JPS5913040A - Heat- and wear-resistant high-strength aluminum alloy powder and molded body of said alloy powder and their manufacture - Google Patents

Heat- and wear-resistant high-strength aluminum alloy powder and molded body of said alloy powder and their manufacture

Info

Publication number
JPS5913040A
JPS5913040A JP57119901A JP11990182A JPS5913040A JP S5913040 A JPS5913040 A JP S5913040A JP 57119901 A JP57119901 A JP 57119901A JP 11990182 A JP11990182 A JP 11990182A JP S5913040 A JPS5913040 A JP S5913040A
Authority
JP
Japan
Prior art keywords
alloy powder
powder
wear
alloy
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57119901A
Other languages
Japanese (ja)
Other versions
JPH0118981B2 (en
Inventor
Fumio Kiyota
清田 文夫
Tatsuo Fujita
藤田 達生
Tadao Hirano
忠男 平野
Shinichi Horie
堀江 新一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Resonac Holdings Corp
Original Assignee
Riken Corp
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp, Showa Denko KK filed Critical Riken Corp
Priority to JP57119901A priority Critical patent/JPS5913040A/en
Priority to CA000432033A priority patent/CA1230761A/en
Priority to EP83106849A priority patent/EP0100470B1/en
Priority to DE8383106849T priority patent/DE3381592D1/en
Publication of JPS5913040A publication Critical patent/JPS5913040A/en
Priority to US07/259,402 priority patent/US4938810A/en
Publication of JPH0118981B2 publication Critical patent/JPH0118981B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain high-Si Al alloy powder consisting of prescribed percentages of Si and Ni as essential components and the balance Al with inevitable impurities and having superior strength in the temp. range from ordinary temp. to a high temp. CONSTITUTION:Al alloy powder contg., by weight, 10.0-30.0% Si and 5.0- 15.0% Ni or further contg. 0.5-5.0% Cu and 0.2-3.0% Mg is prepared. The powder is rapidly dispersed and solidified by an atomizing method or a means for manufacturing fine powder by centrifugal force to obtain heat- and wear- resistant high-strength Al alloy powder. This Al alloy powder has Si grains of >=15mum size and columnar crystals of an intermetallic compound contg. Ni grown under control, and it is novel alloy powder different from conventional high-Si Al alloy powder. An alloy having said structure can not be obtd. by a casting method.

Description

【発明の詳細な説明】 本発明は、常温から高温までの強度がすぐれた高Siア
ルミニウム合金粉末および該合金粉末の成形部材とその
製造法に関するもので、特に内燃機関のシリンダーライ
ナーのような熱負荷が高く、又、耐摩耗性、耐焼付性が
要求される部品に最適のものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high-Si aluminum alloy powder that has excellent strength from room temperature to high temperature, a molded member made of the alloy powder, and a method for manufacturing the same, and particularly relates to a high-Si aluminum alloy powder that has excellent strength from room temperature to high temperature. It is ideal for parts that are subject to high loads and require wear resistance and seizure resistance.

最近、自動車の軽量化やフロントエンジンiフロントド
ライブ(FF)方式のため、エンジンの軽量化が必要ど
なっており、そのためシリンダー□7°”′は鋳鉄力゛
らA′合金力゛使用される1、うになってきている。
Recently, due to the weight reduction of automobiles and the use of front engine i-front drive (FF) systems, it has become necessary to reduce the weight of the engine, and for this reason, the cylinder □7°"' is used for A' alloy power instead of cast iron power. 1. The sea urchins are starting to turn.

その場合、鋳鉄製シリンダーライナーが鋳ぐるまれで使
用されている。 このシリンダーライナーをAI!合金
にすると軽量化の他に熱伝導率が鋳鉄よりもはるかに良
いことと、鋳鉄よりも熱膨張係数が大きく、シリンダー
ブロックのAI!合金に近いので、昇温時でもライナー
とブロックの密着性が良いことから、放熱性の良い仝ン
ジンとなり、ライナーの内壁温度が徒<出来ることから
潤滑油の寿命を長く出来たり□、低粘度′の潤滑油の使
用が可能となり、燃費の向上が可能になるとされている
。 又、ピストン材料のアルミニウム合金のそ懸と同程
席であるのでピストンとの間のクリアランスを小さく設
定出来るために、潤滑油の消費量を押え、燃費の向上も
期待される。
In that case, cast iron cylinder liners are used in cast iron cylinders. This cylinder liner is AI! In addition to being lighter, alloys have much better thermal conductivity than cast iron, and have a larger coefficient of thermal expansion than cast iron, making the cylinder block AI! Since it is similar to an alloy, the liner and block have good adhesion even when the temperature rises, resulting in a fuel with good heat dissipation, and because the inner wall temperature of the liner can be reduced, the life of the lubricating oil can be extended, and the lubricating oil has a low viscosity. It is said that it will be possible to use lubricating oil of In addition, since the clearance is the same as that of the aluminum alloy piston material, the clearance between the piston and the piston can be set small, which is expected to reduce lubricant consumption and improve fuel efficiency.

又、高81のAJ金合金摩擦係数が低いため、シリンダ
ーライナーとして使用すれば、ピストンリングとの間の
7リクシヨンロスが低減されることから燃費の向上が期
待される。
In addition, since the AJ gold alloy has a low friction coefficient of 81, when used as a cylinder liner, it is expected to improve fuel efficiency by reducing 7 riction loss between it and the piston ring.

このようにシリンダーライナーにAI!合金を適用する
ことの長所は多いが、従来の公知のアルミニウム合金で
は、このような鋳ぐる尿用シリンダーライナー材として
は不充分である。
AI in the cylinder liner like this! Although there are many advantages to using alloys, conventionally known aluminum alloys are insufficient as cylinder liner materials for such foundries.

例えば AA規格のA390.0合金(Si=16〜1
8チ、Cu=4−5%、Mg = 0.50〜0.65
係、Fe = 0.5%、T1=0.2%、Zn’=O
81チ、残hlりの様な鋳造材は固液共存温度域が広い
ため、門全な鋳物を得るためka′、大きな押湯を必要
とするため歩留りが悪くコストの高いものとなる他に、
微細化□処理や声型−造法によっても初晶Si  は尚
粗大であるため5被剛性が、讐い。
For example, AA standard A390.0 alloy (Si=16~1
8chi, Cu=4-5%, Mg=0.50-0.65
relationship, Fe = 0.5%, T1 = 0.2%, Zn' = O
Casting materials such as 81ch and residual HL have a wide solid-liquid coexistence temperature range, so in order to obtain a perfect casting, a large riser is required, resulting in poor yields and high costs. ,
Even with finer processing and voice-forming methods, primary Si is still coarse, so its rigidity is poor.

更咳致命的欠点は1.シリンダーブロックに鋳ぐるむ時
に、熱によって材料が軟化するために、耐摩耗性が著し
く低下す、る他、・被削面にビビリやムシレを生じやす
く、又、ホーニング加工を困難とする。 又近年、粉末
冶金法により、A390.0に近い組成の合金を粉末に
して、これを熱間押出しして、中空体とする技術が提案
されている。
The fatal disadvantage of coughing is 1. When cast into a cylinder block, the material is softened by heat, which significantly reduces wear resistance, and also tends to cause chattering and cracking on the machined surface, making honing difficult. Also, in recent years, a technique has been proposed in which an alloy having a composition close to A390.0 is powdered using a powder metallurgy method and then hot extruded to form a hollow body.

(特開昭52−109415)。(Japanese Patent Application Laid-Open No. 52-109415).

これは高Stのアルミニウム合金溶湯とアトマイズ法又
は遠心力による微粒化法により急冷おれた微粒、又は粉
末とし、これを勢、間押出駿することにより中空体を得
る方法で、あり、鋳造法により得られる中空体よりもは
るかに重量歩留、りのすぐれた製造法である。
This is a method in which a hollow body is obtained by rapidly cooling a molten aluminum alloy of high St and fine particles or powder by atomizing or atomizing by centrifugal force, and extruding the same. This manufacturing method has a much better weight yield and efficiency than the hollow bodies obtained.

又、この方法によると契晶Stが20μm、以下の大き
さとなるために延性±機械加工性にすぐれ、更に高ケイ
素AI!合金特有の低摩擦係数の性質をも有している。
In addition, according to this method, the size of the crystalline St is 20 μm or less, so it has excellent ductility ± machinability, and also has high silicon AI! It also has a low coefficient of friction characteristic of alloys.

又、この製造法により15〜20%Si、  ・1〜5
q6 Cu、 0.5、−.1.5%Mg 、 、 0
.5〜1.5%Ni 、残部AI!の合金や、或はこれ
に、SiC,Sn、黒鉛を混合して押出した中空体が提
案・されている:。
Also, by this manufacturing method, 15 to 20% Si, 1 to 5
q6 Cu, 0.5, -. 1.5%Mg, , 0
.. 5-1.5% Ni, balance AI! Hollow bodies made by extruding an alloy of , or a mixture of SiC, Sn, and graphite have been proposed.

本発明者らはこのトレース実験を行なったところ、20
.OSi−4,OCu70.8 Mg −,0,,5,
Ni −AI!残の組成とした粉末押出し材をシリンダ
ーライナー(外径7.3wn内径fi511111高さ
t 、o 5Wan、、)として使用し、A−D C−
12合金のシリンダーブロック(重量3.4 kg )
に溶湯温度675℃でダイキャスト法で鋳ぐるむテスト
を行った結果、鋳ぐるみ前にT9処理により硬さがHR
B 80であったものが、鋳ぐるみ後はHRB40程度
に軟化してしまうことが判明した。従ってこの中空体も
アルミニウム合金製シリンダーブロックに鋳ぐるむ時に
軟化してしまい、鋳ぐるみ用シリンダーライナーとして
は使用不可能である。
The inventors conducted this tracing experiment and found that 20
.. OSi-4, OCu70.8 Mg −, 0,, 5,
Ni-AI! The extruded powder material with the remaining composition was used as a cylinder liner (outer diameter 7.3wn, inner diameter fi511111, height t, o5Wan,...), and A-D C-
12 alloy cylinder block (weight 3.4 kg)
As a result of a die-casting test at a molten metal temperature of 675℃, the hardness reached HR by T9 treatment before casting.
It was found that the B 80 had softened to about HRB 40 after casting. Therefore, this hollow body also becomes soft when being cast into an aluminum alloy cylinder block, and cannot be used as a cylinder liner for casting.

また、鋳ぐるみはダイキャスト法や低圧鋳造法によるが
、ライナーはコスト面からもできるだけ薄肉とすること
が望ましいが、薄肉化していくと鋳ぐるみ時のライナー
搬送工程や位置決め時に加わる。機械的応力により変形
しやすくなるために、高剛性(高硬度)であることが必
要である。
Casting is done by die casting or low-pressure casting, and it is desirable to make the liner as thin as possible from a cost perspective, but as the thickness becomes thinner, it becomes more difficult to transport and position the liner during casting. Since it is easily deformed by mechanical stress, it needs to have high rigidity (high hardness).

本発明はこれら欠点をすべて解消し、鋳ぐるみ時の・熱
負荷に対しても軟化することがなく、更に使用時に負荷
される温度域においても軟化せず、耐摩耗性・、耐焼付
性にすぐれたアルミニウム合金材料を経済的にも安価に
提供することを目的とする。
The present invention eliminates all of these drawbacks, does not soften under the heat load during casting, does not soften even in the temperature range that is applied during use, and has excellent wear resistance and seizure resistance. The purpose is to provide excellent aluminum alloy materials economically and at low cost.

本発明のアルミニウム合金粉末は、重量比で51100
〜300チ、Ni5.0〜150%からなり、さらに必
要に応じてCuO,5〜50係およびMg0.2〜30
チを含み、残部がAI!からなることを要旨とし、Si
結晶粒の大きさが15μm以下に微細化し、Niを50
〜15%含むことにより、高温強度改善に有効なNiを
含tr金属間化合物が析出していることを特徴としてい
る。
The aluminum alloy powder of the present invention has a weight ratio of 51100
-300% Ni, 5.0% to 150% Ni, and if necessary CuO, 5% to 50% and Mg0.2% to 30%.
Including Chi, the rest is AI! The gist is that Si
The crystal grain size is refined to 15 μm or less, and Ni is reduced to 50 μm or less.
By containing ~15% of Ni, a Ni-containing tr intermetallic compound effective for improving high-temperature strength is precipitated.

また本発明のアルミニウム合金粉末成形体は、重量比で
5i10.O〜300係、Ni5.0〜150係からな
り、さらに必要に応じてCuO,5〜50係およびMg
0.2〜30チを含み、残部がAj?からなる組成を有
し、S1結晶粒の大きさは15μm以下、かつNiを含
む金属間化合物の大きさが20μm以下に微細に分散し
ていることを特徴とする。
Further, the aluminum alloy powder compact of the present invention has a weight ratio of 5i10. Consisting of O-300 parts, Ni 5.0-150 parts, and CuO, 5-50 parts and Mg as necessary.
Including 0.2~30chi, the rest is Aj? The S1 crystal grain size is 15 μm or less, and the Ni-containing intermetallic compound is finely dispersed in a size of 20 μm or less.

さらに本発明のアルミニウム合金成形体の製造方法は、
原料として、前記アルミニウム合金粉末を使用するもの
であり、前記アルミニウム合金溶湯を分散急冷凝固させ
て得られた粉末を熱間押出することを要旨とし、Si結
晶粒およびNiを含む金属間化合物相が微細化した組織
を有する合金粉末成形体を得ることを要旨とする。
Furthermore, the method for manufacturing an aluminum alloy molded body of the present invention includes:
The above aluminum alloy powder is used as a raw material, and the gist is that the powder obtained by dispersing and rapidly solidifying the molten aluminum alloy is hot extruded, and the intermetallic compound phase containing Si crystal grains and Ni is The purpose of the present invention is to obtain an alloy powder compact having a fine structure.

以下この発明をさらに詳細に説明する。This invention will be explained in more detail below.

まず、本発明の合金粉末は重量比で5i10.0〜30
0係、Ni5.O〜]、5.0%、さらに必要に応じて
Cu O,5〜5.0 %およびMg0.2−3.0%
、残部が不可避的不純物を含むA7とから成り、Si結
晶粒の大きさが15μm以下である耐熱耐摩耗性高力ア
ルミニウム合金粉末である。
First, the alloy powder of the present invention has a weight ratio of 5i10.0 to 30.
Section 0, Ni5. O~], 5.0%, further CuO, 5-5.0% and Mg0.2-3.0% as necessary
, and the balance is A7 containing unavoidable impurities, and is a heat-resistant, wear-resistant, high-strength aluminum alloy powder with a Si crystal grain size of 15 μm or less.

一般に過共晶Aj?−8t合金はAj’よりも小さな熱
膨張係数を有し、耐熱性耐摩耗性に優れていることは広
く知られている。過共晶Ar−St合金鋳造材ではSt
が初晶あるいは共晶としてマトリックス中に分散するこ
とにより、高温強度や耐摩耗性、耐焼付性に優れた効果
を発揮する。しかしながら初晶St はしばしば粗大結
晶として晶出するため、延性や衝撃値を低下させ、被削
性を悪くする。また、シリンダーライナー材などに使用
する場合に相手材を傷付けるので適当ではない。
Generally hypereutectic Aj? It is widely known that -8t alloy has a coefficient of thermal expansion smaller than that of Aj' and has excellent heat resistance and wear resistance. In the hypereutectic Ar-St alloy casting material, St
By dispersing in the matrix as primary or eutectic crystals, it exhibits excellent high-temperature strength, wear resistance, and seizure resistance. However, since primary St 2 often crystallizes as coarse crystals, it lowers ductility and impact value and worsens machinability. Furthermore, when used for cylinder liner materials, etc., it is not suitable because it damages the mating material.

これらの問題点を解決するため、過共晶Al−Si合金
を急冷凝固させて初晶Siを微細化した合金粉末をつく
り、押出成形により部材に加工して耐熱性、耐摩耗性に
優れた材料を得ることが提案されている(特開昭52−
109415)。しかしながら耐熱性、特に高温強度に
関してはなお充分ではない。
In order to solve these problems, we rapidly solidified a hypereutectic Al-Si alloy to create an alloy powder with fine primary Si crystals, and processed it into parts by extrusion molding to create a material with excellent heat resistance and wear resistance. It has been proposed to obtain the material
109415). However, heat resistance, especially high temperature strength, is still not sufficient.

本発明はAj!−Si合金に5.0〜150%のNiを
添加することにより、高温における強度と耐摩耗性を著
しく改善せんとするものである。
The present invention is Aj! By adding 5.0 to 150% Ni to the -Si alloy, the strength and wear resistance at high temperatures are significantly improved.

次に本発明による合金粉末中の各成分の限定理由を説明
する。
Next, the reason for limiting each component in the alloy powder according to the present invention will be explained.

Si は10係以下では分散量が少く、耐熱性耐摩耗性
におよぼす効果が不充分である。5ilO係近傍の亜共
晶域では初晶Siけ晶出せず、微細な共晶組織を有する
ものとなる。Siの添加量が増すと共にSi初晶が晶出
するようになり、耐熱性耐摩耗性も向上してくる。
When the coefficient of Si is less than 10, the amount of dispersion is small and the effect on heat resistance and abrasion resistance is insufficient. In the hypoeutectic region near the 5ilO ratio, primary Si crystals cannot be crystallized and a fine eutectic structure is obtained. As the amount of Si added increases, Si primary crystals begin to crystallize, and heat resistance and wear resistance also improve.

しかしながらSiが30係を越えると分散急冷凝固法に
よって粉末としても粗大な初晶Stが消失しなくなる。
However, when the Si content exceeds 30, coarse primary crystals of St do not disappear even as a powder by the dispersion and rapid solidification method.

粗大な初晶Si組織を有するアルミニウム合金粉末は押
出成形加工して使用するに際しては、粉体の圧縮性を著
しく悪化させ、圧粉体を造りにくくするほか、熱間押出
においても変形抵抗が大きくなり、大きな押出力を必要
とするほか、押出ダイスを摩耗させて寿命を著しく短縮
させる難点がある。このような製造上の問題の他に、材
質特性においても鋳造材の場合と同様な難点があり、シ
リンダーライナー材としては不適当なものとなるので、
粗大な初晶S1の晶出は避けなければならない。また、
アルミニウム合金製シリンダーブロック材に鋳ぐまれで
シリンダーライナーとして使用する場合、Siの添加量
と共に熱膨張係数は小さくなり、Siが30係を越える
とシリンダーブロック材との密着状況が悪くなったり、
ピストンとのクリアランスを大きくする必要性が生じて
くる。
When aluminum alloy powder with a coarse primary Si structure is extruded and used, it significantly deteriorates the compressibility of the powder, making it difficult to form a green compact, and it also has high deformation resistance during hot extrusion. Therefore, in addition to requiring a large extrusion force, there is also the disadvantage that the extrusion die is worn out, significantly shortening its life. In addition to these manufacturing problems, there are also the same difficulties with material properties as with cast materials, making it unsuitable as a cylinder liner material.
Crystallization of coarse primary crystals S1 must be avoided. Also,
When used as a cylinder liner by being cast into an aluminum alloy cylinder block material, the coefficient of thermal expansion decreases with the amount of Si added, and if the Si content exceeds 30, the adhesion with the cylinder block material may deteriorate.
It becomes necessary to increase the clearance with the piston.

従ってSiの添加量は10.0〜300ヂ、好ましくけ
150〜250俤とするのが良い。
Therefore, the amount of Si added is preferably 10.0 to 300 degrees, preferably 150 to 250 degrees.

Ni は本発明合金においては重要な成分である。Ni is an important component in the alloy of the present invention.

Ni添加の効果は高温強度と耐摩耗性の改善にある。過
共晶合金中にNiを添加するとNi−At系金属間化合
物が析出し、本発明の製造法の骨子である分散急冷凝固
法による合金粉末においては棒状の組織として存在して
、後の熱間押出工程によって分断され微細にマトリック
ス中に分散する。
The effect of Ni addition is to improve high temperature strength and wear resistance. When Ni is added to a hypereutectic alloy, a Ni-At intermetallic compound precipitates, and in the alloy powder produced by the dispersion and rapid solidification method, which is the mainstay of the production method of the present invention, it exists as a rod-shaped structure and is easily absorbed by subsequent heat treatment. It is divided and finely dispersed in the matrix by the inter-extrusion process.

この化合物は高温においても安定でかつ成長し難く、長
時間高温保持しても強度の低下は起こさない。従って鋳
ぐるみ用シリンダーライナーのように高温にさらされた
後も硬度の低下がなく、耐摩耗性を保持することが可能
となる。
This compound is stable and difficult to grow even at high temperatures, and does not lose strength even when kept at high temperatures for a long time. Therefore, even after being exposed to high temperatures like cylinder liners for castings, the hardness does not decrease and it is possible to maintain wear resistance.

Ni添加量は5チ以下では顕著な効果が認められず、1
5チ以上になるとマトリックス中のSiの溶解限度が低
くなり、過剰のSiが初晶となって多量に晶出する。ま
た、合金の溶解温度が高くなり溶湯の酸化が進もので特
別の酸化防止策を必要とし経済的でない。また析出する
金属間化合物が粗大となり、後の熱間押出加工によって
も分断されにくくなるばかりでなく、押出性をも阻害す
る結果となる。Ii添加量は50〜15.0チの範囲に
おいて従来にない効果を発揮することが認められた。こ
のようにNiを多量に添加して析出するNiを含む金属
間化合物を利用して合金の強度特に高温における強度を
改善し、この金属間化合物を分断微細化して耐摩耗性を
向上させるという新規な効果をもたらすものである。
No significant effect was observed when the amount of Ni added was 5 or less, and 1
When it is 5 or more, the solubility limit of Si in the matrix becomes low, and excess Si becomes primary crystals and crystallizes in large quantities. Furthermore, the melting temperature of the alloy becomes high and oxidation of the molten metal progresses, requiring special measures to prevent oxidation, which is not economical. Furthermore, the precipitated intermetallic compounds become coarse and not only difficult to be separated by subsequent hot extrusion processing, but also impede extrudability. It was found that an unprecedented effect was exhibited when the amount of Ii added was in the range of 50 to 15.0 inches. In this way, we have developed a new method that uses the Ni-containing intermetallic compounds that precipitate by adding a large amount of Ni to improve the strength of the alloy, especially the strength at high temperatures, and improves wear resistance by fragmenting and refining these intermetallic compounds. It brings about a great effect.

本発明による合金粉末は必要に応じて0.5〜5.0%
のCuおよび02〜3.0チのMgを添加することがで
きる。CuやMg  はアルミニウム合金に時効硬化性
を付与して材質を強化する成分として知られている。本
発明においても溶体化処理温度での固溶限度内の前記範
囲内でCuおよびMgを添加すると材質強化に有効であ
る。
The alloy powder according to the present invention is 0.5 to 5.0% as required.
of Cu and 0.2 to 3.0 mm of Mg can be added. Cu and Mg are known as components that impart age hardenability to aluminum alloys and strengthen the material. Also in the present invention, adding Cu and Mg within the above-mentioned range within the solid solubility limit at the solution treatment temperature is effective in strengthening the material.

また、本発明合金粉末においてはざらにFe、Mn、 
Ti、 Cr、■、Zr、 Mo、 Co等を添加して
高温強度を改善することも可能である。
In addition, in the alloy powder of the present invention, Fe, Mn,
It is also possible to improve the high temperature strength by adding Ti, Cr, ■, Zr, Mo, Co, etc.

Si結晶粒の大きさを15μm以下としたものは、主と
して初晶Siの大きさが15μm以上になると、後続の
合金粉末の成形加工性が悪くなりまた材料特性としても
悪化するからである。もちろんSiが共晶として晶出す
る場合は微細結晶となるので問題はおこらない。
The reason for setting the Si crystal grain size to 15 μm or less is mainly because if the primary crystal Si size is 15 μm or more, the moldability of the subsequent alloy powder deteriorates and the material properties also deteriorate. Of course, if Si crystallizes as a eutectic, it becomes fine crystals, so no problem occurs.

本発明の合金粉末は上記合金組成を有する溶湯をアトマ
イズ法、遠心力による微粒化法等の通常用いられている
金属溶湯からの微粉末製造手段を使用して急速分散凝固
させることによって得ることができる。このようにして
得られ5た合金粉末は大きさが15μm以下のSi(結
晶粒λと成長を抑えられたNi を含む金属間化合物の
棒状晶を有し、従来の高Si系At合金粉本には見られ
ない新規な合金粉末である。また、このような組織を有
する合金を鋳造法で得ることは不可能である。参考まで
に22.8Si−3,1Cu−1,3Mg−8,0Ni
−0,5Fe−AI!残の組成を有する本発明によるア
ルミニウム合金粉末の顕微鏡組織写真を第3図に示す。
The alloy powder of the present invention can be obtained by rapidly dispersing and solidifying a molten metal having the above-mentioned alloy composition using a commonly used means for producing fine powder from a molten metal, such as an atomization method or an atomization method using centrifugal force. can. The alloy powder obtained in this way has rod-shaped crystals of intermetallic compounds containing Si (crystal grains λ) and suppressed growth of Ni with a size of 15 μm or less, and is different from conventional high-Si At alloy powders. This is a new alloy powder that is not found in the 22.8Si-3, 1Cu-1, 3Mg-8, 22.8Si-3, 1Cu-1, 3Mg-8, 0Ni
-0,5Fe-AI! A micrograph of the aluminum alloy powder according to the present invention having the remaining composition is shown in FIG.

また比較のため同一組成の鋳造材の組成写真を第4図に
、Niを含まない21.I 5t−3,I Cu−1,
0Mg−At  残の組成を有する)1合金粉末の組織
写真を第5図に示す。
For comparison, Fig. 4 shows composition photographs of cast materials with the same composition. I 5t-3, I Cu-1,
FIG. 5 shows a photograph of the structure of alloy powder 1 (having the remaining composition of 0Mg-At).

第3図において塊・状を呈しているのが初晶Stである
。棒状を呈しているのがAI!−Ni系金属間化合物相
である。
In FIG. 3, primary crystals St exhibit a lump/shape. AI is rod-shaped! -Ni-based intermetallic compound phase.

第4図では粗大な多角形をした初晶Siが見られ、白色
棒状のAt−Ni系金属間化合物相が認められる。第5
図では粒状のSt初晶と共晶組織を呈している。
In FIG. 4, coarse polygonal primary Si crystals are observed, and a white rod-shaped At-Ni intermetallic compound phase is observed. Fifth
The figure shows granular St primary crystals and a eutectic structure.

本発明による合金粉末は熱間押出加工に適したものであ
り、特に耐熱耐摩耗性を有する高力アルミニウム合金成
形体用として適したものである。
The alloy powder according to the present invention is suitable for hot extrusion processing, and is particularly suitable for use in high-strength aluminum alloy compacts having heat and wear resistance.

次に本発明の第2発明の要旨とするところは、上記合金
粉末組成を有し、Si %結晶粒)の大きさが15μm
以下であり、かつNiを含む金属間化合物の大きさが2
0μm以下に微細化分散していることを特徴とする耐熱
耐摩耗性高力アルミニウム合金粉末成形体である。
Next, the gist of the second invention of the present invention is that the alloy powder has the above-mentioned composition and the size of the Si% crystal grains is 15 μm.
or less, and the size of the intermetallic compound containing Ni is 2
This is a heat-resistant, wear-resistant, high-strength aluminum alloy powder molded body characterized by being finely dispersed to 0 μm or less.

本発明でSt含有量を100〜300チとしたのは成形
体の耐熱性、耐摩耗性、耐焼付性を改善するためであり
、Ni含有量を50〜15.0%としたのは高温強度、
耐熱性、耐摩耗性を改善するためである。
In the present invention, the St content is set to 100 to 300% in order to improve the heat resistance, wear resistance, and seizure resistance of the molded body, and the Ni content is set to 50 to 15.0% at high temperatures. Strength,
This is to improve heat resistance and abrasion resistance.

さらにSi5結晶粒)の大きさを15μm以下とするこ
とにより、従来の成形品よりも延性が良くなり被剛性も
改善されるので機械加工が容易となり、加工中のビビリ
やムシレが発生しにくくなる。またStの微細結晶によ
り耐摩耗性にすぐれ材料の摩擦係数を低下させて、シリ
ンダーライナー等に適したものにするためである。
Furthermore, by setting the size of the Si5 crystal grains to 15 μm or less, the ductility and stiffness are improved compared to conventional molded products, making machining easier and less likely to cause chattering or cracking during machining. . In addition, the fine crystals of St provide excellent wear resistance and reduce the coefficient of friction of the material, making it suitable for cylinder liners and the like.

またAJ3Ni等のNi を含む金属間化合物の大きさ
を実質的には5μm以下で、大きなものでも20μm以
下に微細かつ均一に分散させることにより、高温強度と
耐摩耗性が著しく改善されたものとなる。 第6図に本
発明による成形体の押出方向に平行な断面の顕微鏡組織
写真を示す。第6図では色殉の濃い部分が初晶Si、色
の薄い部分がAI!−Ni系金属間化合物と共晶である
。図に見られるごとく、本発明による合金成形体では初
晶Si、共晶、金属間化合物相が微細に入りくんで均一
に分布しているのがわかる。このような組織を有する成
 形体は従来の成形体には見られなかつた新規なもので
ある。参考までに第5図と同じ組成を有する高Si ア
ルミニウム合金成形体断面の組織写真を第7図に示す。
Furthermore, by finely and uniformly dispersing the size of Ni-containing intermetallic compounds such as AJ3Ni to 5 μm or less, and even larger ones to 20 μm or less, high-temperature strength and wear resistance are significantly improved. Become. FIG. 6 shows a microscopic structure photograph of a cross section parallel to the extrusion direction of the molded article according to the present invention. In Figure 6, the dark colored part is primary Si, and the light colored part is AI! -It is eutectic with Ni-based intermetallic compounds. As seen in the figure, in the alloy compact according to the present invention, primary Si, eutectic, and intermetallic compound phases are finely distributed and uniformly distributed. A molded product having such a structure is a novel product that has not been seen in conventional molded products. For reference, FIG. 7 shows a photograph of the structure of a cross section of a high-Si aluminum alloy compact having the same composition as FIG. 5.

本発明によるアルミニウム合金粉末成形体は従来品に比
較して高温強度が著しく改善されており、耐摩耗性、耐
焼付性にも優れたものである。さらに、本発明品は摩擦
係数が小さいので、特に内燃機関のシリンダーライナー
のような、高温で使用されかつ耐摩耗性、耐焼付性が要
求される部材として最適なものである。
The aluminum alloy powder compact according to the present invention has significantly improved high-temperature strength compared to conventional products, and also has excellent wear resistance and seizure resistance. Further, since the product of the present invention has a small coefficient of friction, it is particularly suitable for parts used at high temperatures and required to have wear resistance and seizure resistance, such as cylinder liners for internal combustion engines.

本発明によるアルミニウム合金粉末成形体は次に述べる
方法によって得られるものである。
The aluminum alloy powder compact according to the present invention is obtained by the method described below.

本発明の第三け、 上記アルミニウム合金粉末成形体の
製造方法に関するものであり、 その要旨とするところ
は、前記第一の発明におけると同じ組成を有する合金溶
湯を分散急冷凝固させ、得られた合金粉末を熱間押出成
形することにある。
The third aspect of the present invention relates to a method for manufacturing the above-mentioned aluminum alloy powder compact, the gist of which is to disperse and rapidly solidify a molten alloy having the same composition as in the first invention. The purpose is to hot-extrude alloy powder.

合金溶湯を分散急冷凝固させるのは、Si、NiCu、
Mg等の合金元素を過飽和に固溶させるとともに、初晶
Siや金属間化合物相を微細化するためである。分散急
冷凝固させる方法としては、アトマイズ法、遠心微粉化
法等既知の金属粉末製造方法が利用できる。これらの方
法により粉末粒径を0.5111111以下に微細化し
急冷凝固させれば、満足する組織の合金粉末が得られる
The molten alloy is dispersed and rapidly solidified using Si, NiCu,
This is to form a supersaturated solid solution of alloying elements such as Mg, and to refine primary Si and intermetallic compound phases. As a method for dispersing and rapidly solidifying, known metal powder manufacturing methods such as an atomization method and a centrifugal pulverization method can be used. By using these methods to refine the powder particle size to 0.5111111 or less and rapidly solidify it, an alloy powder with a satisfactory structure can be obtained.

次に、該合金粉末を利用して熱間押出により成形体を製
造する。熱間押出は合金粉末を強固な成形体に仕上げる
ばかりでなく合金粉末中に晶出している初晶Si、共晶
相、金属間化合物相の結晶粒を微細化し、材料の機械的
特性を改善するための必須要件である。
Next, a molded body is manufactured by hot extrusion using the alloy powder. Hot extrusion not only finishes the alloy powder into a strong compact, but also refines the crystal grains of primary Si, eutectic phase, and intermetallic phase crystallized in the alloy powder, improving the mechanical properties of the material. This is an essential requirement for

熱間押出に先だって圧粉体を準備すると作業上都合が良
い。圧粉体の製造は合金粉末を温度200〜350℃程
度の温度域でおこなう。300℃を越えると酸化が著し
くなるのでN2  ガスやArガスのような非酸化性雰
囲気中でおこなうのが望ましい。成形圧力は05〜3t
on/crn2程度でおこない、圧粉体密度は真密度比
70チ以上とするのが圧粉体のハンドリング上望ましい
It is convenient for the work to prepare the green compact prior to hot extrusion. The green compact is produced using alloy powder at a temperature range of about 200 to 350°C. If the temperature exceeds 300°C, oxidation becomes significant, so it is preferable to carry out the process in a non-oxidizing atmosphere such as N2 gas or Ar gas. Molding pressure is 05-3t
It is desirable for handling of the green compact to be carried out at approximately on/crn2 and the green compact density to be 70 inches or more as a true density ratio.

熱間押出は350℃以上の温度、好ましくは400〜4
70℃の温度領域でおこなう。これけ圧粉体の加工を容
易にすると同時に粒子間の結合を ′促進させて強固な
成形体・とするためである。さらには過飽相同溶分の元
素を微細析出させるとともに、初晶Si や金属間化合
物の棒状組織を分断して微細化し、成形体の強度と摩擦
特性を改善するためである。熱間押出は圧粉体を大気中
または非酸化性雰囲気中で予熱し、はぼ同温度のコンテ
ナー中に挿入して辷なう。押出比は10以上が好ましい
。押出比がxo”JAだと押出材中に空隙が残存し、ま
た粉末相互間の拡散接合や棒状金属間化合物の分断効果
が不充分なために、強度や靭性の高い材料□が得られな
いためである。
Hot extrusion is carried out at a temperature of 350°C or higher, preferably 400-400°C.
Perform in a temperature range of 70°C. This is to facilitate processing of the green compact and at the same time promote bonding between particles to make a strong compact. Furthermore, the purpose is to finely precipitate the supersaturated homolytic elements, and to divide and refine the rod-like structures of primary crystal Si 2 and intermetallic compounds, thereby improving the strength and friction characteristics of the compact. In hot extrusion, the green compact is preheated in the air or a non-oxidizing atmosphere, and then inserted into a container at approximately the same temperature for extrusion. The extrusion ratio is preferably 10 or more. If the extrusion ratio is xo"JA, voids remain in the extruded material, and the diffusion bonding between powders and the separation effect of rod-shaped intermetallic compounds are insufficient, making it impossible to obtain a material with high strength and toughness. It's for a reason.

本発明の方法によれげSi初晶、共晶、金属間化合物相
のψずれをもきわめて微細に均一分散させることが可能
となり、特に材料の耐摩耗性と摩擦特性に優れた部材を
容易に得ることが可能となる。また、本発明により得ら
れた合金粉末成型体に安定化熱処理をほどこし、材料特
性をさらに改善することも何らさしつかえない。
The method of the present invention makes it possible to extremely finely and uniformly disperse the ψ deviation of Si primary crystals, eutectics, and intermetallic compound phases, making it possible to easily produce parts with particularly excellent wear resistance and friction properties. It becomes possible to obtain. Further, it is also possible to further improve the material properties by subjecting the alloy powder molded body obtained by the present invention to stabilizing heat treatment.

次に実施例をあげて本発明を説明する。Next, the present invention will be explained with reference to Examples.

実施例 表−1に示す組成の高St  アルミニウム合金溶湯を
ガスでアトマイズし、 −48meshの粉末を得々。
Example A molten high-st aluminum alloy having the composition shown in Table 1 was atomized with gas to obtain -48 mesh powder.

次で250℃の温度に予熱したこれらの粉末を、同じ温
度に加熱保持した金型中に充填し、1、54On /C
m2の圧力で圧縮成形して直径創OO■、長さ200f
iの圧粉体を得た。次に圧粉体を450℃に加熱し同じ
温度に加熱保持された内径104■のコンテナ中に挿入
し直径3(H+1I11のダイスで間接押出法により押
出(押出比 12)を行ない供試材Nnl−10迄の成
形体を得た。
Next, these powders, which were preheated to a temperature of 250°C, were filled into a mold heated and maintained at the same temperature, and the powder was heated to 1,54 On/C.
Compression molded with a pressure of m2, diameter wound OO■, length 200f
A green compact of i was obtained. Next, the green compact was heated to 450°C, inserted into a container with an inner diameter of 104cm kept at the same temperature, and extruded using an indirect extrusion method (extrusion ratio 12) with a die of diameter 3 (H + 1I11). A molded article of up to -10 was obtained.

次で、Nn9以外は480℃X 2 Hr保保持水水冷
175℃X 10 H−r の時効処理を行い、標点間
距離50鶏、平行部属径6闘の引張試験片に加工して、
常温から250℃までの間で引張試験を行なりた。尚、
引張試験は各試験温度で100 Hrr持後に行なった
。又硬さを各温度での引張試験後の試験片のチャッキン
グ部の端部について測定した。なお、供試材No、 1
〜N[L6は比較例であり、N[17〜N[Lloは本
発明例である。さらに鋳造材との比較のためにA309
.0合金の金型鋳造材を比較材叫として 500℃X 
10 Hr保保持水水冷、175℃X10Hr の時効
処理を行ったものも同様の形状に加工して、同じ引張試
験を行なった。これらの試験結果を表−1に示す。
Next, all materials other than Nn9 were subjected to aging treatment at 480°C x 2 hours, water-cooled at 175°C x 10 hours, and processed into tensile test specimens with a gage distance of 50 mm and a parallel part diameter of 6 mm.
A tensile test was conducted between room temperature and 250°C. still,
The tensile test was conducted after holding for 100 hours at each test temperature. Further, the hardness was measured at the end of the chucking part of the test piece after the tensile test at each temperature. In addition, sample material No. 1
~N[L6 is a comparative example, and N[17~N[Llo is an example of the present invention. Furthermore, for comparison with cast materials, A309
.. 0 alloy mold casting material as comparison material 500℃X
A sample that had been subjected to water-cooling for 10 hours and aging at 175°C for 10 hours was also processed into the same shape and subjected to the same tensile test. The results of these tests are shown in Table-1.

コ 表−1から明らかなように比較材のA390.0合金や
No、 1〜6迄のものに比べて、本発明によるNo7
〜10の成形体は、高温強度及び高温に保持後の硬度が
高い。
As is clear from Table 1, compared to the comparative materials A390.0 alloy and Nos. 1 to 6, No. 7 according to the present invention
The molded bodies numbered 1 to 10 have high high-temperature strength and high hardness after being held at high temperatures.

次に前記熱間押出成形体を切断し、熱間鍛造により直径
70■、厚さ10論の素材を作り、機械加工により試験
片とした後、耐焼付性試験、耐摩耗性試験、摩擦係数の
測定を行なった。
Next, the hot extrusion molded body was cut, a material with a diameter of 70 mm and a thickness of 10 mm was made by hot forging, and after being machined into test pieces, a seizure resistance test, a wear resistance test, and a friction coefficient were performed. Measurements were made.

0酬焼付性試験 試験装置は第1図及び第2図に概要を図解的に示すもの
であって、ステータ(1)に取外し可能に取付けられた
直径70祁の円板(2)の中央には、裏側から注油孔(
3)を通じて潤滑油が注油される。ステータ(1)には
油圧装置(図示せず)によって右方へ向けて所定圧力で
押圧力Pが作用するようにしである。円板(2)に相対
向してロータ(4)があり、駆動装置(図示せず)によ
って所定速度で回転するようにしである。ロータ(4)
の円板(2)に対する端面に取付けられた試料保持具(
4a)には、5■×5關xioaの角柱状試験片(相手
材)(5)が同心円」二に等間隔に3個取外し可能にが
つ正方形端面が円板(2)に対して摺動自在に取付けで
ある。この様な装置においてステータ(1)に所定の押
圧力Pをかけ所定の面圧で円板(2)と試験片(相手材
)(5)とが接触するようにしておいて、注油孔(3)
がら摺動面に所定給油速度で給油しながらロータ(4)
を回転させる。
The outline of the seizure test device is schematically shown in Figs. 1 and 2, and the test device is shown schematically in Figs. 1 and 2. The oil hole (
3) Lubricating oil is applied through the A pressing force P is applied to the stator (1) with a predetermined pressure toward the right by a hydraulic device (not shown). A rotor (4) is provided opposite to the disk (2), and is configured to rotate at a predetermined speed by a drive device (not shown). Rotor (4)
A sample holder (
In 4a), a prismatic test piece (counterpart material) (5) of 5 x 5 x 1 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 2 x 3 x 3 x 2 x 2 x 2 x 2 x 2 x 2 x 2 square columnar test pieces (counterpart material) are removably arranged in two concentric circles, and the square end surface is slid against the disk (2). It can be mounted freely. In such a device, a predetermined pressing force P is applied to the stator (1) so that the disc (2) and the test piece (mate material) (5) come into contact with a predetermined surface pressure, and the oil filling hole ( 3)
Rotor (4) while lubricating the sliding surface at the specified lubricating speed.
Rotate.

一定時間毎にステータ(1)に作用する圧力を階段的に
増加して行き、ロータ(4)の回転によって相手の試験
片(5)と円板(2)との摩擦によって、ステータ(1
)に生ずるトルク(摩擦力によって生ずるトルク)Tを
スピンドル(6)を介してロードセル(7)に作用せし
め、その変化を動歪計(8)で読み、記録計(9)に記
録させる。トルクTが急激に上昇するときに焼付が生じ
たものとして、その時の接触面圧をもって焼付面圧とし
、この大小をもって耐焼付性の良否を判断する。
The pressure acting on the stator (1) is increased stepwise at regular intervals, and the rotation of the rotor (4) causes friction between the test piece (5) and the disk (2) to cause the stator (1) to
) is applied to the load cell (7) via the spindle (6), and its change is read by the dynamic strain meter (8) and recorded by the recorder (9). Assuming that seizure occurs when the torque T increases rapidly, the contact surface pressure at that time is taken as the seizure surface pressure, and the quality of the seizure resistance is determined based on the magnitude of this.

試験に供した円板状試験片(2)は、300℃X100
Hrの熱処理後研摩仕上げをしたものを使用し相手の試
験片(5)は、球状黒鉛鋳鉄で摺動面に硬質Crメッキ
を施したものと、平均粒径08μのSiCを面積率で1
5〜20チ基地中に分散させた鉄メッキの2種類とし研
摩仕上げを行った。
The disk-shaped test piece (2) used for the test was heated at 300°C
The test piece (5) used was one that had been polished after being heat-treated for hr.
Two types of iron plating were applied to the 5 to 20 inch bases and polished.

比較材としては、シリンダーライナー用として使用され
ている片状黒鉛鋳鉄についても行った。
As a comparison material, flake graphite cast iron used for cylinder liners was also tested.

試験条件は、速度8 m / sec、潤滑油はエンジ
ンオイル(SAE  20.ベースオイル)で温度90
℃ 油量3oomg/mmとし、接触圧力は、2akg
/crn2で20分間の馴らし運転後a o kg /
 cm2 で3分間、その後3分経過毎に10 kj 
/ cm2す°つ上昇させていく。結果を表−2に示す
The test conditions were a speed of 8 m/sec, lubricating oil was engine oil (SAE 20. base oil), and a temperature of 90°C.
℃ Oil amount is 3oomg/mm, contact pressure is 2akg
/ after 20 minutes break-in operation with crn2 ao kg /
cm2 for 3 minutes, then 10 kj every 3 minutes
/ cm2. The results are shown in Table-2.

結果から明らかなように、現在多くのガソリンエンジン
での組合せに見られる片状黒鉛鋳鉄(シリンダーライナ
ー材)とCrメッキ(ピストンリング表面)の組合せよ
りも、本発明によるNn7〜Nn1Oのものはすぐれた
耐焼付性を示している。
As is clear from the results, the Nn7 to Nn1O material according to the present invention is superior to the combination of flake graphite cast iron (cylinder liner material) and Cr plating (piston ring surface) currently found in many gasoline engines. It shows excellent seizure resistance.

又、比較材(鋳造)や、11に+、 1、N[L2に見
られるようにSiC分散鉄メッキに比べ、硬質Cr メ
ッキとの組合せの場合は、焼付発生面圧が大巾に低くな
っているが、本発明によるM7〜Nn1Oについてけ相
手表面処理の違いによる差が小さくなる結果となってい
る点が注目される。
Furthermore, compared to the comparison material (casting) and SiC dispersed iron plating as seen in 11+, 1, and N [L2], when combined with hard Cr plating, the surface pressure at which seizure occurs is significantly lower. However, it is noteworthy that the difference due to the difference in the surface treatment of the mating material is reduced for M7 to Nn1O according to the present invention.

更に比較材(鋳造)やNn1.2に比べNo、7〜1゜
の成型体の焼付発生面圧が高いが、これはAI!基地中
に分散する硬質相の量が多く微小な凹凸となって油膜の
保持作用として働く他に、基地が分散強化されているの
で摩擦表面が塑性流動によって相手材に凝着しようとす
るのを防ぐためと考えられる。
Furthermore, compared to the comparison material (casting) and Nn1.2, the surface pressure at which seizure occurs in the No. 7-1 degree molded body is higher, but this is due to AI! The large amount of hard phase dispersed in the base creates minute irregularities that act as a retainer for the oil film, and the base is dispersed and strengthened to prevent the friction surface from adhering to the mating material due to plastic flow. This is thought to be for prevention purposes.

0摩耗試験及び摩擦係数の測定 耐焼付試験に使用したと同じ試験機により研磨仕上げを
行なった、円板状の試験片(2)に球状黒鉛鋳鉄の摺動
面に硬質Crメッキを施したものと、平均粒径08μの
Sacを面積率で15〜20%分散させた鉄メッキを施
したものを各々研磨仕上げをしたものを相手材試験片(
5)として、次の条件玉テストした。結果を表−3に示
す。
0 Wear test and friction coefficient measurement Disc-shaped test piece (2) polished using the same testing machine used for the seizure resistance test, with hard Cr plating applied to the sliding surface of spheroidal graphite cast iron. A mating material test piece (
As 5), we conducted a test under the following conditions. The results are shown in Table-3.

(条 件) 速度は3 ’X / Bec、 5 m/Sec、 8
 m/Beeの3水準トし、潤滑油としてエンジンオイ
ル(SAE20、 ベースオイル)を使用し、油温90
℃、油量500 rat/min、面圧100 kg/
cm2テ摺動距離500 kmとした。
(Conditions) Speed is 3'X/Bec, 5 m/Sec, 8
m/Bee at 3 levels, use engine oil (SAE20, base oil) as the lubricating oil, and set the oil temperature to 90.
℃, oil amount 500 rat/min, surface pressure 100 kg/
The sliding distance in cm2 was 500 km.

(摩耗量の測定) 0円板状の試験片の摩耗量は表面粗す計にて90゜ずつ
ずれた位置で4ケ所摺動力向と直角となるように触針を
走らせ、摩耗痕の状況をチャート上に記録する。しかる
後、摩耗痕の凹:部の、面積を求め、材料間の相対比較
を行う。表−3では片状黒鉛鋳鉄の円板の速度5m/s
ee時の′摩耗痕の断面積を1としたときの相対比で表
わした。
(Measurement of the amount of wear) The amount of wear on the disk-shaped test piece was measured using a surface roughness meter by running a stylus at 4 positions perpendicular to the direction of the sliding force and checking the condition of wear marks. Record on the chart. After that, the area of the concavity of the wear mark is determined and a relative comparison is made between the materials. In Table 3, the speed of the disk of flake graphite cast iron is 5 m/s.
It is expressed as a relative ratio when the cross-sectional area of the wear scar at the time of ee is set to 1.

0相手材試験片の摩耗量は試料保持具(4a)に取付け
られた4本の角状試験片(5)の高さ寸法をテスト前後
にマイクロメーターで測定し、その平均の差を求める方
法によった。
0 The amount of wear on the mating material test piece is determined by measuring the height dimensions of four square test pieces (5) attached to the sample holder (4a) with a micrometer before and after the test, and finding the average difference. According to

摩耗係数の測定は200 km走行後に摩擦トルクを記
録計(a)より読み取り算出した。
The wear coefficient was calculated by reading the friction torque from the recorder (a) after traveling 200 km.

結果を表−3に示すが片状黒鉛鋳鉄(シリンダーライナ
ー拐)と、Crメッキの組合せの場合よりも、著しく摩
擦係数の低いことが明らかである。
The results are shown in Table 3, and it is clear that the friction coefficient is significantly lower than that of the combination of flake graphite cast iron (cylinder liner) and Cr plating.

更に供試材M1のように鋳ぐるみ時の熱負荷に相当する
300℃X 100 Hr  の熱処理を行なったもの
は、円板の摩耗が著しく多いが、本発明によるNo7〜
Nol0においては摩耗量は、片状黒鉛鋳鉄と比較して
も同等以下である。
Furthermore, specimen M1, which was subjected to heat treatment at 300°C x 100 Hr, which corresponds to the heat load during casting, had a significant amount of wear on the disc, but No. 7 to No. 7 according to the present invention
In No. 0, the amount of wear is equal to or lower than that of flake graphite cast iron.

又、相手の表面処理が硬質Crメッキであっても、又S
iC分散鉄メッキであってもその差はない。
In addition, even if the surface treatment of the other party is hard Cr plating, S
Even with iC dispersed iron plating, there is no difference.

以上のように本発明合金は、A7合金製シリンダーブロ
ックに鋳ぐるまれ、且つ、使用時に比較的高い温度域で
使用されるシリンダーライナーのような用途に適するも
のである。
As described above, the alloy of the present invention is suitable for applications such as cylinder liners that are cast into A7 alloy cylinder blocks and are used in relatively high temperature ranges.

尚、本発明合金はF e * M n * T il 
Cr * V + M o +Zr 、 Co等を含ん
でも急冷凝固による粉末を出発原料としているため耐熱
性に寄与するものと考えられる。
The alloy of the present invention is F e * M n * T il
Even if it contains Cr*V+Mo+Zr, Co, etc., it is thought that it contributes to heat resistance because the starting material is a powder obtained by rapid solidification.

又、ZnをCu、Mgの代りに時効硬化性を与える目的
で置換することも可能である。
Further, it is also possible to substitute Zn in place of Cu or Mg for the purpose of imparting age hardenability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は耐焼付性試験装置の概要を示W 芹 す図で第2図は第1図のN−N矢視測面図である。 第3図は本発明になるAl −22,85i−3,I 
Cu−1,3Mg−8,ONi−0,5Feの組成を有
する合金粉末の顕微鏡組織写真(740倍)。第4図は
第3図と同一組成の鋳造材の顕微鏡組織写真(97倍)
。第5図はAI!−21,1、S r −3,I Cu
 −1,0Mg の組成を有する公知の合金粉末の顕微
鏡組織写真(740倍)。第6図は本発明になる第3図
と同一の組成を有するアルミニウム合金粉末成型体断面
の顕微鏡組織写真(押出方向に平行する、断面、740
倍)。第7図は第5図と同一組成の公知の合金粉末成形
体断面の組織写真(押出方向に平行する断面 740倍
)である。 特許出願人 株式会社 リ ケン 昭和電工株式会社 代理人弁理士菊地精− 第1図     第2図 」 系30 軍4El (9フイコ蔓1)
1 and 2 are diagrams showing an overview of the seizing resistance testing apparatus, and FIG. 2 is a surface survey taken along the line N--N in FIG. 1. Figure 3 shows Al-22,85i-3,I according to the present invention.
Microscopic structure photograph (740x) of alloy powder having the composition of Cu-1,3Mg-8,ONi-0,5Fe. Figure 4 is a microscopic structure photograph (97x) of a cast material with the same composition as Figure 3.
. Figure 5 shows AI! −21,1, S r −3, I Cu
-Micrograph (740x magnification) of a known alloy powder with a composition of 1,0 Mg. FIG. 6 is a microscopic structure photograph of a cross section of an aluminum alloy powder compact having the same composition as FIG. 3 according to the present invention (cross section parallel to the extrusion direction, 740
times). FIG. 7 is a micrograph of a cross section of a known alloy powder compact having the same composition as FIG. 5 (cross section parallel to the extrusion direction, magnified 740 times). Patent applicant Riken Co., Ltd. Showa Denko Co., Ltd. Patent attorney Sei Kikuchi - Figure 1 Figure 2 Series 30 Army 4El (9 Fuiko vines 1)

Claims (3)

【特許請求の範囲】[Claims] (1)重量比で5i10.0〜300チと、Ni50〜
15.0%と、さらに必要に応じてCuO15〜50q
6およびMg0.2〜30係、残部が不可避的不純物を
含むA7とからなり、Si結晶粒の大きさが15μm以
下であることを特徴とする耐熱耐摩耗性高力アルミニウ
ム合金粉末。
(1) Weight ratio of 5i10.0~300chi and Ni50~
15.0% and further CuO15-50q as necessary
A heat-resistant, wear-resistant, high-strength aluminum alloy powder, characterized in that the powder is composed of Mg 6 and Mg 0.2 to 30, the remainder being A7 containing inevitable impurities, and having a Si crystal grain size of 15 μm or less.
(2)重量比fsi 10.0〜30.0%と、Ni5
.0〜150チと、さらに必要に応じてCuO,5〜5
.0116およびMg 0.2〜3.0 %、残部が不
可避的不純物を含むAfとからなり、Si結晶粒の大き
さが15μm以下であり、かつNiを含む金属間化合物
の大きさが20μm以下に微細化分散してなることを特
徴とする耐熱耐摩耗性高力アルミニウム合金粉末成形体
(2) Weight ratio fsi 10.0 to 30.0% and Ni5
.. 0 to 150, and if necessary CuO, 5 to 5
.. 0116 and Mg 0.2 to 3.0%, the balance being Af containing inevitable impurities, the size of the Si crystal grain is 15 μm or less, and the size of the intermetallic compound containing Ni is 20 μm or less. A heat-resistant, wear-resistant, high-strength aluminum alloy powder compact that is made of finely dispersed powder.
(3)重量比で5ilO,O〜300係と、Ni  5
0〜15.0%と、さらに必要に応じてCu  05〜
5.0%およびMg0.2〜30係と残部が不可避的不
純物を含trh1合金の溶湯を分散急冷凝固させて粉末
となし、次いで得られた合金粉末を熱間押出成形するこ
とを特徴とする、Si結晶粒の大きさが15μm以下、
かつNiを含む金属間化合物の大きさが20μm以下に
微細化分散した組織を有する耐熱耐摩耗性高力アルミニ
ウム合金粉末成形体の製造方法。
(3) Weight ratio of 5ilO, O~300 and Ni 5
0 to 15.0%, and further Cu 05 to 15.0% as necessary
It is characterized by dispersing and rapidly solidifying a molten metal of a trh1 alloy containing 5.0% Mg, 0.2 to 30% Mg, and inevitable impurities with the remainder being quenched to form a powder, and then hot extrusion molding the obtained alloy powder. , the size of Si crystal grains is 15 μm or less,
and a method for producing a heat-resistant, wear-resistant, high-strength aluminum alloy powder compact having a structure in which Ni-containing intermetallic compounds are finely dispersed to a size of 20 μm or less.
JP57119901A 1982-07-12 1982-07-12 Heat- and wear-resistant high-strength aluminum alloy powder and molded body of said alloy powder and their manufacture Granted JPS5913040A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP57119901A JPS5913040A (en) 1982-07-12 1982-07-12 Heat- and wear-resistant high-strength aluminum alloy powder and molded body of said alloy powder and their manufacture
CA000432033A CA1230761A (en) 1982-07-12 1983-07-07 Heat-resistant, wear-resistant, and high-strength aluminum alloy powder and body shaped therefrom
EP83106849A EP0100470B1 (en) 1982-07-12 1983-07-12 Heat-resistant, wear-resistant, and high-strength aluminum alloy powder and body shaped therefrom
DE8383106849T DE3381592D1 (en) 1982-07-12 1983-07-12 HEAT-RESISTANT AND WEAR-RESISTANT ALUMINUM ALLOY POWDER WITH GOOD MECHANICAL PROPERTIES AND ITEMS MADE THEREOF.
US07/259,402 US4938810A (en) 1982-07-12 1988-10-18 Heat-resistant, wear-resistant, and high-strength aluminum alloy powder and body shaped therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57119901A JPS5913040A (en) 1982-07-12 1982-07-12 Heat- and wear-resistant high-strength aluminum alloy powder and molded body of said alloy powder and their manufacture

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP28226387A Division JPS63266004A (en) 1987-11-10 1987-11-10 High strength aluminum alloy powder having heat and wear resistances

Publications (2)

Publication Number Publication Date
JPS5913040A true JPS5913040A (en) 1984-01-23
JPH0118981B2 JPH0118981B2 (en) 1989-04-10

Family

ID=14773016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57119901A Granted JPS5913040A (en) 1982-07-12 1982-07-12 Heat- and wear-resistant high-strength aluminum alloy powder and molded body of said alloy powder and their manufacture

Country Status (1)

Country Link
JP (1) JPS5913040A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210237A (en) * 1985-07-09 1987-01-19 Showa Denko Kk Aluminum alloy for hot forging
JPS6296603A (en) * 1985-10-22 1987-05-06 Honda Motor Co Ltd Production of structural member made of heat-resistant high-strength al sintered alloy
JPS6361298A (en) * 1986-09-02 1988-03-17 松下通信工業株式会社 Accent imparting method
JPS6456844A (en) * 1987-04-13 1989-03-03 Showa Denko Kk Spring retainer
JPH02149632A (en) * 1988-11-30 1990-06-08 Showa Alum Corp Low thermal expansion aluminum alloy having excellent wear resistance and heat conductivity
US5374295A (en) * 1992-03-04 1994-12-20 Toyota Jidosha Kabushiki Kaisha Heat resistant aluminum alloy powder, heat resistant aluminum alloy and heat and wear resistant aluminum alloy-based composite material
US5409661A (en) * 1991-10-22 1995-04-25 Toyota Jidosha Kabushiki Kaisha Aluminum alloy
US5464463A (en) * 1992-04-16 1995-11-07 Toyota Jidosha Kabushiki Kaisha Heat resistant aluminum alloy powder heat resistant aluminum alloy and heat and wear resistant aluminum alloy-based composite material
US5614036A (en) * 1992-12-03 1997-03-25 Toyota Jidosha Kabushiki Kaisha High heat resisting and high abrasion resisting aluminum alloy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52101611A (en) * 1976-02-23 1977-08-25 Tsugio Nakatani Sintered ultrahighhsilicon aluminium product
JPS5597447A (en) * 1979-01-19 1980-07-24 Sumitomo Electric Ind Ltd Aluminum sintered alloy and production of the same
JPS62247044A (en) * 1987-04-03 1987-10-28 Sumitomo Electric Ind Ltd Wear resistant aluminum alloy of high strength

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52101611A (en) * 1976-02-23 1977-08-25 Tsugio Nakatani Sintered ultrahighhsilicon aluminium product
JPS5597447A (en) * 1979-01-19 1980-07-24 Sumitomo Electric Ind Ltd Aluminum sintered alloy and production of the same
JPS62247044A (en) * 1987-04-03 1987-10-28 Sumitomo Electric Ind Ltd Wear resistant aluminum alloy of high strength

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210237A (en) * 1985-07-09 1987-01-19 Showa Denko Kk Aluminum alloy for hot forging
JPS6296603A (en) * 1985-10-22 1987-05-06 Honda Motor Co Ltd Production of structural member made of heat-resistant high-strength al sintered alloy
JPH0480081B2 (en) * 1985-10-22 1992-12-17 Honda Motor Co Ltd
JPS6361298A (en) * 1986-09-02 1988-03-17 松下通信工業株式会社 Accent imparting method
JPS6456844A (en) * 1987-04-13 1989-03-03 Showa Denko Kk Spring retainer
JPH02149632A (en) * 1988-11-30 1990-06-08 Showa Alum Corp Low thermal expansion aluminum alloy having excellent wear resistance and heat conductivity
JPH0480108B2 (en) * 1988-11-30 1992-12-17 Showa Aluminium Co Ltd
US5409661A (en) * 1991-10-22 1995-04-25 Toyota Jidosha Kabushiki Kaisha Aluminum alloy
US5374295A (en) * 1992-03-04 1994-12-20 Toyota Jidosha Kabushiki Kaisha Heat resistant aluminum alloy powder, heat resistant aluminum alloy and heat and wear resistant aluminum alloy-based composite material
US5464463A (en) * 1992-04-16 1995-11-07 Toyota Jidosha Kabushiki Kaisha Heat resistant aluminum alloy powder heat resistant aluminum alloy and heat and wear resistant aluminum alloy-based composite material
US5614036A (en) * 1992-12-03 1997-03-25 Toyota Jidosha Kabushiki Kaisha High heat resisting and high abrasion resisting aluminum alloy

Also Published As

Publication number Publication date
JPH0118981B2 (en) 1989-04-10

Similar Documents

Publication Publication Date Title
EP0100470B1 (en) Heat-resistant, wear-resistant, and high-strength aluminum alloy powder and body shaped therefrom
JPS61291941A (en) Cast al alloy having high si content
JPH0118982B2 (en)
US5976214A (en) Slide member of sintered aluminum alloy and method of manufacturing the same
EP0577062B1 (en) Oil pump made of aluminum alloys
JPS6210237A (en) Aluminum alloy for hot forging
JPS5913040A (en) Heat- and wear-resistant high-strength aluminum alloy powder and molded body of said alloy powder and their manufacture
JPS6320298B2 (en)
JPH0122343B2 (en)
JPS6121295B2 (en)
JPH0137464B2 (en)
US4537161A (en) Inserts for pistons of diesel engines of aluminum-silicon alloys having an improved thermal resistance and machinability
JPS6320297B2 (en)
JPH0118983B2 (en)
JPS6150132B2 (en)
JPH0256401B2 (en)
JPS5966918A (en) Double layer structure hollow member made of aluminum alloy
JPH0118984B2 (en)
JPS63266005A (en) High strength aluminum alloy powder having heat and wear resistances
JP2000001731A (en) Hypereutectic aluminum-silicon alloy diecast member and its production
JPH0637682B2 (en) Heat resistant and abrasion resistant high strength aluminum alloy powder compact having excellent lubricity and method for producing the same
JPH01243A (en) Heat-resistant and wear-resistant aluminum alloy
JPS61295301A (en) Heat-resistant high-power aluminum alloy powder and its molding
JPH072961B2 (en) Heat and wear resistance High strength aluminum alloy powder
JPH01132727A (en) Manufacture of high-strength aluminum alloy powder compact excellent in lubricity and having heat resistance and wear resistance