JPS5966918A - Double layer structure hollow member made of aluminum alloy - Google Patents

Double layer structure hollow member made of aluminum alloy

Info

Publication number
JPS5966918A
JPS5966918A JP17763682A JP17763682A JPS5966918A JP S5966918 A JPS5966918 A JP S5966918A JP 17763682 A JP17763682 A JP 17763682A JP 17763682 A JP17763682 A JP 17763682A JP S5966918 A JPS5966918 A JP S5966918A
Authority
JP
Japan
Prior art keywords
aluminum alloy
inner layer
alloy
hollow
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17763682A
Other languages
Japanese (ja)
Other versions
JPH0120218B2 (en
Inventor
Fumio Kiyota
清田 文夫
Tsuneki Sakumichi
作道 恒樹
Tatsuo Fujita
藤田 達生
Shinichi Horie
堀江 新一
Tadao Hirano
忠男 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Resonac Holdings Corp
Original Assignee
Riken Corp
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp, Showa Denko KK filed Critical Riken Corp
Priority to JP17763682A priority Critical patent/JPS5966918A/en
Publication of JPS5966918A publication Critical patent/JPS5966918A/en
Publication of JPH0120218B2 publication Critical patent/JPH0120218B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Extrusion Of Metal (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To raise thermal resistance, abrasion resistance and galling resistance by forming a double layer structure consisting of an inner layer made of an Al alloy having a metallic structure which contains Si, Mn, Fe and Ni of a prescribed ratio and is dispersed finely, and an outer layer which is softer than said inner layer. CONSTITUTION:Alloy powder containing 10-30% Si, 3-15% >=1 kind among Mn, Fe and Ni by wt% and the balance Al is prepared. A hollow green compact obtained by hot-compressing this alloy powder is inserted into an Al alloy pipe which is softer than said body, by which a hollow composite billet is formed. Subsequently, a composite structure hollow member 1' is obtained by hot-extruding this billet. As for an inner layer 2 made of an Al alloy having high thermal resistance and abrasion resistance of said member 1', Si crystal particles having <=15mum diameter and an intermetallic compound having 20mum diameter containing >=1 kind among Mn, Fe and Ni are dispersed finely.

Description

【発明の詳細な説明】 この発明は内燃機関や斜板式コンプレッサ等に使用され
るシリンダライナとして好適なアルミニウム、合金製中
空部利に係り、更に詳しく汀えは特に熱安定性を改善し
た耐熱耐摩耗性高力アルミニウム合金内層と該内層より
軟質なアルミニウム合金外層とよりなる押出し法によっ
て形成された複層構造中空部14に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to hollow parts made of aluminum or alloys suitable for cylinder liners used in internal combustion engines, swash plate compressors, etc. The present invention relates to a hollow part 14 having a multilayer structure formed by an extrusion method including an inner layer made of an abrasive high-strength aluminum alloy and an outer layer made of an aluminum alloy that is softer than the inner layer.

最近、自動車のY?F=M化やフロントエンジン・フロ
ントドライブ(FF )方式の採用のためエンジンの軽
量化が必要となり、シリンダブロックは鋳鉄からA1合
金が使用されるよ5に変って来ているが、この場合、シ
リンダブロックのWTrtiJ面の耐摩耗性を高めるた
め約鉄製シリンダライナが鋳ぐるまれCいるのが普通で
ある。このシリンダライナをアルミニウム合金製にする
ことができれば軽量になるほか、熱伝導度および熱膨張
係数が鋳鉄よりも大きく、昇温時にもライナとブロック
の密着性が良くなり、従って放熱性の良いエンジンが得
られる。その結果ライナの温度が低くなるので潤滑油の
寿命を長くし、或いは低粘度の潤滑油の使用が可能とな
り、また熱膨張係数がピストン材料のアルミニウム合金
と同程度になるので、ピストンとの間のクリアランスを
小さく設定できるため潤滑油の消費量やブローバイガス
の発生を少量に押え、燃費および効率の向上も期待され
る。
Recently, car Y? Due to the shift to F=M and the adoption of the front engine/front drive (FF) system, it is necessary to reduce the weight of the engine, and the cylinder block has changed from cast iron to A1 alloy. In order to improve the wear resistance of the WTrtiJ surface of the cylinder block, a cylinder liner made of iron is usually cast into the cylinder block. If this cylinder liner could be made of aluminum alloy, it would not only be lightweight, but also have higher thermal conductivity and coefficient of thermal expansion than cast iron, which would improve the adhesion between the liner and the block even when the temperature rises, and therefore improve engine heat dissipation. is obtained. As a result, the temperature of the liner becomes lower, which prolongs the life of the lubricating oil or allows the use of lubricating oil with a lower viscosity.Also, the coefficient of thermal expansion is similar to that of the aluminum alloy of the piston material, so the distance between the liner and the piston is reduced. Since the clearance can be set small, the consumption of lubricating oil and the generation of blow-by gas can be kept to a small amount, which is expected to improve fuel efficiency and efficiency.

また高Si含有のA1合金製シリンダライナは摩擦係数
が小さいためピストンリングとの間のフリクションロス
が低減されることによっても燃費の向上、出力の向上が
期待される。
Furthermore, since the high Si content A1 alloy cylinder liner has a small coefficient of friction, it is expected to improve fuel efficiency and output by reducing friction loss between it and the piston ring.

然しなから従来公知のアルミニウム合金では上記のよう
な鋳ぐるみ用シリンダライナとしては不充分である。例
えばアメリカ・アルミナム協会規格(AA規格)のA3
90.0合金(Si16〜18チ、Cu4〜5%、Mg
 0.5〜0.65%、1i”e□、5%、’lI’i
Q、2%、Zn0.1%、残Ai、)(本明a書におい
て合金組成はすべて重量%で示す)のような鋳造合金は
固液共存温度域が広いため大きな押湯を必要とする結果
歩留りが悪くなるほか、微細化処理や金型鋳造法によっ
ても初晶8i はなお大きく晶出するため被削性が悪い
。更に致命的欠点として、シリンダブロックにfn<”
ルむときに溶湯の熱によって材料が軟化するため、耐摩
耗性が著しく低下する上に、被削面にいわゆるびびりや
むしれを生じ易く、またホーニング加工を困難にする等
の欠点がある。
However, conventionally known aluminum alloys are insufficient as cylinder liners for castings as described above. For example, A3 according to the American Aluminum Association standard (AA standard)
90.0 alloy (Si16-18, Cu4-5%, Mg
0.5-0.65%, 1i"e□, 5%, 'lI'i
Casting alloys such as Q, 2%, Zn 0.1%, balance A) (all alloy compositions are expressed in weight percent in this document) require a large feeder because the solid-liquid coexistence temperature range is wide. As a result, the yield is poor, and machinability is poor because primary crystals 8i still crystallize in a large size even with the refinement treatment and die casting method. Furthermore, a fatal flaw is that the cylinder block has fn<”
Since the material is softened by the heat of the molten metal when it is rolled, the wear resistance is significantly reduced, and there are other disadvantages such as chattering and peeling on the machined surface and making honing difficult.

これに対して、近年粉末冶金法により前記のAている(
特開昭52−109415号)。 これによれば12〜
30%Si、  l〜5%cu、0.5〜1.5チへ4
g、残Aノの過共晶1’J−8i合金溶湯をアトーイヌ
法または遠心力による微粒化法によって粒状化し、これ
を押出すことによって中空体を得る方法であり、この方
法によって得られる材料は初晶Siを20μm以下とす
ることができるため延性や機械加工性にすぐれ、摩擦係
数が小さく、優れた耐摩耗性を有する。更に上記組成の
AノーSi 合金にN1を0.5〜1.5チ加えた粉末
にSin、  Sn、黒鉛等を混じて中空体を押出すこ
とも提案さ才1ている。
On the other hand, in recent years, the powder metallurgy method has been used to solve the above-mentioned A (
JP 52-109415). According to this, 12~
30%Si, l~5%cu, 0.5~1.5chi4
g. A method of obtaining a hollow body by granulating a molten hypereutectic 1'J-8i alloy with residual A by the Atoine method or atomization method using centrifugal force and extruding it, and the material obtained by this method. Since the primary crystal Si can be made to be 20 μm or less, it has excellent ductility and machinability, a small coefficient of friction, and excellent wear resistance. Furthermore, it has also been proposed to extrude a hollow body by mixing Sin, Sn, graphite, etc. into a powder obtained by adding 0.5 to 1.5 inches of N1 to the A-no-Si alloy having the above composition.

本発明者は上記の発明のトレース実験を行なったが、2
0チS+−4俤Cu −0,8%Mg −0,5%Ni
 −AJ、%残の標準組成の合金粉末の押出材をシリン
ダライナ(外径73 mm、内径65m1n、高さ10
5 mm  )としてADC12合金(JIS H53
02)のシリンダブロック(重量3.4kg)に溶湯温
度675℃でダイカスト法で鋳ぐるむ試験の結果によれ
ば、鴫ぐるみ前にT6処理で硬さl−1nJ3 80程
度のものが、鋳ぐるみ後にはHRB40程度に軟化して
しま5ことが判明した。従ってこの種合金の中空体もシ
リンダブロックに鋳ぐるんでシリンダライナとして使用
することができない。
The present inventor conducted a tracing experiment of the above invention, but 2
0chi S+-4 Cu -0,8%Mg -0,5%Ni
- AJ, % remaining standard composition alloy powder extruded material was made into a cylinder liner (outer diameter 73 mm, inner diameter 65 m1n, height 10
5 mm) as ADC12 alloy (JIS H53
According to the results of a die-casting test using a die-casting method at a molten metal temperature of 675°C into a cylinder block (weight: 3.4 kg) of 02), it was found that a cylinder block with a hardness of about l-1nJ3 80 that was treated with T6 before molding was cast. Later, it was found that the HRB had softened to about 40. Therefore, a hollow body of this type of alloy cannot be cast into a cylinder block and used as a cylinder liner.

また鋳ぐるみはダイカスト法や低圧鋳造法によるが、ラ
イナはコストの点からできるだけ薄肉とすることが好ま
しいので、鋳ぐるみ時のライナ搬送工程や位置決め時に
加わる機械的応力により変形し易くなり、これを防ぐた
めには高剛性(高硬度)であることが必要になる。
Castings are made by die-casting or low-pressure casting, but it is preferable to make the liner as thin as possible from a cost perspective, so it is easy to deform due to mechanical stress applied during the liner transportation process and positioning during casting. In order to prevent this, it is necessary to have high rigidity (high hardness).

本発明者はこれらの欠点を解消し、鈎ぐるみ時の熱負荷
に対しても軟化することがなく、更に使用時に負荷され
る温度域においても軟化せず、耐摩粍性、耐焼イゴ性に
ずぐれた高カアルミニウム合金材料として、重量比で8
110〜30%を含有する高5i−AJ、合金に更に1
M!1、Fe、Ni等の合金元素を多量に添加し、15
μITI以下のS l結晶粒と20μm以下のMJI 
%Fe 、 Nj ct)1種または2種以上を含む金
属間化合物とを微細に分散さぜた耐熱耐摩耗性高力アル
ミニウム合金粉末成形体およびその製造方法を先に提示
した(lI!fjil′l昭57−119901号、特
願昭57−1199Q2号)。
The inventor of the present invention solved these drawbacks and created a product that does not soften even under the heat load when hooking, does not soften even in the temperature range that is applied during use, and has excellent abrasion resistance and corrosion resistance. As an excellent high-potency aluminum alloy material, the weight ratio is 8.
High 5i-AJ containing 110-30%, alloy with additional 1
M! 1. By adding a large amount of alloying elements such as Fe and Ni, 15
S l grains below μITI and MJI below 20 μm
We have previously presented a heat-resistant, wear-resistant, high-strength aluminum alloy powder compact in which an intermetallic compound containing one or more types (%Fe, Nj ct) is finely dispersed, and a method for producing the same (lI!fjil' No. 1989-119901, Patent Application No. 1199Q2, 1982).

これらの耐熱耐摩耗性高力アルミニウム合金粉末成形体
は上記の金属組織を有するものであり、耐摩耗、耐焼伺
の点で優れている上に耐熱性が優れ、熱負荷の作用の下
においても硬度が低下することがきわめて少なく、従っ
てシリンダライナ材としてアルミニウム合金製シリンダ
ブロックに鋳ぐるんで使用するのには充分なものである
、然しなから上記の耐熱耐摩耗性高力アルミニウム合金
粉末成形体は該合金溶湯を急冷凝固させて得られる粉末
を熱間押出成形する方法で得られるものであるが、その
合金粉末はMn、Fe、  Ni等の添加により生ずる
金属間化合物を多量に含むものであるためシリンダライ
ナの如き中空部材を熱間押出成形するに当って押出抵抗
が大となり、そのため大容量の押出装置を必要とすると
共に押出速度をきわめて低速にしなければならず、かつ
押出しダイスの寿命を短くし、またシリンダライナの外
周にシリンダブロックへの密着結合を確実にするため凹
凸部、すなわちセレーションをシリンダライナの外周に
形成することが難しい等の問題点がある。
These heat-resistant, wear-resistant, high-strength aluminum alloy powder compacts have the above-mentioned metallographic structure, and are excellent in wear resistance and burnout resistance, as well as heat resistance, even under the action of heat loads. The above-mentioned heat-resistant, wear-resistant, high-strength aluminum alloy powder molded product has very little decrease in hardness and is therefore suitable for use as a cylinder liner material cast into an aluminum alloy cylinder block. is obtained by hot extrusion molding of the powder obtained by rapidly cooling and solidifying the molten alloy, but the alloy powder contains a large amount of intermetallic compounds produced by the addition of Mn, Fe, Ni, etc. When hot extruding a hollow member such as a cylinder liner, the extrusion resistance becomes large, which requires a large capacity extrusion device, requires an extremely low extrusion speed, and shortens the life of the extrusion die. However, there are also problems in that it is difficult to form uneven portions, that is, serrations, on the outer periphery of the cylinder liner to ensure tight connection to the cylinder block.

この発明は上記の問題点を解決する中空部利を提供する
ことを目的とし、その第1の発明はアルミニウム合金製
中空部材においてN量比で5i10〜30 %、Mn 
、 Fe 、 Ni の5ち1種または2種以上3〜1
5%、残余は実質的に后からなり、大きさ15μm以下
のSi 結晶粒と前記のMn 、 Fe 、 Ni の
うち1種または2種以上を含む大きさ20μm以下の金
属間化合物とが微細に分散している金属組織を有する耐
熱耐摩耗性高力アルミニウム合金製の内層と該内層より
軟質のアルミニウム合金の外層とよりなる押出し法によ
って形成された抜屑構造を有することをIrj微とする
アルミニウム、合金製中空部材およびその第2の発明は
第1の発明の内層の化学成分組成にCu□、5〜5チ、
MgQ、2〜3%を添加したものに係る。
The purpose of this invention is to provide a hollow part advantage that solves the above problems, and the first invention is to provide a hollow member made of aluminum alloy with an N content ratio of 5i10 to 30%, Mn
, Fe, Ni, 1 type or 2 or more types 3 to 1
5%, the remainder essentially consists of Si crystal grains with a size of 15 μm or less and intermetallic compounds with a size of 20 μm or less containing one or more of the above-mentioned Mn, Fe, and Ni. Aluminum having a scrap structure formed by an extrusion method consisting of an inner layer made of a heat-resistant, wear-resistant, high-strength aluminum alloy having a dispersed metallographic structure and an outer layer made of an aluminum alloy that is softer than the inner layer. , an alloy hollow member and its second invention include Cu□, 5-5T, and
It concerns what MgQ added 2-3%.

本発明の袂屑構造中空部拐の内層は熱負荷の作用によっ
ても軟化することなく、かつ摺動状態において優れた耐
摩粍性と耐焼着性を発揮する耐熱11iJ摩耗性高力ア
ルミニウム合金よりなり、該内層J:り軟質の鋳造用、
ダイカスト用または展伸用アルミニウム合金の外層を有
しているので押出し成形加工が容易であり、該中空体の
寸法精度を高める目的での中空体のしごき加工や、外周
面へのセレーション形成加工が容易に行なわれ、また外
層利は内層利に比べ合金元素の添加量が少なく熱伝導率
および熱膨張係数が大であるので、内層の摺動面温度を
一層低温に藉持することを可能にするとともに、その外
側の鋳ぐるみ利への密着が一層確実に祠られる等の利点
を有する。
The inner layer of the hollow part of the lining structure of the present invention is made of a heat-resistant 11iJ abrasion-resistant high-strength aluminum alloy that does not soften even under the action of heat load and exhibits excellent abrasion resistance and seizure resistance in sliding conditions. , the inner layer J: for soft casting;
Since it has an outer layer of aluminum alloy for die casting or drawing, extrusion processing is easy, and it is possible to iron the hollow body for the purpose of increasing the dimensional accuracy of the hollow body or to form serrations on the outer peripheral surface. It is easy to carry out, and since the outer layer has fewer alloying elements and higher thermal conductivity and coefficient of thermal expansion than the inner layer, it is possible to maintain the temperature of the sliding surface of the inner layer at a lower temperature. At the same time, it has the advantage of more securely adhering to the outer casting hole.

次に添付図面に示す鋳ぐるみ用シリンダライナの実施例
忙ついて本発明を説明する。第1図に示すシリンダライ
ナ1は内層2と外層3との複層措造をしている。内M2
はSi ’10〜30 %、Mn、Fe、Ni  の1
種または2種以上を3〜15チと、更に必要によりCu
0.5〜5チおよびMg0.2〜3%を含み、残部実録
的に、心からなり、外層3は前記内層材より軟質のJI
S )(5202鋳造用・JISI(5302ダイキャ
スト用またはJISI−14100展伸用アルミニウム
合金または類似合金からなっている。なお内層2と外層
3との境界部は鋳ぐるみに際して成分元素が相互に拡散
して冶金学的に接合している。本発明において内層利の
化学成分組成は次のとおりとする。
Next, the present invention will be explained by referring to an embodiment of a cylinder liner for a casting shown in the accompanying drawings. The cylinder liner 1 shown in FIG. 1 has a multi-layer structure including an inner layer 2 and an outer layer 3. Inner M2
is Si'10~30%, Mn, Fe, Ni 1
3 to 15 seeds or two or more seeds, and further Cu if necessary
The outer layer 3 is made of JI, which is softer than the inner layer material.
S) (5202 for casting/JISI (5302 for die casting or JISI-14100 for drawing) Made of aluminum alloy or similar alloy.The boundary between the inner layer 2 and outer layer 3 is where the constituent elements are mutually diffused during casting. In the present invention, the chemical composition of the inner layer is as follows.

まず、Si は微細なSi粒子、或いはMg2Siや、
An −Fe −Si  の如き金属間化合物として基
地中に分散することにより、高温強度や耐摩耗性、耐焼
着性にすぐれた効果を示すが、その含有量が1096以
下では分散晶出量が少なくて効果が不充分であり、他方
30%を超えると溶解温度が高くなるほかに、急冷して
も粉粒体中に大きな径の初晶S+とじて析出して粉粒体
の圧縮性を著しく悪化させ、圧粉体を作り難くする上に
、熱間押出時に於て変形抵抗が大きくなるほか、得られ
る押出材の延性や衝撃値を低下させ、或いは被剛性を悪
くする。シリンダライナとして使用する場合Si添加量
の増加に伴ない熱膨張係数は小さくなるので外層I料と
の密着状態が悪(なる。従って81含有貝は10〜30
%とするが、好ましい範囲は14〜25チである。
First, Si is fine Si particles, Mg2Si,
By dispersing it in the matrix as an intermetallic compound such as An -Fe -Si, it exhibits excellent effects on high-temperature strength, wear resistance, and seizure resistance, but if its content is less than 1096, the amount of dispersed crystallization is small. On the other hand, if it exceeds 30%, not only will the melting temperature become high, but even if it is rapidly cooled, primary crystals S+ with a large diameter will precipitate in the powder, significantly reducing the compressibility of the powder. This not only makes it difficult to produce a green compact, but also increases deformation resistance during hot extrusion, lowers the ductility and impact value of the resulting extruded material, or worsens its rigidity. When used as a cylinder liner, the coefficient of thermal expansion decreases as the amount of Si added increases, resulting in poor adhesion with the outer layer I material.
%, but the preferred range is 14 to 25 inches.

Ti”e 、  Ni 、 Mn は幻に対する固溶度
が小さく、かつAp中での拡散速度が遅いことを利用し
て微細化合物として分散させて高温強度を高める目的で
添加するものであり、その量は単独または2種以上を合
計で3〜15%とする。これらの元素は溶湯を急冷して
粉粒体とする場合A−i巾に過飽和に固溶され、また固
溶しきれない分はA1−Fe−8i  三元化合物或い
はAU3N i  、Mn sz Si 7 An!5
  のような金属間化合物とじて粉粒体中に棒状の相と
なって晶出する。この化合物は熱間押出により分断され
、月利組織中に細かく分散される、更に、基地中の論飽
和分からも高温加熱によって上記の如き化合物として析
出される。これらの化合物は微細で硬度が高く、かつ、
υ中の拡散速度が遅いため粗大化が起り難いので、材料
の高温強度を大きくする。またイ」料中のSi結晶粒と
共に材料の硬度を高め、耐摩耗性、耐焼着性に寄与する
Ti"e, Ni, and Mn are added to enhance high-temperature strength by dispersing them as fine compounds by taking advantage of their low solid solubility in phantom and slow diffusion rate in Ap. The total amount of these elements is 3 to 15%, either alone or in combination.When the molten metal is rapidly cooled to form powder, these elements are supersaturated and dissolved in the A-i width, and the amount that cannot be dissolved in the solid solution is A1-Fe-8i ternary compound or AU3N i , Mn sz Si 7 An!5
Intermetallic compounds such as these crystallize as rod-shaped phases in powder and granules. This compound is divided by hot extrusion and finely dispersed in the grain structure, and is further precipitated as the above-mentioned compound from the theoretically saturated portion in the matrix by high temperature heating. These compounds are fine, hard, and
Since the diffusion rate in υ is slow, coarsening is unlikely to occur, so the high temperature strength of the material is increased. It also increases the hardness of the material together with the Si crystal grains in the material, contributing to wear resistance and seizure resistance.

添加量が396未満では効果が顕著ではなく、他方15
チを超えると溶融時に高温を必要とするほか、粉粒体の
圧縮や押出しに際しての変形抵抗を大きくし、押出加工
を困難にするほか、得られる押出材の延性や衝撃値を低
下させ、被削性を悪くする。上記の3〜15チの範囲内
で、Ni を単独で5〜15%を添加した場合、Fe 
 3〜15%およびMn  5〜15%の1種または2
種を含有させた場合、或いはFe  3〜12%および
M’n 5〜12%の1種または2種とNi  3〜1
0%とを含有させた場合特に良好な耐熱、耐摩耗特性が
得られる。
If the amount added is less than 396, the effect is not significant; on the other hand, 15
Exceeding this temperature not only requires high temperatures during melting, but also increases the deformation resistance during compression and extrusion of powder and granules, making extrusion processing difficult. Decreases machinability. Within the above range of 3 to 15%, if Ni is added alone at 5 to 15%, Fe
3 to 15% and one or two of Mn 5 to 15%
When containing seeds, or one or two of Fe 3-12% and M'n 5-12% and Ni 3-1
Particularly good heat resistance and wear resistance properties can be obtained when the content is 0%.

(コ11またはMgは一般Fc5i−kl系合金に添加
し“〔時効硬化性を旬力する元素として周知であるが、
本発明においても、この目的でCuを0.5〜5チ、M
gを0.2〜3%添加してもよい。Cuが0,5チ未満
、Mgが0.2%未満では上記の効果が充分に奏されず
、またCuを5%、Mgを3%を越えて添加しても上記
効果の増加は顕著には認められなくなる。
(Although Mg or Mg is added to general Fc5i-kl alloys, it is well known as an element that improves age hardenability.
In the present invention, for this purpose, Cu is added by 0.5 to 5 mm.
You may add 0.2-3% of g. If Cu is less than 0.5% and Mg is less than 0.2%, the above effects will not be sufficiently achieved, and even if Cu is added in excess of 5% and Mg is added in excess of 3%, the above effects will not increase significantly. will no longer be recognized.

次に製造方法な実施例について説明する。所定の目標化
学組成となるように調整したアルミニウム合金溶湯をガ
スアトマイズ法で噴u化し、第1表に示す化学組成の合
金粉とした。
Next, an example of a manufacturing method will be described. Molten aluminum alloy adjusted to have a predetermined target chemical composition was atomized by gas atomization to obtain alloy powder having the chemical composition shown in Table 1.

第1表(4) 得5れた合金粉粒子の組織はいずれも微細なSi結晶粒
が分散した基地中に棒状に成長した金属間化合物が多量
に晶出した組織を示している。
Table 1 (4) All of the structures of the obtained alloy powder particles show a structure in which a large amount of intermetallic compounds grown in a rod shape were crystallized in a matrix in which fine Si crystal grains were dispersed.

第2図は供試材3についてその金属組織を例示する顕微
鏡写g(740倍)である。
FIG. 2 is a micrograph g (740x magnification) illustrating the metal structure of sample material 3.

この合金粉を篩分けして一48メツシュの粉末を使用し
た。このようにすることにより製品押出材のSi結晶粒
の大きさを15μm以下とすることができることが多く
の実験結果から判っている。
This alloy powder was sieved and 148 mesh powder was used. It has been found from many experimental results that by doing so, the size of the Si crystal grains in the extruded product can be reduced to 15 μm or less.

次に一48メツシュの粉末を300℃に予熱し、同温度
に加熱されている分割可能な金型中に入れ、上下パンチ
で圧縮して外径175.4 mm 、内径66.5mm
、高さ100mm 、g密度比70チの圧粉体とした。
Next, 148 mesh powder was preheated to 300°C, put into a splittable mold heated to the same temperature, and compressed with upper and lower punches to form an outer diameter of 175.4 mm and an inner diameter of 66.5 mm.
, a height of 100 mm, and a g density ratio of 70 inches.

次ニビレットの熱間押出法で得られたA3056TE 
 、A6061TF!  (JIS H4080)  
アルミニウム合金製パイプ(外径294mm 、内径1
75. ’5 mm、長さ500mrn)内に前記圧粉
体を5個積み重ねて挿入し、両端部をかしめて中9%1
合ビレットとした。
A3056TE obtained by hot extrusion method of Nibilet
, A6061TF! (JIS H4080)
Aluminum alloy pipe (outer diameter 294mm, inner diameter 1
75. 5 mm, length 500 mrn), stack 5 of the green compacts and insert them, swage both ends and
It was made into a joint billet.

次にこの中室複合ビレットをN2ガス中で450℃に予
熱後、大よそ同温度に保持されたコンテナ(内径208
n聞)巾に挿入し、径6611聞のフローテングマンド
レルヲ中空複合ヒレットの孔に挿通し、間接押出法によ
り熱間押出を行ない、第1図に示ずような内層2、外層
3よりなる外径73 tnm、内径65 mmの複層構
造中空部材1を得た。
Next, this middle chamber composite billet was preheated to 450°C in N2 gas, and a container (inner diameter 208°C) kept at approximately the same temperature.
A floating mandrel with a diameter of 6,611 mm is inserted into the hole of the hollow composite fillet, and hot extrusion is performed using an indirect extrusion method to form an inner layer 2 and an outer layer 3 as shown in Figure 1. A multilayer hollow member 1 having an outer diameter of 73 tnm and an inner diameter of 65 mm was obtained.

上記熱間押出の過程でアルミニウム合金粉末は圧縮され
、塑性流動を伴なって圧着拡散により結合されるが、粉
末中に棒状をなして存在する金属間化合物は分断され、
組織中に粒状をなしてfaMに分散する。従って得られ
た複層構造中空部材の内層は第3図に例示するようにA
/! −Si 共晶からなる基地中に初晶Sj結晶粒と
Mn、Fe、Ni の一種または二種以上を含む金属間
化合物とが微細均一に分散した組織となる。
In the process of hot extrusion, the aluminum alloy powder is compressed and bonded by pressure diffusion accompanied by plastic flow, but the intermetallic compounds existing in the form of rods in the powder are fragmented.
It forms particles in the tissue and is dispersed in faM. Therefore, the inner layer of the obtained multilayer structure hollow member is as shown in FIG.
/! A structure is formed in which primary Sj crystal grains and an intermetallic compound containing one or more of Mn, Fe, and Ni are finely and uniformly dispersed in a base of -Si eutectic.

上記方法による場合熱間押出比を10以上にすることに
より合金物中の細長い棒状の金属間化合物は20μm以
下の大きさに分断され押出材中に分散する。
In the case of the above method, by setting the hot extrusion ratio to 10 or more, the elongated rod-shaped intermetallic compound in the alloy is divided into pieces of 20 μm or less in size and dispersed in the extruded material.

次に、押出された複層構造中空部材に300℃X 10
 H−rの熱処理を施したのち、所定長さに切断した中
空部利に径66nonのマンドレルを挿通した状態で外
周側にダイスを配し、しごき加工と同時にセレーション
伺は加工を施して第4図および第5図に示す如き外面に
セレーション4を有する中空体1′とした。この中空体
の内外層の境界部はおよそ径70.5 mmの位置にあ
り、該境界は拡散結合により冶金学的に結合している。
Next, the extruded multilayer structure hollow member was heated at 300°C
After H-r heat treatment, a mandrel with a diameter of 66non is inserted into the hollow part cut to a predetermined length, and a die is placed on the outer periphery, and the serrations are processed at the same time as the ironing process. A hollow body 1' having serrations 4 on the outer surface as shown in FIGS. The boundary between the inner and outer layers of this hollow body is located at a position of approximately 70.5 mm in diameter, and the boundary is metallurgically bonded by diffusion bonding.

このようにして得られた複層構造中空部材1′ばADC
12合金のシリンダブロック中にダイカスト法で鋳ぐる
まれだ。このときのAIJ012  合金溶湯の温度は
675℃であった。
The multilayer structure hollow member 1' obtained in this way is ADC
It is die-cast into a 12 alloy cylinder block. The temperature of the molten AIJ012 alloy at this time was 675°C.

アルミニウム合金製シリンダブロック中に鋳ぐるまれだ
本発明に係る複層構造中空部材のライナは鋳ぐるみの際
の熱負荷による内層の硬度低下はきわめて少なく、なお
充分な硬度を維持してオ6す、内燃機関に使用するの忙
充分な耐摩耗性を示す。
The liner of the multi-layer hollow member according to the present invention is cast into an aluminum alloy cylinder block, and the hardness of the inner layer due to the heat load during casting is extremely small, and it still maintains sufficient hardness and can be used for up to 6 months. , exhibits sufficient wear resistance for use in internal combustion engines.

g(r 2表には第1表の供試粉末による内層にアルミ
ニウム合金展伸利を前記したよ5に押出し外層とした複
1?4 ′I’Li”造中空月のライナーをAl)C1
2利のシリンダブロック本体にダイカスト法で釣ぐるみ
、内径68聞I]に仕上げ加工したのち、エンジンに組
込み、耐久テストを行なって序i量を調査した結果を、
従来のハ状然鉛朽鉄製ライナの摩耗片との比で示して力
)る。第2表には鋳ぐるみ後の内層硬度を併記し、Cあ
る。
g(r Table 2 shows the inner layer made of the sample powder in Table 1 and the extruded aluminum alloy as described above.
After finishing the cylinder block with a die-casting method and finishing it with an inner diameter of 68 mm, the cylinder block was assembled into an engine, and a durability test was conducted to investigate the quantity.
Power) is expressed as a ratio to the wear debris of a conventional galvanized iron liner. Table 2 also shows the hardness of the inner layer after casting, which is C.

第2表 耐久デスI・は回転数550Or、p、m。油温95℃
、水温i o o ’cとし、相手ピストンリングとし
ては第1圧カリングとオイルリングの外周面にそれぞれ
鉄基地中にSiCを面積比で15〜20%分散させた鉄
めっきを施したものを使用した。なお第2圧カリングと
しては表面処理なしの鋳鉄リングを使用した。また比較
旧の鋳鉄製ライナを使用したエンジンにおいては外周面
にクロムめっきを施した第1圧カリングとオイルリング
を使用した。
Table 2 Endurance Death I. Rotation speed is 550 Or, p, m. Oil temperature 95℃
, the water temperature was io o 'c, and the mating piston rings used were ones in which the outer circumferential surfaces of the first pressure culling and oil ring were each plated with iron in which SiC was dispersed in an area ratio of 15 to 20% in the iron matrix. did. Note that a cast iron ring without surface treatment was used as the second pressure culling. In addition, in the comparatively old engine that used a cast iron liner, a first pressure culling and an oil ring with chrome plating on the outer circumferential surface were used.

第2表より明らかなように本発明の複層構造中空部材製
のシリンダライナはCu、Mgを含まないものでも従来
の片状熟鉛門鉄刺ライナと同程度の耐摩耗性を示してお
り、Cu、、 Mgを含有させて時効硬化させたものは
むしろ摩耗量が少なく、充分実用に耐えるものである。
As is clear from Table 2, the cylinder liner made of the multi-layered hollow member of the present invention exhibits wear resistance comparable to that of the conventional flaky aged lead gate iron liner, even if it does not contain Cu or Mg. , Cu, and Mg that are age-hardened have a rather small amount of wear and are sufficiently durable for practical use.

以上説明したように本願発明に係る化学組成のアルミニ
ウム合金溶湯は八4n、FeあるいはNiを多JJ′に
含有するものであるため、アトマイズ法等により噴霧化
し急速冷却させても棒状に成長したMn 、  Fe 
、 Nf を含む金属間化合物が多聞に析出した組織を
有し、熱間押出しには大型押出装置を必要とし、また押
出ダイスの寿命を短くするが、本発明においてはこの合
金粉末を硬度が低く、従って成形性の良好な朽造用また
は展伸用アルミニウム合金製円筒体の中に保持して複合
ビレットを作成し、これを熱間押出しすることにより容
易に中空体として成形することができる。また外層旧の
外周に必要な機械加工を施すことが容易であり、また外
層利は合金元素の含有量が少なく内層に比べ熱伝導率お
よび熱膨張係数が大であり、内層からの熱吸収効率が良
好で、内層の内壁摺動面の温度を低温に維持し、低粘度
の潤滑油の使用をri能にするとともに鋳ぐるみ利であ
るシリンダブロック本体との密着結合が良好になる。
As explained above, the molten aluminum alloy of the chemical composition according to the present invention contains a large amount of 84n, Fe, or Ni, so even if it is atomized by the atomization method or the like and rapidly cooled, Mn that has grown into a rod shape will remain. , Fe
, Nf-containing intermetallic compounds are precipitated in large numbers, and hot extrusion requires a large extrusion device and shortens the life of the extrusion die. However, in the present invention, this alloy powder has a low hardness. Therefore, a composite billet is prepared by holding it in a cylindrical body made of an aluminum alloy for decaying or drawing which has good formability, and it can be easily formed into a hollow body by hot extrusion. In addition, it is easy to perform the necessary machining on the outer periphery of the outer layer, and the outer layer has a lower content of alloying elements and has a higher thermal conductivity and coefficient of thermal expansion than the inner layer, which increases the heat absorption efficiency from the inner layer. It maintains the temperature of the inner wall sliding surface of the inner layer at a low temperature, enables the use of low-viscosity lubricating oil, and provides good tight bonding with the cylinder block body, which is a casting material.

また外層月が軟質材料であるため複層構造中空体の熱間
押出し工程と同時に、あるいは熱間押出工程後に中空部
拐の外周に第4〜5図に示すよ5な縦溝(セレーション
)4を成形することが容易であり、鋳ぐるみ用シリンダ
ライチとしてシリンダブロック本体に鋳ぐるんで使用す
る場合の密着性の向上、あるいは回り止めのための手段
とすることができる。
In addition, since the outer layer is made of a soft material, five vertical grooves (serrations) 4 are formed on the outer periphery of the hollow part at the same time as the hot extrusion process of the multilayer structure hollow body or after the hot extrusion process as shown in Figures 4 and 5. It is easy to mold, and can be used as a means for improving adhesion or preventing rotation when used as a cast cylinder litchi in a cylinder block body.

本発明の複層構造中空fiB利はその内層が基地中にS
i初晶粒子と金属間化合物粒子とを微細に分散させ、特
に耐熱性を改善した耐熱耐摩耗性高力アルミニウム合金
からなり、一方外層は該内層より軟質の鋳造用或いは展
伸用アルミニウム合金を内層に被覆してダイスを通して
押出して形成して熱伝導度を大きくしであるので、熱負
荷が作用し、かつ高度な耐摩耗性と耐焼着性が要求され
る用途に好適なものである。
The multi-layer structure hollow FIB of the present invention has an inner layer with S in the base.
i It is made of a heat-resistant, wear-resistant, high-strength aluminum alloy with particularly improved heat resistance by finely dispersing primary crystal particles and intermetallic compound particles, while the outer layer is made of an aluminum alloy for casting or drawing that is softer than the inner layer. Since it is formed by coating the inner layer and extruding it through a die to increase thermal conductivity, it is suitable for applications where a heat load is applied and a high degree of wear resistance and seizure resistance is required.

なお中空部拐の製造過程で前記アルミニウム合金粉末に
、更に黒鉛、二硫化モリブデン、ボロンナイトライド、
弗化カルシウム等の固体潤滑剤粉末を0.2〜20チ混
合して内層を形成することにより、内層の潤滑特性を更
に向上させることもできる。
In addition, in the process of manufacturing hollow parts, graphite, molybdenum disulfide, boron nitride,
The lubricating properties of the inner layer can be further improved by mixing 0.2 to 20 pieces of solid lubricant powder such as calcium fluoride to form the inner layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の複層中空部材押出材(中間工程)の実
施例を示す断面図、第2図は同じく内層を形成するのに
用いたアルミニウム合金粉粒子の顕微鏡組織の一例を示
す写真(740倍)、第3図は同じく押出成形中空部利
内層の顕微鏡組織の一例を示す写真(740倍)、第4
図を1本発明の実施例を示す縦断面図、第5図1同じく
横断面図である。 1・・・・・・押出材(中間工程)、1′・・・・・・
複層構造中空fτ15利、2・・・・・・内層、3・・
・・・・外層、4・・・ セレーlit M11人代理
人  井埋士 鴨志1)次 男第1図     第4図 第5図
Fig. 1 is a cross-sectional view showing an example of the extruded multilayer hollow member material (intermediate process) of the present invention, and Fig. 2 is a photograph showing an example of the microscopic structure of aluminum alloy powder particles used to form the inner layer. (740x), Figure 3 is a photograph (740x) showing an example of the microscopic structure of the inner layer of the extruded hollow part, and Figure 4
Figure 1 is a vertical sectional view showing an embodiment of the present invention, and Figure 5 is a horizontal sectional view. 1... Extruded material (intermediate process), 1'...
Multi-layer structure hollow fτ15, 2... Inner layer, 3...
...Outer layer, 4... Seret lit M11 agents Ibuji Kamoshi 1) Next Male 1st figure 4th figure 5th figure

Claims (1)

【特許請求の範囲】 1、アルミニウム合金製中空部材において、重量比でS
i  10〜30%、Mn 、 Fe 、 Ni (Q
うち1種または2種以上3〜15%、残余は実質的にA
)からなり、大きさ15μm以下のSi結晶粒と、前記
のへ4n 、 Fe 、 Ni のうち1種または2種
以上を含む大きさ20μm以下の金属間化合物とが微細
に分散している金属組織を有する耐熱耐摩耗性高力アル
ミニウム合金製の内層と該内層より軟質のアルミニウム
合金の外層とよりなる押出し法によって形成された複層
構造を有することを/l′f徴とするアルミニウム合金
製中空部材。 2、内層がMn 、 Fe 、 Ni のうちNi5〜
15チを合有する特許請求の範囲用1項記載のアルミニ
ウム合金製複画−構造中空部拐。 3、内層かMn 、Fe %NiのうちFe3〜15チ
とMn 5〜15チの1種または2種を3〜工5チ含有
する特許請求の範囲第1項記載のアルミニウム合金製中
空部材。 4、内層がMn 、 Fe 、 Ni  のうちFe 
3〜12チとMn 5〜12チの1種または2種とNi
  3〜10チを金側で3〜15チ含有する特許請求の
範囲第1項記載のアルミニウム合金製中空部利。 5、アルミニウム合金製中空部利において、N址比でS
i 10〜30%、Mn 、 Fe 、 Ni ノうち
1種または2種以上を3〜15 %、Cu O,5〜5
チ、Mgo、z〜3チ、残部は実質的に后からなり、大
きさ15μm以下の8i結晶粒と、Mn、Fe 、 N
iのうち1種または2種以上を含む大きさ20μm以下
の金属間化合物とが微細に分散している金属組織を有す
る耐熱耐摩耗性高力アルミニウム合金製の内層と該内層
より軟ガのアルミニウム合金の外層とよりなる押出し法
によって形成された複層構造を有することを特徴とする
アルミニウム合金製中空部劇。
[Claims] 1. In the aluminum alloy hollow member, the weight ratio is S
i 10-30%, Mn, Fe, Ni (Q
3 to 15% of one or more of these, the remainder being substantially A
), in which Si crystal grains with a size of 15 μm or less and intermetallic compounds with a size of 20 μm or less containing one or more of the aforementioned He4n, Fe, and Ni are finely dispersed. A hollow made of aluminum alloy having a multilayer structure formed by an extrusion method, consisting of an inner layer made of a heat-resistant, wear-resistant, high-strength aluminum alloy having a Element. 2. The inner layer is made of Ni5 or more among Mn, Fe, and Ni.
Aluminum alloy duplicate structure hollow part according to claim 1, which includes 15 parts. 3. The aluminum alloy hollow member according to claim 1, wherein the inner layer contains 3 to 5 parts of one or both of 3 to 15 parts of Fe and 5 to 15 parts of Mn among Mn, Fe and Ni. 4. The inner layer is Fe among Mn, Fe, and Ni.
3 to 12 chips and Mn 5 to 12 chips or two and Ni
The aluminum alloy hollow part according to claim 1, which contains 3 to 10 pieces on the gold side. 5. In the hollow part made of aluminum alloy, the N area ratio is S
i 10-30%, 3-15% of one or more of Mn, Fe, Ni, CuO, 5-5
H, Mgo, z ~ 3 H, the remainder essentially consists of 8i crystal grains with a size of 15 μm or less, Mn, Fe, N
An inner layer made of a heat-resistant, wear-resistant, high-strength aluminum alloy having a metal structure in which an intermetallic compound having a size of 20 μm or less containing one or more of the following types of i is finely dispersed, and an aluminum alloy softer than the inner layer. An aluminum alloy hollow part characterized by having a multilayer structure formed by an extrusion method with an outer layer of an alloy.
JP17763682A 1982-10-12 1982-10-12 Double layer structure hollow member made of aluminum alloy Granted JPS5966918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17763682A JPS5966918A (en) 1982-10-12 1982-10-12 Double layer structure hollow member made of aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17763682A JPS5966918A (en) 1982-10-12 1982-10-12 Double layer structure hollow member made of aluminum alloy

Publications (2)

Publication Number Publication Date
JPS5966918A true JPS5966918A (en) 1984-04-16
JPH0120218B2 JPH0120218B2 (en) 1989-04-14

Family

ID=16034456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17763682A Granted JPS5966918A (en) 1982-10-12 1982-10-12 Double layer structure hollow member made of aluminum alloy

Country Status (1)

Country Link
JP (1) JPS5966918A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61137624A (en) * 1984-12-07 1986-06-25 Nippon Light Metal Co Ltd Composite material billet for extrusion working
JPS6210237A (en) * 1985-07-09 1987-01-19 Showa Denko Kk Aluminum alloy for hot forging
EP0334065A1 (en) * 1988-03-19 1989-09-27 Bayerische Motoren Werke Aktiengesellschaft, Patentabteilung AJ-3 Process for preparing porous elements
JPH02163570A (en) * 1988-12-15 1990-06-22 Mitsubishi Alum Co Ltd Cylinder tube material
WO2001058621A1 (en) * 2000-02-10 2001-08-16 C.R.F. Societa Consortile Per Azioni A method for producing a cylinder block for an internal combustion engine
JP2008001949A (en) * 2006-06-23 2008-01-10 Showa Denko Kk Method for producing aluminum alloy sheet
KR100874614B1 (en) 2007-04-30 2008-12-17 황호진 Automobile axle shaft and manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61137624A (en) * 1984-12-07 1986-06-25 Nippon Light Metal Co Ltd Composite material billet for extrusion working
JPS6210237A (en) * 1985-07-09 1987-01-19 Showa Denko Kk Aluminum alloy for hot forging
EP0334065A1 (en) * 1988-03-19 1989-09-27 Bayerische Motoren Werke Aktiengesellschaft, Patentabteilung AJ-3 Process for preparing porous elements
JPH02163570A (en) * 1988-12-15 1990-06-22 Mitsubishi Alum Co Ltd Cylinder tube material
WO2001058621A1 (en) * 2000-02-10 2001-08-16 C.R.F. Societa Consortile Per Azioni A method for producing a cylinder block for an internal combustion engine
US6802121B2 (en) 2000-02-10 2004-10-12 C.R.F. Societa Consortile Per Azioni Method for producing a cylinder block for an internal combustion engine
JP2008001949A (en) * 2006-06-23 2008-01-10 Showa Denko Kk Method for producing aluminum alloy sheet
KR100874614B1 (en) 2007-04-30 2008-12-17 황호진 Automobile axle shaft and manufacturing method

Also Published As

Publication number Publication date
JPH0120218B2 (en) 1989-04-14

Similar Documents

Publication Publication Date Title
US4938810A (en) Heat-resistant, wear-resistant, and high-strength aluminum alloy powder and body shaped therefrom
US5976214A (en) Slide member of sintered aluminum alloy and method of manufacturing the same
US4537167A (en) Engine cylinder liners based on aluminum alloys and intermetallic compounds, and methods of obtaining them
JPS6210237A (en) Aluminum alloy for hot forging
JPH0118982B2 (en)
JPH0578767A (en) Aluminum bronze alloy having high wear resistance and sliding member using the same
JPS6050138A (en) Heat- and wear-resistant high-strength aluminum alloy member of hard particle dispersion type and its production
JPS5966918A (en) Double layer structure hollow member made of aluminum alloy
JPS60208443A (en) Aluminum alloy material
JPH0118981B2 (en)
JPS6050137A (en) Heat- and wear-resistant high-strength aluminum alloy member of hard particle dispersion type and its production
JP3897416B2 (en) Powder aluminum alloy cylinder liner
JP2000109944A (en) Wear resistant and high strength aluminum alloy molded body, its production and cylinder liner composed of the molded body
JPH0118983B2 (en)
JPS58122167A (en) Cylinder liner for insert casting and its production
JPS63266004A (en) High strength aluminum alloy powder having heat and wear resistances
JPS61295301A (en) Heat-resistant high-power aluminum alloy powder and its molding
JPS5959856A (en) High strength powder moldings of aluminum alloy having excellent lubricity, resistance to heat and wear and its production
JPS6056220B2 (en) aluminum bearing alloy
JPS60131945A (en) High-strength aluminum alloy having superior heat resistance
JPS6230839A (en) Heat-and wear-resisting aluminum alloy stock suitable for hot working
JPH01132736A (en) High-strength aluminum alloy powder compact excellent in lubricity and having heat resistance and wear resistance and its production
JPS61246339A (en) Molten-metal-forged high-toughness aluminum alloy and its manufacture
JPS63266005A (en) High strength aluminum alloy powder having heat and wear resistances
JPH0121164Y2 (en)