JPS62185857A - Heat resistant and high strength aluminum alloy - Google Patents

Heat resistant and high strength aluminum alloy

Info

Publication number
JPS62185857A
JPS62185857A JP2858486A JP2858486A JPS62185857A JP S62185857 A JPS62185857 A JP S62185857A JP 2858486 A JP2858486 A JP 2858486A JP 2858486 A JP2858486 A JP 2858486A JP S62185857 A JPS62185857 A JP S62185857A
Authority
JP
Japan
Prior art keywords
toughness
weight
modulus
young
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2858486A
Other languages
Japanese (ja)
Inventor
Haruo Shiina
治男 椎名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2858486A priority Critical patent/JPS62185857A/en
Publication of JPS62185857A publication Critical patent/JPS62185857A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To provide the titled alloy having especially superior toughness and Young's modulus, by composing respective ratios of Si, Cu and Mg, further one kind or more among Ni, Cr and Mo. CONSTITUTION:The titled alloy is composed of, by weight 12.0-28.0% Si, 0.8-5.0% Cu, 0.3-3.5% Mg and one kind or more among 3.1-8.0% Ni, 0.2-8.0% Cr, 0.2-8.0% Mo. In the alloy, Si improves Young's modulus and reduces thermal expansion coefft., exhibits heat treating effect by coexistence with Mg, further provides elongation and toughness. Cu improves strength due to heat treatment effect. Mg is used for obtaining heat treating effect due to coexistence with Si and provides elongation and toughness. Ni, Cr and Mg improve high temp. strength and Young's modulus and have effect for possessing elongation and toughness. By specifying compsn. ranges of the above components, the aimed Al alloy having improved strength toughness and Young's modulus can be provided.

Description

【発明の詳細な説明】 A0発明の目的 (1)  産業上の利用分野 本発明は耐熱性、高強度アルミニウム合金に関する。[Detailed description of the invention] A0 Purpose of invention (1) Industrial application field The present invention relates to heat resistant, high strength aluminum alloys.

(2)従来の技術 現在、自動車用部品の構成材料としては、その部品の軽
量化を図るためにアルミニウム合金が積極的に用いられ
ている。
(2) Prior art At present, aluminum alloys are actively used as constituent materials for automobile parts in order to reduce the weight of the parts.

特に、内燃機関におけるピストン、コンロッド等の運動
部品をアルミニウム合金より構成すると、慣性力をも低
減し得るので、一層有効である。
In particular, it is more effective to construct moving parts such as pistons and connecting rods in an internal combustion engine from an aluminum alloy, since this can also reduce inertial force.

そこで、従来は前記運動部品を、JIS  AC8A等
のアルミニウム合金を用いて溶解法を適用することによ
り製造している。
Therefore, conventionally, the above-mentioned moving parts have been manufactured by applying a melting method using an aluminum alloy such as JIS AC8A.

(3)  発明が解決しようとする問題点前記運動部品
は高温下で使用されるため、耐熱性を有すると共に高強
度であり、その上優れた靭性および高いヤング率を持つ
ことが要求されるが、溶解法適用下ではアルミニウム合
金における添加元素選択の自由度が狭いので、特に強度
、靭性およびヤング率を向上させる上に自ずと限界があ
る。
(3) Problems to be solved by the invention Since the above-mentioned moving parts are used at high temperatures, they are required to have heat resistance and high strength, as well as excellent toughness and a high Young's modulus. When the melting method is applied, the degree of freedom in selecting additive elements in aluminum alloys is narrow, so there are naturally limits to improving strength, toughness, and Young's modulus.

本発明は上記に鑑み、添加元素選択の自由度の広い粉末
冶金法に着目し、その方法を適用して前記運動部品を製
造した場合、その強度等を従来のものよりも一層向上さ
せることのできる前記アルミニウム合金を提供すること
を目的とする。
In view of the above, the present invention focuses on a powder metallurgy method that has a wide degree of freedom in selecting additive elements, and when the above-mentioned moving parts are manufactured using this method, the strength etc. of the moving parts can be further improved compared to conventional ones. It is an object of the present invention to provide the aluminum alloy that can be used.

B0発明の構成 (11問題点を解決するための手段 本発明に係る耐熱性、高強度アルミニウム合金は、下記
範囲のS i−、CuおよびMgならびにNi、Crお
よびMOより選択される少なくとも一種を含有すること
を特徴とする。
B0 Structure of the Invention (11 Means for Solving Problems) The heat-resistant, high-strength aluminum alloy according to the present invention contains at least one member selected from the following ranges of Si-, Cu and Mg, and Ni, Cr and MO. It is characterized by containing.

記 12.0重量%≦Si≦28.0重量%0.8型理%≦
Cu≦ 5.0重量% 0.3重量%≦Mg≦ 3.5重量% 3.1重量%≦Ni ≦  8.0重量%0.2重量%
≦Cr≦ 8.0重量% 0.2ffilIt%≦Mo≦g、Qii1%(2)作
 用 Siは、ヤング率を向上させると共に熱膨張係数を低下
させ、またMgとの共存により熱処理効果を発揮し、さ
らに伸びおよび靭性を保有させる効果を有する。但し、
Siの含有量が12.0重量%を下回ると前記効果が得
られず、一方28.0重量%を上回ると伸びおよび靭性
が低下する。
12.0% by weight≦Si≦28.0% by weight0.8% by weight≦
Cu≦5.0wt% 0.3wt%≦Mg≦3.5wt% 3.1wt%≦Ni≦8.0wt%0.2wt%
≦Cr≦8.0wt% 0.2ffilIt%≦Mo≦g, Qii1% (2) Function Si improves Young's modulus and lowers the coefficient of thermal expansion, and exhibits heat treatment effects when coexisting with Mg. It also has the effect of retaining elongation and toughness. however,
If the Si content is less than 12.0% by weight, the above effects cannot be obtained, while if it exceeds 28.0% by weight, elongation and toughness will decrease.

Cuは、熱処理効果により強度を向上させる。Cu improves the strength due to the heat treatment effect.

但し、Cuの含有量が0.8重量%を下回ると前記効果
が得られず、一方5.0重量%を上回ると耐食性が低下
する。
However, if the Cu content is less than 0.8% by weight, the above effects cannot be obtained, while if it exceeds 5.0% by weight, the corrosion resistance will decrease.

Mgは、Stとの共存による熱処理効果を得るために用
いられると共に伸びおよび靭性を保有させる効果を有す
る。但し、Mgの含有量が0.3重量%を下回ると前記
効果が得られず、一方3.5重量%を上回ると伸びおよ
び靭性が低下する。
Mg is used to obtain a heat treatment effect by coexisting with St, and has the effect of maintaining elongation and toughness. However, if the Mg content is less than 0.3% by weight, the above effects cannot be obtained, while if it exceeds 3.5% by weight, elongation and toughness will decrease.

Ni、CrおよびMoは、高温強度およびヤング率を向
上させると共に伸びおよび靭性を保有させる効果を有す
る。但し、Niの含有量が3.1重量%を、またCrお
よびMoの含有量が0.2重量%を下回ると前記効果が
得られず、一方それらの含有量が8.0重量%を上回る
と伸びおよび靭性が低下する。
Ni, Cr and Mo have the effect of improving high temperature strength and Young's modulus, as well as retaining elongation and toughness. However, if the content of Ni is less than 3.1% by weight and the content of Cr and Mo is less than 0.2% by weight, the above effect cannot be obtained, while on the other hand, the content of these is more than 8.0% by weight. and elongation and toughness decrease.

以上の理由から各種化学成分の組成範囲を前記のように
特定することにより強度、靭性およびヤング率を向上さ
せた前記アルミニウム合金を提供することができる。
For the above reasons, by specifying the composition ranges of various chemical components as described above, it is possible to provide the aluminum alloy with improved strength, toughness, and Young's modulus.

(3)実施例 本発明に係るアルミニウム合金を用いてピストン等の運
動部品を製造する場合は、合金の粉末化、圧粉成形、加
熱処理および熱間押出し加工の各工程が採用されるが、
運動部品によっては押出し加工に次いで熱間鍛造加工が
施される。
(3) Example When manufacturing moving parts such as pistons using the aluminum alloy according to the present invention, the steps of pulverizing the alloy, powder compacting, heat treatment, and hot extrusion processing are adopted.
Depending on the motion part, extrusion is followed by hot forging.

アルミニウム合金の粉末化はエア噴霧法を適用して行わ
れ、その時の粉末の冷却速度は102℃/sec以上に
設定される。この冷却速度を下回ると、高剛性、高耐熱
性を得べく、Ni、Cr、MOを大量に添加しているた
め、金属間化合物が粗大に晶出し、伸び、衝撃値が極端
に低下して実用に供し得ない。
The aluminum alloy is powdered by applying an air atomization method, and the cooling rate of the powder is set at 102° C./sec or higher. If the cooling rate is lower than this, large amounts of Ni, Cr, and MO are added to obtain high rigidity and high heat resistance, so intermetallic compounds will coarsely crystallize, resulting in an extremely low elongation and impact value. It cannot be put to practical use.

圧粉成形法としては、冷間静水圧プレス成形法(CIP
法)または金型圧縮成形法が採用される。
As a powder compacting method, cold isostatic pressing method (CIP) is used.
method) or mold compression molding method is adopted.

圧粉成形により得られたビレットの加熱処理において、
その温度は430℃以上、520℃以下  〜に設定さ
れる。この処理は、主としてビレットに含まれたH2等
のガス抜きを、また二次的にビレットの焼結を目的とし
てAr等の不活性ガス雰囲気において行われるが、温度
が430℃を下回ると脱ガス効果が少ないので強度の低
下を来たし、また焼結も十分に進行せず、一方520′
Cを上回ると液相を生じて強度の低下を来たすので粉末
製造時急冷凝固を採用した意義が失われる。
In the heat treatment of the billet obtained by compaction,
The temperature is set at 430°C or higher and 520°C or lower. This treatment is carried out in an inert gas atmosphere such as Ar, primarily to remove gases such as H2 contained in the billet, and secondarily to sinter the billet. Since the effect was small, the strength decreased, and sintering did not progress sufficiently.
If it exceeds C, a liquid phase is generated and the strength is reduced, so the significance of adopting rapid solidification during powder production is lost.

熱間押出し加工において、そのビレット温度は300℃
以上、450℃以下に、また押出し比は5以上、35以
下にそれぞれ設定される。ビレット温度が300℃を下
回ると変形抵抗が大きくなって押出し加工が不可能にな
ると共に粉末を完全に焼結することができず、一方45
0℃を上回ると組織の粗大化が進行して強度が低下する
In hot extrusion processing, the billet temperature is 300℃
As above, the temperature is set to 450° C. or lower, and the extrusion ratio is set to 5 or more and 35 or less, respectively. If the billet temperature is lower than 300℃, the deformation resistance becomes large and extrusion becomes impossible, and the powder cannot be completely sintered.
If the temperature exceeds 0°C, the structure will become coarser and the strength will decrease.

押出し法は、直接押出しく前方押出し)および間接押出
しく後方押出し)の何れも適用可能であるが、その押出
し比が5を下回ると強度のばらっきが発生し、一方35
を上回ると変形抵抗が大きくなり、成形性が悪化して量
産性が撰なわれる。
As for the extrusion method, both direct extrusion (forward extrusion) and indirect extrusion (backward extrusion) can be applied, but if the extrusion ratio is less than 5, the strength will vary;
If it exceeds , deformation resistance increases, moldability deteriorates, and mass productivity becomes difficult.

鍛造加工において、その鍛造温度は430 ’C以上、
495℃以下、好ましくは470℃に設定される。鍛造
温度が430 ”Cを下回ると成形性が悪化し、一方4
95°Cを上回ると液相を生じ易く、強度低下の原因と
なる。
In the forging process, the forging temperature is 430'C or higher,
The temperature is set at 495°C or lower, preferably 470°C. When the forging temperature is lower than 430"C, the formability deteriorates;
If the temperature exceeds 95°C, a liquid phase tends to occur, causing a decrease in strength.

前記各工程を経て運動部品を製造する場合、その耐熱性
、靭性およびヤング率を向上させ、また製造時における
熱間押出し加工性および熱間鍛造加工性を良好にするた
めのアルミニウム合金の最適範囲は以下の通りである。
When manufacturing moving parts through each of the above steps, the optimum range of aluminum alloy is to improve the heat resistance, toughness, and Young's modulus, and to improve hot extrusion workability and hot forging workability during manufacturing. is as follows.

14.0重量%≦Si≦18.0重量%1.6重量%≦
Cu≦ 3.0重量% 0.3重量%≦Mg≦ 0.8重量% 3.1重量%≦N、i≦ 4.5重量%i、 o 、t
i量%≦Cr≦ 2.0重量%1.0重量%≦MO≦ 
2.0重量% Nt、、Cr、Moにおいて、それらの二種以上を含有
する場合は、それらの和が2.0重量%以上、8.0重
量%以下が最適範囲となる。
14.0wt%≦Si≦18.0wt%1.6wt%≦
Cu≦3.0wt% 0.3wt%≦Mg≦0.8wt% 3.1wt%≦N, i≦4.5wt%i, o, t
i amount %≦Cr≦ 2.0 weight% 1.0 weight%≦MO≦
2.0% by weight When Nt, Cr, and Mo contain two or more of them, the optimum range is for the sum of them to be 2.0% by weight or more and 8.0% by weight or less.

表Iは本発明に係るアルミニウム合金1〜■および従来
のアルミニウム合金■〜Xの組成を示す。
Table I shows the compositions of aluminum alloys 1 to 1 according to the present invention and conventional aluminum alloys 1 to X.

従来のアルミニウム合金■はJIS  AC8Aに、同
■はAA規格A390ニ、同XはJIS  2017に
それぞれ相当する。
The conventional aluminum alloy (■) corresponds to JIS AC8A, the same (■) corresponds to AA standard A390D, and the same (X) corresponds to JIS 2017.

表   I 次に本発明に係るアルミニウム合金I〜■を用ε1て丸
棒を製造する実施例について説明する。
Table I Next, an example in which a round bar is manufactured using aluminum alloys I to ① according to the present invention will be described.

lal  アルミニウム合金I〜■を用いてエア噴霧法
を適用し、冷却速度10”〜lO4℃/secの条件下
で合金粉末を製造する。
An air atomization method is applied to aluminum alloys I to 1 to produce alloy powder at a cooling rate of 10'' to 1O4C/sec.

山)各合金粉末を用いて冷間静水圧プレス成形法または
金型圧縮成形法を適用し、密度比75%で、直径225
鶴の押出し加工用丸棒状ビレットを圧粉成形する。
Mt.) Using each alloy powder, cold isostatic press molding method or mold compression molding method was applied, and the density ratio was 75% and the diameter was 225 mm.
A round bar billet for extrusion of cranes is compacted.

冷間静水圧プレス成形法においては、ゴム製チューブ内
に合金粉末を入れ、i、s〜3. OLon/−の静水
圧下で成形を行い、また金型圧縮成形法においては、金
型内に合金粉末を入れ、常温大気中で1、 S 〜3.
 Oton/CIAの圧力下で成形を行つ。
In the cold isostatic press molding method, alloy powder is placed in a rubber tube, and the steps of i, s to 3. Molding is carried out under hydrostatic pressure of OLon/-, and in the mold compression molding method, alloy powder is placed in a mold and heated in air at room temperature for 1.S to 3.
Molding is carried out under Oton/CIA pressure.

(C)  各ビレットを炉内温度500℃の均熱炉内に
設置して4時間保持し、各とレフトに加熱処理を施す。
(C) Each billet is placed in a soaking furnace with an internal temperature of 500° C. and held for 4 hours, and heat treatment is applied to each billet and the left.

1dl  ビレット温度380℃で各ビレットに押出し
加工を施し、直径50鰭(押出し比20)の丸棒を得る
1 dl Each billet is extruded at a billet temperature of 380°C to obtain a round bar with a diameter of 50 fins (extrusion ratio 20).

(el  各丸棒に490℃、2時間の加熱、水冷、お
よび175℃、8時間の加熱よりなるT6処理を施す。
(el) Each round bar is subjected to T6 treatment consisting of heating at 490°C for 2 hours, cooling with water, and heating at 175°C for 8 hours.

([1各丸棒を200℃の雰囲気に100時間保持する
([1) Each round bar is held in an atmosphere of 200°C for 100 hours.

前記(f)工程を経た各丸棒から平行部面径5鶴、平行
部長さ39mmの引張り試験片を切り出し、各引張り試
験片について200℃にて引張り試験を行った。
A tensile test piece with a parallel part surface diameter of 5 mm and a parallel part length of 39 mm was cut out from each round bar that had undergone the step (f) above, and a tensile test was conducted on each tensile test piece at 200°C.

また前記(f)工程を経た各丸棒から縦10mm、横1
00m、厚さ1mの試験片を切り出し、各試験片につい
て内部摩擦法により室温にてヤング率を測定した。
Also, from each round bar that has gone through the step (f) above, 10mm long and 1mm wide
A test piece having a length of 00 m and a thickness of 1 m was cut out, and the Young's modulus of each test piece was measured at room temperature by an internal friction method.

前記従来のアルミニウム合金■〜Xを用いて丸棒を溶製
し、その後アルミニウム合金■および■を用いた丸棒に
はT6処理を、また同合金Xを用いた丸棒にはT4処理
をそれぞれ施す。そして各丸棒から前記同様の引張り試
験片を切り出し、それらについて前記同様の引張り試験
を行った。また各丸棒から前記同様の試験片を切り出し
、それらについて同様にヤング率を測定した。
Round bars are melted using the conventional aluminum alloys ■ to give Tensile test pieces similar to those described above were cut out from each round bar, and tensile tests similar to those described above were conducted on them. In addition, test pieces similar to those described above were cut out from each round bar, and the Young's modulus of the test pieces was similarly measured.

表■は、各試験片についての引張り試験結果およびヤン
グ率測定結果を示す。
Table 3 shows the tensile test results and Young's modulus measurement results for each test piece.

表■ 前記表■から明らかなように、本発明に係るアルミニウ
ム合金1〜■は従来のアルミニウム合金■〜Xに比べて
、強度、靭性およびヤング率共に優れているものである
Table 2 As is clear from Table 2 above, aluminum alloys 1 to 2 according to the present invention are superior to conventional aluminum alloys 1 to X in terms of strength, toughness, and Young's modulus.

C1発明の効果 本発明によれば、St、CuおよびMgよりなる必須化
学成分の組成範囲を前記のように特定し、またN i 
% CrおよびMoよりなる選択化学成分の組成範囲を
前記のように特定することによって、特に、優れた靭性
およびヤング率を有する耐熱性、高強度アルミニウム合
金を提供することができ、内燃機関用運動部品の構成材
料として有効である。
C1 Effect of the Invention According to the present invention, the composition range of essential chemical components consisting of St, Cu and Mg is specified as described above, and Ni
By specifying the composition range of the selected chemical components consisting of % Cr and Mo as described above, it is possible to provide a heat-resistant, high-strength aluminum alloy having particularly excellent toughness and Young's modulus, and which is suitable for internal combustion engine applications. Effective as a component material for parts.

Claims (1)

【特許請求の範囲】 下記範囲のSi、CuおよびMgならびにNi、Crお
よびMoより選択される少なくとも一種を含有する耐熱
性、高強度アルミニウム合金。 記 12.0重量%≦Si≦28.0重量% 0.8重量%≦Cu≦5.0重量% 0.3重量%≦Mg≦3.5重量% 3.1重量%≦Ni≦8.0重量% 0.2重量%≦Cr≦8.0重量% 0.2重量%≦Mo≦8.0重量%
[Scope of Claims] A heat-resistant, high-strength aluminum alloy containing at least one selected from Si, Cu, and Mg as well as Ni, Cr, and Mo in the following ranges. 12.0% by weight≦Si≦28.0% by weight 0.8% by weight≦Cu≦5.0% by weight 0.3% by weight≦Mg≦3.5% by weight 3.1% by weight≦Ni≦8. 0 weight% 0.2 weight%≦Cr≦8.0 weight% 0.2 weight%≦Mo≦8.0 weight%
JP2858486A 1986-02-12 1986-02-12 Heat resistant and high strength aluminum alloy Pending JPS62185857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2858486A JPS62185857A (en) 1986-02-12 1986-02-12 Heat resistant and high strength aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2858486A JPS62185857A (en) 1986-02-12 1986-02-12 Heat resistant and high strength aluminum alloy

Publications (1)

Publication Number Publication Date
JPS62185857A true JPS62185857A (en) 1987-08-14

Family

ID=12252648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2858486A Pending JPS62185857A (en) 1986-02-12 1986-02-12 Heat resistant and high strength aluminum alloy

Country Status (1)

Country Link
JP (1) JPS62185857A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4975243A (en) * 1989-02-13 1990-12-04 Aluminum Company Of America Aluminum alloy suitable for pistons
JPH03180440A (en) * 1989-08-23 1991-08-06 Kubota Corp Heat resistant and high strength al alloy material
US5162065A (en) * 1989-02-13 1992-11-10 Aluminum Company Of America Aluminum alloy suitable for pistons
JP2009092022A (en) * 2007-10-10 2009-04-30 Yamaha Motor Co Ltd Engine and vehicle provided with same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4830802A (en) * 1971-08-24 1973-04-23
JPS491420A (en) * 1972-04-22 1974-01-08
JPS58100654A (en) * 1981-12-11 1983-06-15 Sumitomo Alum Smelt Co Ltd Aluminum alloy for casting with superior heat resistance
JPS6050138A (en) * 1983-08-30 1985-03-19 Riken Corp Heat- and wear-resistant high-strength aluminum alloy member of hard particle dispersion type and its production
JPS6196051A (en) * 1984-08-10 1986-05-14 アライド・コ−ポレ−シヨン Quickly solidified aluminum-transition metal-silicon alloy
JPS6210237A (en) * 1985-07-09 1987-01-19 Showa Denko Kk Aluminum alloy for hot forging

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4830802A (en) * 1971-08-24 1973-04-23
JPS491420A (en) * 1972-04-22 1974-01-08
JPS58100654A (en) * 1981-12-11 1983-06-15 Sumitomo Alum Smelt Co Ltd Aluminum alloy for casting with superior heat resistance
JPS6050138A (en) * 1983-08-30 1985-03-19 Riken Corp Heat- and wear-resistant high-strength aluminum alloy member of hard particle dispersion type and its production
JPS6196051A (en) * 1984-08-10 1986-05-14 アライド・コ−ポレ−シヨン Quickly solidified aluminum-transition metal-silicon alloy
JPS6210237A (en) * 1985-07-09 1987-01-19 Showa Denko Kk Aluminum alloy for hot forging

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4975243A (en) * 1989-02-13 1990-12-04 Aluminum Company Of America Aluminum alloy suitable for pistons
US5162065A (en) * 1989-02-13 1992-11-10 Aluminum Company Of America Aluminum alloy suitable for pistons
JPH03180440A (en) * 1989-08-23 1991-08-06 Kubota Corp Heat resistant and high strength al alloy material
JP2009092022A (en) * 2007-10-10 2009-04-30 Yamaha Motor Co Ltd Engine and vehicle provided with same

Similar Documents

Publication Publication Date Title
US4702885A (en) Aluminum alloy and method for producing the same
JPH0617524B2 (en) Magnesium-titanium sintered alloy and method for producing the same
JP2017222893A (en) Aluminum alloy forging article and manufacturing method therefor
JPH0234740A (en) Heat-resistant aluminum alloy material and its manufacture
JPS60208443A (en) Aluminum alloy material
JPS62185857A (en) Heat resistant and high strength aluminum alloy
EP1690953B1 (en) Heat-resistant and highly tough aluminum alloy and method for production thereof and engine parts
JPH02247348A (en) Heat-resistant aluminum alloy having excellent tensile strength, ductility and fatigue resistance
JP2019183191A (en) Aluminum alloy powder and manufacturing method therefor, aluminum alloy extrusion material and manufacturing method therefor
JPH0699771B2 (en) Aluminum alloy porous member and method for manufacturing the same
JP2790774B2 (en) High elasticity aluminum alloy with excellent toughness
EP0137180B1 (en) Heat-resisting aluminium alloy
JPH04202736A (en) Hyper-eutectic al-si base alloy powder showing excellent deformability by hot powder metal forging
JPH01242749A (en) Heat-resistant aluminum alloy
US5174955A (en) Heat-resisting aluminum alloy
JPH06228697A (en) Rapidly solidified al alloy excellent in high temperature property
JP3104309B2 (en) Manufacturing method of hot forged member made of Al-Si alloy with excellent toughness
JPS6223952A (en) Al-fe-ni heat-resisting alloy having high toughness and its production
KR100476023B1 (en) Aluminide based porous intermetallic compounds and their preparation
JPH01268838A (en) Aluminum alloy member having high strength and excellent forgeability
JPS62188739A (en) Al alloy stock
JPH05247562A (en) Manufacture of ti-al intermetallic compound
JPH0121856B2 (en)
JPH0470383B2 (en)
JPH0533013A (en) Production of highly accurate aluminum alloy sliding parts