 μm or less, which is stored by air atomization from molten Fe alloy.
After 2.1% by volume of 4C particles were mixed, mechanical crushing and reagglomeration treatment was performed using a high-energy ball mill. After annealing this powder at 350°C, it was molded into φ30×50 pieces using a cold isostatic press at a surface pressure of 4t/cm2.
It was molded into a tablet with a density ratio of 81%. The compacts were sintered in N2 gas with a dew point of -35°C. The sintering temperature was 535°C, the sintering time was 60 minutes, and the density ratio of the sintered body was 91%. The sintered body was coined into a tablet with a roundness of 10 μm. Figure 7 shows a micrograph of the structure of the sintered body (10
(0x magnification). The tensile strength after the heat treatment described in Example 3 was 41 kg/mm2, and the oxygen content was 1.2% by weight.

【0050】[0050]

【発明の効果】以上説明したように、この発明によれば
、高精度・高密度で機械的特性や物理的特性に優れ、か
つ耐摩耗性に優れたアルミニウム焼結合金を、塑性加工
によらず、常圧焼結により製造することができるので、
各種機械部品や摺動部品への広範な適用が可能となる。
[Effects of the Invention] As explained above, according to the present invention, an aluminum sintered alloy with high precision, high density, excellent mechanical properties and physical properties, and excellent wear resistance can be produced by plastic working. First, it can be manufactured by pressureless sintering.
It can be widely applied to various mechanical parts and sliding parts.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】表1の温度条件A,B,Cにおける液相発生状
況を示すグラフ。
FIG. 1 is a graph showing the state of liquid phase generation under temperature conditions A, B, and C in Table 1.

【図2】実施例2の焼結体の顕微鏡組織写真。FIG. 2 is a photograph of the microscopic structure of the sintered body of Example 2.

【図3】実施例3の焼結体の顕微鏡組織写真。FIG. 3 is a photograph of the microscopic structure of the sintered body of Example 3.

【図4】実施例4の焼結体の顕微鏡組織写真。FIG. 4 is a photograph of the microscopic structure of the sintered body of Example 4.

【図5】実施例5の焼結体の顕微鏡組織写真。FIG. 5 is a photograph of the microscopic structure of the sintered body of Example 5.

【図6】実施例6の焼結体の顕微鏡組織写真。FIG. 6 is a photograph of the microscopic structure of the sintered body of Example 6.

【図7】実施例7の焼結体の顕微鏡組織写真。FIG. 7 is a photograph of the microscopic structure of the sintered body of Example 7.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  Siを6.0 〜40.0重量%、C
uを2.0 〜8.0 重量%、Mgを0.2 〜2.
0 重量%同時に含有し、さらに必要に応じてFe、N
i、Mn、Ti、Cr、V、Mo、Zr、Znの内選ば
れた1種類以上の成分を8重量%以下含有し、残りが実
質的にアルミニウムからなる組成を有する溶湯を凝固速
度が102 ℃/sec以上で粉末化した急冷凝固アル
ミニウム合金粉末を必要に応じて250 〜450℃の
温度域で焼鈍した後に、冷間で密度比70%以上に圧縮
成形し、この成形体を露点が−10 ℃以下である非酸
化性雰囲気中において500 〜580 ℃の温度域で
Al−Si系共晶温度以下、Al−Si−Cu−Mg系
液相出現温度以上、焼結体密度比90%以上に常圧焼結
することを特徴とする引張強度が25kg/mm2以上
であるアルミニウム焼結合金の製造方法。
Claim 1: 6.0 to 40.0% by weight of Si, C
u from 2.0 to 8.0% by weight, Mg from 0.2 to 2.0% by weight.
0% by weight, and further contains Fe, N as necessary.
A molten metal containing 8 wt. Rapidly solidified aluminum alloy powder powdered at a temperature of ℃/sec or more is annealed at a temperature range of 250 to 450℃ as necessary, and then cold compression molded to a density ratio of 70% or more. In a non-oxidizing atmosphere of 10°C or less, in the temperature range of 500 to 580°C, below the Al-Si eutectic temperature, above the Al-Si-Cu-Mg liquid phase appearance temperature, and sintered body density ratio of 90% or more A method for producing an aluminum sintered alloy having a tensile strength of 25 kg/mm2 or more, the method comprising pressureless sintering.
【請求項2】  請求項1記載の急冷凝固アルミニウム
合金粉末が、Siを6.0 〜40.0重量%、Cuを
2.0 〜8.0 重量%、Mgを0.2 〜2.0 
重量%同時に含有し、さらに必要に応じてFe、Ni、
Mn、Ti、Cr、V、Mo、Zr、Znの内選ばれた
1種類以上の成分を8重量%以下含有し、残りが実質的
にアルミニウムからなる組成を有し、かつ金属間化合物
、炭化物、酸化物、窒化物、ほう化物、硅化物から選ば
れた少なくとも1種以上の粒子を0.5 〜10体積%
添加した溶湯を凝固速度が102 ℃/sec以上で粉
末化した急冷凝固アルミニウム合金粉末であることを特
徴とする引張強度が25kg/mm2以上であるアルミ
ニウム焼結合金の製造方法。
2. The rapidly solidified aluminum alloy powder according to claim 1 contains 6.0 to 40.0% by weight of Si, 2.0 to 8.0% by weight of Cu, and 0.2 to 2.0% of Mg.
% by weight, and further contains Fe, Ni,
Contains 8% by weight or less of one or more components selected from Mn, Ti, Cr, V, Mo, Zr, and Zn, with the remainder consisting essentially of aluminum, and contains intermetallic compounds and carbides. , 0.5 to 10% by volume of at least one particle selected from oxides, nitrides, borides, and silicides.
A method for producing an aluminum sintered alloy having a tensile strength of 25 kg/mm2 or more, characterized in that the added molten metal is pulverized at a solidification rate of 102 °C/sec or more to produce rapidly solidified aluminum alloy powder.
【請求項3】  請求項1記載の製造方法において、急
冷凝固粉末製造から圧縮成形の工程間に、急冷凝固アル
ミニウム合金粉末と金属間化合物、炭化物、酸化物、窒
化物、ほう化物、硅化物から選ばれた少なくとも1種以
上の粒子を0.5〜10体積%混合し、必要に応じて機
械的粉砕再凝集処理によって該アルミニウム合金粉末粒
子中に微細均一に一体化する工程を設けることを特徴と
する引張強度が25kg/mm2以上であるアルミニウ
ム焼結合金の製造方法。
3. In the manufacturing method according to claim 1, between the steps of rapidly solidifying powder production and compression molding, rapidly solidifying aluminum alloy powder and intermetallic compounds, carbides, oxides, nitrides, borides, and silicides are added. It is characterized by providing a step of mixing 0.5 to 10% by volume of at least one selected type of particles and finely and uniformly integrating them into the aluminum alloy powder particles by mechanical crushing and re-agglomeration treatment if necessary. A method for producing an aluminum sintered alloy having a tensile strength of 25 kg/mm2 or more.
JP03124846A 1991-04-25 1991-04-25 Manufacturing method of aluminum sintered alloy Expired - Fee Related JP3095026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03124846A JP3095026B2 (en) 1991-04-25 1991-04-25 Manufacturing method of aluminum sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03124846A JP3095026B2 (en) 1991-04-25 1991-04-25 Manufacturing method of aluminum sintered alloy

Publications (2)

Publication Number Publication Date
JPH04325648A true JPH04325648A (en) 1992-11-16
JP3095026B2 JP3095026B2 (en) 2000-10-03

Family

ID=14895548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03124846A Expired - Fee Related JP3095026B2 (en) 1991-04-25 1991-04-25 Manufacturing method of aluminum sintered alloy

Country Status (1)

Country Link
JP (1) JP3095026B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6418901B2 (en) 2000-02-12 2002-07-16 Bayerische Motoren Werke Aktiengesellschaft Method of producing a metal component interacting by way of a sliding surface with a friction partner for a drive assembly
JP2009242883A (en) * 2008-03-31 2009-10-22 Sumitomo Electric Sintered Alloy Ltd Liquid phase sintered aluminum alloy
CN111842913A (en) * 2020-06-30 2020-10-30 同济大学 Aluminum-zinc alloy powder for 3D printing and preparation method thereof
DE102019003187A1 (en) * 2019-05-06 2020-11-12 Daimler Ag Component, in particular for a vehicle, and a method for producing such a component
CN114086038A (en) * 2021-11-24 2022-02-25 齐鲁工业大学 Transition metal element added Al-Si-Cu-Mg series casting alloy material and treatment process thereof
WO2022073300A1 (en) * 2020-10-09 2022-04-14 东莞理工学院 High-strength high-wear-resistance al-si alloy and preparation method therefor and application thereof
CN114855035A (en) * 2022-05-26 2022-08-05 扬州工业职业技术学院 Heat-resistant high-strength automobile hub aluminum alloy material
CN115044372A (en) * 2022-06-27 2022-09-13 散裂中子源科学中心 Luminescent material for particle beam excitation and preparation method thereof
CN116083746A (en) * 2023-01-16 2023-05-09 上海交通大学 Preparation method of intra-crystal aluminum-oxygen-carbon dispersion strengthening carbon nano tube/aluminum-based composite material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101559442B1 (en) * 2014-03-17 2015-10-13 대한소결금속 주식회사 Outside densification method for aluminum alloy sintered parts

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6418901B2 (en) 2000-02-12 2002-07-16 Bayerische Motoren Werke Aktiengesellschaft Method of producing a metal component interacting by way of a sliding surface with a friction partner for a drive assembly
JP2009242883A (en) * 2008-03-31 2009-10-22 Sumitomo Electric Sintered Alloy Ltd Liquid phase sintered aluminum alloy
DE102019003187A1 (en) * 2019-05-06 2020-11-12 Daimler Ag Component, in particular for a vehicle, and a method for producing such a component
WO2020224894A1 (en) 2019-05-06 2020-11-12 Daimler Ag Component, in particular for a vehicle, and method for producing such a component
EP3966358B1 (en) * 2019-05-06 2023-08-02 Mercedes-Benz Group AG Component, in particular for a vehicle, and method for producing such a component
CN111842913A (en) * 2020-06-30 2020-10-30 同济大学 Aluminum-zinc alloy powder for 3D printing and preparation method thereof
WO2022073300A1 (en) * 2020-10-09 2022-04-14 东莞理工学院 High-strength high-wear-resistance al-si alloy and preparation method therefor and application thereof
CN114086038A (en) * 2021-11-24 2022-02-25 齐鲁工业大学 Transition metal element added Al-Si-Cu-Mg series casting alloy material and treatment process thereof
CN114855035A (en) * 2022-05-26 2022-08-05 扬州工业职业技术学院 Heat-resistant high-strength automobile hub aluminum alloy material
CN115044372A (en) * 2022-06-27 2022-09-13 散裂中子源科学中心 Luminescent material for particle beam excitation and preparation method thereof
CN116083746A (en) * 2023-01-16 2023-05-09 上海交通大学 Preparation method of intra-crystal aluminum-oxygen-carbon dispersion strengthening carbon nano tube/aluminum-based composite material
CN116083746B (en) * 2023-01-16 2024-05-28 上海交通大学 Preparation method of intra-crystal aluminum-oxygen-carbon dispersion strengthening carbon nano tube/aluminum-based composite material

Also Published As

Publication number Publication date
JP3095026B2 (en) 2000-10-03

Similar Documents

Publication Publication Date Title
US5372775A (en) Method of preparing particle composite alloy having an aluminum matrix
US4702885A (en) Aluminum alloy and method for producing the same
Liu et al. Design of powder metallurgy titanium alloys and composites
EP0669404B1 (en) Wear-resistant sintered aluminum alloy and method for producing the same
JP2761085B2 (en) Raw material powder for Al-Si based alloy powder sintered parts and method for producing sintered parts
US5460775A (en) Nitrogen-combined aluminum sintered alloys and method of producing the same
US6468468B1 (en) Method for preparation of sintered parts from an aluminum sinter mixture
JP5759426B2 (en) Titanium alloy and manufacturing method thereof
JP3095026B2 (en) Manufacturing method of aluminum sintered alloy
JP2546660B2 (en) Method for producing ceramics dispersion strengthened aluminum alloy
JPH0120215B2 (en)
JP3940022B2 (en) Method for producing sintered aluminum alloy
JPS5937339B2 (en) Method for manufacturing high silicon aluminum alloy sintered body
JP2509052B2 (en) Nitrogen compound aluminum sintered alloy and method for producing the same
JP4008597B2 (en) Aluminum-based composite material and manufacturing method thereof
JPH0625386B2 (en) Method for producing aluminum alloy powder and sintered body thereof
JPH0578708A (en) Production of aluminum-based grain composite alloy
JPH029099B2 (en)
JPH06330214A (en) Aluminum power alloy having high hardness and wear resistnce and its production
US11085109B2 (en) Method of manufacturing a crystalline aluminum-iron-silicon alloy
US20030145685A1 (en) Process for producing titanium carbide, titanium nitride, or tungsten carbide hardened materials
JP4704720B2 (en) Heat-resistant Al-based alloy with excellent high-temperature fatigue properties
JPH06271901A (en) Ti-al intermetallic compound powder having excellent sinterability and sintered compact thereof
JP2798709B2 (en) Manufacturing method of aluminum alloy powder sintered parts
JP2584488B2 (en) Processing method of wear resistant aluminum alloy

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees