JPH03180440A - Heat resistant and high strength al alloy material - Google Patents
Heat resistant and high strength al alloy materialInfo
- Publication number
- JPH03180440A JPH03180440A JP2062029A JP6202990A JPH03180440A JP H03180440 A JPH03180440 A JP H03180440A JP 2062029 A JP2062029 A JP 2062029A JP 6202990 A JP6202990 A JP 6202990A JP H03180440 A JPH03180440 A JP H03180440A
- Authority
- JP
- Japan
- Prior art keywords
- strength
- alloy
- rapidly solidified
- matrix
- alloy material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000956 alloy Substances 0.000 title claims abstract description 30
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract 8
- 239000000463 material Substances 0.000 claims abstract description 19
- 239000000843 powder Substances 0.000 claims abstract description 17
- 239000011159 matrix material Substances 0.000 claims abstract description 10
- 229910052802 copper Inorganic materials 0.000 claims abstract description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 5
- 239000000203 mixture Substances 0.000 claims description 7
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 229910052748 manganese Inorganic materials 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- 239000010419 fine particle Substances 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 10
- 238000005242 forging Methods 0.000 abstract description 5
- 238000010008 shearing Methods 0.000 abstract 1
- 229910045601 alloy Inorganic materials 0.000 description 15
- 238000001125 extrusion Methods 0.000 description 11
- 238000000034 method Methods 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 7
- 229910000765 intermetallic Inorganic materials 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 230000005496 eutectics Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- ZJIRFPOFCZNBAC-UHFFFAOYSA-N 4-amino-2-(2-amino-2-carboxyethyl)sulfanylbutanoic acid Chemical compound NCCC(C(O)=O)SCC(N)C(O)=O ZJIRFPOFCZNBAC-UHFFFAOYSA-N 0.000 description 2
- 108010020212 4-amino-2-(S-cysteinyl)butyric acid Proteins 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 229910018084 Al-Fe Inorganic materials 0.000 description 1
- 229910018192 Al—Fe Inorganic materials 0.000 description 1
- 229910017758 Cu-Si Inorganic materials 0.000 description 1
- 229910002482 Cu–Ni Inorganic materials 0.000 description 1
- 229910017931 Cu—Si Inorganic materials 0.000 description 1
- 229910002549 Fe–Cu Inorganic materials 0.000 description 1
- 229910001199 N alloy Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000003483 aging Methods 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000009692 water atomization Methods 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、高温における強度に優れた耐熱N合金材に関
する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a heat-resistant N alloy material that has excellent strength at high temperatures.
(従来の技術)
従来、軽量のエンジン用ピストンは、主として耐熱M合
金鋳物材であるACBA材で形成されていたが、近年、
エンジンの負荷が増大するに従って、より高温強度に優
れたAC9B材が使用されるようになってきている。A
C9B材はACBA材に対してSi含有量を2倍程度増
やすことにより、高温強度の向上を図ったものである。(Prior art) In the past, lightweight engine pistons were mainly made of ACBA material, which is a heat-resistant M alloy casting material, but in recent years,
As the load on engines increases, AC9B material, which has better high-temperature strength, is being used. A
C9B material aims to improve high temperature strength by increasing the Si content by about twice that of ACBA material.
(発明が解決しようとする課M)
しかしながら、高温強度の向上のために多量のSiが添
加されるのに伴って、熱伝導率が低下し、ピストン温度
が上昇する結果、相対的に高温強度が低下するという問
題があった。(Problem M to be solved by the invention) However, as a large amount of Si is added to improve high-temperature strength, the thermal conductivity decreases and the piston temperature increases, resulting in relatively low high-temperature strength. There was a problem that the
本発明はかかる問題点に鑑みなされたもので、高温強度
に優れた耐熱々合金材を提供することを目的とする。The present invention was made in view of such problems, and an object of the present invention is to provide a heat-resistant hot alloy material with excellent high-temperature strength.
(課題を解決するための手段)
上記目的を達成するためになされた本発明の耐熱M合金
材は、化学組成が重量%で、
Si : 8.5〜30 %、Mo : 0.
2〜5.0%Cu : 0.3〜6.0%、Mg:
0.3〜3.0%残部実質的にMからなるM合金急
冷凝固粉末の押出材もしくは鍛造材であって、基地中に
晶出Stが細粒状に均一分散していることを発明の構成
とするものである。(Means for Solving the Problems) The heat-resistant M alloy material of the present invention made to achieve the above object has the following chemical composition in weight percent: Si: 8.5-30%, Mo: 0.
2-5.0% Cu: 0.3-6.0%, Mg:
The composition of the invention is an extruded material or a forged material of rapidly solidified M alloy powder consisting of 0.3 to 3.0% balance substantially of M, in which crystallized St is uniformly dispersed in the form of fine particles in the matrix. That is.
この際、合金材の物性向上のため、Mの一部に代えて、
FeおよびMnのうちの1種又は2種の合計量を0.3
〜3.0%、および/又はNi : 0.3〜3,0%
を含有することができる。At this time, in order to improve the physical properties of the alloy material, in place of a part of M,
The total amount of one or two of Fe and Mn is 0.3
~3.0%, and/or Ni: 0.3~3.0%
can contain.
(作 用)
本発明の耐熱M合金材の化学a1v、(単位wt%)は
以下の理由により限定される。(Function) The chemical a1v (unit: wt%) of the heat-resistant M alloy material of the present invention is limited for the following reasons.
Si:8.5〜30%
Siは耐熱性、耐摩耗性を付与するために積極的に添加
する。8.5%未満では晶出Si量が不足し、また強度
向上に寄与するAZ−Si系、AZ−Cu−Si系等の
金属間化合物の生成量が不足し、上記の効果が不充分で
ある。一方30%を越えると後述のように急冷凝固して
も粗大でもろい初晶Siの晶出を抑えることかできず、
強度や成形性の劣化を招来する。Si: 8.5 to 30% Si is actively added to impart heat resistance and wear resistance. If it is less than 8.5%, the amount of crystallized Si will be insufficient, and the amount of intermetallic compounds such as AZ-Si system and AZ-Cu-Si system that contribute to improving strength will be insufficient, and the above effects will be insufficient. be. On the other hand, if it exceeds 30%, the crystallization of coarse and brittle primary Si cannot be suppressed even if it is rapidly solidified as described below.
This leads to deterioration of strength and formability.
Mo: 0.2〜5.0%
Moは熱伝導率の向上並びにAZ−Mo系金属間化合物
を生成し、熱間強度の向上に寄与する。0.2%未満で
はその効果が不足し、一方、5.0%を越えると、効果
が飽和するため不経済となる。また、溶融温度が高くな
り、化合物が粗大化し成形性が劣化する。Mo: 0.2 to 5.0% Mo improves thermal conductivity and forms AZ-Mo intermetallic compounds, contributing to improving hot strength. If it is less than 0.2%, the effect will be insufficient, while if it exceeds 5.0%, the effect will be saturated and it will become uneconomical. Furthermore, the melting temperature becomes high, the compound becomes coarse, and the moldability deteriorates.
Cu : 0.3〜6.0%
Mg:0.3〜3.0%
Cu、 MgはA1合金に固溶して強度を向上させ、ま
た金属間化合物を生成して時効硬化性を付与するために
添加する。Cu、 Mgが0.3%未満ではその効果が
少なく、強度が不足する。一方、Cuが6.0%を越え
、Mgが3.0%を越えて含有されると、押出しや鍛造
加工性に悪影響を及ぼす。Cu: 0.3-6.0% Mg: 0.3-3.0% Cu and Mg are dissolved in A1 alloy to improve strength, and also form intermetallic compounds to impart age hardenability. Add for. If Cu or Mg is less than 0.3%, the effect will be small and the strength will be insufficient. On the other hand, if Cu exceeds 6.0% and Mg exceeds 3.0%, extrusion and forging workability will be adversely affected.
Fe、 Mnのうちの1種又は2種の合計量:0.3〜
3.0%
Fe、 Mnを添加すると晶出Siは少なくなるが、代
ってAI −(Fe、 Mn)−3i系、Al−Fe系
、A7−Fe−Cu系金属間化合物が析出し、高温強度
を改善する。0.3%未満では高温強度の改善が充分で
なく、一方3.0%を越えると熱伝導率の低下が大きく
なる。また、金属間化合物が粗大化し強度の低下を招来
する。Total amount of one or two of Fe and Mn: 0.3~
When 3.0% Fe and Mn are added, the amount of crystallized Si decreases, but instead AI-(Fe, Mn)-3i, Al-Fe, and A7-Fe-Cu intermetallic compounds precipitate. Improves high temperature strength. If it is less than 0.3%, the improvement in high-temperature strength will not be sufficient, while if it exceeds 3.0%, the thermal conductivity will decrease significantly. Moreover, the intermetallic compound becomes coarse, resulting in a decrease in strength.
Ni:0.3〜3.0%
Niは高温強度の向上に寄与する。0.3%未満ではそ
の効果がほとんどなく、一方3.0%を越えると初晶S
iや、4/−Cu−Ni系金属間化合物が粗大化し易い
。Ni: 0.3 to 3.0% Ni contributes to improving high temperature strength. If it is less than 0.3%, there is almost no effect, while if it exceeds 3.0%, primary S
i and 4/-Cu-Ni intermetallic compounds tend to become coarse.
上記組成のAI合金急冷凝固粉末は、合金元素を過飽和
に固溶して基地を固溶体強化することができ、また、靭
性や強度劣化の原因となる初晶Siの晶出がほとんど見
られず、基地中に微細な共晶状Siが晶出したものとな
る。The rapidly solidified AI alloy powder with the above composition can strengthen the matrix by solid solution supersaturated alloying elements, and almost no crystallization of primary Si, which causes deterioration of toughness and strength, is observed. This results in fine eutectic Si crystallized in the matrix.
前記M合金急冷凝固粉末の押出材もしくは鍛造材は、同
加工による強度のせん断作用によって、粉末表面に形成
されている数n1m程度の不活性、安定なA!酸化物被
膜の分断や基地中の晶出Si (共晶Si又は共晶Si
と初晶Si)の分断が行われ、これらが基地中に均一に
分散され、耐熱性、耐摩耗性および高温強度の向上が図
られる。The extruded material or forged material of the rapidly solidified M alloy powder has an inert and stable A! Separation of the oxide film and crystallization of Si in the matrix (eutectic Si or eutectic Si
and primary crystal Si) are divided, and these are uniformly dispersed in the matrix, improving heat resistance, abrasion resistance, and high temperature strength.
(実施例)
本発明のA1合金材の原料となる所定成分のAI合金急
冷凝固粉末は、水アトマイズ法や回転ドラム法等の適宜
の手段で製造される。回転ドラム法とは、回転する冷却
ドラムの内周面に冷却水層を遠心力の作用で形威し、該
冷却水層に溶融M合金を噴射し、微細に分断して急冷凝
固粉末を得る方法である。(Example) A rapidly solidified AI alloy powder having a predetermined composition, which is a raw material for the A1 alloy material of the present invention, is produced by an appropriate method such as a water atomization method or a rotating drum method. In the rotating drum method, a cooling water layer is formed on the inner peripheral surface of a rotating cooling drum by the action of centrifugal force, and molten M alloy is injected into the cooling water layer, which is finely divided to obtain rapidly solidified powder. It's a method.
M合金急冷凝固粉末は、粉末の状態で、あるいは圧縮成
形ビレットとして押出しコンテナに収容され、押出し加
工に供される。押出に際して、AI合金粉末表面のM酸
化物被膜やM固溶体中の共晶Stの分断、分散を充分行
うために、押出比は5〜20とするのがよく、また押出
荷重の軽減および基地の拡散接合のために、押出温度は
250〜500°Cとするのがよい。The M alloy rapidly solidified powder is stored in an extrusion container in a powder state or as a compression molded billet, and is subjected to extrusion processing. During extrusion, in order to sufficiently divide and disperse the M oxide film on the surface of the AI alloy powder and the eutectic St in the M solid solution, the extrusion ratio is preferably set to 5 to 20. For diffusion bonding, the extrusion temperature is preferably 250-500°C.
本発明の合金材は、押出し加工のばか鍛造加工により押
出し加工時と同等の作用がなされ、所期の合金組織を得
ることができる。この際、鍛造温度は260〜510°
C程度がよい。The alloy material of the present invention has the same effect as the extrusion process through the forging process, which is an extrusion process, and the desired alloy structure can be obtained. At this time, the forging temperature is 260~510°
A grade of C is good.
以上のようにして得られた押出材もしくは鍛造材は、適
宜、鍛造加工、切削加工等により目的とする製品形状に
加工される。また、必要に応じてT6処理(460〜5
20℃で溶体化処理後、水冷し、170〜180℃で1
0時間以上保持して時効硬化を行う。The extruded material or forged material obtained as described above is processed into the desired product shape by forging, cutting, etc., as appropriate. In addition, T6 processing (460 to 5
After solution treatment at 20℃, water cooling and 170~180℃
Age hardening is performed by holding for 0 hours or more.
を施し、より高強度化を図ることができる。can be applied to achieve even higher strength.
本発明のM合金材は、耐熱性、耐摩耗性および高温にお
ける引張強度や疲労強度に優れ、かつ熱膨張係数も小さ
いので、これらの緒特性が要求される各種エンジンのピ
ストン、シリンダー、プーリー、軸受等の用途に好適で
ある。The M alloy material of the present invention has excellent heat resistance, wear resistance, tensile strength and fatigue strength at high temperatures, and has a small coefficient of thermal expansion, so it can be used for pistons, cylinders, pulleys, etc. of various engines that require these properties. Suitable for applications such as bearings.
次に具体的実施例について説明する。Next, specific examples will be described.
実施例A
(1)下記第1表の化学組成(wt%、残部実質的にA
I)のM合金を溶製し、回転ドラム法によって、粒径0
.05〜1mの急冷凝固粉末を作製した。尚、試料Na
1−16は本発明実施例であり、Na17〜20はA
C8A、 AC9B相当組威の比較例である。Example A (1) Chemical composition shown in Table 1 below (wt%, the remainder being substantially A
The M alloy of I) was melted, and the particle size was reduced to 0 using the rotating drum method.
.. A rapidly solidified powder of 0.05 to 1 m was produced. In addition, the sample Na
1-16 are examples of the present invention, Na17-20 are A
This is a comparative example of the strength of C8A and AC9B.
〉
(2) No、1〜20の急冷凝固粉末を押出比25
、押出温度450℃で押出し、φ25+wの棒材を得た
。〉 (2) No. 1 to 20 rapidly solidified powders are extruded at an extrusion ratio of 25
, extrusion was carried out at an extrusion temperature of 450°C to obtain a bar with a diameter of 25+w.
(3) この押出材より試験片を採取し、T6熱処理
を施した後、300°Cにおける熱伝導率および引張強
さを測定した。その結果を第1表に併せて示す。(3) A test piece was taken from this extruded material, subjected to T6 heat treatment, and then its thermal conductivity and tensile strength at 300°C were measured. The results are also shown in Table 1.
(4)評価
同表より、Si含有量が同程度の試料(例えば、No、
l、2とNa17.18、Na3,4とNo、19.2
0)を比較すると、実施例のA1合金材は熱伝導率、引
張強さとも向上し、特にSi含有量が高いほど熱伝導率
の向上効果が著しいことが認められる。(4) Evaluation From the same table, samples with similar Si content (for example, No.
l, 2 and Na17.18, Na3,4 and No, 19.2
0), it is recognized that the A1 alloy material of Example improves both thermal conductivity and tensile strength, and in particular, the higher the Si content, the more remarkable the effect of improving thermal conductivity is.
(5)次に、Nα2(実施例)およびNα1B (比較
例)ノ押出材で125CCエンジン用のピストンヲ製作
し、エンジンに組み込み、1000 P P M テ2
0Hr連続運転し、ピストンの温度を測定した。その結
果、実施例のピストンは比較例のそれより50″C低い
値であり、熱伝導率が0.06cal / cva、s
ec、 ’C程度のわずかの差でも大きい放熱効果があ
ることが確認された。従って、同一使用条件では、実施
例のピストン温度が低下する結果、同部材の強度も相対
的に向上することになる。(5) Next, pistons for a 125CC engine were manufactured using extruded materials of Nα2 (example) and Nα1B (comparative example), assembled into the engine, and 1000 P P M Te2
The piston was operated continuously for 0 hours and the temperature of the piston was measured. As a result, the piston of the example has a value 50"C lower than that of the comparative example, and the thermal conductivity is 0.06 cal/cva, s.
It was confirmed that even a slight difference between ec and 'C has a large heat dissipation effect. Therefore, under the same usage conditions, as a result of the lower piston temperature in the example, the strength of the same member is relatively improved.
実施例B
(1)実施例Aと同様にして、下記第2表の化学組成(
wt%、残部実質的にAI)のA1合金粉末を作製し、
φ25Mの押出棒材を得た。尚、試料No、 1および
2は本発明実施例であり、NO,3および4は比較例で
AC8A、 AC9B相当組戒である。Example B (1) In the same manner as Example A, the chemical composition shown in Table 2 below (
Producing A1 alloy powder with wt%, the balance being substantially AI),
An extruded bar with a diameter of 25M was obtained. Samples Nos. 1 and 2 are examples of the present invention, and samples Nos. 3 and 4 are comparative examples and are equivalent to AC8A and AC9B.
第2表
(2)押出材より試験片を採取し、T6熱処理を施した
後、常温および300″Cにおける引張強さ、伸びを調
べた。尚、後者は、300″Cで15分および100時
間保持後の二種について行った。また、25〜300″
Cにおける線膨張係数も澗ぺた。Table 2 (2) A test piece was taken from the extruded material, and after being subjected to T6 heat treatment, the tensile strength and elongation at room temperature and 300''C were examined. The test was carried out on the two types after holding for a certain period of time. Also, 25~300″
The coefficient of linear expansion in C is also very small.
結果を第3表に示す。The results are shown in Table 3.
その
以下枚葉
(3)評価
第3表より、実施例のNa 1およびNa2は、常温に
おける引張強さのみならず、高温においても保持時間の
長短に拘らず優れた強度を有していることが分かる。こ
れに対して、比較例のNα3およびNo、 4は高温下
で長時間さらされると強度の劣化が著しい。また、実施
例のA1合金は比較例の血4のM合金に比べてSi含有
量が少ないにも拘らず、同程度以下の線膨張係数であっ
て耐熱合金として優れる。尚、比較例の勘、3とNα4
とを比較すれば分かるように、通常Si含有量が少ない
ほど線膨張係数が大となり、熱変形し易いものである。From Table 3 of Sheet Leaf (3) Evaluation below, Na 1 and Na 2 of Examples have excellent tensile strength not only at room temperature but also at high temperature regardless of the length of holding time. I understand. On the other hand, the strength of Comparative Examples Nα3, No. 4, and No. 4 significantly deteriorates when exposed to high temperatures for a long period of time. In addition, although the A1 alloy of the example has a lower Si content than the M alloy of Blood 4 of the comparative example, it has a linear expansion coefficient of the same level or less and is excellent as a heat-resistant alloy. In addition, the intuition of the comparative example, 3 and Nα4
As can be seen from the comparison, the smaller the Si content, the larger the coefficient of linear expansion and the easier it is to deform due to heat.
(発明の効果)
以上説明した通り、本発明のM合金材は、恥を0.2〜
6.0%含有した高Si組成の急冷凝固粉末の押出し材
もしくは鍛造材であり、微細な共晶Siが基地中に分散
したものであるので、良好な耐熱性、耐摩耗性を具備す
るのみならず、高温における引張強度、疲労強度の向上
を図ることができ、しかもNoの作用で熱伝導率が向上
するため、使用温度
の低下によって使用時の強度を一層向上させることがで
きる。(Effect of the invention) As explained above, the M alloy material of the present invention has a
It is an extruded material or forged material of rapidly solidified powder with a high Si content of 6.0%, and because fine eutectic Si is dispersed in the matrix, it has good heat resistance and wear resistance. However, since the tensile strength and fatigue strength at high temperatures can be improved, and the thermal conductivity is improved by the action of No, the strength during use can be further improved by lowering the use temperature.
特 許 出 願 人 久保田鉄工株式会社Special permission Out wish Man Kubota Iron Works Co., Ltd.
Claims (3)
0.3〜6.0%、Mg:0.3〜3.0%残部実質的
にAlからなるAl合金急冷凝固粉末の押出材もしくは
鍛造材であって、基地中に晶出Siが細粒状に均一分散
していることを特徴とする耐熱高強度Al合金材。(1) Chemical composition in weight%: Si: 8.5-30%, Mo: 0.2-5.0% Cu:
0.3-6.0%, Mg: 0.3-3.0% The balance is an extruded or forged material of rapidly solidified Al alloy powder consisting essentially of Al, with crystallized Si in the matrix in the form of fine particles. A heat-resistant, high-strength Al alloy material characterized by being uniformly dispersed.
Mnのうち1種又は2種の合計量を0.3〜3.0%を
含有する耐熱高強度Al合金材。(2) A heat-resistant, high-strength Al alloy material containing a total amount of 0.3 to 3.0% of one or two of Fe and Mn in place of a part of the Al according to claim (1).
Ni:0.3〜3.0% を含有する耐熱高強度Al合金材。(3) In place of a part of Al in claim (1) or (2),
A heat-resistant, high-strength Al alloy material containing 0.3 to 3.0% Ni.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2062029A JPH03180440A (en) | 1989-08-23 | 1990-03-12 | Heat resistant and high strength al alloy material |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1-218272 | 1989-08-23 | ||
JP21827289 | 1989-08-23 | ||
JP2062029A JPH03180440A (en) | 1989-08-23 | 1990-03-12 | Heat resistant and high strength al alloy material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03180440A true JPH03180440A (en) | 1991-08-06 |
Family
ID=26403099
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2062029A Pending JPH03180440A (en) | 1989-08-23 | 1990-03-12 | Heat resistant and high strength al alloy material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03180440A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006328482A (en) * | 2005-05-26 | 2006-12-07 | Honda Motor Co Ltd | Forged piston |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62185857A (en) * | 1986-02-12 | 1987-08-14 | Honda Motor Co Ltd | Heat resistant and high strength aluminum alloy |
JPS6342344A (en) * | 1986-08-06 | 1988-02-23 | Honda Motor Co Ltd | Al alloy for powder metallurgy excellent in high temperature strength characteristic |
JPS63192838A (en) * | 1987-02-04 | 1988-08-10 | Showa Denko Kk | Aluminum-alloy powder compact excellent in creep resisting characteristic |
JPH0250902A (en) * | 1988-05-12 | 1990-02-20 | Sumitomo Electric Ind Ltd | Method for forming aluminum alloy for product having large diameter |
JPH0261021A (en) * | 1988-08-26 | 1990-03-01 | Furukawa Alum Co Ltd | Heat-resistant and wear-resistant aluminum alloy material and its manufacture |
-
1990
- 1990-03-12 JP JP2062029A patent/JPH03180440A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62185857A (en) * | 1986-02-12 | 1987-08-14 | Honda Motor Co Ltd | Heat resistant and high strength aluminum alloy |
JPS6342344A (en) * | 1986-08-06 | 1988-02-23 | Honda Motor Co Ltd | Al alloy for powder metallurgy excellent in high temperature strength characteristic |
JPS63192838A (en) * | 1987-02-04 | 1988-08-10 | Showa Denko Kk | Aluminum-alloy powder compact excellent in creep resisting characteristic |
JPH0250902A (en) * | 1988-05-12 | 1990-02-20 | Sumitomo Electric Ind Ltd | Method for forming aluminum alloy for product having large diameter |
JPH0261021A (en) * | 1988-08-26 | 1990-03-01 | Furukawa Alum Co Ltd | Heat-resistant and wear-resistant aluminum alloy material and its manufacture |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006328482A (en) * | 2005-05-26 | 2006-12-07 | Honda Motor Co Ltd | Forged piston |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2697400B2 (en) | Aluminum alloy for forging | |
JPS63157831A (en) | Heat-resisting aluminum alloy | |
JPS62270704A (en) | Production of aluminum alloy solidified by rapid cooling and having improved workability and heat resistance | |
JPS63140059A (en) | High-strength aluminum alloy | |
JPS6342344A (en) | Al alloy for powder metallurgy excellent in high temperature strength characteristic | |
JPH0794698B2 (en) | High strength aluminum alloy with excellent resistance to stress corrosion cracking | |
JPH01147039A (en) | Wear-resistant aluminum alloy and its manufacture | |
JPS63312901A (en) | Heat resistant high tensile al alloy powder and composite ceramics reinforced heat resistant al alloy material using said powder | |
JP2020169378A (en) | Aluminum alloy for compressor slide components and compressor slide component forging | |
JPS62149839A (en) | Wear resistant aluminum alloy for working excellent in strength | |
JPH055146A (en) | Aluminum alloy excellent in wear resistance and thermal conductivity | |
JPS60204857A (en) | Aluminum alloy and article using same | |
JPH055147A (en) | Low thermal expansion aluminum alloy excellent in wear resistance | |
JPS6244547A (en) | Composite aluminum alloy material | |
JPH03180440A (en) | Heat resistant and high strength al alloy material | |
JPH0270036A (en) | Wear-resistant aluminum alloy material | |
JP2711296B2 (en) | Heat resistant aluminum alloy | |
JPH11152552A (en) | Method for working aluminum-zinc-silicon alloy | |
JPH09279319A (en) | Production of aluminum alloy for compressor parts, excellent in machinability, wear resistance and toughness | |
JPH0379738A (en) | High strength al alloy material | |
JP2907389B2 (en) | Aluminum alloy material for wear resistance processing with excellent toughness | |
JPH04341537A (en) | Aluminum alloy having high strength and wear resistance and excellent in cold forgeability | |
JPH06192780A (en) | High heat and wear resistance aluminum alloy and powder thereof | |
JPH03264639A (en) | Al alloy product having high strength at high temperature | |
EP0643145B1 (en) | High strength magnesium-based alloy materials and method for producing the same |