JPS6050138A - Heat- and wear-resistant high-strength aluminum alloy member of hard particle dispersion type and its production - Google Patents

Heat- and wear-resistant high-strength aluminum alloy member of hard particle dispersion type and its production

Info

Publication number
JPS6050138A
JPS6050138A JP58158876A JP15887683A JPS6050138A JP S6050138 A JPS6050138 A JP S6050138A JP 58158876 A JP58158876 A JP 58158876A JP 15887683 A JP15887683 A JP 15887683A JP S6050138 A JPS6050138 A JP S6050138A
Authority
JP
Japan
Prior art keywords
dispersed
particles
aluminum alloy
wear
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58158876A
Other languages
Japanese (ja)
Other versions
JPS6320298B2 (en
Inventor
Fumio Kiyota
清田 文夫
Tatsuo Fujita
藤田 達生
Tadao Hirano
忠男 平野
Shinichi Horie
堀江 新一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Resonac Holdings Corp
Original Assignee
Riken Corp
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp, Showa Denko KK filed Critical Riken Corp
Priority to JP58158876A priority Critical patent/JPS6050138A/en
Publication of JPS6050138A publication Critical patent/JPS6050138A/en
Publication of JPS6320298B2 publication Critical patent/JPS6320298B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain an Al alloy member having excellent resistance to heat and wear by dispersing and solidifying a molten Al alloy contg. a specific ratio of Si and Ni by quick cooling to form powder, mixing hard particles therewith under specific conditions and subjecting the mixture to hot extrusion. CONSTITUTION:A molten alloy contg., by weight, 10.0-30.0% Si, 5.0-15.0% Ni, and if necessary contg. 0.5-5.0% Cu and 0.1-2.0% Mg and consisting of the blance inevitable impurities and Al is dispersed and solidified by quick cooling to form powder. Hard particles (metallic Si particles, etc.) having the higher hardness than the powder and having <=60mu average grain size are mixed at 2-20wt% with said powder and the mixture is subjected to hot extrusion at >=extrusion ratio. The Al alloy member of the structure in which the hard particles having the higher hardness than the Al matrix, having the average grain size larger than the grain sizes of the Si crystal and intermetallic compd. and having <=60mu are dispersed in the Al matrix having <=15mu Si crystal grain size and haing <=20mu grain size of the intermetallic compd. dispersed finely therein is thus obtd.

Description

【発明の詳細な説明】 この発明は、内燃機関のシリンダライナやカークーラ用
ロータリコンプレッサのベーンのような部材に適する耐
熱耐摩耗性高力アルミニウ11合金部材とその製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat-resistant and wear-resistant high-strength aluminum 11 alloy member suitable for members such as cylinder liners of internal combustion engines and vanes of rotary compressors for car coolers, and a method for manufacturing the same.

自動車用エンジンのシリンダーブロックを鋳鉄からアル
ミニウム合金鋳物に置換すると軽量化の効果は人である
が、その場合でもビス1ヘンリンクやピストンと摺動す
る内周側はアルミニウ11合金鋳物では耐摩耗性が不充
分なために、片状黒鉛鋳鉄材からなるシリンダライナを
錆包んで薮用している。このシリンダライナをアルミニ
ウム合金にすると一段と軽量化の効果が得られるほか、
その熱伝導率が鋳鉄よりも良いことと、鋳鉄よりも熱膨
張係数が大きく、シリンダブロックのアルミニウム合金
鋳物の熱膨張係数に近いので、運転時の昇温した状態で
もライナとプロッタの密着性が良いことから放熱性の良
いエンジンとなり、ライナの内壁温度が低下することか
ら潤滑油の寿命を長くすることが出来たり、低粘度の潤
滑油の使用が可能となり燃費の向上も可能になる等の効
果が期待されている。
Replacing the cylinder block of an automobile engine from cast iron to an aluminum alloy casting has the effect of reducing weight, but even in this case, the inner circumferential side that slides with the screw 1 link and piston is not wear resistant if the aluminum 11 alloy casting is used. Because of the insufficient amount of carbon, cylinder liners made of flaky graphite cast iron are covered with rust and used as bushes. By using aluminum alloy for this cylinder liner, you can achieve further weight reduction, and
Its thermal conductivity is better than cast iron, and its coefficient of thermal expansion is larger than that of cast iron, and is close to that of the aluminum alloy casting of the cylinder block, so the adhesion between the liner and plotter is maintained even at elevated temperatures during operation. This makes it possible for the engine to have good heat dissipation, which lowers the inner wall temperature of the liner, thereby extending the life of the lubricating oil, and allowing the use of low-viscosity lubricating oil, which improves fuel efficiency. It is expected to be effective.

また、高Siアルミニウム合金は鋳鉄に比べて熱膨張係
数が大きいので、アルミニウム合金のピストンとの間の
クリアランスを小さく設定出来る可能性があり、ピスト
ンとの間のクリアランスを小さくすると、燃費の向」―
の他に潤滑油の消費量を押えることが出来る。また、高
Siアルミニウム合金は摩擦係数が低いために、ビス1
ヘンリンクとの間のフリクションロスが低減されること
がらも燃費の向上が期待される。
In addition, since high-Si aluminum alloy has a larger coefficient of thermal expansion than cast iron, it is possible to set the clearance between the aluminum alloy and the piston smaller, and reducing the clearance between the piston and the piston will improve fuel efficiency. ―
In addition, the consumption of lubricating oil can be reduced. In addition, since high-Si aluminum alloy has a low coefficient of friction,
It is expected that fuel efficiency will improve as friction loss between the engine and the Henlink is reduced.

このようにシリンダライナにアルミニウ11合金を適用
することの長所は多いが、従来公知のアルミニウム合金
ではこのよな鋳包み用シリンダライナ材としては不充分
である。例えばΔハ規格のA390.O合金(Si :
 16−18%、Cu:4 へ・ 5 % r M g
 : O−50□ 0 − 6 5 % 、F”e:0
.5%、Ti:0.2%、 7.n : O,1%、残
:Al)の様な錆造月は固液共存温度域が広いために、
健全な鋳物を得るためには大きい押湯を必要とし、歩留
りが悪くロス1への高いものとなる他に、微細化処理や
金型鋳造法によっても初晶Si粒は尚粗大であるために
被削性が悪い。更に致命的欠点はシリンダブロックに鋳
包む時に熱によって材料が軟化するために、耐摩耗性が
著しく低ドする他、被削面にビビリやムシレを生じやす
く、ホーニング加工を困難とする。また、近年粉末冶金
法により、A390.0に近い組成の合金を粉末としこ
れを熱間押出しして中空体とする技術が提案されている
(特開昭52 109’115)。これは高Siのアル
ミニウム合金溶’(Jh Lア1−マイズ法または遠心
力による微粒化法により急冷された微粒または粉末とし
、これを熱間押出しすることにより中空体を得る方法で
あり、鋳造法により得られる中空体よりもはるかに重量
歩留りのすぐれた製造法である。また、この方法による
と初晶Si粒が20μm以下の大きさとなるために延性
や機械加工性にすぐれ、更に高ケ1′素Δ1合金特有の
低摩擦係数の性質をも有している。また、この方法によ
り、15〜20%Si、1〜5%Cu。
Although there are many advantages to using aluminum 11 alloy for cylinder liners, conventionally known aluminum alloys are insufficient as cylinder liner materials for cast-in applications. For example, A390 with ΔC standard. O alloy (Si:
16-18%, Cu: 4 to 5% r M g
: O-50□ 0-65%, F”e:0
.. 5%, Ti: 0.2%, 7. n: O, 1%, remainder: Al) has a wide solid-liquid coexistence temperature range, so
In order to obtain sound castings, a large feeder is required, resulting in poor yields and high loss 1. In addition, primary Si grains are still coarse even with refinement treatment and mold casting methods. Poor machinability. Another fatal drawback is that the material is softened by heat when it is cast into the cylinder block, resulting in significantly lower wear resistance, and the workpiece surface is prone to chattering and cracking, making honing difficult. Furthermore, in recent years, a technique has been proposed in which powder metallurgy is used to make a hollow body by hot extruding an alloy having a composition close to A390.0 into powder (Japanese Patent Laid-Open No. 52-109'115). This is a method to obtain a hollow body by hot extruding fine particles or powder that are rapidly cooled by a high-Si aluminum alloy melting method or atomization method using centrifugal force. This manufacturing method has a much better weight yield than the hollow bodies obtained by the method.In addition, this method has primary Si grains with a size of 20 μm or less, so it has excellent ductility and machinability. It also has the characteristic of a low coefficient of friction unique to the 1' elemental Δ1 alloy.In addition, by this method, 15 to 20% Si and 1 to 5% Cu can be obtained.

0.5〜5%Mg、0.5〜1.5%Ni、残部A1の
合金や或はこれにS i C,S n 、 Alt’!
!c混合して押出した中空体が提案されている。
An alloy of 0.5 to 5% Mg, 0.5 to 1.5% Ni, and the balance A1, or S i C, Sn, Alt'!
! A hollow body made by mixing and extruding has been proposed.

本発明育らはこの1−レース実験を行ったところ、20
.08i−4,0Cu−0,8Mg−0,5N i −
A l残の組成とした粉末押出し材をシリンダライナ(
外径73 m m内径65 nt m高さ105m r
n )として使用し、ADC−12合金のシリンダブロ
ック(重量3./IKg)に溶湯温度675℃でダイヤ
ヤスト法で訪包むテストを行った結果、鋳包み前にT6
処理により硬さが+−I R880であったものが、鋳
包み後はHRB40程度に軟化してしまうことが判明し
た。従ってこの中空体もアルミニウム合金製シリンダブ
ロックに劫包む時に軟化してしまい、鋳包み用シリンダ
ライナどしては使用に耐え得ないものである。
When we conducted this 1-race experiment, we found that 20
.. 08i-4,0Cu-0,8Mg-0,5N i −
A cylinder liner (
Outer diameter: 73 mm Inner diameter: 65 nt m Height: 105 m
As a result of a test using the diamond casting method at a molten metal temperature of 675°C on an ADC-12 alloy cylinder block (weight 3./IKg), it was found that T6
It was found that the hardness of +-I R880 due to treatment softened to about HRB40 after casting. Therefore, this hollow body also becomes soft when it is wrapped in an aluminum alloy cylinder block, making it unusable as a cast-in cylinder liner.

また、鋳包みはダイヤヤスト法や低圧鋳造法によるがラ
イナはコスト面からも出来るだけ薄肉とすることが望ま
しいが、前記の中空体は強度、特に硬度が充分でなく薄
肉化していくと錆包み時のライナ搬送工程や位置決め時
等に加わる機械的応力により変形しやすくなる。
In addition, casting is performed using the diamond casting method or low-pressure casting method, and it is desirable to make the liner as thin as possible from a cost perspective. The liner becomes easily deformed due to mechanical stress applied during the liner transportation process and positioning.

本発明者らは、これらの従来のアルミニウム合金の難点
を解消し、鋳包み時などに負荷される熱負荷に対しても
軟化することがなく、更に使用時の熱負荷の下において
も硬度低下の生ずることの少ない耐熱耐摩耗性高力アル
ミニウム合金とその製造方法を開発し先に提案した (
特願昭57=1 ]、 9901号、特願昭57−11
9902号)。
The present inventors have solved these drawbacks of conventional aluminum alloys, and have found that they do not soften even under the heat load applied during casting, and furthermore, their hardness does not decrease even under the heat load during use. We have developed and previously proposed a heat-resistant, wear-resistant, high-strength aluminum alloy and its manufacturing method that minimizes the occurrence of
Japanese Patent Application No. 1987=1], No. 9901, Japanese Patent Application No. 1987-11
No. 9902).

先きの提案に係る高カアルムニウ11合金においては、
その高温強度を向上させることを目的として、Al中で
の拡散速度の遅いFe、Mn、Ni等の元素を含む金属
間化合物の微粒子を合金基地中に微細に分散させたもの
であるが、実機エンジンテストによる結果、潤滑油中に
ダストや燃焼生成物であるカーボン粒子等が混入する場
合にシリンダライナの摩耗が多くなる傾向を示すことが
判明した。また、カークーラ用ロータリコンプレッサの
ベーンとしてこの種の合金相をテストしてみると、摺動
相手部材の表面粗さが粗い場合に摩耗が多くなることが
判明した。
Regarding the high potassium aluminum 11 alloy proposed in the future,
In order to improve its high-temperature strength, fine particles of intermetallic compounds containing elements such as Fe, Mn, and Ni, which have a slow diffusion rate in Al, are finely dispersed in the alloy matrix. As a result of engine tests, it was found that cylinder liner wear tends to increase when dust or carbon particles, which are combustion products, are mixed into the lubricating oil. In addition, when testing this type of alloy phase as a vane for a rotary compressor for a car cooler, it was found that wear increases when the surface roughness of the sliding member is rough.

この発明は、上記アルミニウ11合金の耐摩耗耐焼付特
性を更に改善し上記難点を解消することを目的としてな
されたもので、重量化でSi 10゜0〜30.0%と
、Ni5.0〜15.0%と、さらに必要に応じてCu
 0.5〜5.0%およびMg−0,2〜3.0%を含
み、残部が不可避的不純物を含むA1からなり、Si結
晶粒子の大きさが15μm以下に、かつ金属間化合物粒
子の大きさが20μm以下に微細化分散しているアルミ
ニウム合金基地中に、該基地よりも高硬度であり、その
粒径が前記Si結晶粒子および金属間化合物粒子より犬
で且つ60μrn以下である硬質粒子が2〜20(重兄
)%分散している組織を有する硬質粒子分散型耐熱耐摩
耗性高力アルミニウム合金に係り、更に該アルミニウム
合金の製造方法をも提供するものである。
This invention was made with the aim of further improving the wear and seizure resistance properties of the aluminum 11 alloy and solving the above-mentioned difficulties. 15.0% and further Cu as necessary.
0.5 to 5.0% and Mg-0.2 to 3.0%, the remainder is A1 containing unavoidable impurities, the size of Si crystal particles is 15 μm or less, and the size of intermetallic compound particles is Hard particles having a hardness higher than that of the base, having a particle size larger than that of the Si crystal particles and intermetallic compound particles, and having a particle size of 60 μrn or less, which are dispersed in a finely divided aluminum alloy base having a size of 20 μm or less. The present invention relates to a hard particle-dispersed heat-resistant, wear-resistant, high-strength aluminum alloy having a structure in which 2 to 20% (heavy weight) of is dispersed, and further provides a method for producing the aluminum alloy.

以下、本発明をさらに説明する。The present invention will be further explained below.

まず、本発明になる合金における前記硬質粒子を除く部
分の成分限定理由について説明する。
First, the reason for limiting the components of the alloy of the present invention excluding the hard particles will be explained.

Siは10%以下ではSi結晶粒子の分散板が少なく、
耐摩耗性におよぼす効果が不充分である。
When Si is less than 10%, there are few dispersion plates of Si crystal particles,
The effect on wear resistance is insufficient.

5ilO%近傍の亜共晶域では初晶Siは晶出せず、微
細な共晶組織を有するものとなる。Siの添加量が増す
とともにStが初品として晶出するようになり、耐熱性
、耐摩耗性す向−1ニしてくる。
In the hypoeutectic region around 5ilO%, primary Si cannot be crystallized and has a fine eutectic structure. As the amount of Si added increases, St begins to crystallize as an initial product, resulting in an improvement in heat resistance and wear resistance.

しかしながらSiが30%を越えると後述する本発明の
骨子である硬質粒子と混合して熱間押出しすることが著
しく困難になる。また、アルミニウム合金製シリンダブ
ロックに紡包に]シてシリンダライナ等として使用する
場合、Siの添加風と共に熱膨張係数が小さくなり、S
iが30%を越えるとシリンダブロック材との密着性が
悪くなったり、ピストンとのクリアランスを大きくする
必要性が生じてくる。従ってSiの添加には10.0〜
30.0%、好ましくは12.0〜23.0%とするの
が良い。
However, if the Si content exceeds 30%, it becomes extremely difficult to mix it with hard particles, which is the gist of the present invention to be described later, and hot extrude it. In addition, when using an aluminum alloy cylinder block as a cylinder liner, etc., the coefficient of thermal expansion decreases with the addition of Si, and S
If i exceeds 30%, the adhesion with the cylinder block material may deteriorate or it becomes necessary to increase the clearance with the piston. Therefore, for the addition of Si, 10.0~
The content is preferably 30.0%, preferably 12.0 to 23.0%.

Niは2本発明合金においては重要な成分であり、Al
中への溶解度が低くかつ拡散速度が遅いことを利用して
微細な金属間化合物として基地中に分散させ、高温強度
を高める1−1的で特に添加するものである。固溶限界
を越えてNiを添加すると、Al−Ni系の金属間化合
物として析出し、その形状は添加量が多いほど、また冷
却速度が遅いほど粗大となる。これらの金属間化合物は
本発明の重要な骨子である分散急冷凝固法により得られ
る合金粉末中においては棒状の組織として存在して、後
の熱間押出工程によって分断され、)1地中に微細に分
散される。この種の金属間化合物は高温においても安定
でかつ成長し難く、それ故、長時間高温に保持してtノ
合金の硬度を高い値に維持する効果を示す。従って、鋳
包み用シリンダライナのように高温にさらされた後も硬
度の低下がなく、良好な耐摩耗性を保持することがii
f能となる。
Ni is an important component in the alloy of the present invention, and Al
Utilizing its low solubility and slow diffusion rate, it is dispersed in the matrix as a fine intermetallic compound, and is particularly added as a one-to-one addition to enhance high-temperature strength. If Ni is added in excess of the solid solubility limit, it will precipitate as an Al-Ni intermetallic compound, and its shape will become coarser as the amount added is larger and the cooling rate is slower. These intermetallic compounds exist as rod-shaped structures in the alloy powder obtained by the dispersion and rapid solidification method, which is an important aspect of the present invention, and are divided by the subsequent hot extrusion process. distributed to This type of intermetallic compound is stable and difficult to grow even at high temperatures, and therefore exhibits the effect of maintaining the hardness of the t-alloy at a high value by maintaining the temperature at a high temperature for a long time. Therefore, unlike cast-in cylinder liners, there is no decrease in hardness even after exposure to high temperatures, and it maintains good wear resistance.
It becomes f-ability.

Niの添加量は5%以下では顕著な効果が認められず、
15%以上になるとA1へのSiの溶解限度が低くなり
、過剰のSiが初品となって多量に晶出する。また、合
金の溶解温度が高くなり溶湯の酸化が進むので特別の酸
化防止策を必要とし経済的でない。また、析出する金属
間化合物が粗大となり、後の熱間押出加工による分断微
細化がなされ鎧くなるとどもに押出加−」−性も悪くな
る。
No significant effect was observed when the amount of Ni added was less than 5%.
If it exceeds 15%, the solubility limit of Si in A1 becomes low, and excess Si becomes the initial product and crystallizes in large quantities. Furthermore, the melting temperature of the alloy becomes high and the oxidation of the molten metal progresses, requiring special measures to prevent oxidation, which is not economical. In addition, the precipitated intermetallic compound becomes coarse, and when it is divided and refined by hot extrusion processing to form an armor, the extrusion processability also deteriorates.

(−tL故、Niの添加量は5.0−15.0%の範囲
とすることが望ましい。
(-tL, therefore, the amount of Ni added is preferably in the range of 5.0-15.0%.

本発明の合金では、このようεこ多足のNiを添加して
アルミニウム合金粉末中に強制固溶させるとともに棒状
の金属間化合物として(斤量させた後、後加工工程の熱
間押出加工によって微細な化合物として析出させ、ある
いは分断することによりアルミニウム合金基地中に微細
分散させ材質の強度、特に高温における強度と硬度とを
向]−さしている。
In the alloy of the present invention, Ni in the amount of ε is added to form a forced solid solution in the aluminum alloy powder, and after being weighed out as a rod-shaped intermetallic compound, fine particles are formed by hot extrusion in the post-processing step. By precipitating it as a compound or dividing it, it is finely dispersed in the aluminum alloy matrix and improves the strength of the material, especially the strength and hardness at high temperatures.

なお、本発明においては、必要に応じて0.5〜5.0
%のCuおよび0.2〜3.0%のMgを添加すること
ができる。CuやMgはアルミニウム合金に時効硬化性
を付与して材デ′Cを強化する成分として知られている
ものである。本発明においても溶体化処理温度での固溶
限度内Pに1度の前記範囲内でCuおよびMgを添加す
ると材質強化に有効である。また、本発明においてはさ
らにF e 。
In addition, in the present invention, 0.5 to 5.0 as necessary.
% Cu and 0.2-3.0% Mg can be added. Cu and Mg are known as components that impart age hardenability to aluminum alloys and strengthen the material. Also in the present invention, adding Cu and Mg within the above-mentioned range of 1 degree within the solid solubility limit P at the solution treatment temperature is effective for strengthening the material. Furthermore, in the present invention, Fe.

Mn、Ti、Cr、V、Zr+ Mo、Co等を添更に
本発明において特に重要な要件は、上記アルミニウム合
金基地中に、該基地よりも高硬度で、その粒径が後述す
る初晶Si粒や金属間化合物粒子の粒径より大であり且
つ60μmよりは小さい硬質粒子を2〜20%全20%
ることである。
In addition to adding Mn, Ti, Cr, V, Zr+ Mo, Co, etc., a particularly important requirement in the present invention is that the aluminum alloy matrix contains primary Si grains which have a hardness higher than that of the matrix and whose grain size is described later. 2 to 20% hard particles larger than the particle size of the intermetallic compound particles and smaller than 60 μm, total 20%
Is Rukoto.

こ11.ら硬質粒子はアルミニウム合金基地中に分散し
て存在することにより、摺動中に摺動部に露出して低速
の摺動条件下においても油膜の形成を容易にする他に相
手の摺動面が粗い場合や潤滑油中にダストやカーボン粒
子等が含まれている場合であっても良好な耐摩耗特性を
発揮する。
This 11. Since the hard particles are dispersed in the aluminum alloy base, they are exposed to the sliding part during sliding and facilitate the formation of an oil film even under low-speed sliding conditions. It exhibits good wear resistance even when the lubricating oil is rough or contains dust or carbon particles.

酸化物、 TiC等の7N化物、 1°i Si2、M
 o S i 等の金属間化合物、硼化物等のセラミッ
クスやフェロモリブデン、フェロタンクステンのような
硬質合金の粉末が使用できる。 こ4しらの硬質粉末の
うち 特に金属Si、Si3N4およびsic はその
比重が前記の分散急冷凝固法にょって得られた合金粉末
の比重に近いので本発明合金の製造過程において偏析を
生ずることがなく、均一に混合でき、また、Al−Si
合金との密着性がよい上に、安価であるので有利である
Oxide, 7N compound such as TiC, 1°i Si2, M
Intermetallic compounds such as o S i , ceramics such as borides, and powders of hard alloys such as ferromolybdenum and ferrotanksten can be used. Among these four hard powders, the metals Si, Si3N4 and SIC in particular have a specific gravity close to that of the alloy powder obtained by the above-mentioned dispersion and rapid solidification method, so they are unlikely to cause segregation in the manufacturing process of the alloy of the present invention. Al-Si
It is advantageous because it has good adhesion to alloys and is inexpensive.

前記硬質粒子の粒径は低速摺動条ヂ1下での耐摩耗性改
善のためには、アルミニラ15今金基地中に微細化分散
している初晶Si結晶粒や金属間化合物粒子の粒径より
も大きくする必要がある。然しこれが60μmよりも大
きくなると熱間押出し加工が困難になるので大きくとも
60μIr1以下、好ましくは40μm以下とする。
In order to improve the wear resistance under the low-speed sliding strip 1, the particle size of the hard particles is determined by adjusting the particle size of the primary Si crystal grains and intermetallic compound particles that are finely dispersed in the Aluminum 15 Imakane matrix. It needs to be larger than the diameter. However, if it is larger than 60 μm, hot extrusion processing becomes difficult, so it should be at most 60 μIr1 or less, preferably 40 μm or less.

これらの硬質粒子は、分散急冷凝固法によって得られた
アルミニウム合金粉末に混合されて熱間押出し加工され
るに際して該合金粉末によって周囲から大きな圧縮力を
受けるので該合金に良好に密着し、摺動中に成形体がら
剥離脱落するようなことがない。
When these hard particles are mixed with aluminum alloy powder obtained by the dispersion rapid solidification method and hot extruded, they are subjected to a large compressive force from the surroundings by the alloy powder, so they adhere well to the alloy and do not slide easily. There is no possibility that the molded object will peel off or fall off inside.

なお、こItらの硬質粒子は相手摺動材の硬度や表面粗
さあるいは摺動条件等に応じて1種類で、あるいは数種
類を併せて用いることができる。
It should be noted that these hard particles can be used alone or in combination depending on the hardness, surface roughness, sliding conditions, etc. of the mating sliding material.

これら硬質粒子の分I+(眼は、合計で2%未満では前
記の効果が不充分であり、20%を越えると押出し加工
が困難となって押出成形体に亀裂が生じ易くなる。それ
故、本発明においては該硬質粒子の量を2〜20%の範
囲とする。
If the total amount of these hard particles is less than 2%, the above effect is insufficient, and if it exceeds 20%, extrusion processing becomes difficult and cracks are likely to occur in the extruded product.Therefore, In the present invention, the amount of the hard particles is in the range of 2 to 20%.

Si結晶粒子の大きさを15μrn以下としたのは押出
加工を容易にするという製造上の要請の他に、得られる
合金の延性を良好にし被削性を改善するためでもある。
The reason why the size of the Si crystal grains is set to 15 μrn or less is not only for the manufacturing requirement of facilitating extrusion processing, but also for improving the ductility of the resulting alloy and improving the machinability.

また、Siの微細結晶により耐摩耗性が向上し、摩擦係
数が低下するのでシリンダライナ等の摺動部+4に適し
たものとするためである。
In addition, the fine crystals of Si improve wear resistance and reduce the coefficient of friction, making it suitable for sliding parts +4 such as cylinder liners.

A l −N i系の金属間化合物粉の大きさは実質的
には5μm以下で、大きなものでも20μm口以rに微
細かつ均一に分散させることにより、高温強度と耐摩耗
性が従来品に比較して著しく改善される。
The size of the Al-Ni intermetallic compound powder is essentially 5 μm or less, and even large particles can be finely and uniformly dispersed to a diameter of 20 μm or smaller, resulting in higher high-temperature strength and wear resistance than conventional products. Significant improvement in comparison.

本発明の硬質粒子分散型耐熱耐摩耗性高力アルミニウム
合金部材は、」二記の金属間化合物のWi細化分散によ
って分散強化されて特に高温強度が改善され、さらにS
i結晶粒の微細化分散によって耐摩耗性が改善されてい
るアルミニウム合金基地中に、これら金属間化合物相や
Si結晶粒の粒径よりも大なる粒径を有する硬質粒子を
分散させることによって部材の耐摩耗性、耐焼付性を更
に一段と向上させたものであり、従来品に比べて耐摩耗
性に優れている他、鋳包み等により熱履歴を受けること
があっても材質が軟化することがなく、特に使用条件の
苛酷な内燃機関のシリンダライナやカークーラ用ロータ
リコンプレソザの部品等として好適なものである。
The hard particle-dispersed heat-resistant, wear-resistant, high-strength aluminum alloy member of the present invention is dispersion-strengthened by the Wi-refining dispersion of the intermetallic compound mentioned above, and has particularly improved high-temperature strength.
By dispersing hard particles having a grain size larger than those of these intermetallic compound phases and Si crystal grains into an aluminum alloy base whose wear resistance is improved by the fine dispersion of crystal grains, parts can be improved. The wear resistance and seizure resistance of this product have been further improved, and in addition to being superior in wear resistance compared to conventional products, the material does not soften even if subjected to heat history due to casting etc. This makes it particularly suitable for use as cylinder liners for internal combustion engines, parts of rotary compressors for car coolers, etc., which are subject to severe operating conditions.

本発明は、更に前記の硬質粒子分散型耐熱耐摩耗性高力
アルミニウム合金部材の製造方法をも提供するものであ
る。
The present invention further provides a method for manufacturing the above-mentioned hard particle dispersed heat-resistant, wear-resistant, high-strength aluminum alloy member.

その製造方法の要旨とするところは、所定量のNiを含
む高Siアルミニウム合金溶湯を分散急冷凝固させ、得
られたアルミニウム合金粉末に所定量の硬質粒子を加え
て混合したのち、熱間押出成形することにある。
The gist of the manufacturing method is that a high-Si aluminum alloy molten metal containing a predetermined amount of Ni is dispersed and rapidly solidified, a predetermined amount of hard particles are added to the obtained aluminum alloy powder, mixed, and then hot extrusion molded. It's about doing.

合金溶編を分散急冷凝固させるのは、Si。Si disperses and rapidly solidifies the melted alloy.

N i y Cu r M g等の合金元素を過飽和に
固溶させるとともに、初晶Siや金属間化合物相を微細
化するためである。分散急冷凝固させる方法としては、
アトマイズ法、遠心微粉化法等既知の金属粉末製造方法
が利用できる。これらの方法により粉末粒径を0.5m
m以下に微細化し急冷凝固させれば満足する組織の合金
粉末が得られる。 次に前記アルミニウム合金粉末に前
述した硬質粒子を2〜20%添加し混合する。該硬質粒
子の粒径としては若干の小径粒子の混入は許容されるが
、耐摩耗性、耐焼付性の改善の為には概ね前記の分散急
冷凝固法によって得られた合金粉末中に分散晶出あるい
は分散析出したSi結晶粒および金属間化合物が押出し
成形加工後に是する粒径より大であることが望ましく、
また、成形加」二性の観点から60μm以下とすること
が望ましい。
This is to form a supersaturated solid solution of alloying elements such as N i y Cur M g and to refine primary Si and intermetallic compound phases. The method of dispersion and rapid solidification is as follows:
Known metal powder manufacturing methods such as atomization and centrifugal pulverization can be used. These methods reduce the powder particle size to 0.5m.
An alloy powder with a satisfactory structure can be obtained by refining the powder to a size smaller than m and rapidly solidifying it. Next, 2 to 20% of the hard particles described above are added to the aluminum alloy powder and mixed. Although it is permissible for some small-sized particles to be mixed into the hard particles, in order to improve wear resistance and seizure resistance, dispersed crystals are generally added to the alloy powder obtained by the above-mentioned dispersion and rapid solidification method. It is desirable that the Si crystal grains and intermetallic compounds that have come out or dispersed and precipitated are larger than the particle size that will occur after extrusion processing.
Further, from the viewpoint of moldability, it is desirable that the thickness be 60 μm or less.

なお、熱間押出に先だって、ビレットを製造する工程を
加えることが望ましいく、金型中で圧縮成形してこれを
製造する場合には、金型と粉末材料とを200〜350
℃程度の温度としておこなう。300°Cを越えると酸
化が著しくなるので窒素ガスやアルゴンのような非酸化
性η囲気中でおこなうのが望ましい。成形圧力は0.5
〜3シb/cnf程度でおこない、圧粉体密度は真密度
比70%以上とするのが圧粉体のハンドリング上望まし
い。
In addition, it is desirable to add a step of manufacturing a billet before hot extrusion, and when manufacturing this by compression molding in a mold, the mold and powder material are
Do this at a temperature of around ℃. If the temperature exceeds 300°C, oxidation becomes significant, so it is preferable to carry out the process in a non-oxidizing atmosphere such as nitrogen gas or argon. Molding pressure is 0.5
From the viewpoint of handling of the green compact, it is preferable to carry out the drying at a pressure of about 3 to 3 cm/cnf, and to set the green compact density to 70% or more of the true density ratio.

冷間静水圧プレスによりビレッ1への成形加工をおこな
うこともできるがこの場合には5シOロ/am2以上の
圧力が必要である。
It is also possible to form the billet 1 by cold isostatic pressing, but in this case a pressure of 5 siro/am2 or higher is required.

熱間押出しは350℃以上の温度、好ましくは400〜
470℃の温度域でおこなう。これは圧粉体の成形加工
を容易にすると同時に粒子間の結合を促進させて強固な
成形体とするためである。
Hot extrusion is carried out at a temperature of 350°C or higher, preferably 400°C or higher.
Perform at a temperature range of 470°C. This is to facilitate the molding process of the green compact and at the same time promote bonding between particles to form a strong compact.

さらには棒状組織をなしている金属間化合物を分断して
微細化分散させ、成形体の強度と摩擦特性を改善するた
めである。熱間押出しは圧粉体(ビレット)を大気中ま
たは非酸化fJ 1111気中で予熱し、はり同温度の
コンテナ中に挿入しておこなうのがよい。
Furthermore, the intermetallic compound forming a rod-like structure is divided into fine particles and dispersed, thereby improving the strength and friction characteristics of the molded article. Hot extrusion is preferably carried out by preheating the green compact (billet) in the air or in non-oxidizing fJ 1111 air, and then inserting it into a container at the same temperature.

また、押出加工比は10以上が好ましい。押出加工比が
10未満だと押出材中に空隙が残存し、また粉末相互間
の拡散結合や棒状金属間化合物の分断効果が不充分なた
めに1強度や靭性の高い材料が得られないためである。
Further, the extrusion processing ratio is preferably 10 or more. If the extrusion processing ratio is less than 10, voids remain in the extruded material, and materials with high strength and toughness cannot be obtained because the diffusion bonding between powders and the separation effect of rod-shaped intermetallic compounds are insufficient. It is.

本発明の方法によれば、分散急冷凝固法によって得られ
たアルミニウム合金粉末中には、前述の合金元素が過飽
和に固溶さ4している他に極めて微細な初晶Siの結晶
粒と棒状の金属間化合物とが析出しており、この合金粉
末に前記の金属Si粒子、813 N4粒子あるいはS
 i CR子等の硬質粒子を所定量混合して熱間押出し
加」二をおこなうことにより棒状金属間化合物は極めて
微細に分断され微細均一に分散され、一方、前記混合さ
れた硬質粒子はその粒径をほとんど変えることなく、前
記の初晶Siや分断された金属間化合物粒子よりも大な
る粒径をなして基地中に分布し月料の耐摩耗性、耐焼付
性の一層の改善に寄与する。
According to the method of the present invention, the aluminum alloy powder obtained by the dispersion rapid solidification method contains the above-mentioned alloying elements in supersaturated solid solution4, as well as extremely fine primary Si crystal grains and rod-shaped intermetallic compounds are precipitated, and the above-mentioned metal Si particles, 813 N4 particles or S
i By mixing a predetermined amount of hard particles such as CR particles and performing hot extrusion, the rod-shaped intermetallic compound is divided into extremely fine pieces and dispersed finely and uniformly, while the mixed hard particles are With almost no change in diameter, the particle size is larger than that of the primary Si crystals and the fragmented intermetallic compound particles, and is distributed throughout the base, contributing to further improvement of the wear resistance and seizure resistance of the monthly charge. do.

実施例−1 表−1に示す各種合金組成を有する高Siアルミニウム
合金溶湯を空気アトマイズして急冷凝固わ〕末とし、得
られた粉末を−60mashとゾJ7るようにフルイ分
けをおこなった。次いで及−1に示すような硬質粉末を
前記急冷凝固合金1′51末に配合し、V型コーンミキ
ザに′C窒素ガス」]入1;で均一に混合した。硬質粒
子として使用した金属Siは純度98.5%、1句勺粒
径15μInのもの、SrNは平均粒径20μm、Si
Cは整均粒径10μmのQ C型のものである。
Example 1 Molten high-Si aluminum alloys having various alloy compositions shown in Table 1 were air atomized to rapidly solidify powders, and the resulting powders were sieved to -60 mash and J7. Next, hard powder as shown in A-1 was blended with the rapidly solidified alloy 1'51 powder, and mixed uniformly in a V-shaped cone mixer with nitrogen gas. The metal Si used as hard particles had a purity of 98.5% and a particle size of 15μIn, and SrN had an average particle size of 20μm.
C is a QC type with an average grain size of 10 μm.

これらの混合粉を250℃に1時間加熱し、同温度に加
熱された内径87mmの3分割金型中に充填し1−ドパ
ンチにより圧縮成形して真密度72%の長さ200 r
n川のビレットとした。
These mixed powders were heated to 250°C for 1 hour, filled into a three-part mold with an inner diameter of 87 mm heated to the same temperature, and compression-molded using a 1-do punch to form a mold with a length of 200 r with a true density of 72%.
It was made into a billet from N River.

次に該ヒレッ1〜をArガス中で450℃で30分加熱
した後、430℃に加熱保持された内径90mmのコン
テナ中に挿入し、内径23mmのダイスを用いて間接押
出法により丸棒の押出材とした。押出比は15.3であ
る。?!) I’、れた押出材350℃X101(rの
O処理をおこなった後、200℃、250℃に100時
間保持後、その温度で引張試験をおこなった。なお、比
較のために高Siアルミニウム合金(鋳造材)のA39
0゜0合金と耐熱性にすぐJしたピストン用紡造アルミ
ニウム合金であるAC311合金の 0処理材に一つい
ても引張試験をおこt1′:った。その結果を表−2に
示す。表−2から明らかな如く本発明の合金は高温強度
が高く、また高温保持後の硬度が高い。
Next, the fillets 1~ were heated in Ar gas at 450°C for 30 minutes, then inserted into a container with an inner diameter of 90mm heated and maintained at 430°C, and made into round bars by indirect extrusion using a die with an inner diameter of 23mm. It was made into an extruded material. The extrusion ratio is 15.3. ? ! ) Extruded material 350°C Alloy (cast material) A39
A tensile test was conducted on a 0-treated material of AC311 alloy, which is a spun aluminum alloy for pistons that has superior heat resistance to 0°0 alloy. The results are shown in Table-2. As is clear from Table 2, the alloy of the present invention has high high temperature strength and high hardness after being held at high temperature.

次に、これらの合金について摩耗試験をおこなった。Next, wear tests were conducted on these alloys.

試験は第1図に示す方法で実施した。試験ノ“1(X)
を試験片ホルダ(2)で保持し、相手方回転円板(3)
の外周面に一定圧力で圧接さ仕、潤滑油供給管(4)か
ら潤滑油をO(給しなから慴動さ仕る。
The test was conducted using the method shown in Figure 1. Exam No. 1 (X)
is held in the test piece holder (2), and the other rotating disk (3)
The lubricant is pressed against the outer peripheral surface of the lubricant at a constant pressure, and the lubricant is supplied from the lubricant supply pipe (4).

試験片は5 X 5 X 20 m mの角柱状を呈し
、先端摺動面には半径6mmの丸みが(−1せられ、I
M磨仕上げが施されている。相手円板(3)は球状黒鉛
鋳鉄FCD50に焼入、焼戻が施されII RC50の
硬さを有し、外径44.2mmで、摺動外周面は表面粗
さ約1.5μII口;研磨仕−1−げが施してある。こ
のような装置によって相手円板(3)を1゜3.5m/
秒の周速で回転させ、80±1℃に加熱されたコンプレ
ッサオイル(スニソ5GS)を300 m l 7分の
割合で供給管から給油しながら試験片(1)を相手円板
(3)の外周面に3kg/ m mの押圧力で押付け、
摩擦距離を150kmとして試験片(1)と相手円板(
3)とを摺動させた。
The test piece had a prismatic shape of 5 x 5 x 20 mm, and the tip sliding surface was rounded with a radius of (-1).
M polished finish has been applied. The mating disk (3) is made of spheroidal graphite cast iron FCD50 which is hardened and tempered to have a hardness of II RC50, and has an outer diameter of 44.2 mm, and a sliding outer peripheral surface with a surface roughness of approximately 1.5 μII; It has a polished finish. With this kind of device, the mating disc (3) can be moved 1°3.5m/
The test piece (1) was placed on the mating disk (3) while rotating at a circumferential speed of 1.2 seconds and supplying compressor oil (Suniso 5GS) heated to 80 ± 1°C from the supply pipe at a rate of 300 ml/7 minutes. Press it against the outer circumferential surface with a pressing force of 3 kg/mm,
The friction distance was 150 km, and the test piece (1) and the mating disk (
3) and was slid.

供試材として、前記の本発明実施例の1〜3の押出丸棒
より試験片(1)を削り出した後、0処理を行ったもの
と、比較のために本発明実施例の1〜3で硬質粉末を添
加していない押出丸棒より試験片を削り出し同じ熱処理
を施したものについて試験を行った。その結果を第2図
に示す。なお、摩耗量は試験片先端部の摩耗中でぶして
いる。
As test materials, test pieces (1) were cut out from the extruded round bars of Examples 1 to 3 of the present invention and then subjected to zero treatment, and for comparison, test pieces (1) were cut out from the extruded round bars of Examples 1 to 3 of the present invention, and for comparison, A test piece was cut from the extruded round bar to which no hard powder had been added in 3 and subjected to the same heat treatment and tested. The results are shown in FIG. Note that the amount of wear is indicated by the amount of wear at the tip of the test piece.

第2図から明らかなように、硬質1lfl末粒子を添加
しない比較例1〜3の押出材は硬質粉末粒子を添加した
本発明合金に比べて摩耗基が多く、学、yに低速域と高
速域において摩耗が増大する傾向を示している。これに
対して、硬質粉末粒子を添加した本発明の合金1〜3は
低速域から高速域まで安定して良好な耐摩耗性を示して
おり、比較例1〜3に比べて大巾な耐摩耗性改善効果を
示している。
As is clear from Fig. 2, the extruded materials of Comparative Examples 1 to 3 without the addition of hard lfl powder particles have more wear groups than the alloys of the present invention with hard powder particles added, and the This shows a tendency for wear to increase in this area. On the other hand, alloys 1 to 3 of the present invention to which hard powder particles were added showed stable and good wear resistance from low speed range to high speed range, and showed a wide range of resistance compared to Comparative Examples 1 to 3. This shows the effect of improving wear resistance.

特に金属Si粒の添加に比べてSi N やSiCのよ
うに硬度の高い粒子を添加した場合に摩耗が少なくなる
傾向が認められる。
In particular, when compared to the addition of metal Si particles, when particles with high hardness such as SiN or SiC are added, there is a tendency for wear to be reduced.

実施例−2 15,1%S’j−7.0%Ni−2,5%Cu−1,
5%Mg−残Alからなる合金溶湯を実施例−1と同じ
方法で71〜マイズして急冷凝固粉末を得た後、これを
−(j Q meshにフルイ分けして原料アルミニウ
ム合金粉末とした。
Example-2 15.1%S'j-7.0%Ni-2,5%Cu-1,
A molten alloy consisting of 5% Mg and residual Al was sized to 71 mm in the same manner as in Example-1 to obtain a rapidly solidified powder, which was then sieved through a -(j Q mesh to obtain raw aluminum alloy powder. .

該合金粉末に前記実施例−1で用いたと同じ金属Si粒
、813 N、粒およびSiC粒を全体の0゜3.5,
10,15.20%になるように各々配合し、前記実施
例−1におけると同様にして直径23mmの押出材とし
た。押出比は15.3であった。これら押出材から試験
片を削り出し、実施例−1におけると同様の方法で摩耗
試験を行ない、硬質粒子の配合割合による影響を調べた
The same metal Si grains, 813 N grains, and SiC grains as used in Example-1 were added to the alloy powder at a total angle of 0°3.5.
10%, 15%, and 20%, respectively, and an extruded material having a diameter of 23 mm was prepared in the same manner as in Example-1. The extrusion ratio was 15.3. Test pieces were cut out from these extruded materials and subjected to wear tests in the same manner as in Example 1 to examine the influence of the blending ratio of hard particles.

試験条件は相手円板の表面粗さを0.8〜1.0μmに
1周速を1m/秒とし、その他の各条件は前記実施例1
に於けると同様である。
The test conditions were that the surface roughness of the mating disk was 0.8 to 1.0 μm and the speed per circumference was 1 m/sec, and the other conditions were as in Example 1 above.
The same is true in .

第3図に金[Si粒を配合した場合の結果を、第4図に
S i3N4粒を配合した場合の結果を、また、第5図
に810粒を配合した場合の結果を示す。なお、図中、
摩耗量は硬質粒′T−無配合の場合の摩耗基を1として
、相対摩耗基で示している。
FIG. 3 shows the results when gold [Si grains were mixed], FIG. 4 shows the results when four Si3N grains were mixed, and FIG. 5 shows the results when 810 grains were mixed. In addition, in the figure,
The amount of wear is expressed as a relative wear value, with the wear value in the case of no hard particles 'T- added as 1.

これらの図から、硬質粒子の配合隈(添加量)が3%を
越えると摩耗基が著しく低下することが認められる。な
お、S i 3 Nt、、粒を20%配合したものにつ
いては、押出材の加工性が悪く試験片に加工することが
できなかった。
From these figures, it is recognized that when the blending ratio (addition amount) of hard particles exceeds 3%, the wear base is significantly reduced. Note that the extruded material containing 20% Si 3 Nt particles had poor workability and could not be processed into a test piece.

実施例−3 前記実施例−2で用いたと同様な原料アルミニウム合金
粉末に、平均粒径の異なる金属Si粒、S i3N4粒
、Si0粒を重量で5 ’X、配合して混合し、実施例
1と同様にして熱間押出しをおこない、得られた押出材
より摩耗試験片を削り出し、実施例1と同様な熱処理を
施した後、実施例1と同じ摩耗試験をおこなった。その
他の試験条件は実施例1におけると同じにした。
Example 3 Metallic Si grains, Si3N4 grains, and Si0 grains having different average particle diameters were mixed in an amount of 5'X by weight to the same raw material aluminum alloy powder as used in Example 2. Hot extrusion was carried out in the same manner as in Example 1, and wear test pieces were cut out from the obtained extruded material, heat treated in the same manner as in Example 1, and then subjected to the same wear test as in Example 1. Other test conditions were the same as in Example 1.

その結果を第6図に示す。第6図から明らかなよう1;
、平均粒径が1μII+以下のSiC粒やS 1qN4
粒の添加では摩耗基が大であり、また、30μmを越え
ても摩耗量は僅かではあるが増加の傾向を示している。
The results are shown in FIG. As is clear from Figure 6, 1;
, SiC grains and S1qN4 with an average grain size of 1μII+ or less
When particles are added, the wear base becomes large, and even when the particle size exceeds 30 μm, the amount of wear tends to increase, albeit slightly.

この試験結果は次のことがらを教示するものと考えられ
る。即ち、押出材の組織中に分散して存在する金属81
粒子やS ;、 N、粒子等の硬質粒子の平均粒径が、
相手摺動部1」の表面粗さを示す数値よりも小さいと、
摺動時にこれら硬質粒子が相手摺動面によってむしり取
られ易くなる。したがって、分散される硬質粒子のqt
均粒径は過度に小さくないことが望ましい。−力、分散
される硬質粒子の粒径が、411手摺動部44表面の凹
凸の隣り合う山部間を架橋するに充分な程度に大きい場
合には、該硬質粒Pは剥Alt脱落することなく安定し
た状態で一方の、即ち成形体の表面に保持され良好な耐
摩耗特性が発揮される。ただし、硬質粒子の平均粒径が
過度に大きくなると硬質粒子間の間隔が犬になり、摩耗
−頃の漸増傾向が生ずる。
This test result is considered to teach the following points. That is, the metal 81 dispersed in the structure of the extruded material
The average particle size of hard particles such as particles, S;, N, particles, etc.
If it is smaller than the value indicating the surface roughness of the mating sliding part 1,
During sliding, these hard particles are likely to be ripped off by the opposing sliding surface. Therefore, qt of the hard particles to be dispersed
It is desirable that the average particle size is not excessively small. - If the particle size of the hard particles dispersed by force is large enough to bridge the adjacent peaks of the unevenness on the surface of the hand sliding portion 411, the hard particles P will peel off and fall off. It is held in a stable state on one side, that is, on the surface of the molded body, and exhibits good wear resistance. However, if the average particle diameter of the hard particles becomes too large, the distance between the hard particles becomes narrow, and wear tends to gradually increase.

以上説明した通りで1本発明の硬質粒−r・分散型耐熱
耐摩耗性高力アルミニウム合金は、A1中での拡散速度
の遅い元素を含む微細な金属間化合物微粒子による分散
強化によって高温強度が高められ、また同じく微細均一
に分散された初晶Si粒や共晶Siによって耐摩耗性が
向りされているアルミニウム合金の基地中に、更に、こ
Aしら微細な金属間化合物粒子や初晶Si粒の粒径より
も平均粒径の大なる硬質粒子を分散させて有するもので
あり、このように構成されることにより格段と優れた耐
摩耗耐焼付性を発揮するものである。
As explained above, the hard grain-r/dispersed heat-resistant, wear-resistant, high-strength aluminum alloy of the present invention has high-temperature strength due to dispersion strengthening by fine intermetallic compound particles containing elements with slow diffusion rates in A1. In addition, in the base of the aluminum alloy, whose wear resistance is improved by finely and uniformly dispersed primary crystal Si grains and eutectic Si, there are also fine intermetallic compound particles and primary crystals. It has hard particles having an average particle diameter larger than that of the Si particles dispersed therein, and by having such a structure, it exhibits extremely excellent wear resistance and seizure resistance.

なお、本発明の硬質粒分散型耐熱耐摩耗性高力アルミニ
ウム合金の特記すべき特徴の−は、本合金がアルミニウ
ム合金部材を摺動用1tとして使用する場合においても
極めて良好なlit I@耗性を発揮するということで
ある。
A special feature of the hard grain dispersed heat-resistant, wear-resistant, high-strength aluminum alloy of the present invention is that this alloy has extremely good wear resistance even when aluminum alloy members are used as sliding parts. It means demonstrating.

A’390.0合金組成の金型鋳造#]の′J゛7処理
材を摺動相手材とし1周速5m/秒、潤滑油(ス二ソ5
GS)、油温80℃の条件で本発明合金の前記実施例−
1の1〜3合金(Q処理材)の摩耗テストを実施−1に
おけると同様に行った。
Mold casting of A'390.0 alloy composition #'J'7 treated material was used as the sliding partner material, one circumferential speed was 5 m/sec, lubricating oil (Suniso 5
GS), the above-mentioned example of the present invention alloy under the condition of oil temperature of 80 ° C.
The wear test of Alloys 1 to 3 (Q-treated material) of Example 1 was carried out in the same manner as in Implementation-1.

なお、比較のために本発明実施例−1の各合金から硬質
粒子を除いた合金およびA390.0合金(゛r7処理
材)についても同様な摩耗テストを行った。このテスト
結果によると、本発明の硬質粒子分散型耐熱耐摩耗高力
アルミニウム合金は、本発明合金から硬質粒子を除いた
構成の比較材やA390.0合金に比べ格段に優れた耐
摩耗−・1焼イ4特性を示すことが確認された。従って
1本発明のアルミニウム合金は、従来タブ−とされてい
たアルミニウム合金部材同種を組合せて摺動部材として
使用することをも可能にするものである。
For comparison, similar wear tests were also conducted on the alloys of Example 1 of the present invention from which hard particles were removed and the A390.0 alloy (r7 treated material). According to the test results, the hard particle dispersed heat-resistant, wear-resistant, high-strength aluminum alloy of the present invention has significantly superior wear resistance compared to the comparative material and A390.0 alloy, which are made by removing hard particles from the alloy of the present invention. It was confirmed that the product exhibited 1-4 characteristics. Therefore, the aluminum alloy of the present invention can also be used as a sliding member by combining the same types of aluminum alloy members that have conventionally been used as tabs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は摩耗試験機を示す。第2〜6図は摩耗試験の結
果を示す。第7図は実施例1における本発明合金1の合
金組織(400倍)を示す。第8図は実施例1における
本発明合金2の組織を示す。 また第9図は実施例1における本発明合金3の組織を示
す。 図中:1.、、i耗試験片 210.ホルダー 300.相手材 510.金属Si粒 631.アルミニウ11合金の基地 7・・・S i−s N1粒 9、、、Si0粒 出願人 株式会1」4 リ ケユ 昭和電工株式会社 代理人桑原英明 ノ X4ジぐ X4〜東
Figure 1 shows the abrasion tester. Figures 2 to 6 show the results of the wear tests. FIG. 7 shows the alloy structure of Invention Alloy 1 in Example 1 (400 times magnification). FIG. 8 shows the structure of the alloy 2 of the present invention in Example 1. Further, FIG. 9 shows the structure of the alloy 3 of the present invention in Example 1. In the diagram: 1. ,,i wear test piece 210. Holder 300. Mating material 510. Metal Si grains 631. Aluminum 11 alloy base 7...S i-s N1 grains 9,..., Si0 grains Applicant Co., Ltd. 1'4 Rikeyu Showa Denko Co., Ltd. Agent Hideaki Kuwabara's X4 Jig X4 ~ East

Claims (3)

【特許請求の範囲】[Claims] (1)重量比で5ilO,O〜30.0%と、Ni5.
O〜15.0%と、さらに必要に応じてCu0.5−5
.0%およびMg0.2〜3゜0%を含み、残部が不可
避的不純物を含むAIからなり、Si結晶粒の大きさが
15μm以下に、かつ金属間化合物粉の大きさが20μ
m以下に微細化分散しているアルミニウム合金基地中に
、該基地よりも高硬度であり、その平均粒径が前記Si
結晶粒および金属間化合物粉の粒径より大で且つ60μ
rn以下である硬質粒子が2〜20(重量)%分散して
いる組織を有することを特徴とする硬質粒子分散型耐熱
耐摩耗性高力アルミニウム合金部材。
(1) 5ilO,O~30.0% by weight and Ni5.
O~15.0% and further Cu0.5-5 as necessary
.. 0% and Mg0.2~3.0%, the remainder is made of AI containing unavoidable impurities, the size of Si crystal grains is 15 μm or less, and the size of intermetallic compound powder is 20 μm.
In the aluminum alloy base which is finely dispersed to a size of less than
Larger than the grain size of crystal grains and intermetallic compound powder and 60μ
A hard particle-dispersed heat-resistant, wear-resistant, high-strength aluminum alloy member having a structure in which 2 to 20% (by weight) of hard particles having a particle diameter of rn or less are dispersed therein.
(2)前記アルミニウム合金基地中に分散する前記硬質
粒子が、金属Si粒子、S IB N4粒子およびSi
C粒子のうち1種または2 f![1以上でなる特許請
求の範囲第1項記載の硬質粒子分散耐熱耐摩耗性高力ア
ルミニウム合金部材
(2) The hard particles dispersed in the aluminum alloy base are metal Si particles, S IB N4 particles, and Si
One or two types of C particles f! [Hard particle-dispersed heat-resistant and wear-resistant high-strength aluminum alloy member according to claim 1 comprising one or more
(3)重量比テS i 10.0−30.0%と、Ni
5.0〜15.0%と1、さらに必要に応じてCu 0
.5〜5.0%およびMg0.2−3%を含み、残部が
不可避的不純物を含むAlからなる合金溶湯を、分散急
冷凝固させて合金粉末とし、得られた合金粉末に、該合
金粉末より高硬度で且つその平均粒径が60μIn以下
である硬質粒子を2〜20(重量)%配合して混合し、
押出し比10以上で熱間押出成形することを特徴とする
 Si結晶粒の大きさが15μm以下に、かつ金属間化
合物粉の大きさが20μIn以下に微細化分散している
アルミニウム合金基地中に、該基地よりも高硬度であり
、その平均粒径が前記Si結晶粒および金属間化合物粉
の粒径より大で且つ60μm以下である硬質粒子が2〜
20(重量)%分散している組織を有する硬質粒子分散
型耐熱耐摩耗性高力アルミニウム合金部材の製造方法。
(3) Weight ratio Te Si 10.0-30.0% and Ni
5.0-15.0% and 1, further Cu 0 as necessary
.. A molten alloy consisting of Al containing 5 to 5.0% Mg and 0.2 to 3% Mg and the remainder containing unavoidable impurities is dispersed and rapidly solidified to obtain an alloy powder, and the alloy powder is added to the obtained alloy powder. Mixing 2 to 20% (by weight) of hard particles having high hardness and an average particle size of 60 μIn or less,
Hot extrusion molding is carried out at an extrusion ratio of 10 or more.In an aluminum alloy matrix, the Si crystal grain size is 15 μm or less and the intermetallic compound powder is finely dispersed and dispersed in the size of 20 μIn or less. 2 to 2 hard particles having a higher hardness than the base and having an average particle size larger than the particle size of the Si crystal grains and the intermetallic compound powder and 60 μm or less.
A method for manufacturing a heat-resistant, wear-resistant, high-strength aluminum alloy member having a hard particle dispersed structure having a structure in which 20% (by weight) of the hard particles are dispersed.
JP58158876A 1983-08-30 1983-08-30 Heat- and wear-resistant high-strength aluminum alloy member of hard particle dispersion type and its production Granted JPS6050138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58158876A JPS6050138A (en) 1983-08-30 1983-08-30 Heat- and wear-resistant high-strength aluminum alloy member of hard particle dispersion type and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58158876A JPS6050138A (en) 1983-08-30 1983-08-30 Heat- and wear-resistant high-strength aluminum alloy member of hard particle dispersion type and its production

Publications (2)

Publication Number Publication Date
JPS6050138A true JPS6050138A (en) 1985-03-19
JPS6320298B2 JPS6320298B2 (en) 1988-04-27

Family

ID=15681327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58158876A Granted JPS6050138A (en) 1983-08-30 1983-08-30 Heat- and wear-resistant high-strength aluminum alloy member of hard particle dispersion type and its production

Country Status (1)

Country Link
JP (1) JPS6050138A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185857A (en) * 1986-02-12 1987-08-14 Honda Motor Co Ltd Heat resistant and high strength aluminum alloy
JPS6436742A (en) * 1987-07-30 1989-02-07 Ryobi Ltd Metallic grain and intermetallic compound grain dispersion strengthened alloy and its production
JPH02149632A (en) * 1988-11-30 1990-06-08 Showa Alum Corp Low thermal expansion aluminum alloy having excellent wear resistance and heat conductivity
JPH02163570A (en) * 1988-12-15 1990-06-22 Mitsubishi Alum Co Ltd Cylinder tube material
US5006417A (en) * 1988-06-09 1991-04-09 Advanced Composite Materials Corporation Ternary metal matrix composite
US5028494A (en) * 1988-07-15 1991-07-02 Railway Technical Research Institute Brake disk material for railroad vehicle
EP0558957A2 (en) * 1992-02-13 1993-09-08 Ykk Corporation High-strength, wear-resistant aluminum alloy
US5334266A (en) * 1990-03-06 1994-08-02 Yoshida Kogyo K.K. High strength, heat resistant aluminum-based alloys
US5374295A (en) * 1992-03-04 1994-12-20 Toyota Jidosha Kabushiki Kaisha Heat resistant aluminum alloy powder, heat resistant aluminum alloy and heat and wear resistant aluminum alloy-based composite material
EP0634497A1 (en) * 1993-07-12 1995-01-18 AEROSPATIALE Société Nationale Industrielle Composite material with intermetallic matrix of the A1Ni-type reinforced by silicon carbide particles
US5409661A (en) * 1991-10-22 1995-04-25 Toyota Jidosha Kabushiki Kaisha Aluminum alloy
US5449421A (en) * 1988-03-09 1995-09-12 Toyota Jidosha Kabushiki Kaisha Aluminum alloy composite material with intermetallic compound finely dispersed in matrix among reinforcing elements
US5464463A (en) * 1992-04-16 1995-11-07 Toyota Jidosha Kabushiki Kaisha Heat resistant aluminum alloy powder heat resistant aluminum alloy and heat and wear resistant aluminum alloy-based composite material
US5614036A (en) * 1992-12-03 1997-03-25 Toyota Jidosha Kabushiki Kaisha High heat resisting and high abrasion resisting aluminum alloy
WO1999011834A1 (en) * 1997-08-30 1999-03-11 Honsel Ag Alloy and method for producing objects therefrom

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53118209A (en) * 1977-03-25 1978-10-16 Res Dev Corp Of Japan Powder metallurgical method of manufacturing high-silicon containing sinteted aluminum alloy
JPS579851A (en) * 1980-06-18 1982-01-19 Sumitomo Electric Ind Ltd Wear-resistant aluminum composite material
JPS57198237A (en) * 1981-05-29 1982-12-04 Riken Corp Sliding member made of aluminum alloy and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53118209A (en) * 1977-03-25 1978-10-16 Res Dev Corp Of Japan Powder metallurgical method of manufacturing high-silicon containing sinteted aluminum alloy
JPS579851A (en) * 1980-06-18 1982-01-19 Sumitomo Electric Ind Ltd Wear-resistant aluminum composite material
JPS57198237A (en) * 1981-05-29 1982-12-04 Riken Corp Sliding member made of aluminum alloy and its manufacture

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185857A (en) * 1986-02-12 1987-08-14 Honda Motor Co Ltd Heat resistant and high strength aluminum alloy
JPS6436742A (en) * 1987-07-30 1989-02-07 Ryobi Ltd Metallic grain and intermetallic compound grain dispersion strengthened alloy and its production
US5449421A (en) * 1988-03-09 1995-09-12 Toyota Jidosha Kabushiki Kaisha Aluminum alloy composite material with intermetallic compound finely dispersed in matrix among reinforcing elements
US5006417A (en) * 1988-06-09 1991-04-09 Advanced Composite Materials Corporation Ternary metal matrix composite
US5028494A (en) * 1988-07-15 1991-07-02 Railway Technical Research Institute Brake disk material for railroad vehicle
JPH02149632A (en) * 1988-11-30 1990-06-08 Showa Alum Corp Low thermal expansion aluminum alloy having excellent wear resistance and heat conductivity
JPH0480108B2 (en) * 1988-11-30 1992-12-17 Showa Aluminium Co Ltd
JPH02163570A (en) * 1988-12-15 1990-06-22 Mitsubishi Alum Co Ltd Cylinder tube material
US5334266A (en) * 1990-03-06 1994-08-02 Yoshida Kogyo K.K. High strength, heat resistant aluminum-based alloys
US5409661A (en) * 1991-10-22 1995-04-25 Toyota Jidosha Kabushiki Kaisha Aluminum alloy
EP0558957A2 (en) * 1992-02-13 1993-09-08 Ykk Corporation High-strength, wear-resistant aluminum alloy
US5374295A (en) * 1992-03-04 1994-12-20 Toyota Jidosha Kabushiki Kaisha Heat resistant aluminum alloy powder, heat resistant aluminum alloy and heat and wear resistant aluminum alloy-based composite material
US5464463A (en) * 1992-04-16 1995-11-07 Toyota Jidosha Kabushiki Kaisha Heat resistant aluminum alloy powder heat resistant aluminum alloy and heat and wear resistant aluminum alloy-based composite material
US5614036A (en) * 1992-12-03 1997-03-25 Toyota Jidosha Kabushiki Kaisha High heat resisting and high abrasion resisting aluminum alloy
EP0634497A1 (en) * 1993-07-12 1995-01-18 AEROSPATIALE Société Nationale Industrielle Composite material with intermetallic matrix of the A1Ni-type reinforced by silicon carbide particles
FR2707667A1 (en) * 1993-07-12 1995-01-20 Aerospatiale AlNi type intermetallic matrix composite material reinforced with silicon carbide particles.
US5556486A (en) * 1993-07-12 1996-09-17 Aerospatiale Societe Nationale Industrielle Composite material having an intermetallic matrix of AlNi reinforced by silicon carbide particles
WO1999011834A1 (en) * 1997-08-30 1999-03-11 Honsel Ag Alloy and method for producing objects therefrom
US6531089B1 (en) 1997-08-30 2003-03-11 Honsel Gmbh & Co. Kg Alloy and method for producing objects therefrom

Also Published As

Publication number Publication date
JPS6320298B2 (en) 1988-04-27

Similar Documents

Publication Publication Date Title
EP0100470B1 (en) Heat-resistant, wear-resistant, and high-strength aluminum alloy powder and body shaped therefrom
JPS6050138A (en) Heat- and wear-resistant high-strength aluminum alloy member of hard particle dispersion type and its production
JPS5913041A (en) Aluminum alloy powder having high resistance to heat and abrasion and high strength and molding of said alloy powder and its production
JPS6210237A (en) Aluminum alloy for hot forging
JPH0137464B2 (en)
JPH06293933A (en) Wear resistant aluminum alloy and its production
JP2017078213A (en) Aluminum alloy powder for hot forging for slide component, method for producing the same, aluminum alloy forging for slide component, and method for producing the same
JPH0120215B2 (en)
JPS6050137A (en) Heat- and wear-resistant high-strength aluminum alloy member of hard particle dispersion type and its production
JPS6338541B2 (en)
JPH0118981B2 (en)
JPS6150132B2 (en)
JPH0118983B2 (en)
JPH029099B2 (en)
JPS5966918A (en) Double layer structure hollow member made of aluminum alloy
JPH0256401B2 (en)
JP3388476B2 (en) Aluminum-based composite sliding material and method for producing the same
JPH0118984B2 (en)
JP2709097B2 (en) Spring retainer
JPS61295301A (en) Heat-resistant high-power aluminum alloy powder and its molding
JPH048481B2 (en)
JPS63297534A (en) Wear resistant aluminum-silicon alloy molding material
JPH0637682B2 (en) Heat resistant and abrasion resistant high strength aluminum alloy powder compact having excellent lubricity and method for producing the same
JPH072961B2 (en) Heat and wear resistance High strength aluminum alloy powder
JPH01243A (en) Heat-resistant and wear-resistant aluminum alloy