JP3095026B2 - Manufacturing method of aluminum sintered alloy - Google Patents

Manufacturing method of aluminum sintered alloy

Info

Publication number
JP3095026B2
JP3095026B2 JP03124846A JP12484691A JP3095026B2 JP 3095026 B2 JP3095026 B2 JP 3095026B2 JP 03124846 A JP03124846 A JP 03124846A JP 12484691 A JP12484691 A JP 12484691A JP 3095026 B2 JP3095026 B2 JP 3095026B2
Authority
JP
Japan
Prior art keywords
weight
powder
aluminum
sintered
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03124846A
Other languages
Japanese (ja)
Other versions
JPH04325648A (en
Inventor
林  哲也
義信 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP03124846A priority Critical patent/JP3095026B2/en
Publication of JPH04325648A publication Critical patent/JPH04325648A/en
Application granted granted Critical
Publication of JP3095026B2 publication Critical patent/JP3095026B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、常圧焼結によりアルミ
ニウム焼結合金を製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a sintered aluminum alloy by normal pressure sintering.

【0002】[0002]

【従来の技術】アルミニウム粉末あるいはアルミニウム
合金粉末の表面には還元が不可能な強固な酸化膜が存在
しているため、アルミニウム焼結合金の製造するには、
この酸化膜を破り粉末同士の金属接触部を形成させて金
属原子の拡散を可能とさせる必要がある。
2. Description of the Related Art Since a strong oxide film that cannot be reduced exists on the surface of aluminum powder or aluminum alloy powder, it is necessary to manufacture an aluminum sintered alloy.
It is necessary to break the oxide film to form a metal contact portion between the powders to allow diffusion of metal atoms.

【0003】従来、この方法は大きく次の2つの方法が
あった。
Conventionally, this method has been roughly divided into the following two methods.

【0004】先ず、第1の方法としては、アルミニウム
あるいは所要のアルミニウム合金組成の融点より低温側
で共晶液相を発生する合金成分を有する粉末を焼結助剤
として混合し、圧縮成形時に生成された粉末同士の金属
接触部から発生した液相が昇温過程中に発生し、アルミ
ニウム粉末表面を覆い、金属接触部の拡大を図り焼結を
進行させる方法である。例えば特開昭47−34006
号には、アルミニウム粉にCuまたはCu−Sn粉末を
混合した粉末成形体を無酸化あるいは還元性雰囲気で焼
結することを特徴とする焼結合金の製造方法が開示され
ている。また、特公昭51−13444号には、焼結助
剤としてマグネシウム、亜鉛等の粉末を添加配合する方
法が開示され、さらに、特開昭50−96409号には
焼結助剤として、Mg粉末あるいはCu−Mg母合金粉
末を焼結助剤として添加する方法が開示されている。同
様に特公昭61−17895号、特公昭61−5485
5号、特公昭61−6243号および特公昭62−66
26号には、Cu、Mg、Si、Zn等の元素粉末ある
いは合金粉末として混合する方法が開示されている。
First, as a first method, aluminum or a powder having an alloy component that generates a eutectic liquid phase at a temperature lower than the melting point of the required aluminum alloy composition is mixed as a sintering aid and formed during compression molding. In this method, a liquid phase generated from a metal contact portion between the powders is generated during a temperature rising process, covers the aluminum powder surface, enlarges the metal contact portion, and proceeds with sintering. For example, JP-A-47-34006
Discloses a method for producing a sintered alloy, which comprises sintering a powder compact obtained by mixing Cu or Cu-Sn powder with aluminum powder in a non-oxidizing or reducing atmosphere. Japanese Patent Publication No. 51-13444 discloses a method of adding and compounding a powder of magnesium, zinc or the like as a sintering aid, and Japanese Patent Application Laid-Open No. 50-96409 discloses a method of adding Mg powder as a sintering aid. Alternatively, a method of adding a Cu—Mg master alloy powder as a sintering aid is disclosed. Similarly, JP-B-61-17895, JP-B-61-5485
No. 5, JP-B-61-6243 and JP-B-62-66
No. 26 discloses a method of mixing as elemental powders such as Cu, Mg, Si, and Zn or alloy powders.

【0005】また、Siを添加する例として、特公昭5
3−118209号には、共晶組成であるAl−11.7S
i近傍の組成を有したAl- Si二元合金粉末に金属S
i粉末と必要に応じて合金元素粉末を混合してSiを合
計で20〜50%含有した焼結体の製造方法が開示され、さ
らに、特公昭60−38442号には、AlまたはAl
−Si合金粉末にAl−Cu−Mg、Al−Cu−Mg
−Si、Cu−Mg−Si合金粉末を焼結助剤として30
重量%未満の配合率で混合し、圧縮成形後550〜 650℃
の温度範囲で焼結することを特徴とする2.1 %Si以下
の低Si含有低密度焼結体の製造方法が提唱されてい
る。また、特開昭53−128512号には、Al-10
〜35Si粉末にCu、Mg、Si成分を単組成粉末ある
いは合金粉末として添加配合する高Si含有焼結体の製
造方法が示されている。他に、特開平3−28336号
には、強度改善を目的としてCuを2.0 重量%以下及び
Mgを0.5 重量%以下含有したAl−10〜45重量%Si
−Cu−Mg系合金粉末に潤滑剤を添加した混合粉末
を、液相発生温度以下での固相拡散により焼結させた後
に再圧縮し、特にSi量が20重量%の場合は再圧縮後に
再焼結させる高Si焼結体の製造方法が提示されてい
る。Cu及びMg量は焼結性の観点からは低い方が良く
実施例中ではそれぞれ0.5重量%以下である。
As an example of adding Si, Japanese Patent Publication No.
No. 3-118209 discloses a eutectic composition of Al-11.7S.
Al-Si binary alloy powder having a composition near i
Japanese Patent Publication No. 60-38442 discloses a method for producing a sintered body containing a total of 20 to 50% of Si by mixing i powder and alloy element powder as needed.
-Al-Cu-Mg, Al-Cu-Mg to Si alloy powder
-Si, Cu-Mg-Si alloy powder as sintering aid 30
550 ~ 650 ℃ after compression molding
A method for producing a low-density sintered body having a low Si content of 2.1% or less, characterized by sintering in a temperature range of 2.1% or less, has been proposed. JP-A-53-128512 discloses Al-10
A method for producing a high Si-containing sintered body in which Cu, Mg, and Si components are added to and mixed with .about.35Si powder as a single composition powder or an alloy powder. In addition, Japanese Patent Application Laid-Open No. 3-28336 discloses an Al-10 to 45% by weight Si containing 2.0% by weight or less of Cu and 0.5% by weight or less of Mg for the purpose of improving strength.
-The mixed powder obtained by adding a lubricant to the Cu-Mg based alloy powder is sintered again by solid phase diffusion at a temperature not higher than the liquid phase generation temperature and then recompressed. In particular, when the Si content is 20% by weight, after recompression, A method for producing a high Si sintered body to be resintered has been proposed. It is better that the Cu and Mg contents are lower from the viewpoint of sinterability, and in the examples, they are each 0.5% by weight or less.

【0006】次に、第2の方法としては、近年に新しい
粉末冶金技術として開発されてきたアルミニウム合金の
製造法がある。これは粉末同士の結合を図るために粉末
に強力な塑性加工を加えることで粉末を塑性変形させて
粉末表面の酸化膜を分断させて金属接触部を生成させる
方法である。塑性加工方法としては、ホットプレス法、
粉末鍛造法、粉末押出法、粉末圧延法等があり、例えば
特開昭60−121203号には、アルミニウム合金粉
末を温度250 〜550 ℃で押出比4:1〜15:1にて押出
する方法が開示され、特開昭61−136602号に
は、アルミニウム合金粉末を加熱成形後にホットプレス
する方法が開示されている。
Next, as a second method, there is a method of manufacturing an aluminum alloy which has been recently developed as a new powder metallurgy technique. This is a method in which a strong plastic working is applied to the powder in order to bond the powder to each other, whereby the powder is plastically deformed, and an oxide film on the surface of the powder is divided to form a metal contact portion. As the plastic working method, hot press method,
There are a powder forging method, a powder extrusion method, a powder rolling method, and the like. For example, JP-A-60-121203 discloses a method of extruding an aluminum alloy powder at a temperature of 250 to 550 ° C. and an extrusion ratio of 4: 1 to 15: 1. JP-A-61-136602 discloses a method of hot-pressing an aluminum alloy powder after heat molding.

【0007】[0007]

【発明が解決しようとする課題】ところが、アルミニウ
ム焼結合金を製造する上記2つの従来法には次の問題が
あった。
However, the above two conventional methods for producing a sintered aluminum alloy have the following problems.

【0008】先ず、焼結助剤の役割を果たす共晶液相を
発生する合成成分を有する粉末を混合し、圧縮成形後に
焼結させる前記第1の方法では、焼結助剤を混合法で分
散させるため共晶液相の発生個所が偏在し、組成的にも
濃度斑や偏析が生じ易い上、粉末の焼結状態の均質性も
悪く、粗大な気孔や流出孔が残り易いため高精度・高密
度焼結体が得難い。また、金属接触部分を増やし共晶液
相発生個所の頻度を増大させたり、寸法精度等を改善す
るために成形体密度を上げようとした際に、例えば高S
i粉末等の硬い粉末の場合、高圧力が必要となる。ま
た、この方法で得られた焼結体は急冷凝固により生成さ
れた微細析出物が粗大化しており、機械的特性が塑性加
工法による焼結体に比較して大きく劣る。
First, in the first method of mixing a powder having a synthetic component generating a eutectic liquid phase that plays a role of a sintering aid and sintering after compression molding, the sintering aid is mixed by a mixing method. The eutectic liquid phase is unevenly distributed due to dispersion, unevenness and segregation are likely to occur even in composition, and the homogeneity of the sintered state of the powder is poor, and coarse pores and outflow holes are likely to remain, so high precision -It is difficult to obtain a high-density sintered body. In addition, when an attempt is made to increase the frequency of eutectic liquid phase generation places by increasing the metal contact portion or to increase the compact density in order to improve the dimensional accuracy, for example, a high S
In the case of a hard powder such as i-powder, a high pressure is required. In addition, the sintered body obtained by this method has coarse precipitates formed by rapid solidification, and its mechanical properties are significantly inferior to those of a sintered body formed by a plastic working method.

【0009】また、特開平3−28336号に提示され
ている様な固相拡散により焼結させるAl−Si−Cu
−Mg系合金粉末の焼結方法は、粉末同士の結合が弱く
強度が20kg/mm2に達しない低強度材しか得られない。
Further, Al-Si-Cu sintered by solid phase diffusion as disclosed in JP-A-3-28336.
-The sintering method of Mg-based alloy powder can obtain only a low-strength material whose bonding between powders is weak and whose strength does not reach 20 kg / mm 2 .

【0010】一方、前記第2の方法としての塑性加工法
による焼結は、比較的低温度域で処理できるため、急冷
凝固粉末を用いた場合、粉末の持つ急冷の効果をある程
度維持した高密度材料が得られるため特性的には優れる
ものの、設備が高価で製造コストが高い上、形状的制約
があり、従来の粉末冶金法の特徴であるニアネットシェ
イプ材の製造が困難であり材料歩留まりが低い。また、
Al−Si系合金では材料中のSi晶径が小さく、同程
度のSiが含有される鋳造材に比較して耐摩耗性に劣
る。
On the other hand, since the sintering by the plastic working method as the second method can be performed in a relatively low temperature range, when quenched and solidified powder is used, high-density sintering which maintains the quenching effect of the powder to some extent is used. Although the properties are excellent because the material can be obtained, the equipment is expensive, the manufacturing cost is high, and the shape is limited, and it is difficult to manufacture the near net shape material, which is a feature of the conventional powder metallurgy, and the material yield is low. Low. Also,
The Al-Si alloy has a small Si crystal diameter in the material, and is inferior in wear resistance as compared with a cast material containing the same level of Si.

【0011】この発明は、高精度・高密度で機械的特性
や物理的特性に優れ、かつ耐摩耗性に優れ、しかも、従
来の粉末冶金法のメリットであるニアネットシェイプ素
材を得ることができ、適当量の気孔を分布させた焼結体
とすればサイジングやコイニングによる高精度加工が可
能で、形状付与自由度の高い高精度のアルミニウム焼結
合金の製造方法を提供することを目的とする。
According to the present invention, it is possible to obtain a near net shape material which is high in accuracy and density, excellent in mechanical properties and physical properties, and excellent in wear resistance, and which is an advantage of the conventional powder metallurgy method. It is an object of the present invention to provide a method for manufacturing a high-precision aluminum sintered alloy having a high degree of freedom in providing a shape, which can be processed with high precision by sizing or coining if a sintered body having an appropriate amount of pores is distributed. .

【0012】[0012]

【課題を解決するための手段】この発明者らは、鋭意研
究の末、共晶反応により液相を発生させて焼結させる従
来方法の問題は、この共晶液相をAl粉末あるいはAl
合金粉末と焼結助剤の界面において発生させて焼結を行
なうことに起因していることが判った。そこで、全く焼
結助剤を添加混合しないで焼結させる方法を発明するこ
とで焼結助剤添加法による焼結法の問題の解決を図っ
た。つまり、この発明者らは、個々の粉末内に液相を生
成させることで、成形体内に高密度・均質に液相を分布
させるようにした。ここで、粉末内に液相を生成させる
には、まずSi、Cu、Mgを同時に含有する組成の溶
湯を粉末化に際して、急冷凝固させて所要の合金組成を
融点以下で液相が生じるような準安定相を形成させた粉
末を製造する。この合金はSi、Cu、Mgを含有させ
ることで熱処理による強度改善も図れる合金ともなる。
SUMMARY OF THE INVENTION The inventors of the present invention have conducted intensive studies and, as a result, have found that the conventional method of generating a liquid phase by eutectic reaction and sintering the eutectic liquid phase is an Al powder or an Al powder.
It was found that the sintering was caused at the interface between the alloy powder and the sintering aid. In view of the above, the problem of the sintering method using the sintering additive addition method was solved by inventing a method of sintering without adding and mixing a sintering aid at all. In other words, the present inventors created a liquid phase in each of the powders, thereby distributing the liquid phase in the molded body with high density and uniformity. Here, in order to form a liquid phase in the powder, first, when pulverizing a molten metal having a composition containing Si, Cu, and Mg at the same time, the liquid phase is rapidly solidified to form a liquid phase below the melting point of the required alloy composition. A powder with a metastable phase formed is produced. This alloy can be an alloy whose strength can be improved by heat treatment by containing Si, Cu, and Mg.

【0013】さらに引き続く研究により、上記粉末の加
熱工程中に発生した液相は、粉末表面の酸化膜を分断さ
せ金属接触部の拡大を図り焼結が進行するため、成形体
内の相状態が均質となり、低密度成形体であっても短時
間に均等に収縮し、組成斑や偏析がきわめて小さい高精
度・高密度焼結体を製造できることに成功した。しか
も、液相の生成を損なわない範囲での粉末焼鈍により粉
末を軟化させると、低圧で高密度の成形体が得ることが
でき焼結体の高精度化を図るに有効であり、特に高合金
系で粉末硬度の高い場合にはその効果が大きいことが判
った。
According to a further study, the liquid phase generated during the heating step of the above-mentioned powder breaks an oxide film on the surface of the powder, enlarges a metal contact portion, and proceeds with sintering. Thus, even a low-density molded product shrinks uniformly in a short period of time, and succeeds in producing a high-precision, high-density sintered product with extremely small unevenness in composition and segregation. In addition, if the powder is softened by powder annealing within a range that does not impair the generation of the liquid phase, a high-density compact at a low pressure can be obtained, which is effective for improving the precision of the sintered body. It was found that the effect was great when the powder hardness was high in the system.

【0014】また、上記急冷凝固法によれば、素地の硬
化や耐熱性の改善あるいはSi晶の成長抑制を図るため
に、溶製法では少量しか添加できないFe、Ni、M
n、Ti、Cr、V、Mo、Zr、Zn等を有効に含有
させることが可能であることが判った。
Further, according to the above-mentioned rapid solidification method, Fe, Ni, M which can be added only in a small amount by the melting method in order to harden the substrate, improve heat resistance or suppress the growth of Si crystal.
It was found that n, Ti, Cr, V, Mo, Zr, Zn and the like can be effectively contained.

【0015】特に機械的・物理的特性の改善が必要な場
合は、微細粒子の分散によって改善することができる
が、分散粒子の添加手段としては、粉末製造時に分散粒
子を含有した溶湯を粉末化する方法がある。また、混合
により分散させることが低コストで容易であり物理的特
性値の改善には効果があり、更に混合粉末を機械的粉砕
再凝集処理でより分散粒子を微細化し均一かつ高密度に
分散すると大きな機械的特性値の改善が図れる。これら
の添加方法は公知の手法であるが、焼結合金の特性改善
方法として有効であることを見出して、この発明を完成
するに至ったものである。
Particularly when the mechanical and physical properties need to be improved, the improvement can be achieved by dispersing the fine particles. However, as a means for adding the dispersed particles, a molten metal containing the dispersed particles is powdered during powder production. There is a way to do that. Also, it is easy to disperse by mixing at low cost and it is effective for improving the physical property value.Moreover, when the mixed powder is further finely dispersed and uniformly and densely dispersed by mechanical pulverization and reaggregation processing, A large improvement in mechanical characteristic values can be achieved. Although these addition methods are known methods, they have found that they are effective as a method for improving the characteristics of a sintered alloy, and have completed the present invention.

【0016】即ち、この発明は、Siを6.0 〜40.0重量
%、Cuを2.0 〜8.0 重量%、Mgを0.2 〜2.0 重量%
同時に含有し、さらに必要に応じてFe、Ni、Mn、
Ti、Cr、V、Mo、Zr、Znの内選ばれた1種類
以上の成分を8重量%以下含有し、残りが実質的にアル
ミニウムからなる組成を有する溶湯を凝固速度が102℃/
sec以上で粉末化した急冷凝固アルミニウム合金粉末を
必要に応じて250 〜450 ℃の温度域で焼鈍した後に、冷
間で密度比70%以上に圧縮成形し、この成形体を露点が
-10 ℃以下である非酸化性雰囲気中において500 〜580
℃の温度域でAl−Si系共晶温度以下、Al−Si−
Cu−Mg系液相出現温度以上、焼結体密度比90%以上
に常圧焼結することを特徴とするアルミニウム焼結合金
の製造方法に係るものである。
That is, according to the present invention, Si is 6.0 to 40.0% by weight, Cu is 2.0 to 8.0% by weight, and Mg is 0.2 to 2.0% by weight.
Fe, Ni, Mn, if necessary.
A molten metal having a composition containing at least 8% by weight of at least one selected from Ti, Cr, V, Mo, Zr, and Zn, and a balance substantially composed of aluminum, having a solidification rate of 10 2 ° C /
After quenching the rapidly solidified aluminum alloy powder powdered for more than sec in a temperature range of 250 to 450 ° C as necessary, it is cold-compressed to a density ratio of 70% or more.
500 to 580 in non-oxidizing atmosphere below -10 ° C
Below the Al-Si eutectic temperature in the temperature range of
The present invention relates to a method for producing a sintered aluminum alloy, which is characterized in that normal pressure sintering is performed at a temperature higher than a Cu-Mg liquid phase appearance temperature and a sintered body density ratio of 90% or more.

【0017】また、機械的・物理的特性の改善を図るに
は、上記急冷凝固アルミニウム合金粉末は、上記の組成
を有し、かつ金属間化合物、炭化物、酸化物、窒化物、
ほう化物、硅化物から選ばれた少なくとも1種以上の粒
子を0.5 〜10体積%添加した溶湯を凝固速度が102 ℃/s
ec以上で粉末化した急冷凝固アルミニウム合金粉末であ
るのが好ましい。
In order to improve mechanical and physical properties, the rapidly solidified aluminum alloy powder has the above-mentioned composition and has an intermetallic compound, carbide, oxide, nitride,
A molten metal containing at least one or more particles selected from borides and silicides in an amount of 0.5 to 10% by volume has a solidification rate of 10 2 ° C / s.
It is preferably a rapidly solidified aluminum alloy powder that has been pulverized at ec or more.

【0018】さらに、機械的・物理的特性の改善を図る
製造方法としては、急冷凝固粉末製造から圧縮成形の工
程間に、急冷凝固アルミニウム合金粉末と金属間化合
物、炭化物、酸化物、窒化物、ほう化物、硅化物から選
ばれた少なくとも1種以上の粒子を0.5 〜10体積%混合
し、必要に応じて機械的粉砕再凝集処理によって該アル
ミニウム合金粉末粒子中に微細均一に一体化する工程を
設けるのが好ましい。
Further, as a manufacturing method for improving mechanical and physical properties, a rapidly solidified aluminum alloy powder and an intermetallic compound, carbide, oxide, nitride, A step of mixing 0.5 to 10% by volume of at least one kind of particles selected from borides and silicides and, if necessary, finely and uniformly integrating the particles into the aluminum alloy powder particles by mechanical pulverization and reagglomeration. It is preferred to provide.

【0019】[0019]

【作用】以下に、組成及び製造条件の範囲限定の理由を
説明する。
The reasons for limiting the range of the composition and the manufacturing conditions will be described below.

【0020】先ず、融点以下の温度域において液相を生
成する準安定相は、Si、Cu、Mgを同時に含有した
溶湯を102 ℃/sec以上の冷却速度で凝固させた場合に生
成できる。凝固速度が102 ℃/sec未満であると準安定相
が生成しなかったり、あるいは生成量が少なくなり、焼
結が十分には進行しないからである。
First, a metastable phase that forms a liquid phase in a temperature range equal to or lower than the melting point can be formed when a molten metal containing Si, Cu, and Mg is solidified at a cooling rate of 10 2 ° C / sec or more. If the solidification rate is less than 10 2 ° C / sec, a metastable phase is not generated or the amount generated is small, and sintering does not proceed sufficiently.

【0021】また、Siは液相生成のための必須成分で
あり、最低1.0 重量%程度は含有していれば良いが、同
時にSiの添加は熱膨張率の低下、剛性の向上、耐摩耗
性の改善等に効果がある。この効果は、Si添加量が6.
0 重量%以下では小さく、かつ一般の鋳造法でも容易に
添加できる量であるため、本発明では添加下限量を6.0
重量%とした。Si添加量が40.0重量%を越えると溶解
温度が高くなる上、焼結体中のSi晶径が大きくなり靭
性が劣化し、被削性も悪化するため、添加上限量を40.0
重量%とした。Cu、Mgについても焼結に必要な液相
生成のための必須成分であり、特にCuの存在は重要で
ある。Cu量においては2.0 重量%未満であると焼結に
必要な液相発生量が不十分となる上、焼結温度範囲が狭
くなる。Mg量においても0.2 重量%未満であると液相
量が減る他、充分な焼結強度が得られない。また、Cu
量が8.0 重量%、Mg量が2.0 重量%を越えると液相の
発生量が多くなりすぎて焼結体の寸法精度が悪くなり、
素地の強度も劣化させ、特にMg量は多くなり過ぎると
焼結範囲を狭くする。よって、Cu量は1.0 〜8.0重量
%、Mg量は0.4 〜4.0 重量%と定めた。これらの成分
を含有する合金は、溶体化・時効処理を施すことにより
機械的特性が改善できる。
Further, Si is an essential component for generating a liquid phase, and it is sufficient that it contains at least about 1.0% by weight. At the same time, the addition of Si lowers the coefficient of thermal expansion, improves rigidity, and reduces wear resistance. It is effective in improving the quality. This effect is obtained when the amount of Si added is 6.
0% by weight or less is small and can be easily added even by a general casting method.
% By weight. If the addition amount of Si exceeds 40.0% by weight, the melting temperature increases, the Si crystal diameter in the sintered body increases, the toughness deteriorates, and the machinability also deteriorates.
% By weight. Cu and Mg are also essential components for generating a liquid phase necessary for sintering, and the presence of Cu is particularly important. If the Cu content is less than 2.0% by weight, the amount of liquid phase required for sintering becomes insufficient, and the sintering temperature range becomes narrow. If the amount of Mg is less than 0.2% by weight, the amount of liquid phase is reduced and sufficient sintering strength cannot be obtained. Also, Cu
If the amount exceeds 8.0% by weight and the amount of Mg exceeds 2.0% by weight, the amount of generated liquid phase becomes too large and the dimensional accuracy of the sintered body deteriorates.
The strength of the base material is also deteriorated, and particularly when the amount of Mg is too large, the sintering range is narrowed. Therefore, the amount of Cu was determined to be 1.0 to 8.0% by weight, and the amount of Mg was determined to be 0.4 to 4.0% by weight. An alloy containing these components can be improved in mechanical properties by performing a solution treatment and an aging treatment.

【0022】また、急冷凝固粉末を用いれば、素地の強
度を改善したり、素地の硬度を上げて耐摩耗性を改善し
たり、耐熱性を改善を図るために、溶製法では少量しか
添加できないFe、Ni、Mn、Ti、Cr、V、M
o、Zr、Zn等を有効に含有させることが可能であ
る。これらの成分の内アルミニウム中への固溶量の小さ
いものは、急冷凝固時においては微細な析出物を素地中
に生成し、生じた析出物は比較的高温度域においても安
定であり焼結温度域においても粗大化の程度は小さく特
性改善に寄与する。また、これらの析出物はSi晶の粗
大化を抑制する働きがあり焼結体組織が微細になる。ま
た、固溶体成型のものや固溶量範囲内においても、固溶
強化による強度向上やMn、Zn等については少量の添
加によっても熱処理による強度改善を助長する効果があ
り、Mn等は0.5 重量%程度の含有量で効果は発現す
る。
Further, if a rapidly solidified powder is used, only a small amount can be added by the melting method in order to improve the strength of the base, improve the wear resistance by increasing the hardness of the base, and improve the heat resistance. Fe, Ni, Mn, Ti, Cr, V, M
It is possible to effectively contain o, Zr, Zn and the like. Of these components, those with a small amount of solid solution in aluminum form fine precipitates in the base material during rapid solidification, and the resulting precipitates are stable even in a relatively high temperature range and sintered. Even in the temperature range, the degree of coarsening is small and contributes to the improvement of characteristics. Further, these precipitates have a function of suppressing the coarsening of the Si crystal, and the structure of the sintered body becomes fine. Further, even in the case of solid solution molding and within the solid solution amount range, there is an effect of improving the strength by solid solution strengthening and promoting the improvement of the strength by heat treatment even when a small amount of Mn, Zn, etc. is added. The effect is manifested at a content of about the same.

【0023】但し、添加量が8.0 重量%を越えると粉末
製造時に粗大な析出物を生ずるため焼結体の靭性が低下
するため、これを上限とした。
However, if the amount of addition exceeds 8.0% by weight, coarse precipitates are formed during powder production, and the toughness of the sintered body is reduced.

【0024】粉末の粒度は流動性、成形性、焼結性等の
各観点から最適分布があるが、通常は300 μm以下が良
く、特に緻密化を活発化するためや原料粉末の急冷度を
高めるために平均粒径が30μm程度の微粉末を使うと良
い。
The particle size of the powder has an optimum distribution from the viewpoints of fluidity, moldability, sinterability and the like, but is usually preferably 300 μm or less, particularly for activating the densification and reducing the quenching degree of the raw material powder. It is preferable to use a fine powder having an average particle size of about 30 μm to increase the particle size.

【0025】Si添加量が17重量%前後の場合や添加合
金量の多い場合あるいは急冷度の高い場合では、粉末硬
度が高く成形性や圧縮性に劣るため、必要に応じて粉末
を250 〜450 ℃で焼鈍処理してこれらを改善させる。焼
鈍の温度が250 ℃未満では大きな改善効果がなく、450
℃を越えると準安定相が拡散による安定化が進むため、
焼鈍の温度範囲は250 〜450 ℃とした。焼鈍の保持時間
は特に必要はなく、目標温度に達すれば効果は充分であ
るが、処理の均一性を確保する場合は30〜60分の加熱を
施すと良い。
When the amount of Si added is about 17% by weight, when the amount of the added alloy is large, or when the degree of quenching is high, the powder hardness is high and the formability and compressibility are inferior. Annealing at ℃ improves these. If the annealing temperature is less than 250 ° C, there is no significant improvement
If the temperature exceeds ℃, the metastable phase will be stabilized by diffusion,
The annealing temperature range was 250 to 450 ° C. The holding time of the annealing is not particularly required, and the effect is sufficient if the temperature reaches the target temperature. However, in order to secure the uniformity of the treatment, it is preferable to perform heating for 30 to 60 minutes.

【0026】粉末は冷間成形により粉末成形体とする
が、この際成形密度比が70%未満であると成形体強度が
低くなるため密度比は70%以上と定めた。成形は温間で
することも可能であるが通常は冷間で行なう。成形方法
としては金型成形や冷間静水圧成形がある。金型成形の
場合は、金型との焼き付きを防止したり粉末の流動性を
改善するために粉状の潤滑剤を混合したり、金型に潤滑
剤を塗布することが通例である。特に高い寸法精度が求
められる場合は、90〜95%程度の高密度に成形する必要
があるが、高密度成形体では脱潤滑剤処理が困難となる
ため、金型潤滑方法がより好ましい。但し、添加した潤
滑剤は焼結温度で酸化等の悪影響を与えないように低温
度域で気化する性質のものである必要がある。
The powder is formed into a powder compact by cold compacting. At this time, if the compacting density ratio is less than 70%, the compact strength is reduced, so the density ratio is set to 70% or more. Molding can be warm, but is usually performed cold. Molding methods include die molding and cold isostatic pressing. In the case of mold molding, it is customary to mix a powdery lubricant or apply a lubricant to the mold in order to prevent seizure with the mold and to improve the fluidity of the powder. In particular, when high dimensional accuracy is required, it is necessary to mold at a high density of about 90 to 95%. However, since a delubricating treatment is difficult in a high-density molded article, a mold lubrication method is more preferable. However, the added lubricant needs to have a property of vaporizing in a low temperature range so as not to exert an adverse effect such as oxidation at the sintering temperature.

【0027】成形体は適正焼結温度に加熱される。この
際、準安定相の安定相への移行を抑えるため液相発生温
度域までの昇温速度は20℃/分以上であることが望まし
い。焼結温度は500 〜580 ℃で、従来の焼結温度範囲の
550 〜650 ℃に比較して低温度域で狭い範囲である。こ
れはAl−Si−Cu−Mg系の準安定相の液相生成温
度域がこの範囲内にあるからである。500 ℃未満では液
相化しないため焼結現象が進行せず、580 ℃を越えると
合金自身が溶融してしまい組織が粗大化し精度が著しく
劣化する。焼結雰囲気は、昇温過程中に粉末表面の吸着
水分を充分に除去し、焼結の妨げとなる酸化膜の成長を
抑えるために、N2 ガス、Arガス、真空等の非酸化性
雰囲気中にて露点が-10 ℃以下望ましくは-30 ℃以下の
低水蒸気分圧下で焼結する必要がある。焼結時間は、目
標の焼結体密度により決まるが焼結温度に達すれば焼結
は迅速に進行するため、10分程度の加熱でも十分焼結す
る。但し、実際には処理の均一性を確保する必要から30
〜120 分の加熱を施すことになる。長時間側の加熱によ
り、Si晶が耐摩耗性に有効な大きさに成長し、緻密化
が進行するが、粒成長による焼結体強度の劣化が起こる
ため要求特性値により適当な条件を選ぶ。
The compact is heated to an appropriate sintering temperature. At this time, in order to suppress the transition of the metastable phase to the stable phase, it is desirable that the rate of temperature rise to the liquid phase generation temperature range is 20 ° C./min or more. The sintering temperature is 500 to 580 ° C, which is
It is narrower in the low temperature range than 550 to 650 ° C. This is because the liquid phase formation temperature range of the Al-Si-Cu-Mg metastable phase is within this range. If the temperature is lower than 500 ° C., the sintering phenomenon does not progress because the liquid phase is not obtained. The sintering atmosphere is a non-oxidizing atmosphere such as N 2 gas, Ar gas, vacuum, etc., in order to sufficiently remove the adsorbed water on the powder surface during the heating process and to suppress the growth of the oxide film that hinders sintering. It is necessary to sinter under a low steam partial pressure with a dew point of -10 ° C or less, preferably -30 ° C or less. The sintering time is determined by the target density of the sintered body, but when the sintering temperature is reached, sintering proceeds rapidly, so that sintering is sufficient even with heating for about 10 minutes. However, in practice, it is necessary to ensure uniformity of processing.
Heating for ~ 120 minutes will be applied. By heating for a long time, the Si crystal grows to a size effective for abrasion resistance and densification proceeds, but the strength of the sintered body deteriorates due to grain growth, so select appropriate conditions according to the required characteristic value .

【0028】焼結体は、一般的な鋳造材強度である25kg
/mm2以上の強度を確保するため密度比で90%以上とす
る。高強度の要求が強い場合98%以上の焼結体の製造も
可能であり、高精度の要求の強い場合は密度比を95〜97
%としてサイジングやコイニングにより±10μm程度の
精度を得ることも可能である。
The sintered body has a general cast material strength of 25 kg.
In order to secure a strength of / mm 2 or more, the density ratio should be 90% or more. When the demand for high strength is strong, it is possible to manufacture a sintered body of 98% or more.
It is also possible to obtain an accuracy of about ± 10 μm by sizing or coining as%.

【0029】しかし、粉末を高温度域で焼結により固化
するため急冷凝固による強度改善効果等は大部分損なわ
れてしまうため、特に機械的・物理的特性の改善が必要
な場合は、微細粒子の分散によって改善することができ
る。分散粒子としては、複合化することで熱膨張率・剛
性・強度・耐摩耗性等が改善できるものであればよく、
焼結で分解や拡散もしくは凝縮成長してはならない。こ
のために選ばれる粒子は一部の金属間化合物(遷移金属
アルミナイド、遷移金属間化合物)、炭化物(アルミカ
ーバイド、シリコンカーバイド、チタンカーバイド、ボ
ロンカーバイド等)、酸化物(アルミナ、シリカ、ムラ
イト、酸化亜鉛、イットリア等)、窒化物(アルミナイ
トライド、窒化珪素、チタンナイトライド)、ほう化物
(チタンボライド)、硅化物(モリブデンシリサイド)
等である。粒子の大きさは、分散強化を目的とした場
合、0.1 〜1 μm程度が、複合効果を狙った場合は1〜
20μm程度が、耐摩耗性改善には5 〜30μm程度が望ま
しい。もちろん、複数種類や粒度分布をもたせた粒子を
分散させることもできる。分散量が0.5 体積%未満であ
ると粒子を添加した効果が得られず、10体積%を越える
と被削性や靭性が劣るため、添加範囲は0.5 〜10体積%
とした。
However, since the powder is solidified by sintering in a high temperature range, the effect of improving the strength by rapid solidification is largely impaired. In particular, when it is necessary to improve the mechanical and physical properties, fine particles are required. Can be improved. As the dispersed particles, any compound that can improve the coefficient of thermal expansion, rigidity, strength, abrasion resistance, etc. by compounding may be used.
It must not decompose, diffuse or condense during sintering. The particles selected for this purpose include some intermetallic compounds (transition metal aluminides, transition metal compounds), carbides (aluminum carbide, silicon carbide, titanium carbide, boron carbide, etc.), oxides (alumina, silica, mullite, oxide Zinc, yttria, etc.), nitride (aluminum nitride, silicon nitride, titanium nitride), boride (titanium boride), silicide (molybdenum silicide)
And so on. The size of the particles is about 0.1 to 1 μm for the purpose of strengthening the dispersion, and 1 to
About 20 μm is desirable, and about 5 to 30 μm is desirable for improving wear resistance. Of course, a plurality of types or particles having a particle size distribution can be dispersed. If the amount of dispersion is less than 0.5% by volume, the effect of adding the particles cannot be obtained, and if it exceeds 10% by volume, the machinability and toughness are poor, so the addition range is 0.5 to 10% by volume.
And

【0030】分散粒子の添加手段としては、混合法が経
済性に優れ容易であり、物理的特性値の改善には効果が
ある。しかし、単純な混合粉末の場合には分散粒子が旧
粉末粒界にのみ存在するため、分散強化が十分はかりに
くく、微細な粒子を分散する場合には粉末粒子間の焼結
結合を阻害するのでふさわしくない面がある。この解決
には粉末粒子内に分散粒子を分散させることが有効であ
り、その方法としては、粉末製造時において分散粒子を
含有させた溶湯を粉末化する方法と分散粒子を添加した
混合粉末を機械的粉砕再凝集処理する方法とがある。
As a means for adding the dispersed particles, the mixing method is excellent in economical efficiency and is easy, and is effective in improving physical characteristic values. However, in the case of a simple mixed powder, since the dispersed particles are present only at the old powder grain boundary, it is difficult to sufficiently strengthen the dispersion, and when fine particles are dispersed, the sintering bond between the powder particles is hindered. There are aspects that are not suitable. To solve this problem, it is effective to disperse the dispersed particles in the powder particles. As the method, there are a method of pulverizing the molten metal containing the dispersed particles at the time of powder production and a method of mechanically mixing the mixed powder with the dispersed particles. There is a method of subjecting to a crushing reagglomeration treatment.

【0031】前者の方法では、粒子の偏析や凝集を防ぐ
ため溶解鋳造法により予め製造した分散粒子を均一に含
有するインゴットを溶解したり、溶湯中に分散粒子を添
加して撹拌能力の高い誘導溶解したりする必要がある
が、機械的粉砕再凝集処理と比較して優れた経済性を有
している。
In the former method, in order to prevent segregation and agglomeration of particles, an ingot containing uniformly dispersed particles prepared in advance by a melt casting method is dissolved, or dispersed particles are added to a molten metal to induce high stirring ability. Although it needs to be dissolved, it has an excellent economic efficiency as compared with the mechanical pulverization reagglomeration treatment.

【0032】一方、機械的粉砕再凝集処理によって該ア
ルミニウム合金粉末粒子中に添加粒子を微細均一に一体
化すると、分散強化に寄与するような粒子径をもつ分散
粒子を微細化し均一かつ高密度に分散させた焼結体が得
られ大きな機械的特性値の改善がはかれる。炭化物、酸
化物あるいは金属間化合物は機械的粉砕再凝集処理によ
り生成分散させることも可能である。この機械的粉砕再
凝集処理方法は、従来のボールミル粉砕や混合のような
湿式法ではなく乾式で行なう。場合によってPCA(Pr
ocess Control Agent)としてステアリン酸やアルコール
などを少量添加することで過度の凝集を防ぐことも有用
であるが、処理温度条件などを制御すれば必ずしも必要
ではない。また、処理装置はいわゆるアトライターが高
速処理には適しているが大量処理には適していない。ボ
ールミルは長時間処理が必要であるが雰囲気制御が容易
であり投入エネルギーの設計さえ適切に行なえば比較的
経済性に優れている。
On the other hand, when the added particles are finely and uniformly integrated into the aluminum alloy powder particles by mechanical pulverization and re-agglomeration treatment, the dispersed particles having a particle diameter that contributes to the dispersion strengthening are refined to be uniform and dense. A dispersed sintered body is obtained, and a large improvement in mechanical property values is achieved. Carbides, oxides or intermetallic compounds can be produced and dispersed by mechanical pulverization and reagglomeration. This mechanical pulverization and reagglomeration treatment method is performed by a dry method instead of a wet method such as the conventional ball mill pulverization and mixing. PCA (Pr
It is also useful to add a small amount of stearic acid, alcohol, etc. as an Ocess Control Agent to prevent excessive aggregation, but this is not always necessary if the processing temperature conditions are controlled. As for the processing apparatus, a so-called attritor is suitable for high-speed processing, but is not suitable for mass processing. Ball mills require long-term treatment, but are easy to control the atmosphere, and are relatively economical if the input energy is properly designed.

【0033】このようにして得られた処理粉末は含有さ
れていた分散粒子が微粉砕され粉末中に均一に分散して
おり、該粉末を焼結しても極微細は強化粒子を均一に偏
析なく分布したアルミニウム基粒子複合焼結合金を製造
することが可能となる。
The thus-obtained treated powder is such that the dispersed particles contained therein are finely pulverized and uniformly dispersed in the powder. Even when the powder is sintered, the ultrafine particles uniformly segregate the reinforcing particles. It is possible to manufacture an aluminum-based particle composite sintered alloy that has no distribution.

【0034】[0034]

【実施例】以下、この発明の実施例を添付図面に基づい
て説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0035】実施例1 Al−24.5重量%Si−2.4 重量%Cu−1.0 重量%M
g−0.5 重量%Mn−0.4 重量%Fe合金溶湯からエア
アトマイズ法により粒径が5 〜300 μmの粉末を製造し
た。この粉末により粒径が約300 μm、約100 μm及び
約30μmの粉末を取出した。粒径300 μmの粉末は再溶
解し凝固速度を変えて冷却させた。凝固速度は同一の方
法で作製したAl−3.4 重量%Cu−1.2 重量%Mg−
0.6 重量%Mn合金粉末のDAS(Dendrite Arm Spaci
ng) から測定した。各凝固速度を持つ粉末を示差熱分析
して生成された合金の融点以下で液相発生状況を調べ
た。昇温速度は20℃/分とした。
Example 1 Al-24.5% by weight Si-2.4% by weight Cu-1.0% by weight M
A powder having a particle size of 5 to 300 μm was produced from a g-0.5 wt% Mn-0.4 wt% molten Fe alloy by an air atomizing method. With this powder, powders having particle sizes of about 300 μm, about 100 μm, and about 30 μm were extracted. The powder having a particle size of 300 μm was redissolved, cooled at a different solidification rate. The solidification rate was as follows: Al-3.4% by weight Cu-1.2% by weight Mg-
0.6% by weight Mn alloy powder DAS (Dendrite Arm Spaci
ng). The powder having each solidification rate was subjected to differential thermal analysis to examine the state of liquid phase generation below the melting point of the produced alloy. The heating rate was 20 ° C./min.

【0036】表1に各粉末の推定凝固速度と液相発生状
況をまとめた。表1から判るように凝固速度が102 ℃/s
ec以上であると合金融点下で液相が生じる。表1中の液
相発生状況におけるA(約520 ℃),B(約550 ℃),
C(約580 ℃)を図1にそれぞれ示す。但し、各相変化
開始の温度を図1の微分変異点より求めると若干低温側
となる。
Table 1 summarizes the estimated solidification rate of each powder and the state of liquid phase generation. As can be seen from Table 1, the solidification rate is 10 2 ° C / s
If it is higher than ec, a liquid phase will be formed below the melting point of the alloy. A (approximately 520 ° C), B (approximately 550 ° C),
C (about 580 ° C.) is shown in FIG. However, when the temperature at the start of each phase change is determined from the differential variation point in FIG. 1, the temperature is slightly lower.

【0037】[0037]

【表1】 [Table 1]

【0038】実施例2 Al−25.2重量%Si−3.3 重量%Cu−0.6 重量%M
g−0.4 重量%Mn−0.8 重量%Fe合金溶湯からエア
アトマイズ法により粒径が5 〜300 μmの粉末を製造し
た。この粉末にステアリン酸を0.4 重量%添加して面圧
4 〜6t/cm2でφ22mm×30mmのタブレットに成形し密度比
が75±2 %の成形体を作製し、真空中、N2 ガス中およ
び大気中で焼結した。N2 ガスの露点を-35 ℃、-15
℃、+5℃の3条件とした。炉内温度を500 ℃、530 ℃、
560℃、590 ℃にした後に成形体を炉入し、炉内での加
熱時間は30分とした。表2に焼結体の密度比を示す。表
2の記号*で示す条件では93%以上の焼結体が得られ
た。また、記号※で示す条件では、溶融したため汗かき
現象が発生した。
Example 2 Al-25.2% by weight Si-3.3% by weight Cu-0.6% by weight M
A powder having a particle size of 5 to 300 μm was produced from a molten alloy of g-0.4 wt% Mn-0.8 wt% Fe alloy by an air atomizing method. Add 0.4% by weight of stearic acid to this powder
It was molded into tablets of φ22 mm × 30 mm at 4 to 6 t / cm 2 to produce molded articles having a density ratio of 75 ± 2%, and sintered in vacuum, N 2 gas and air. Dew point of N 2 gas is -35 ° C, -15
° C and + 5 ° C. Furnace temperature 500 ℃, 530 ℃,
After the temperature was raised to 560 ° C. and 590 ° C., the compact was placed in a furnace, and the heating time in the furnace was 30 minutes. Table 2 shows the density ratio of the sintered body. Under the conditions indicated by the symbol * in Table 2, 93% or more of sintered bodies were obtained. Further, under the conditions indicated by the symbol *, a sweating phenomenon occurred due to melting.

【0039】[0039]

【表2】 [Table 2]

【0040】この実施例2において、各焼結体とも真円
度は30μm程度であり、サイジングを実施したところ真
円度は8μmまで向上した。600 ℃での焼結体は粉末粒
内で完全に溶融したため焼結体表層にAl液相が流出し
ていた。図2(a)は大気中での575 ℃焼結体組織の顕
微鏡写真(100 倍拡大)を示し、図2(b),(c),
(d)はN2 ガス中(露点-15 ℃)での500 ℃焼結体、
575 ℃焼結体および600 ℃の焼結体の組織の顕微鏡写真
(100 倍拡大)をそれぞれ示す。
In Example 2, the roundness of each sintered body was about 30 μm, and when sizing was performed, the roundness was improved to 8 μm. Since the sintered body at 600 ° C. was completely melted in the powder grains, the Al liquid phase had flowed out to the surface layer of the sintered body. FIG. 2 (a) shows a micrograph (magnification: 100 times) of the structure of the sintered body at 575 ° C. in the atmosphere, and FIG. 2 (b), (c),
(D) is a 500 ° C sintered body in N 2 gas (dew point -15 ° C),
Micrographs (magnification: 100 times) of the structures of the sintered bodies at 575 ° C and 600 ° C are shown respectively.

【0041】実施例3 実施例2記載の粉末を用いてステアリン酸のアセトン溶
液を金型に塗布した後、面圧5t/cm2でφ800mm ×50mmの
タブレットを成形して密度比が80%の成形体を作製し
た。成形体を露点-20 ℃のN2 ガス中で焼結温度を550
℃とし焼結時間60分で焼結した結果、密度比は97%の焼
結体が得られた。この焼結体を510 ℃で溶体化処理した
のちに水冷し、175 ℃で8時間の時効処理を施した。こ
の熱処理体の引張強度を測定し、リング−プレート摺動
型焼き付き性評価試験機で油中にて耐焼き付き性を評価
した。比較材とし同粉末を480 ℃で押出及び鍛造により
焼結した材料の熱処理材と同一組成の鋳造材の熱処理材
の3種類を用意した。
Example 3 After applying an acetone solution of stearic acid to a mold using the powder described in Example 2, a tablet of φ800 mm × 50 mm was formed at a surface pressure of 5 t / cm 2 and a density ratio of 80% was obtained. A molded body was produced. The compact was sintered at a dew point of -20 ° C in N 2 gas at a sintering temperature of 550.
As a result of sintering at 60 ° C for 60 minutes, a sintered body having a density ratio of 97% was obtained. This sintered body was subjected to a solution treatment at 510 ° C., then water-cooled, and an aging treatment at 175 ° C. for 8 hours. The tensile strength of this heat-treated body was measured, and the seizure resistance was evaluated in oil using a ring-plate sliding type seizure evaluation tester. As comparative materials, three types of heat-treated materials of a cast material having the same composition as a heat-treated material of a material obtained by sintering the same powder at 480 ° C. by extrusion and forging were prepared.

【0042】表3に評価結果を示したが、引張強度は押
出材や鍛造材には及ばないものの同材質同士の焼き付き
荷重は極めて高い結果を得た。図3(a),(b),
(c),(d)はこの実施例3での焼結材、押出材、鍛
造材、鍛造材の組織結果を示す顕微鏡写真(100 倍拡
大)である。
Table 3 shows the evaluation results. Although the tensile strength was lower than that of the extruded material or the forged material, the seizure load between the same materials was extremely high. 3 (a), (b),
(C) and (d) are micrographs (100 times magnification) showing the microstructure results of the sintered material, extruded material, forged material, and forged material in Example 3.

【0043】[0043]

【表3】 [Table 3]

【0044】実施例4 表4に示す粉末(最大粒径:75μm)を用いて面圧4t/c
m2でφ22mm×30mmのタブレットを成形し密度比が77%の
成形体を作製した。成形体を露点-20 ℃のN2ガス中で
焼結温度はSi晶を粗大化させるために融点近くの560
℃、焼結時間90分で焼結し98%以上の密度比の焼結体を
製造し、組織観察した結果を図4(a)〜(d)に示し
た。図4(a)は表4のNo. 1,図3(b)は表1のN
o. 2,図3(c)はNo. 3,図3(d)はNo. 4のそ
れぞれの組織観察の結果を示す顕微鏡写真(100 倍拡
大) である。なお、表4中には実施例1で測定した各粉
末の示差熱分析によるA、B、C点の温度も記した。ま
た、焼結体の酸素量は0.3 重量%であった。焼結体の引
張強度は28〜36kg/mm2であり、No. 4が最も低強度であ
った。
Example 4 Using a powder shown in Table 4 (maximum particle size: 75 μm), a surface pressure of 4 t / c
A tablet having a diameter of 22 mm and a size of 30 mm was molded at m 2 to produce a molded body having a density ratio of 77%. The compact was sintered in N 2 gas at a dew point of -20 ° C. The sintering temperature was 560 near the melting point to coarsen the Si crystal.
4 (a) to 4 (d) show the results of sintering at 90 ° C. for a sintering time of 90 minutes to produce a sintered body having a density ratio of 98% or more and observation of the structure. 4A is No. 1 in Table 4, and FIG. 3B is N in Table 1.
o. 2, FIG. 3 (c) is a micrograph (magnification: 100 times) showing the results of observation of the structures of No. 3 and FIG. Table 4 also shows the temperatures at points A, B, and C of the powders measured in Example 1 by differential thermal analysis. The sintered body had an oxygen content of 0.3% by weight. The tensile strength of the sintered body was 28 to 36 kg / mm 2 , and No. 4 had the lowest strength.

【0045】[0045]

【表4】 [Table 4]

【0046】実施例5 表5に示す粉末(最大粒径:350 μm)をN2 雰囲気中
で330 ℃にて焼鈍処理を施した後、ステアリン酸のアセ
トン溶液を金型に塗布し、面圧8t/cm2でφ22mm×30mmの
タブレットを成形し、密度比が91%の成形体を作製し
た。成形体を露点-20 ℃のN2 ガス中で焼結温度を560
℃とし、焼結時間40分で焼結し、95〜97%の密度比の焼
結体を製造して、組織観察した結果を図5(a)〜
(c)に示した。図5(a)は表5のNo. 1、図4
(b)はNo. 2、図4(c)はNo. 3のそれぞれの組織
観察の結果を示す顕微鏡写真(100 倍拡大)である。遷
移元素の添加によりSi晶が微細化している。No. 1に
ついて強度を評価したところ引張強度40kg/mm2が得られ
た。
Example 5 After the powder shown in Table 5 (maximum particle size: 350 μm) was annealed at 330 ° C. in an N 2 atmosphere, an acetone solution of stearic acid was applied to a mold, and the surface pressure was increased. A tablet of φ22 mm × 30 mm was molded at 8 t / cm 2 to produce a molded body having a density ratio of 91%. The compact was sintered at a dew point of -20 ° C in N 2 gas at a sintering temperature of 560.
C., and sintered for 40 minutes in a sintering time to produce a sintered body having a density ratio of 95 to 97%.
(C). FIG. 5 (a) is No. 1 of Table 5, FIG.
4 (b) is a micrograph (100-fold magnification) showing the results of observation of the structures of No. 2 and No. 3 respectively. The Si crystal is refined by the addition of the transition element. When the strength of No. 1 was evaluated, a tensile strength of 40 kg / mm 2 was obtained.

【0047】[0047]

【表5】 [Table 5]

【0048】実施例6 Al−17.2重量%Si−3.2 重量%Cu−1.0 重量%M
g−0.5 重量%Mn−0.4 重量%Fe合金溶湯中に、平
均粒径が1.8 μmのAl23 粒子を4.0 体積%及び平
均粒径が0.2 μmのSiC粒子を0.9 体積%添加した後
に、Arガスアトマイズ法により粒径が5 〜300 μmの
粉末を製造した。この粉末にステアリン酸を0.4 重量%
添加して面圧4 t/cm2 でφ22mm×30mmのタブレットに成
形し、密度比が73%の成形体を作製した。成形体は露点
-35 ℃のN2 ガス中で焼結した。焼結温度は555 ℃で焼
結時間は60分とした。得られた焼結体の密度比は95%で
あった。図6に焼結体組織の顕微鏡写真(100 倍拡大)
を示した。実施例3に記した熱処理後の引張強度は43kg
/mm2であり、酸素量は0.23重量%であった。
Example 6 Al-17.2% by weight Si-3.2% by weight Cu-1.0% by weight M
g-0.5% by weight Mn-0.4% by weight After adding 4.0% by volume of Al 2 O 3 particles having an average particle size of 1.8 μm and 0.9% by volume of SiC particles having an average particle size of 0.2 μm to a molten Fe alloy, Powder having a particle size of 5 to 300 μm was produced by Ar gas atomization. 0.4% by weight of stearic acid in this powder
The mixture was added and molded into a tablet of φ22 mm × 30 mm at a surface pressure of 4 t / cm 2 to produce a molded body having a density ratio of 73%. Molded body has dew point
Sintered in N 2 gas at −35 ° C. The sintering temperature was 555 ° C. and the sintering time was 60 minutes. The density ratio of the obtained sintered body was 95%. Fig. 6 shows a micrograph of the structure of the sintered body (100 times magnification).
showed that. The tensile strength after heat treatment described in Example 3 is 43 kg.
/ mm 2 and the oxygen content was 0.23% by weight.

【0049】実施例7 Al−12.3重量%Si−5.6 重量%Cu−0.4 重量%M
g−0.8 重量%Mn−4.7 重量%Fe合金溶湯からエア
アトマイズ法により背蔵した粉末の150 μm以下の粉末
に平均粒径0.1 μmのB4 C粒子を2.1 体積%を混合し
たのちに高エネルギーボールミルを用いて機械的粉砕再
凝集処理を行なった。この粉末を350 ℃で焼鈍処理を施
した後に面圧4t/cm2で冷間静水圧成形機を用いてφ30×
50mmの密度比81%のタブレットに成形した。成形体は露
点-35 ℃のN2 ガス中で焼結した。焼結温度は535 ℃で
焼結時間は60分とし、焼結体の密度比は91%であった。
焼結体はコイニング加工を施し真円度を10μmのタブレ
ットとした。図7に焼結体の組織の顕微鏡写真(100 倍
拡大)を示した。実施例3に記した熱処理後の引張強度
は41kg/mm2であり、酸素量は1.2 重量%であった。
Example 7 Al-12.3% by weight Si-5.6% by weight Cu-0.4% by weight M
High energy were mixed with 2.1% by volume of an average particle size 0.1 [mu] m of B 4 C particles in 0.99 [mu] m or less powder powder Sezo by g-0.8 wt% Mn-4.7 the air atomizing method from the weight% Fe alloy melt Mechanical re-agglomeration treatment was performed using a ball mill. This powder was annealed at 350 ° C., and then pressed at a surface pressure of 4 t / cm 2 using a cold isostatic press at φ30 ×
It was molded into a 50 mm tablet with a density ratio of 81%. The compact was sintered in a N 2 gas at a dew point of −35 ° C. The sintering temperature was 535 ° C., the sintering time was 60 minutes, and the density ratio of the sintered body was 91%.
The sintered body was subjected to coining to form a tablet having a roundness of 10 μm. FIG. 7 shows a micrograph (100-fold magnification) of the structure of the sintered body. The tensile strength after the heat treatment described in Example 3 was 41 kg / mm 2 , and the oxygen amount was 1.2% by weight.

【0050】[0050]

【発明の効果】以上説明したように、この発明によれ
ば、高精度・高密度で機械的特性や物理的特性に優れ、
かつ耐摩耗性に優れたアルミニウム焼結合金を、塑性加
工によらず、常圧焼結により製造することができるの
で、各種機械部品や摺動部品への広範な適用が可能とな
る。
As described above, according to the present invention, mechanical characteristics and physical characteristics are excellent with high accuracy and high density.
In addition, since an aluminum sintered alloy having excellent wear resistance can be manufactured by normal pressure sintering without using plastic working, it can be widely applied to various mechanical parts and sliding parts.

【図面の簡単な説明】[Brief description of the drawings]

【図1】表1の温度条件A,B,Cにおける液相発生状
況を示すグラフ。
FIG. 1 is a graph showing the state of generation of a liquid phase under temperature conditions A, B, and C in Table 1.

【図2】実施例2の焼結体の顕微鏡組織写真。FIG. 2 is a photomicrograph of a sintered body of Example 2.

【図3】実施例3の焼結体の顕微鏡組織写真。FIG. 3 is a microstructure photograph of a sintered body of Example 3.

【図4】実施例4の焼結体の顕微鏡組織写真。FIG. 4 is a microstructure photograph of a sintered body of Example 4.

【図5】実施例5の焼結体の顕微鏡組織写真。FIG. 5 is a microstructure photograph of a sintered body of Example 5.

【図6】実施例6の焼結体の顕微鏡組織写真。FIG. 6 is a micrograph of a sintered body of Example 6.

【図7】実施例7の焼結体の顕微鏡組織写真。FIG. 7 is a microstructure photograph of a sintered body of Example 7.

フロントページの続き (56)参考文献 特開 昭53−128512(JP,A) 特開 平3−6344(JP,A) 特開 昭50−96409(JP,A) 特開 平4−183959(JP,A) 特開 平4−308002(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 21/00 - 21/18 B22F 1/00 - 9/08 C22C 1/04 - 1/10 Continuation of the front page (56) References JP-A-53-128512 (JP, A) JP-A-3-6344 (JP, A) JP-A-50-96409 (JP, A) JP-A-4-183959 (JP) , A) JP-A-4-308002 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 21/00-21/18 B22F 1/00-9/08 C22C 1/04 -1/10

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Siを6.0〜40.0重量%、Cuを
2.0〜8.0重量%、Mgを0.2〜2.0重量%同
時に含有し残りが実質的にアルミニウムからなる組成
を有する溶湯を凝固速度が10℃/sec以上で粉末
化した急冷凝固アルミニウム合金粉末を冷間で密度比
70%以上に圧縮成形し、この成形体を露点が−10℃
以下である非酸化性雰囲気中において500〜580℃
の温度域でAl−Si系共晶温度以下、Al−Si−C
u−Mg系液相出現温度以上、焼結体密度比90%以上
に常圧焼結することを特徴とする引張強度が25kg/
mm以上であるアルミニウム焼結合金の製造方法。
1. Simultaneously contains 6.0 to 40.0% by weight of Si, 2.0 to 8.0% by weight of Cu, 0.2 to 2.0% by weight of Mg, and the balance is substantially aluminum. A rapidly solidified aluminum alloy powder obtained by pulverizing a molten metal having a composition consisting of at a solidification rate of 10 2 ° C / sec or more is compression-molded in a cold state to a density ratio of 70% or more, and the molded body has a dew point of -10 ° C.
500 to 580 ° C in a non-oxidizing atmosphere below
Below the Al-Si eutectic temperature in the temperature range of Al-Si-C
Atmospheric pressure sintering at a temperature higher than the u-Mg based liquid phase appearance temperature and at a sintered body density ratio of 90% or higher is characterized by a tensile strength of 25 kg /
A method for producing an aluminum sintered alloy having a thickness of 2 mm or more.
【請求項2】 Siを6.0〜40.0重量%、Cuを
2.0〜8.0重量%、Mgを0.2〜2.0重量%同
時に含有し残りが実質的にアルミニウムからなる組成
を有し、かつ金属間化合物、炭化物、酸化物、窒化物、
ほう化物、硅化物から選ばれた少なくとも1種以上の粒
子を0.5〜10体積%添加した溶湯を凝固速度が10
℃/sec以上で粉末化した急冷凝固アルミニウム合
金粉末を、冷間で密度比70%以上に圧縮成形し、この
成形体を露点が−10℃以下である非酸化性雰囲気中に
おいて500〜580℃の温度域でAl−Si系共晶温
度以下、Al−Si−Cu−Mg系液相出現温度以上、
焼結体密度比90%以上に常圧焼結することを特徴とす
る引張強度が25kg/mm以上であるアルミニウム
焼結合金の製造方法。
2. Simultaneously contains 6.0 to 40.0% by weight of Si, 2.0 to 8.0% by weight of Cu, 0.2 to 2.0% by weight of Mg, and the balance is substantially aluminum. Having a composition consisting of, and intermetallic compounds, carbides, oxides, nitrides,
A molten metal containing 0.5 to 10% by volume of at least one kind of particles selected from borides and silicides has a solidification rate of 10%.
A rapidly solidified aluminum alloy powder powdered at 2 ° C./sec or more is cold-compressed to a density ratio of 70% or more in a non-oxidizing atmosphere having a dew point of −10 ° C. or less in a non-oxidizing atmosphere. Below the Al-Si eutectic temperature, above the Al-Si-Cu-Mg liquid phase appearance temperature in the temperature range of
A method for producing an aluminum sintered alloy having a tensile strength of 25 kg / mm 2 or more, characterized by normal pressure sintering to a sintered body density ratio of 90% or more.
【請求項3】 急冷凝固アルミニウム合金粉末を得るた
めの溶湯中に、Fe、Ni、Mn、Ti、Cr、V、M
o、Zr、Znの内選ばれた1種類以上の成分を8重量
%以下含有したことを特徴とする請求項1又は2に記載
のアルミニウム焼結合金の製造方法。
3. A method for obtaining a rapidly solidified aluminum alloy powder.
Fe, Ni, Mn, Ti, Cr, V, M
8% by weight of at least one selected from o, Zr and Zn
3% or less.
Production method of aluminum sintered alloy.
【請求項4】 急冷凝固アルミニウム合金粉末を、25
0〜450℃の温度域で焼鈍した後に、冷間で密度比7
0%以上に圧縮成形することを特徴とする請求項1乃至
3のいずれかの項に記載のアルミニウム焼結合金の製造
方法。
4. A rapidly solidified aluminum alloy powder comprising 25
After annealing in a temperature range of 0 to 450 ° C., a density ratio of 7
The compression molding is performed to 0% or more.
3. Manufacture of the sintered aluminum alloy according to any one of the items 3
Method.
【請求項5】 上記請求項1乃至4のいずれかの項に記
載の製造方法により製造された、引張強度が25kg/
mm 以上であるアルミニウム焼結合金。
5. The method according to claim 1, wherein:
The tensile strength manufactured by the manufacturing method described above is 25 kg /
mm aluminum sintered alloy is 2 or more.
JP03124846A 1991-04-25 1991-04-25 Manufacturing method of aluminum sintered alloy Expired - Fee Related JP3095026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03124846A JP3095026B2 (en) 1991-04-25 1991-04-25 Manufacturing method of aluminum sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03124846A JP3095026B2 (en) 1991-04-25 1991-04-25 Manufacturing method of aluminum sintered alloy

Publications (2)

Publication Number Publication Date
JPH04325648A JPH04325648A (en) 1992-11-16
JP3095026B2 true JP3095026B2 (en) 2000-10-03

Family

ID=14895548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03124846A Expired - Fee Related JP3095026B2 (en) 1991-04-25 1991-04-25 Manufacturing method of aluminum sintered alloy

Country Status (1)

Country Link
JP (1) JP3095026B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101559442B1 (en) * 2014-03-17 2015-10-13 대한소결금속 주식회사 Outside densification method for aluminum alloy sintered parts

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10006269A1 (en) 2000-02-12 2001-08-16 Bayerische Motoren Werke Ag Method for producing a metal component for a drive unit, in particular an internal combustion engine, which interacts with a friction partner via a sliding surface
JP5568818B2 (en) * 2008-03-31 2014-08-13 住友電工焼結合金株式会社 Liquid phase sintered aluminum alloy
DE102019003187A1 (en) * 2019-05-06 2020-11-12 Daimler Ag Component, in particular for a vehicle, and a method for producing such a component
CN111842913A (en) * 2020-06-30 2020-10-30 同济大学 Aluminum-zinc alloy powder for 3D printing and preparation method thereof
CN112210696B (en) * 2020-10-09 2022-02-25 东莞理工学院 High-strength and high-wear-resistance Al-Si alloy and preparation method and application thereof
CN114086038A (en) * 2021-11-24 2022-02-25 齐鲁工业大学 Transition metal element added Al-Si-Cu-Mg series casting alloy material and treatment process thereof
CN114855035B (en) * 2022-05-26 2023-05-19 扬州工业职业技术学院 Heat-resistant high-strength automobile hub aluminum alloy material
CN115044372B (en) * 2022-06-27 2023-07-11 散裂中子源科学中心 Luminescent material for particle beam excitation and preparation method thereof
CN116083746A (en) * 2023-01-16 2023-05-09 上海交通大学 Preparation method of intra-crystal aluminum-oxygen-carbon dispersion strengthening carbon nano tube/aluminum-based composite material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101559442B1 (en) * 2014-03-17 2015-10-13 대한소결금속 주식회사 Outside densification method for aluminum alloy sintered parts

Also Published As

Publication number Publication date
JPH04325648A (en) 1992-11-16

Similar Documents

Publication Publication Date Title
US5372775A (en) Method of preparing particle composite alloy having an aluminum matrix
EP0669404B1 (en) Wear-resistant sintered aluminum alloy and method for producing the same
US5460775A (en) Nitrogen-combined aluminum sintered alloys and method of producing the same
JP3741654B2 (en) Manufacturing method of high density iron-based forged parts
US5552109A (en) Hi-density sintered alloy and spheroidization method for pre-alloyed powders
JP2761085B2 (en) Raw material powder for Al-Si based alloy powder sintered parts and method for producing sintered parts
JP3095026B2 (en) Manufacturing method of aluminum sintered alloy
US6468468B1 (en) Method for preparation of sintered parts from an aluminum sinter mixture
JP2546660B2 (en) Method for producing ceramics dispersion strengthened aluminum alloy
Kim Yield and compaction behavior of rapidly solidified Al–Si alloy powders
JPH0120215B2 (en)
JP4640134B2 (en) Method for producing high-strength, high-density iron-based sintered body
JP2509052B2 (en) Nitrogen compound aluminum sintered alloy and method for producing the same
JP4008597B2 (en) Aluminum-based composite material and manufacturing method thereof
JPH0625386B2 (en) Method for producing aluminum alloy powder and sintered body thereof
JPH06330214A (en) Aluminum power alloy having high hardness and wear resistnce and its production
So et al. Assessment of the powder extrusion of silicon–aluminium alloy
JPH0578708A (en) Production of aluminum-based grain composite alloy
JPH029099B2 (en)
JP4704720B2 (en) Heat-resistant Al-based alloy with excellent high-temperature fatigue properties
JPH10512625A (en) Spheroidizing method for high density sintered alloy and pre-alloyed powder
JP2798709B2 (en) Manufacturing method of aluminum alloy powder sintered parts
JP2584488B2 (en) Processing method of wear resistant aluminum alloy
JPH07278713A (en) Aluminum powder alloy and its production
JPH08269591A (en) Aluminum alloy powder molding partially containing ceramic particles and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees