JPH029099B2 - - Google Patents

Info

Publication number
JPH029099B2
JPH029099B2 JP62081238A JP8123887A JPH029099B2 JP H029099 B2 JPH029099 B2 JP H029099B2 JP 62081238 A JP62081238 A JP 62081238A JP 8123887 A JP8123887 A JP 8123887A JP H029099 B2 JPH029099 B2 JP H029099B2
Authority
JP
Japan
Prior art keywords
alloy
aluminum
silicon
weight
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62081238A
Other languages
Japanese (ja)
Other versions
JPS62247044A (en
Inventor
Jusuke Nagasaka
Ryoji Kameda
Sogo Hase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP8123887A priority Critical patent/JPS62247044A/en
Publication of JPS62247044A publication Critical patent/JPS62247044A/en
Publication of JPH029099B2 publication Critical patent/JPH029099B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、材料自体の耐摩耗性ならびに摺動相
手材の耐摩耗性および製造時に使用する型の耐損
耗性あるいは材料の被削加工性などに卓越したア
ルミニウム−シリコン焼結合金材料に関する。 〔従来の技術〕 近年、摺動部品の軽量化、熱伝導性、耐蝕性、
非磁性、コストなどの理由により、各種アルミニ
ウム合金中、耐摩耗性にすぐれた鋳造アルミニウ
ム−シリコン系合金が用いられている。シリコン
含有量の少ない亜共晶あるいは共晶アルミニウム
−シリコン合金では、アルミニウムの初晶及び共
晶状のαを析出し、シリコンの分散状態が劣るた
め耐摩耗性が十分でなく、苛酷な摺動条件下の部
品には利用しえない欠点を有する。他方シリコン
含有量の多い過共晶アルミニウム−シリコン合金
は、高い硬度を有するシリコンを初晶として析出
し、優れた耐摩耗性を有する。摩擦摺動相手材を
著しく損耗せしめること、および摺動条件によつ
てはマトリツクスより脱落した粗大なシリコン粒
子が、砥粒研摩作用によつて材料自体の魔耗も増
大せしめること、ならびに被削加工性に乏しく精
密な加工が困難であることなどの欠点を有してい
る。このため初晶シリコン結晶粒子を微細化せし
める種々の試みがなされているが、鋳造合金では
まだ満足すべき材料を得るに至つていない。 一方、粉末冶金法は各種の分散粒子を微細均一
分散せしめるのに有効な手段として周知である
が、本発明材料は通常の粉末冶金法により製造す
ることは困難である。すなわち、アルミニウム、
シリコンとも非常に酸化されやすく、その粉末の
表面は強固な酸化被膜で覆われており、焼結性を
著しく阻害するため、アルミニウム−シリコン合
金を焼結させるためには酸化被膜の破壊を生じ
る。少なくとも一部液相の生成を伴う焼結温度を
選択する必要があり、このような液相生成温度条
件下では、アルミニウム−シリコンの混合粉末あ
るいは合金粉末とをとわずシリコン粒子が焼結中
に成長粗大化する傾向を有している。この傾向は
微細なシリコン粒子を含有するものほど顕著であ
り、本発明範囲の材料をつくることは困難であ
る。 〔発明が解決しようとする問題点〕 本発明は、前述のような欠点を改善し、材料自
体の耐摩耗性、摺動相手材の耐摩耗性および製造
時に使用する型の耐損耗性あるいい被削加工性な
どに卓越した特徴を有するアルミニウム−シリコ
ン焼結合金を提供せんとするものである。 〔問題点を解決するための手段〕 本発明のアルミニウム合金の基本的な特徴は、
シリコンを8〜30重量%含有し残部がアルミニウ
ムよりなるアルミニウム合金粉末、もしくは シリコン 8〜30重量% 銅、マグネシウム、ニツケル、鉄、マンガンの
うちの少くとも1種以上 0.1〜10重量% アルミニウム 残部 よりなる合金粉末を焼結してなるアルミニウム焼
結合金において、該合金において、焼結を固相で
行ない、かつ押出又は鍛造により塑性変形を加え
て緻密化することにより該合金が真密度に対して
95%以上の密度を有し、かつ引張強度が22Kg/mm2
以上であり、シリコンの最大粒子径が10μm以下
であることを特徴とする高強度耐摩耗性アルミニ
ウム合金にある。 本発明の合金は一般に次のようにして製造され
る。 最大粒子径10μ以下のシリコンを重量%(以下
同じ)で8〜30%含有するアルミニウムとシリコ
ンを主成分として通常含有する銅、マグネシウ
ム、ニツケル、マンガンおよび鉄、などの諸成分
の一部または全部を含有し、または含有しない、
好ましくは、−30メツシユ+350メツシユのアトマ
イズ合金粉末をプレス成形した圧粉成形体、また
は該圧粉成形体を前記合金粉末の固相焼結温度領
域内、すなわち、300℃以上液相生成温度以下に
おいて非酸化性雰囲気中で焼結してなる焼結体を
前記固相焼結温度領域内で押出し鍛造などの塑性
変形を伴う外部応力を加えて緻密化することによ
つて得られる。本材料はこのまゝでもすぐれた耐
摩耗性を有するものであるが、更に本材料に潤滑
性を有する黒鉛5〜30重量%、WS2あるいは
MoS2等の硫化物を一種以上合計で5〜30重量%
CaF2あるいはBaF2等の弗化物を一種以上合計で
5〜30重量%を夫々単独で含有せしめたもの、あ
るいは黒鉛、硫化物、弗化物の二種以上含有し、
その合計量が5〜30重量%以下含有せしめ潤滑性
を賦与することにより潤滑油膜の形成が不十分な
摺動条件あるいは潤滑油が使用できないような、
いわゆる乾式摺動条件下で優れた摺動性能を有
し、被削加工性も改善せしめる。 以下、本発明の組成範囲等の選定理由を述べ
る。 シリコンが8%以下では、耐摩耗性改善効果が
少なく30%以上含有せしめても摺動性能向上効果
はほとんど増加せず、かえつて強度が低下するこ
とおよびアトマイズ粉末を得るのに溶湯温度を高
くする必要が生ずる等の理由により好ましい範囲
を8〜30%とした。 本発明合金の金属組織はアルミニウムを主成分
とするマトリツクス中に硬い硬度を有するシリコ
ンが微細でかつ均一に分散していることに特徴が
ある。このことが本発明合金の優れた特性を発揮
する主因をなしているものであつてシリコンの最
大粒子径が少なくとも10μ以下、好ましくは5μ以
下であることが必要である。(第1図) 本発明合金の微細組織を得るためには、シリコ
ンの最大粒子径が10μ以下好ましくは5μ以下のシ
リコンを所定量含有するアルミニウムとシリコン
を主成分とするアトマイズ合金粉末を原料粉末と
して、その後の焼結工程あるいは緻密化工程にお
ける加熱温度を液相の生成を伴なわない固相焼結
温度領域内に保持することが必要である。 アトマイズ合金粉末中のシリコン粒子径は合金
組成、溶湯温度、粉末粒度など各種要因に影響を
受けるが、アトマイズ粉の冷却凝固速度に主とし
て依在しており、本発明所期のシリコン粒子径を
有するアトマイズ粉末を得るには、冷却凝固速度
が少なくとも10℃/sec以上、好ましくは50℃/
sec以上であることが必要である。この条件は通
常のアトマイズ法で、比較的容易に選択しうるも
のである。微細なシリコン粒子を含有するアトマ
イズ合金粉末の粒度は−30メツシユ+350メツシ
ユの粒度範囲のものが最適である。粉末粒度が30
メツシユ以上では含有するシリコン粒の粗大化の
傾向が認められることおよびプレス成型した圧粉
成形体の強度が低下することなどの理由により好
ましくない。アトマイズ合金粉末の表面に必然的
に存在する酸化物は本発明合金の場合、合金内に
細かく分散して高温強度、ならびに耐摩耗性を向
上せしめる効果を有するが、粉末粒度が350メツ
シユ以下の微粉末では酸化物の含有量が飛躍的に
増大し、プレス成形型や緻密化工程に用いる型や
ダイを損耗せしめること、ならびに塑性変形態が
悪く緻密化を阻害することなど製造上の問題、あ
るいはアルミナやシリカは非常に硬質な酸化物
で、摩擦摺動相手材の損耗を増大せしめることや
被削加工性を阻害するなどの性能上の問題があ
る。また酸化物含有量の比較的少ない350メツシ
ユ以下の微粉末の製造は可能であるが、気中の取
扱いは発火の危険性を伴いあまり実用的でないの
で好ましい範囲は−30+350メツシユである。圧
粉成形体の焼結工程、あるいは緻密化工程におけ
る加熱温度は、300℃以上好ましくは再結晶温度
以上で、液相生成温度以下での温度で焼結あるい
は緻密化処理を行うことが必要である。300℃以
下の加熱温度では緻密化に必要な加工性が得られ
ず、液相の生成を伴うような加熱温度ではシリコ
ン粒子の成長阻大化のため所期の目的を達し得な
い。本発明における焼結工程は、緻密化工程前に
中間的な加工を要する場合、あるいは最終製品形
状が複雑で素材強度が必要な場合などに実施し、
通常は圧粉成形体のまゝ緻密化工程を実施しうる
ものである。緻密化工程は、酸化の抑制とガス抜
けを良好とするため真密度の65〜85%の密度とし
たた多孔質な圧粉成形体あるいは該圧粉成形体を
固相焼結してなる多孔質焼結体を押出し、鍛造な
どの塑性変形を伴う外部応力を加えて少なくとも
理論密度比95%以上の密度まで緻密化することが
必要である。当然のことではあるが、外部応力
と、理論密度比および強度の間には密接な関連が
ある。例えば、押出しの場合、押出し比と強度の
間には、第3図に示すような関係がある。実施例
1のBに示す成分の焼結アルミニウム合金を焼結
後、各種の押出比で押し出し引張強さとの関係を
示したものである。緻密化が95%以下では、残存
空孔率が多いことならびに粒子間の酸化被膜の破
断が不十分なため粒子間の結合性が弱いため、所
期の目的を達し得ない。本発明合金は引張強度が
22Kg/mm2以上という高強度を有する。 本発明では多孔質な圧粉成形体を用いるためプ
レス形時の成形圧力は1〜2t/cm2でよく、成形型
の損耗が少なく、また多孔質体を緻密化せしめる
ため緻密化の際の変形抵抗が小さいために緻密化
用の工具寿命も非常に長い特徴を有する。 上述アトマイズ合金粉末に通常の合金成分とし
て、銅、マグネシウム、マンガン、鉄、ニツケル
の少なくとも1種を0.1〜10重量%含有せしめる
ことによつて、強度、耐熱性の向上の効果があ
る。10重量%以上となるとかえつて脆化したり、
製造時緻密化が困難となる。また、0.1重量%以
下ではその効果がない。 この中で、ニツケル、マンガン、鉄は通常の鋳
造アルミ合金では粗大な偏析物を生成し、強度を
著しく低下させる為、ごく微量の添加に限られて
いた。しかし、本発明によれば、アルミニウム焼
結合金に偏析が生じず、微細均一な分散強化粒子
を生成し、強度の向上を帰与するため、積極的に
加えることが可能である。 本発明材の摺動特性改善を目的として黒鉛5〜
30%、WS2、あるいはMoS2等の硫化物を一種以
上合計で5〜30%、CaF2あるいはBaF2等の弗化
物を一種以上合計で5〜30%の固体潤滑成分を
夫々単独で含有せしめたもの、あるいは黒鉛硫化
物、弗化物を二種以上含有し、その合計量が5〜
30%含有せしめることができる。 これらの固体潤滑成分の添加は摩擦抵抗を減少
せしめ、材料自体の耐摩耗性および相手材の損耗
を改善する効果を有し、特に潤滑油膜の形成が不
十分な摺動条件や潤滑油が使用できないような乾
式摺動条件下で優れた摺動性能を発揮するもので
ある。しかしその添加含有量がそれぞれの規定量
以下では添加の効果が少なく、それぞれの規定量
以上に添加含有せしめても、性能向上効果はほと
んど増加せず、材質強度が低下するので好ましく
ない。なおこれら固体潤滑成分を含有するものは
含有する潤滑成分により、耐焼付性、耐摩耗性な
どの摺動特性がやゝ異なり、例えば潤滑油中で苛
酷な摺動条件下で用いられるものには、黒鉛の如
き自己潤滑性と保油性を有するものが適当であ
り、低温度から高温度までの温度変化の大きい条
件下で用いられる場合には黒鉛あるいはWS2等の
硫化物と高温特性にすぐれたCaF2等の弗化物の
二種含有したものが特にすぐれた効果を発揮する
等が認められた。 〔実施例〕 以上のような本発明の構成、効果を具体的に例
示するために本発明の実施例を以下説明する。 実施例 1 第1表に示す組成を有する合金をそれぞれ溶解
し冷却凝固速度が50℃/sec以上になる条件で作
製したアトマイズ合金粉を−30メツシユ+350メ
ツシユおよび−350メツシユに粒度調整した粉末
を用い、2ton/cm2の圧力での圧粉成形体および該
圧粉成形体を500℃×30分間水素雰囲気中で焼結
せしめた焼結体を450℃に窒素雰囲気中で加熱し
たものを押出比1:3.5のダイを用い押出しを行
い第2表に示す合金を得た。また比較材を得るた
め第1表に示す組成の合金を溶解し、金型鋳造し
てシリコン最大粒子径40〜50μを有する鋳造材
(試料No.12)および第1表に示す組成に−60メツ
シユのAl粉末−250メツシユのSi粉末−350メツ
シユ以下のCu、Mg、Niの粉末を均一混合した粉
末を前記と同条件で圧縮成型焼結、押出しを行つ
て得た合金の特性を第2表(試料No.11)に示す。
[Industrial Application Field] The present invention is an aluminum-silicon material that is excellent in wear resistance of the material itself, wear resistance of sliding mating materials, wear resistance of molds used during manufacturing, and machinability of the material. Regarding sintered alloy materials. [Conventional technology] In recent years, the weight of sliding parts, thermal conductivity, corrosion resistance,
Among various aluminum alloys, cast aluminum-silicon alloys, which have excellent wear resistance, are used for reasons such as non-magnetism and cost. Hypoeutectic or eutectic aluminum-silicon alloys with low silicon content precipitate primary aluminum and eutectic α, and the dispersion state of silicon is poor, resulting in insufficient wear resistance and severe sliding resistance. It has drawbacks that make it unusable for parts under certain conditions. On the other hand, hypereutectic aluminum-silicon alloys with a high silicon content precipitate silicon with high hardness as primary crystals and have excellent wear resistance. Friction can cause significant wear and tear on the sliding mating material, and depending on the sliding conditions, coarse silicon particles that fall off from the matrix can increase the wear and tear of the material itself due to the abrasive abrasive action. It has disadvantages such as poor flexibility and difficulty in precise processing. For this reason, various attempts have been made to make the primary silicon crystal grains finer, but a satisfactory cast alloy material has not yet been obtained. On the other hand, although powder metallurgy is well known as an effective means for finely and uniformly dispersing various types of dispersed particles, it is difficult to produce the material of the present invention by ordinary powder metallurgy. i.e. aluminum,
Silicon is also very easily oxidized, and the surface of its powder is covered with a strong oxide film, which significantly inhibits sinterability, so the oxide film must be destroyed in order to sinter the aluminum-silicon alloy. It is necessary to select a sintering temperature that produces at least a partial liquid phase, and under such liquid phase forming temperature conditions, silicon particles, regardless of the aluminum-silicon mixed powder or alloy powder, are sintered. It has a tendency to grow and become coarser. This tendency is more pronounced as the material contains finer silicon particles, making it difficult to produce a material within the scope of the present invention. [Problems to be Solved by the Invention] The present invention improves the above-mentioned drawbacks and improves the abrasion resistance of the material itself, the abrasion resistance of the sliding partner material, and the abrasion resistance of the mold used during manufacturing. The object of the present invention is to provide an aluminum-silicon sintered alloy that has excellent characteristics such as machinability. [Means for solving the problems] The basic characteristics of the aluminum alloy of the present invention are:
Aluminum alloy powder containing 8 to 30% by weight of silicon and the balance being aluminum, or 8 to 30% by weight of silicon, at least one of copper, magnesium, nickel, iron, and manganese 0.1 to 10% by weight of aluminum, the balance In an aluminum sintered alloy made by sintering an alloy powder, the alloy is sintered in a solid phase, and the alloy is densified by plastic deformation by extrusion or forging.
It has a density of 95% or more and a tensile strength of 22Kg/mm 2
The above provides a high-strength, wear-resistant aluminum alloy characterized in that the maximum particle size of silicon is 10 μm or less. The alloy of the present invention is generally produced as follows. Part or all of various components such as copper, magnesium, nickel, manganese, and iron that usually contain aluminum and silicon as main components, containing 8 to 30% by weight (the same applies hereinafter) of silicon with a maximum particle size of 10μ or less. Contains or does not contain
Preferably, it is a compacted body obtained by press-molding an atomized alloy powder of -30 mesh + 350 mesh, or the compacted body is heated within the solid phase sintering temperature range of the alloy powder, that is, above 300°C and below the liquid phase formation temperature. It is obtained by sintering a sintered body in a non-oxidizing atmosphere and densifying it by applying external stress accompanied by plastic deformation, such as by extrusion forging, within the solid phase sintering temperature range. Although this material has excellent wear resistance as it is, it is further added with 5 to 30% by weight of graphite, WS 2 or WS 2 , which has lubricating properties.
5 to 30% by weight of one or more types of sulfides such as MoS 2
Contains one or more fluorides such as CaF 2 or BaF 2 in a total amount of 5 to 30% by weight, or contains two or more of graphite, sulfide, and fluoride,
By containing the total amount of 5 to 30% by weight or less to impart lubricity, it is possible to avoid sliding conditions where the formation of a lubricating oil film is insufficient or where lubricating oil cannot be used.
It has excellent sliding performance under so-called dry sliding conditions and also improves machinability. The reasons for selecting the composition range of the present invention will be described below. If silicon content is less than 8%, the effect of improving wear resistance is small, and even if it is contained more than 30%, the effect of improving sliding performance will hardly increase, but the strength will decrease and the temperature of the molten metal will have to be high to obtain atomized powder. Due to reasons such as the need to do so, the preferable range is set to 8 to 30%. The metal structure of the alloy of the present invention is characterized in that silicon having hardness is finely and uniformly dispersed in a matrix mainly composed of aluminum. This is the main reason why the alloy of the present invention exhibits excellent properties, and it is necessary that the maximum particle size of silicon is at least 10 μm or less, preferably 5 μm or less. (Figure 1) In order to obtain the microstructure of the alloy of the present invention, an atomized alloy powder mainly composed of aluminum and silicon containing a predetermined amount of silicon with a maximum silicon particle size of 10 μm or less, preferably 5 μm or less is used as a raw material powder. Therefore, it is necessary to maintain the heating temperature in the subsequent sintering step or densification step within a solid phase sintering temperature range that does not involve the formation of a liquid phase. The silicon particle size in the atomized alloy powder is influenced by various factors such as alloy composition, molten metal temperature, and powder particle size, but it mainly depends on the cooling solidification rate of the atomized powder, and the silicon particle size as desired in the present invention is achieved. To obtain atomized powder, the cooling solidification rate is at least 10°C/sec or more, preferably 50°C/sec.
It must be greater than or equal to sec. These conditions can be selected relatively easily using a normal atomization method. The particle size of the atomized alloy powder containing fine silicon particles is optimally in the range of -30 mesh + 350 mesh. Powder particle size is 30
If it is more than a mesh size, it is not preferable because the silicon particles contained therein tend to become coarser and the strength of the press-molded compact is reduced. In the case of the present alloy, the oxides that naturally exist on the surface of the atomized alloy powder are finely dispersed within the alloy and have the effect of improving high-temperature strength and wear resistance. In powder, the content of oxides increases dramatically, causing manufacturing problems such as wear and tear on press molds and molds and dies used in the densification process, as well as poor plastic deformation and inhibiting densification. Alumina and silica are extremely hard oxides, and have performance problems such as increasing wear and tear on the friction-sliding mating material and impairing machinability. Although it is possible to produce a fine powder with a relatively low oxide content of 350 mesh or less, handling in air is not very practical due to the risk of ignition, so the preferred range is -30+350 mesh. The heating temperature in the sintering or densification process of the compacted compact is 300°C or higher, preferably at least the recrystallization temperature, and it is necessary to perform the sintering or densification treatment at a temperature below the liquid phase formation temperature. be. A heating temperature of 300° C. or lower does not provide the workability necessary for densification, and a heating temperature that involves the formation of a liquid phase impairs the growth of silicon particles, making it impossible to achieve the intended purpose. The sintering process in the present invention is carried out when intermediate processing is required before the densification process, or when the final product shape is complex and material strength is required.
Normally, the densification process can be carried out while the compact is still in use. The densification process involves forming a porous powder compact with a density of 65 to 85% of the true density in order to suppress oxidation and improve gas release, or a porous compact formed by solid-phase sintering of the compact. It is necessary to extrude a quality sintered body and apply external stress that causes plastic deformation, such as by forging, to densify it to a density that is at least 95% of the theoretical density ratio. Naturally, there is a close relationship between external stress, theoretical density ratio and strength. For example, in the case of extrusion, there is a relationship between extrusion ratio and strength as shown in FIG. The graph shows the relationship between extrusion tensile strength and extrusion strength at various extrusion ratios after sintering the sintered aluminum alloy having the components shown in B of Example 1. If the densification is less than 95%, the desired purpose cannot be achieved because there is a large residual porosity and the oxide film between the particles is insufficiently broken, resulting in weak bonding between the particles. The alloy of the present invention has a tensile strength of
It has high strength of over 22Kg/mm 2 . In the present invention, since a porous powder compact is used, the molding pressure during press molding may be 1 to 2 t/cm 2 , so there is little wear and tear on the mold, and since the porous body is densified, Since the deformation resistance is low, the tool life for densification is also very long. By containing 0.1 to 10% by weight of at least one of copper, magnesium, manganese, iron, and nickel as a common alloying component in the above-mentioned atomized alloy powder, strength and heat resistance can be improved. If it exceeds 10% by weight, it may become brittle,
Difficult to densify during manufacturing. Further, if it is less than 0.1% by weight, it has no effect. Among these, nickel, manganese, and iron have been limited to addition in very small amounts because they form coarse segregated substances in ordinary cast aluminum alloys, significantly reducing strength. However, according to the present invention, since segregation does not occur in the aluminum sintered alloy, fine and uniform dispersion-strengthening particles are produced, and the strength is improved, it is possible to actively add it. Graphite 5~
30%, one or more sulfides such as WS 2 or MoS 2 in a total of 5 to 30%, and one or more fluorides such as CaF 2 or BaF 2 in a total of 5 to 30% of each solid lubricant component. Contains two or more types of graphite sulfide or fluoride, the total amount of which is 5 to 5.
It can be made to contain 30%. The addition of these solid lubricating components reduces frictional resistance and has the effect of improving the wear resistance of the material itself and the wear and tear of the mating material, especially when the lubricating oil is used or under sliding conditions where the lubricating oil film is insufficiently formed. It exhibits excellent sliding performance under dry sliding conditions. However, if the added content is less than the respective specified amount, the effect of addition is small, and even if the added content is greater than the respective specified amount, the performance improvement effect will hardly increase and the material strength will decrease, which is not preferable. Products containing these solid lubricating components have slightly different sliding properties such as seizure resistance and wear resistance depending on the lubricating component contained. For example, products that are used under harsh sliding conditions in lubricating oil , materials with self-lubricating and oil-retaining properties such as graphite are suitable, and when used under conditions with large temperature changes from low to high temperatures, materials with excellent high-temperature properties such as graphite or sulfides such as WS 2 are suitable. It was found that a compound containing two types of fluorides such as CaF 2 exhibited particularly excellent effects. [Examples] Examples of the present invention will be described below in order to specifically illustrate the configuration and effects of the present invention as described above. Example 1 Atomized alloy powders were prepared by melting alloys having the compositions shown in Table 1 under conditions where the cooling solidification rate was 50°C/sec or higher, and the particle size was adjusted to -30 mesh + 350 mesh and -350 mesh. The compacted compact was sintered at 500°C for 30 minutes in a hydrogen atmosphere, heated to 450°C in a nitrogen atmosphere, and then extruded. Extrusion was carried out using a die with a ratio of 1:3.5 to obtain the alloys shown in Table 2. In addition, in order to obtain comparative materials, an alloy having the composition shown in Table 1 was melted and cast in a mold to obtain a cast material (sample No. 12) having a silicon maximum particle size of 40 to 50μ and a -60% alloy having the composition shown in Table 1. The properties of the alloy obtained by compressing, sintering, and extruding a powder consisting of a mesh of Al powder, a Si powder of 250 mesh, and a powder of Cu, Mg, and Ni of less than 350 mesh under the same conditions as described above are shown in the second table. It is shown in the table (sample No. 11).

【表】【table】

【表】 結後、押出し緻密化したものを示す。
※ 2. 硬さおよび引張り強さは、室温における値を
示す。
第2表に記載の試料を第4表、第5表に示す摩
擦摩耗試験、第6表に示す被削加工試験を行い、
その結果をおのおの第8表、第9表に示した。 また第2表に記載のNo.3およびNo.9の粉末を用
いて、圧縮成形時に用いる金型の摩耗の度合を調
べた。この方法はあくまでもモデル的な試験であ
るが、この結果によれば第10表に示すように、試
料No.3の方が金型の摩耗が少ないものと推定され
る。 実施例 2 17.1%Si、3.1%Cu、0.30%Mg、0.10%Ni残部
が実質的にAlからなる合金を溶解し、冷却凝固
速度が50℃/sec以上になる条件で作製した−30
+350メツシユのアトマイズ合金粉末と平均粒径
10μの黒鉛粉末、最大粒子径10μ以下のWS2、お
よびCaF2の粉末を第3表に示す組成に均一混合
した粉末を2t/cm3の圧力でプレス成型した圧縮成
型体を520℃×10分間加熱したものを理論密度比
で95%以上の密度になるように型鍛造を行つて第
3表に示す合金を得た。これらの試料を実施例1
と同様に第4表、第5表に示す摩擦摩耗試験、第
6表に示す被削加工性試験を行い、その結果をま
とめて第8表、第9表に示した。
[Table] Shows the results of extrusion and densification after solidification.
*2. Hardness and tensile strength indicate values at room temperature.
The samples listed in Table 2 were subjected to the friction and wear tests shown in Tables 4 and 5, and the machining tests shown in Table 6.
The results are shown in Tables 8 and 9, respectively. Furthermore, using the powders No. 3 and No. 9 listed in Table 2, the degree of wear of the mold used during compression molding was investigated. Although this method is just a model test, it is estimated that sample No. 3 has less wear on the mold, as shown in Table 10, according to the results. Example 2 -30 produced by melting an alloy consisting of 17.1% Si, 3.1% Cu, 0.30% Mg, and 0.10% Ni, the remainder of which was essentially Al, and under conditions where the cooling solidification rate was 50°C/sec or higher.
+350 mesh atomized alloy powder and average particle size
A compression-molded body obtained by press-molding a powder of 10μ graphite powder, WS 2 with a maximum particle size of 10μ or less, and CaF 2 powder with the composition shown in Table 3 at a pressure of 2t/cm 3 was heated at 520℃×10 The alloys shown in Table 3 were obtained by die forging to a density of 95% or more based on the theoretical density ratio. These samples were prepared in Example 1.
Similarly, the friction and wear tests shown in Tables 4 and 5 and the machinability test shown in Table 6 were conducted, and the results are summarized in Tables 8 and 9.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 実施例 3 第11表に示す組成を有する合金をそれぞれ溶解
し、冷却凝固速度が50℃/sec以上になる条件で
作製した−30メツシユのアトマイズ合金粉末を、
2t/cm2の圧力で静水圧成形し、得られた圧縮成形
体を押出比10:1450℃で熱間押出した。得られた
押出材の真密度(理論密度比)は第1表の通りで
あり、T6処理(490℃、2時間加熱水焼入れし、
190℃、6時間時効加熱)後の特性を第12表に、
また第4表の試験条件による摩擦摩耗試験の結
果を第13表に示す。
[Table] Example 3 -30 mesh atomized alloy powder was prepared by melting the alloys having the compositions shown in Table 11 under conditions such that the cooling solidification rate was 50°C/sec or higher.
Hydrostatic pressing was carried out at a pressure of 2 t/cm 2 , and the resulting compression molded product was hot extruded at an extrusion ratio of 10:1450°C. The true density (theoretical density ratio) of the obtained extruded material is as shown in Table 1, and it was subjected to T6 treatment (490℃, water quenching for 2 hours,
Table 12 shows the properties after aging heating at 190℃ for 6 hours.
Furthermore, Table 13 shows the results of the friction and wear test under the test conditions shown in Table 4.

【表】【table】

【表】 本発明組成の鋳造部品は、偏析が著しく作製で
きない。従つて比較材としては、第1表No.Bの鋳
造品を同じT6処理したものを用いた。
[Table] Cast parts having the composition of the present invention cannot be produced with significant segregation. Therefore, as a comparison material, the cast product No. B in Table 1, which had been subjected to the same T6 treatment, was used.

【表】【table】

【表】【table】

【表】 上記の実施例のデータから明らかな通り、Fe、
Mn、Niは合計量又は単独量で3%以上の時、耐
摩耗性および強度、すなわち、抗折力、引張り強
さが高くなる。 実施例 4 12%Si、5%Fe、4%Cu、1%Mg、残部が実
質的にAlからなる合金を溶解し、実施例1と同
様にして得たアトマイズ合金粉を下記第14表に示
される各種の方法で成形したものの引張り強さお
よび伸びを測定した結果を同様に示す:
[Table] As is clear from the data of the above examples, Fe,
When the total amount or individual amount of Mn and Ni is 3% or more, the wear resistance and strength, that is, transverse rupture strength and tensile strength are increased. Example 4 Atomized alloy powder obtained in the same manner as in Example 1 by melting an alloy consisting of 12% Si, 5% Fe, 4% Cu, 1% Mg, and the remainder substantially Al, is shown in Table 14 below. The results of measuring the tensile strength and elongation of molded products using the various methods shown are also shown:

【表】 したがつて、本発明の合金は機械的強度にすぐ
れ、材料自体の耐摩耗性、摺動相手材の耐損耗性
および製造時の使用型の耐損耗性、あるいは被削
加工性などに卓越した特性を有するものである。
なお本発明の合金は機械的強度の向上等を目的と
してアルミニウム合金に通常実施される熱処理が
可能なことはいうまでもない。特に、引張強度が
25Kg/mm2以上でかつ、摩耗量が8×10-7mm2/Kg以
下のような合金であれば、従来は使えなかつた、
コンプレツサーベーン、コンロツド、ピストン、
シリンダー等の分野へも使用が可能となる。この
ような分野では、、部品の軽量化に努力がなされ
ており、本発明による合金は、上記のような分野
へ使用できるようになつた。
[Table] Therefore, the alloy of the present invention has excellent mechanical strength, and has excellent wear resistance of the material itself, wear resistance of sliding mating materials, wear resistance of the mold used during manufacturing, and machinability. It has outstanding characteristics.
It goes without saying that the alloy of the present invention can be subjected to the heat treatment normally applied to aluminum alloys for the purpose of improving mechanical strength. In particular, the tensile strength
Previously, alloys with a weight of 25Kg/mm 2 or more and a wear amount of 8×10 -7 mm 2 /Kg or less could not be used.
Complex survanes, connecting rods, pistons,
It can also be used in fields such as cylinders. In these fields, efforts are being made to reduce the weight of parts, and the alloy according to the present invention can now be used in the above fields.

【図面の簡単な説明】[Brief explanation of drawings]

第1図Aは本発明材(試料No.4)の組織を示す
顕微鏡写真、第1図Bは比較のための金型鋳造材
(試料No.12)の組織を示す顕微鏡写真である。第
2図は第7表に示す型摩試験に用いた装置の概要
を示す説明図で、図中1は相手材、2は撹拌手
(両側)、3は合金粉スラリー、4は試験片
(SKD鋼)、5は重錘である。第3図は、塑性加
工の量と強度の関係を示すグラフである。
FIG. 1A is a photomicrograph showing the structure of the material of the present invention (sample No. 4), and FIG. 1B is a photomicrograph showing the structure of the metal mold casting material (sample No. 12) for comparison. Figure 2 is an explanatory diagram showing the outline of the apparatus used for the mold friction test shown in Table 7, in which 1 is the mating material, 2 is the stirring hand (on both sides), 3 is the alloy powder slurry, and 4 is the test piece ( SKD Steel), 5 is a weight. FIG. 3 is a graph showing the relationship between the amount of plastic working and strength.

Claims (1)

【特許請求の範囲】 1 シリコンを8〜30重量%含有し残部がアルミ
ニウムよりなるアルミニウム合金粉末、もしくは シリコン 8〜30重量% 銅、マグネシウム、ニツケル、鉄、マンガンの
うちの少くとも1種以上 0.1〜10重量% アルミニウム 残部 よりなる合金粉末を焼結してなるアルミニウム焼
結合金において、焼結を固相で行ない、かつ押出
又は鍛造により塑性変形を加えて緻密化すること
により該合金が真密度に対して95%以上の密度を
有し、かつ引張強度が22Kg/mm2以上であり、シリ
コンの最大粒子径が10μm以下であることを特徴
とする高強度耐摩耗性アルミニウム合金。 2 シリコンを8〜30重量%含有し残部がアルミ
ニウムよりなるアルミニウム合金粉末、もしくは シリコン 8〜30重量% 銅、マグネシウム、ニツケル、鉄、マンガンの
うちの少くとも1種以上 0.1〜10重量% アルミニウム 残部 よりなる合金粉末と固体潤滑成分5〜30重量%と
を、混合、焼結してなるアルミニウム合金におい
て、焼結を固相で行ない、かつ押出又は鍛造によ
り塑性変形を加えて緻密化することにより該合金
が真密度に対して95%以上の密度を有し、かつ引
張強度が22Kg/mm2以上であり、シリコンの最大粒
子径が10μm以下であることを特徴とする高強度
耐摩耗性アルミニウム合金。 3 固体潤滑成分が、黒鉛、WS2、MoS2
CaF2、BaF2の1種以上よりなることを特徴とす
る特許請求の範囲第2項記載の高強度耐摩耗性ア
ルミニウム焼結合金。
[Scope of Claims] 1 Aluminum alloy powder containing 8 to 30% by weight of silicon and the balance being aluminum, or 8 to 30% by weight of silicon, at least one of copper, magnesium, nickel, iron, and manganese 0.1 ~10% by weight Aluminum In an aluminum sintered alloy made by sintering an alloy powder consisting of the balance, the alloy has a true density by performing sintering in a solid phase and densifying it by adding plastic deformation by extrusion or forging. A high-strength, wear-resistant aluminum alloy having a density of 95% or more, a tensile strength of 22 Kg/mm 2 or more, and a maximum silicon particle size of 10 μm or less. 2 Aluminum alloy powder containing 8 to 30% by weight of silicon and the balance being aluminum, or 8 to 30% by weight of silicon, at least one of copper, magnesium, nickel, iron, and manganese 0.1 to 10% by weight, balance of aluminum In an aluminum alloy made by mixing and sintering an alloy powder consisting of the following and 5 to 30% by weight of a solid lubricant component, sintering is performed in a solid phase, and the aluminum alloy is densified by plastic deformation by extrusion or forging. High-strength wear-resistant aluminum, characterized in that the alloy has a density of 95% or more of the true density, a tensile strength of 22 Kg/mm 2 or more, and a maximum silicon particle size of 10 μm or less alloy. 3 The solid lubricant components are graphite, WS 2 , MoS 2 ,
The high-strength, wear-resistant aluminum sintered alloy according to claim 2, characterized in that it is made of one or more of CaF 2 and BaF 2 .
JP8123887A 1987-04-03 1987-04-03 Wear resistant aluminum alloy of high strength Granted JPS62247044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8123887A JPS62247044A (en) 1987-04-03 1987-04-03 Wear resistant aluminum alloy of high strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8123887A JPS62247044A (en) 1987-04-03 1987-04-03 Wear resistant aluminum alloy of high strength

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP514579A Division JPS5597447A (en) 1979-01-19 1979-01-19 Aluminum sintered alloy and production of the same

Publications (2)

Publication Number Publication Date
JPS62247044A JPS62247044A (en) 1987-10-28
JPH029099B2 true JPH029099B2 (en) 1990-02-28

Family

ID=13740851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8123887A Granted JPS62247044A (en) 1987-04-03 1987-04-03 Wear resistant aluminum alloy of high strength

Country Status (1)

Country Link
JP (1) JPS62247044A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913040A (en) * 1982-07-12 1984-01-23 Showa Denko Kk Heat- and wear-resistant high-strength aluminum alloy powder and molded body of said alloy powder and their manufacture
JPS5959855A (en) * 1982-09-28 1984-04-05 Showa Denko Kk High strength powder moldings of aluminum alloy having excellent lubricity resistance to heat and wear and its production
JPH0625386B2 (en) * 1988-05-24 1994-04-06 昭和電工株式会社 Method for producing aluminum alloy powder and sintered body thereof
JPWO2008096618A1 (en) * 2007-02-09 2010-05-20 コニカミノルタエムジー株式会社 Ink jet head, ink jet printer, ink jet recording method
JPWO2008126469A1 (en) * 2007-03-27 2010-07-22 コニカミノルタエムジー株式会社 Ink jet printer and ink jet recording method
JP2017078213A (en) * 2015-10-21 2017-04-27 昭和電工株式会社 Aluminum alloy powder for hot forging for slide component, method for producing the same, aluminum alloy forging for slide component, and method for producing the same
JP6738212B2 (en) * 2016-06-13 2020-08-12 昭和電工株式会社 Aluminum alloy forged product and manufacturing method thereof
CN109136672B (en) * 2018-10-09 2020-09-01 贵州航天风华精密设备有限公司 Corrosion-resistant high-strength aluminum alloy and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4893507A (en) * 1972-03-11 1973-12-04
JPS52101611A (en) * 1976-02-23 1977-08-25 Tsugio Nakatani Sintered ultrahighhsilicon aluminium product
JPS53118209A (en) * 1977-03-25 1978-10-16 Res Dev Corp Of Japan Powder metallurgical method of manufacturing high-silicon containing sinteted aluminum alloy
JPS53128512A (en) * 1977-04-15 1978-11-09 Showa Denko Kk Process for producing high silicon-aluminum alloy sintered material
JPS5597447A (en) * 1979-01-19 1980-07-24 Sumitomo Electric Ind Ltd Aluminum sintered alloy and production of the same
JPS5959855A (en) * 1982-09-28 1984-04-05 Showa Denko Kk High strength powder moldings of aluminum alloy having excellent lubricity resistance to heat and wear and its production
JPS60125345A (en) * 1983-12-09 1985-07-04 Sumitomo Electric Ind Ltd Aluminum alloy having high heat resistance and wear resistance and manufacture thereof
JPS60208443A (en) * 1984-03-31 1985-10-21 Sumitomo Light Metal Ind Ltd Aluminum alloy material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4893507A (en) * 1972-03-11 1973-12-04
JPS52101611A (en) * 1976-02-23 1977-08-25 Tsugio Nakatani Sintered ultrahighhsilicon aluminium product
JPS53118209A (en) * 1977-03-25 1978-10-16 Res Dev Corp Of Japan Powder metallurgical method of manufacturing high-silicon containing sinteted aluminum alloy
JPS53128512A (en) * 1977-04-15 1978-11-09 Showa Denko Kk Process for producing high silicon-aluminum alloy sintered material
JPS5597447A (en) * 1979-01-19 1980-07-24 Sumitomo Electric Ind Ltd Aluminum sintered alloy and production of the same
JPS5959855A (en) * 1982-09-28 1984-04-05 Showa Denko Kk High strength powder moldings of aluminum alloy having excellent lubricity resistance to heat and wear and its production
JPS60125345A (en) * 1983-12-09 1985-07-04 Sumitomo Electric Ind Ltd Aluminum alloy having high heat resistance and wear resistance and manufacture thereof
JPS60208443A (en) * 1984-03-31 1985-10-21 Sumitomo Light Metal Ind Ltd Aluminum alloy material

Also Published As

Publication number Publication date
JPS62247044A (en) 1987-10-28

Similar Documents

Publication Publication Date Title
EP0669404B1 (en) Wear-resistant sintered aluminum alloy and method for producing the same
KR100206502B1 (en) High strength self-lubricating composite material
JPH0625782A (en) High ductility aluminum sintered alloy and its manufacture as well as its application
US4194910A (en) Sintered P/M products containing pre-alloyed titanium carbide additives
JPH0120215B2 (en)
US5466277A (en) Starting powder for producing sintered-aluminum alloy, method for producing sintered parts, and sintered aluminum alloy
JPS6320298B2 (en)
JPH029099B2 (en)
JPS5937339B2 (en) Method for manufacturing high silicon aluminum alloy sintered body
US6706126B2 (en) Aluminum alloy for sliding bearing and its production method
JP3095026B2 (en) Manufacturing method of aluminum sintered alloy
JPH0625386B2 (en) Method for producing aluminum alloy powder and sintered body thereof
JP4008597B2 (en) Aluminum-based composite material and manufacturing method thereof
US6899844B2 (en) Production method of aluminum alloy for sliding bearing
JPH06264170A (en) Aluminum alloy having high strength and wear resistance
JP3368178B2 (en) Manufacturing method of composite sintered alloy for non-ferrous metal melt
JPS58141356A (en) Wear resistant sintered aluminum alloy
JPH0421735A (en) Aluminum series bearing alloy
JPS61257450A (en) Heat resistant aluminum alloy
JPH07278714A (en) Aluminum powder alloy and its production
JP2584488B2 (en) Processing method of wear resistant aluminum alloy
JP3336949B2 (en) Synchronizer ring made of iron-based sintered alloy
JP2605866B2 (en) Manufacturing method of composite compound dispersion type Cu-Zn-A (1) sintered alloy with excellent wear resistance
JPH06228697A (en) Rapidly solidified al alloy excellent in high temperature property
JP2787703B2 (en) A-l-Si alloy powder forged member with extremely low coefficient of thermal expansion