JPH09279319A - Production of aluminum alloy for compressor parts, excellent in machinability, wear resistance and toughness - Google Patents

Production of aluminum alloy for compressor parts, excellent in machinability, wear resistance and toughness

Info

Publication number
JPH09279319A
JPH09279319A JP34070096A JP34070096A JPH09279319A JP H09279319 A JPH09279319 A JP H09279319A JP 34070096 A JP34070096 A JP 34070096A JP 34070096 A JP34070096 A JP 34070096A JP H09279319 A JPH09279319 A JP H09279319A
Authority
JP
Japan
Prior art keywords
eutectic
weight
toughness
aluminum alloy
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34070096A
Other languages
Japanese (ja)
Other versions
JP2848368B2 (en
Inventor
Hajime Kamio
一 神尾
Yamaji Kitaoka
山治 北岡
Tatsu Yamada
達 山田
Shigeyuki Kobayashi
重幸 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP34070096A priority Critical patent/JP2848368B2/en
Publication of JPH09279319A publication Critical patent/JPH09279319A/en
Application granted granted Critical
Publication of JP2848368B2 publication Critical patent/JP2848368B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an Al alloy for compressor parts, excellent in machinability, wear resistance, and toughness. SOLUTION: An aluminum alloy, having a composition which consists of 6.5-7.5% Si, 1.5-4.5% Cu, 0.2-0.8% Mg, 0.1-0.8% Mn, 0.05-0.25% Sb, and the balance Al with impurities and in which Fe content is controlled to <0.25%, is cast into an ingot of 300-600mm outside diameter by a water cooled type semi-continuous casting process so that a cast structure, in which the average grain length of eutectic Si is regulated to 3-5μm and eutectic Si of η5μm length comprises >=75% in the whole eutectic Si, is obtained. After homogenizing treatment, the ingot is formed into extruded material of 10-130mm outside diameter by means of extrusion at >=50% reduction of area, followed by hot forging. The resultant forging is subjected to solution heat treatment at >=500 deg.C and then to water quenching and tempering treatment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐摩耗性及び靭性に優
れたコンプレッサー部品用アルミ合金を製造する方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an aluminum alloy for compressor parts which has excellent wear resistance and toughness.

【0002】[0002]

【従来の技術】車両用,家庭用,産業用等のコンプレッ
サー部品は、耐摩耗性は勿論、安全性と過酷な使用に耐
えるため靭性に優れていることが要求される。このよう
な部品の材料としてA4032合金(Al−Si共晶合
金)が使用されてきたが、A4032合金は強度,伸び
共に低く、靭性に劣っている。そこで、特開昭60−1
97838号公報では、Cu,Mg,Fe,Mn等の合
金元素を調整した合金が提案されている。
2. Description of the Related Art Compressor parts for vehicles, households, industrial use, etc. are required to have not only wear resistance but also excellent toughness in order to withstand safety and severe use. Although an A4032 alloy (Al-Si eutectic alloy) has been used as a material for such parts, the A4032 alloy has low strength and elongation and is poor in toughness. Therefore, JP-A-60-1
Japanese Patent No. 97838 proposes an alloy in which alloy elements such as Cu, Mg, Fe and Mn are adjusted.

【0003】[0003]

【発明が解決しようとする課題】A4032合金、或い
はAl−Si共晶系合金にCu,Mg,Fe,Mn等の
元素を調整した合金のT6処理材は、強度の高いもので
も38〜39kgf/mm2 程度、伸びも8〜10%程
度に止まり、靭性に劣っている。また、亜共晶系Al−
Si合金は、強度,伸び共に改善され、靭性も向上して
いるが、コンプレッサー部品に要求される十分な特性を
備えていない。本発明は、コンプレッサー部品としての
要求特性を満足すべく調査・研究した結果完成されたも
のであり、鋳造組織における共晶Siのサイズ及び分布
を調整することにより、耐摩耗性及び被削性に優れ、熱
間鍛造材のT6処理後の引張強さが43kgf/mm2
以上,伸びが15%以上,切欠き靭性が13kgf/m
2 以上と優れた機械的性質及び靭性をもつアルミ合金
製コンプレッサー用部品の製造方法を提供することを目
的とする。
The T6 treated material of A4032 alloy or Al-Si eutectic alloy in which elements such as Cu, Mg, Fe and Mn are adjusted has a high strength of 38 to 39 kgf /. The toughness is inferior because the elongation is only about mm 2 and the elongation is about 8 to 10%. In addition, hypoeutectic Al-
Although the Si alloy has both improved strength and elongation and improved toughness, it does not have sufficient properties required for compressor parts. The present invention has been completed as a result of investigations and studies to satisfy the required characteristics as a compressor part, and by adjusting the size and distribution of eutectic Si in the cast structure, wear resistance and machinability are improved. Excellent, tensile strength after T6 treatment of hot forged material is 43kgf / mm 2
Above, elongation 15% or more, notch toughness 13kgf / m
It is an object of the present invention to provide a method for manufacturing an aluminum alloy compressor part having excellent mechanical properties and toughness of at least m 2 .

【0004】[0004]

【課題を解決するための手段】本発明の製造方法は、そ
の目的を達成するため、Si:6.5〜7.5重量%,
Cu:1.5〜4.5重量%,Mg:0.2〜0.8重
量%,Mn:0.1〜0.8重量%,Sb:0.05〜
0.25重量%,残部がAl及び不純物からなる組成を
もち、Fe含有量が0.25重量%未満に規制されたア
ルミニウム合金を溶製し、共晶Siの平均粒子長さが3
〜5μmで、長さ5μm以下の共晶Siが共晶Si全体
の75%以上となる鋳造組織が得られるように、外径3
00〜600mmの鋳塊を水冷式半連続鋳造法で鋳造
し、該鋳塊を均質化処理した後、減面率で50%以上の
押出し加工により外径10〜130mmの押出し材を製
造し、該押出し材を熱間鍛造し、鍛造材を500℃以上
の温度で溶体化処理した後、水焼入れ及び焼戻し処理を
施すことを特徴とする。使用するアルミニウム合金は、
更にTi:0.1重量%以下又はTi:0.1重量%以
下とB:0.02重量%以下を含むことができる。
In order to achieve the object, the manufacturing method of the present invention has the following characteristics: Si: 6.5-7.5% by weight,
Cu: 1.5-4.5 wt%, Mg: 0.2-0.8 wt%, Mn: 0.1-0.8 wt%, Sb: 0.05-
An aluminum alloy having a composition of 0.25% by weight, the balance being Al and impurities, and having an Fe content regulated to less than 0.25% by weight was melted and the average particle length of eutectic Si was 3
An outer diameter of 3 μm so that a eutectic Si having a length of 5 μm or less and having a length of 5 μm or less accounts for 75% or more of the entire eutectic Si.
An ingot having a diameter of 0 to 600 mm is cast by a water-cooled semi-continuous casting method, and after homogenizing the ingot, an extruded material having an outer diameter of 10 to 130 mm is manufactured by an extrusion process with a surface reduction rate of 50% or more, The extruded material is hot forged, and the forged material is subjected to solution treatment at a temperature of 500 ° C. or higher, followed by water quenching and tempering. The aluminum alloy used is
Further, Ti: 0.1 wt% or less, or Ti: 0.1 wt% or less and B: 0.02 wt% or less can be included.

【0005】[0005]

【作用】本発明者等は、合金元素及びその含有量が特定
された亜共晶系のAl−Si合金にSbを添加した合金
溶湯を水冷式半連続鋳造法で鋳造したとき、大径のビレ
ットにおいても共晶Siが十分に微細化されることを見
い出した。このように共晶Siが微細化された鋳塊は、
急冷法で共晶Siを微細化した鋳造体及びその塑性加工
体と比較して共晶Siが過度に微細化されないため、耐
摩耗性が確保される。
The present inventors have found that when a molten alloy obtained by adding Sb to a hypoeutectic Al-Si alloy in which alloy elements and their contents are specified is cast by a water-cooled semi-continuous casting method, It has been found that eutectic Si is sufficiently miniaturized also in billets. The ingot in which the eutectic Si is refined in this way is
Since the eutectic Si is not excessively refined as compared with the cast body in which the eutectic Si is refined by the quenching method and the plastically worked body thereof, wear resistance is secured.

【0006】本発明で使用するアルミニウム合金の合金
成分,含有量等を説明する。 Si:6.5〜7.5重量% 共晶Siを形成し、耐摩耗性を付与する上で有効な合金
元素である。耐摩耗性改善作用は、6.5重量%以上の
Si含有で顕著になる。しかし、7.5重量%を超える
多量のSiが含まれると、伸びが著しく低下し、靭性が
損なわれる。 Cu:1.5〜4.5重量% T6処理後の強度及び伸びを改善する合金元素であり、
1.5重量%以上の含有量でCuの作用が顕著になる。
しかし、4.5重量%を超えるCu含有量では、伸びが
低下し、耐食性が劣化する。
The alloy components and contents of the aluminum alloy used in the present invention will be described. Si: 6.5 to 7.5 wt% It is an alloying element effective in forming eutectic Si and imparting wear resistance. The effect of improving wear resistance becomes remarkable when Si is contained in an amount of 6.5% by weight or more. However, when a large amount of Si exceeding 7.5% by weight is contained, the elongation is remarkably reduced and the toughness is impaired. Cu: 1.5 to 4.5 wt% An alloying element that improves the strength and elongation after T6 treatment,
When the content is 1.5% by weight or more, the effect of Cu becomes remarkable.
However, if the Cu content exceeds 4.5% by weight, the elongation decreases and the corrosion resistance deteriorates.

【0007】Mg:0.2〜0.8重量% Mg2 Siの析出物を生成して強度を付与する合金成分
であり、0.2重量%以上の含有量で強度改善効果が顕
著になる。しかし、0.8重量%を超える多量のMgが
含まれると、伸びが低下し、鋳造、押出性等の塑性加工
性が劣化する。 Mn:0.1〜0.8重量% Feの存在により生成するAl−Si−Fe系晶出物を
微粒な丸みを帯びたAl−Si−Mn(Fe)系晶出物
とし、靭性を向上すると共に、晶出物によって耐摩耗性
を付与する作用を呈する。このような作用は、Mn含有
量が0.1重量%以上になると顕著に現れる。しかし、
0.8重量%を超える多量のMnが含まれると、却って
靭性が低下する。
Mg: 0.2 to 0.8% by weight It is an alloy component that gives strength by forming a precipitate of Mg 2 Si, and the content of 0.2% by weight or more makes the strength improving effect remarkable. . However, when a large amount of Mg exceeding 0.8% by weight is contained, the elongation decreases, and the plastic workability such as casting and extrudability deteriorates. Mn: 0.1 to 0.8% by weight The Al-Si-Fe-based crystallized product generated by the presence of Fe is changed to a fine rounded Al-Si-Mn (Fe) -based crystallized product to improve toughness. At the same time, the crystallized substances have the effect of imparting wear resistance. Such an effect becomes prominent when the Mn content is 0.1% by weight or more. But,
When a large amount of Mn exceeding 0.8% by weight is contained, the toughness is rather lowered.

【0008】Sb:0.05〜0.25重量% 共晶Siを微細化し、被削性,靭性及び塑性加工性を改
善する有効な合金元素である。Sbの作用・効果は、
0.05重量%以上の含有量で顕著に発揮される。しか
し、0.25重量%を超えるSb含有量では、Mg3
b化合物の晶出により靭性が低下し、またMgの強度向
上作用を低下させる。このようなSbの添加効果は、N
a,Sr等の他の共晶Si微細化剤では得られない。こ
れは、次の理由によるものと推察される。すなわち、S
b添加による場合、共晶Siが細かく均一に分布してい
る。他方、Na又はSrを添加した場合、鋳造体の箇所
によって共晶Siの微細化の程度が異なり、細かな部分
とより微細な部分が生じる。そのため、このような鋳造
体を押出し加工して押出し棒としたとき、細かな部分と
より微細な部分が顕著に現れ、その組織の違いが特性の
差となるものと考えられる。また、Na,Srを添加す
ると、溶湯表面のガス吸収が激しく、水冷半連続鋳造に
際してディップチューブの閉塞により鋳込み不可能にな
る等の好ましくない現象が発生する。これに対し、Sb
を含有させると、特に早い速度で溶湯を凝固させる必要
がないため、大径のビレットが得られ、結果として押出
し生産性が高められる。具体的には、直径300〜60
0mmのビレットで共晶Siを均一且つ適度に微細化で
きる。このような大径のビレットであっても、すなわち
条件的には緩冷却に近い鋳造であっても、粒径が制御さ
れた共晶Siが晶出し、共晶Siの平均粒子長さが3〜
5μmで、長さ5μm以下の共晶Siが共晶Si全体の
75%以上となる鋳造組織が得られる。
Sb: 0.05 to 0.25% by weight It is an effective alloying element that refines eutectic Si and improves machinability, toughness and plastic workability. The action and effect of Sb is
It is remarkably exhibited at a content of 0.05% by weight or more. However, when the Sb content exceeds 0.25% by weight, Mg 3 S
The crystallization of the b compound lowers the toughness and also lowers the strength improving action of Mg. The effect of adding Sb is N
It cannot be obtained with other eutectic Si refiners such as a and Sr. This is presumed to be due to the following reasons. That is, S
When b is added, eutectic Si is finely and uniformly distributed. On the other hand, when Na or Sr is added, the degree of refinement of the eutectic Si differs depending on the location of the cast body, and a fine portion and a finer portion are produced. Therefore, when such a cast body is extruded to form an extruded rod, it is considered that a fine portion and a finer portion remarkably appear, and a difference in the structure causes a difference in characteristics. Further, when Na and Sr are added, gas absorption on the surface of the molten metal is severe, and undesired phenomena such as impossibility of casting due to blockage of dip tube during water-cooled semi-continuous casting occur. On the other hand, Sb
When it contains, since it is not necessary to solidify the molten metal at a particularly high speed, a billet having a large diameter is obtained, and as a result, the extrusion productivity is improved. Specifically, diameter 300-60
With a 0 mm billet, eutectic Si can be uniformly and appropriately refined. Even with such a large-diameter billet, that is, even in the case of casting in which the cooling condition is close to mild cooling, eutectic Si with a controlled grain size is crystallized, and the average grain length of eutectic Si is 3 or less. ~
A cast structure in which the eutectic Si having a length of 5 μm or less and having a length of 5 μm or more accounts for 75% or more of the entire eutectic Si is obtained.

【0009】Ti:0.1重量%以下, B:0.0
2重量%以下 Ti及びBは、必要に応じ添加される合金元素であり、
鋳造割れを防止する作用を呈する。しかし、0.1重量
%を超えるTiや0.02重量%を超えるBを添加する
と、Ti又はBの金属間化合物が生成し、後続する押出
し・鍛造工程において加工性を劣化させる。本発明で使
用するアルミニウム合金は、溶製工程で返材等から混入
してくる不純物を含むこともある。このような不純物の
代表的なものとしてFeがある。Feは、Mn共存下で
微細な晶出物を形成して耐摩耗性を向上させる作用を奏
するが、含有量が多くなるとAl−Fe−Mn−Si系
晶出物が多量に発生して靭性が損なわれる。そのため、
返材等の配合量を調整することにより、Fe含有量を
0.25重量%未満,好ましくは0.1重量%未満に規
制する。Fe以外のZn,Cr等も靭性を低下させる原
因となるので、それぞれ0.05重量%以下に規制する
ことが好ましい。
Ti: 0.1% by weight or less, B: 0.0
2% by weight or less Ti and B are alloy elements added as necessary,
It acts to prevent casting cracking. However, if Ti in excess of 0.1 wt% or B in excess of 0.02 wt% is added, an intermetallic compound of Ti or B is produced, which deteriorates workability in the subsequent extrusion / forging process. The aluminum alloy used in the present invention may contain impurities mixed in from the recycled material or the like in the melting process. Fe is a typical example of such impurities. Fe has the effect of forming fine crystallized substances in the presence of Mn to improve wear resistance, but when the content increases, a large amount of Al-Fe-Mn-Si-based crystallized substances are generated and the toughness is increased. Is damaged. for that reason,
The Fe content is regulated to less than 0.25% by weight, preferably less than 0.1% by weight by adjusting the blending amount of the recycled material and the like. Zn, Cr, and the like other than Fe also cause a decrease in toughness, so it is preferable to regulate each to 0.05 wt% or less.

【0010】鋳造組織:共晶Siの平均粒子長さが3〜
5μm 長さ5μm以下の共晶Siが共晶Si全体の75%以上 共晶Siの平均粒子長さ及び面積率は、アルミニウム合
金材の物性に影響を与える要因である。本発明者等によ
る多数の実験から本発明で規定した合金系においては、
共晶Siの平均粒子長さ3〜5μm及び長さ5μm以下
の共晶Siが共晶Si全体の75%以上であることが、
鋳造後の押出し,鍛造により製造されるコンプレッサー
部品に要求される物性を満足する上で必要なことが本発
明者等による多数の実験から見い出された。共晶Siの
平均粒子長さが5μm以上になると、合金材の被削性及
び靭性が低下する。逆に、共晶Siの平均粒子長さが3
μmより小さくなると、後工程における塑性加工により
共晶Siが過度に分断・微細化し、必要とする耐摩耗性
が得られない。また、長さが5μmを超える共晶Siの
量が面積率で共晶Si全体量の25%を超えると、合金
材の伸び及び靭性が低下する。共晶Siの平均粒子長さ
及び面積率は、画像解析法で測定できる。
Cast structure: average grain length of eutectic Si is 3 to
Eutectic Si having a length of 5 μm or less and 5 μm or less is 75% or more of the entire eutectic Si. The average particle length and area ratio of the eutectic Si are factors that affect the physical properties of the aluminum alloy material. From the numerous experiments by the present inventors, in the alloy system specified in the present invention,
The eutectic Si having an average particle length of 3 to 5 μm and a length of 5 μm or less is 75% or more of the whole eutectic Si,
It was found from a number of experiments by the present inventors that it is necessary to satisfy the physical properties required for a compressor part manufactured by extrusion after casting and forging. If the average particle length of eutectic Si is 5 μm or more, the machinability and toughness of the alloy material are deteriorated. On the contrary, the average particle length of eutectic Si is 3
If it is smaller than μm, the eutectic Si is excessively divided and finely divided by the plastic working in the subsequent step, and the required wear resistance cannot be obtained. If the amount of eutectic Si having a length of more than 5 μm exceeds 25% of the total amount of eutectic Si in terms of area ratio, the elongation and toughness of the alloy material deteriorate. The average particle length and area ratio of eutectic Si can be measured by an image analysis method.

【0011】水冷式半連続鋳造法 前述した鋳造組織をもつ鋳塊を得るために、水冷鋳型を
使用した水冷式半連続鋳造法で外径300〜600mm
のビレットを鋳造する。ビレットの外径が300mm未
満では、質量効果による影響が小さく、急冷した場合と
同様に共晶Siが過度に微細化される。そのため、後工
程の押出し・鍛造で共晶Siが微細になりすぎ、必要と
する耐摩耗性が得られない。逆に外径600mmを超え
るビレットを鋳造すると、質量効果が大きすぎて緩冷却
状態で鋳造されるため、結晶粒及び共晶Siが粗大化し
た鋳造組織となり、靭性の劣化につながる。
Water-Cooling Semi-Continuous Casting Method In order to obtain an ingot having the above-mentioned casting structure, a water-cooling semi-continuous casting method using a water-cooled mold is used to obtain an outer diameter of 300 to 600 mm.
Cast billets. When the outer diameter of the billet is less than 300 mm, the effect of the mass effect is small, and the eutectic Si is excessively refined as in the case of rapid cooling. Therefore, the eutectic Si becomes too fine in the subsequent extrusion / forging, and the required wear resistance cannot be obtained. On the contrary, when a billet having an outer diameter of more than 600 mm is cast, the mass effect is so great that the billet is cast in a slowly cooled state, so that the grain structure and the eutectic Si become a coarse cast structure, leading to deterioration in toughness.

【0012】押出し加工:減面率50%以上,外径10
〜130mmの押出し材 制御された鋳造組織をもつ鋳塊は、減面率50%以上の
押出し加工により外径10〜130mmの押出し材に製
造する。押出し材としては、中実材,形材等がある。押
出し加工により共晶Siが分断されるが、外径10mm
に達しないまでの高加工率で押出し加工すると鋳造時に
得られた共晶Siが塑性加工によって過度に分断されて
微細化し、耐摩耗性が劣化する。逆に130mmより大
きな押出し材とする場合には、塑性加工による共晶Si
の分断・微細化が容易に進まず、被削性及び靭性が低下
する。同様に50%に達しない減面率の押出し加工で
は、共晶Siの分断・微細化が容易に進まず、被削性及
び靭性が低下する。 熱処理 押出し材は、熱間鍛造後に500℃以上,好ましくは5
10〜530℃の温度で溶体化処理され、次いで水焼入
れ及び焼戻し処理が施され、必要強度が付与される。
Extrusion: Area reduction of 50% or more, outer diameter 10
Extruded material of ˜130 mm An ingot having a controlled casting structure is manufactured into an extruded material having an outer diameter of 10 to 130 mm by an extrusion process with a surface reduction rate of 50% or more. Examples of the extruded material include solid material and shaped material. The eutectic Si is divided by extrusion, but the outer diameter is 10 mm
If the extrusion processing is carried out at a high processing rate up to that, the eutectic Si obtained at the time of casting will be excessively divided by the plastic working to become finer and wear resistance will be deteriorated. On the contrary, when extruded material larger than 130 mm, eutectic Si produced by plastic working
The cutting and miniaturization do not proceed easily and machinability and toughness decrease. Similarly, in extrusion processing with a surface reduction ratio of less than 50%, the eutectic Si is not easily divided and refined, and the machinability and toughness deteriorate. Heat treatment Extruded material should be 500 ° C or higher, preferably 5 after hot forging.
Solution treatment is performed at a temperature of 10 to 530 ° C., and then water quenching and tempering treatments are performed to give required strength.

【0013】[0013]

【実施例】表1に示した成分組成をもつアルミニウム合
金を常法に従って溶製した後、水冷鋳型を用いた水冷式
半連続鋳造法で外径325mmのビレットに鋳造した。
得られたビレットに510℃×6時間の均質化処理を施
し、間接押出し機で外径45mmの押出し棒を製造し
た。
EXAMPLE An aluminum alloy having the composition shown in Table 1 was melted by a conventional method and then cast into a billet having an outer diameter of 325 mm by a water-cooled semi-continuous casting method using a water-cooled mold.
The obtained billet was homogenized at 510 ° C. for 6 hours, and an extruded rod having an outer diameter of 45 mm was manufactured by an indirect extruder.

【0014】 [0014]

【0015】押出後の資料番号2及び4を顕微鏡観察し
たところ、それぞれ図1及び図2に示す組織をもってい
た。Sbを添加した資料番号4では、図2にみられるよ
うに、共晶Si(黒い点)が微細均一に分布した組織に
なっていた。他方、Sb添加のない試料番号2では、図
1にみられるように、共晶Siが分断しきれず比較的大
きな状態で残存している部分が観察された。資料番号2
及び4の切削面を光学顕微鏡の拡大視野で観察したとこ
ろ、それぞれ図3及び図4に示す組織をもっていた。S
b添加により共晶Siを微細均一に分布させた資料番号
4では、図4にみられるように、切削面の傷が小さかっ
た。このことから、資料番号4は被削性に優れているこ
とが判る。他方、試料番号2では、図3にみられるよう
に大きな疵が切削面に発生していた。
When the material numbers 2 and 4 after extrusion were observed under a microscope, they had the structures shown in FIGS. 1 and 2, respectively. In Document No. 4 containing Sb, as shown in FIG. 2, the eutectic Si (black dots) had a finely and uniformly distributed structure. On the other hand, in sample No. 2 in which Sb was not added, as shown in FIG. 1, a portion in which the eutectic Si could not be divided and remained in a relatively large state was observed. Material number 2
When the cut surfaces of Nos. 4 and 4 were observed in the enlarged visual field of the optical microscope, they had the structures shown in FIGS. 3 and 4, respectively. S
In Material No. 4 in which eutectic Si was finely and uniformly distributed by adding b, as shown in FIG. 4, the scratches on the cut surface were small. From this, it is understood that Material No. 4 has excellent machinability. On the other hand, in sample No. 2, large flaws were generated on the cutting surface as seen in FIG.

【0016】次いで、鋳造材の共晶Siの平均粒子長さ
と、粒子長さ5μm以下の共晶Si量を画像解析法で測
定した。共晶Siの平均粒子長さは、粒子の最大長さの
平均値とした。また、直径45mmの押出材を所定長さ
に切断し、400℃の温度で減面率50%の圧縮熱間鋳
造を施した。鍛造品にT6処理(510℃×4時間の溶
体化処理→水焼入→170℃×10時間の焼戻し処理)
を施したのち、機械的性質、切欠き靭性、耐摩耗性を測
定した。切欠き靭性は、軸方向に直角に角度45度の切
欠きを入れ、静的引張荷重をかけて測定した。耐摩耗性
は、大越式耐摩耗試験機を使用し、荷重21kg,回転
摩耗子FC28,摩耗速度1〜3m/秒,摩耗距離60
0mの条件で測定した。
Next, the average grain length of eutectic Si in the cast material and the amount of eutectic Si having a grain length of 5 μm or less were measured by an image analysis method. The average particle length of eutectic Si was the average value of the maximum particle lengths. Further, an extruded material having a diameter of 45 mm was cut into a predetermined length and subjected to compression hot casting at a temperature of 400 ° C. and a surface reduction rate of 50%. T6 treatment for forged products (510 ° C x 4 hours solution treatment → water quenching → 170 ° C x 10 hours tempering treatment)
After applying, the mechanical properties, notch toughness, and wear resistance were measured. The notch toughness was measured by making a notch with an angle of 45 degrees perpendicular to the axial direction and applying a static tensile load. As for wear resistance, using Ogoshi type wear resistance tester, load 21 kg, rotary wear FC28, wear speed 1 to 3 m / sec, wear distance 60
It was measured under the condition of 0 m.

【0017】 [0017]

【0018】表2の結果にみられるように、本発明に従
った場合には、鋳造組織における共晶Siの平均粒子長
さが小さく、しかも粒子長さ5μm以下の共晶Siが多
量に存在しているので、T6処理後の機械的性質が引張
強さ43kgf/mm2 以上,伸び15%以上,切欠き
靭性13kgf/mm2 以上と靭性に優れた製品が得ら
れる。これに対し、試料番号1,2,7,8の比較例及
びA4032合金は、何れかの性質において劣り、コン
プレッサー部品に要求される特性を満足していない。
As can be seen from the results in Table 2, according to the present invention, the average grain length of eutectic Si in the cast structure is small, and a large amount of eutectic Si having a grain length of 5 μm or less is present. As a result, a product having excellent mechanical properties after T6 treatment, having a tensile strength of 43 kgf / mm 2 or more, an elongation of 15% or more, and a notch toughness of 13 kgf / mm 2 or more, can be obtained. On the other hand, the comparative examples of sample numbers 1, 2, 7, and 8 and the A4032 alloy are inferior in any of the properties and do not satisfy the properties required for the compressor part.

【0019】[0019]

【発明の効果】以上に説明したように、本発明において
は、成分及び含有量が特定された過共晶Al−Si系合
金を水冷式半連続鋳造法で鋳造し、共晶Siの平均粒子
長さが3〜5μmで、長さ5μm以下の共晶Siが共晶
Si全体の75%以上となる鋳造組織に調整している。
この鋳造組織をもつ鋳塊を押出し及び熱間鍛造で最終製
品であるコンプレッサー部品に製造するとき、押出し及
び鍛造時の塑性変形で共晶Siが適度に分断・微細化さ
れ、耐摩耗性に寄与する共晶Siの作用を確保しなが
ら、靭性の改善を図ることが可能となる。また、前述し
た鋳造組織に起因して鍛造性も優れていることから、加
工度の高い塑性加工を施しても割れが発生することがな
く、鍛造用素材として有効に使用でき、被削性もよいこ
とから高寸法精度の加工が可能となる。このようにし
て、靭性や耐摩耗性が高く、安全性に優れたコンプレッ
サー部品が製造される。
As described above, in the present invention, the hypereutectic Al-Si alloy having the specified component and content is cast by the water-cooled semi-continuous casting method, and the average particle of eutectic Si is obtained. The eutectic Si having a length of 3 to 5 μm and a length of 5 μm or less is adjusted to have a cast structure in which it is 75% or more of the whole eutectic Si.
When an ingot with this casting structure is extruded and hot forged into the final product compressor parts, eutectic Si is appropriately divided and refined by plastic deformation during extrusion and forging, contributing to wear resistance. It is possible to improve the toughness while ensuring the action of eutectic Si. Also, because of the excellent forgeability due to the above-mentioned casting structure, cracks do not occur even if plastic working with a high degree of working is performed, it can be effectively used as a forging material, and machinability is also Since it is good, processing with high dimensional accuracy is possible. In this way, a compressor component having high toughness and wear resistance and excellent safety is manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】 Sb無添加の鋳塊の金属組織を示す顕微鏡写
FIG. 1 is a photomicrograph showing the metallographic structure of an ingot containing no Sb.

【図2】 本発明に従ってSbを添加した鋳塊の金属組
織を示す顕微鏡写真
FIG. 2 is a photomicrograph showing the metallographic structure of an ingot to which Sb has been added according to the present invention.

【図3】 Sb無添加の鋳塊の切削面を光学顕微鏡の拡
大視野で観察したときの金属組織を示す顕微鏡写真
FIG. 3 is a micrograph showing a metal structure of a cutting surface of an ingot containing no Sb, which is observed in an enlarged view of an optical microscope.

【図4】 本発明に従ってSbを添加した鋳塊の切削面
を光学顕微鏡の拡大視野で観察したときの金属組織を示
す顕微鏡写真
FIG. 4 is a micrograph showing a metal structure when a cutting surface of an ingot to which Sb is added according to the present invention is observed in an enlarged view field of an optical microscope.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22F 1/00 612 8719−4K C22F 1/00 612 630 8719−4K 630B 8719−4K 630D 631 8719−4K 631Z 683 8719−4K 683 691 8719−4K 691B 694 8719−4K 694A (72)発明者 小林 重幸 東京都品川区東品川二丁目2番20号 日本 軽金属株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C22F 1/00 612 8719-4K C22F 1/00 612 630 8719-4K 630B 8719-4K 630D 631 8719- 4K 631Z 683 8719-4K 683 691 8719-4K 691B 694 8719-4K 694A (72) Inventor Shigeyuki Kobayashi 2-20 Higashishinagawa, Shinagawa-ku, Tokyo Inside Japan Light Metal Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Si:6.5〜7.5重量%,Cu:
1.5〜4.5重量%,Mg:0.2〜0.8重量%,
Mn:0.1〜0.8重量%,Sb:0.05〜0.2
5重量%,残部がAl及び不純物からなる組成をもち、
Fe含有量が0.25重量%未満に規制されたアルミニ
ウム合金を溶製し、共晶Siの平均粒子長さが3〜5μ
mで、長さ5μm以下の共晶Siが共晶Si全体の75
%以上となる鋳造組織が得られるように、外径300〜
600mmの鋳塊を水冷式半連続鋳造法で鋳造し、該鋳
塊を均質化処理した後、減面率で50%以上の押出し加
工により外径10〜130mmの押出し材を製造し、該
押出し材を熱間鍛造し、鍛造材を500℃以上の温度で
溶体化処理した後、水焼入れ及び焼戻し処理を施すこと
を特徴とする耐摩耗性及び靭性に優れたコンプレッサー
部品用アルミ合金の製造方法。
1. Si: 6.5 to 7.5% by weight, Cu:
1.5-4.5% by weight, Mg: 0.2-0.8% by weight,
Mn: 0.1 to 0.8 wt%, Sb: 0.05 to 0.2
5% by weight, with the balance being Al and impurities,
An aluminum alloy whose Fe content is regulated to less than 0.25% by weight is melted, and the average particle length of eutectic Si is 3 to 5 μm.
m, the eutectic Si having a length of 5 μm or less is 75
%, The outer diameter of 300-
A 600 mm ingot is cast by a water-cooled semi-continuous casting method, and after homogenizing the ingot, an extruded material having an outer diameter of 10 to 130 mm is manufactured by an extrusion process with a surface reduction rate of 50% or more. Material is hot forged, and the forged material is subjected to solution treatment at a temperature of 500 ° C. or higher, followed by water quenching and tempering treatment, and a method for producing an aluminum alloy for compressor parts having excellent wear resistance and toughness. .
【請求項2】 更にTi:0.1重量%以下又はTi:
0.1重量%以下とB:0.02重量%以下を含むアル
ミニウム合金を使用する請求項1記載のコンプレッサー
部品用アルミ合金の製造方法。
2. Further, Ti: 0.1% by weight or less or Ti:
The method for producing an aluminum alloy for a compressor part according to claim 1, wherein an aluminum alloy containing 0.1% by weight or less and B: 0.02% by weight or less is used.
JP34070096A 1996-12-20 1996-12-20 Manufacturing method of aluminum alloy for compressor parts with excellent wear resistance and toughness Expired - Lifetime JP2848368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34070096A JP2848368B2 (en) 1996-12-20 1996-12-20 Manufacturing method of aluminum alloy for compressor parts with excellent wear resistance and toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34070096A JP2848368B2 (en) 1996-12-20 1996-12-20 Manufacturing method of aluminum alloy for compressor parts with excellent wear resistance and toughness

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP63260462A Division JP2907389B2 (en) 1988-10-18 1988-10-18 Aluminum alloy material for wear resistance processing with excellent toughness

Publications (2)

Publication Number Publication Date
JPH09279319A true JPH09279319A (en) 1997-10-28
JP2848368B2 JP2848368B2 (en) 1999-01-20

Family

ID=18339484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34070096A Expired - Lifetime JP2848368B2 (en) 1996-12-20 1996-12-20 Manufacturing method of aluminum alloy for compressor parts with excellent wear resistance and toughness

Country Status (1)

Country Link
JP (1) JP2848368B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999050556A1 (en) * 1998-03-27 1999-10-07 Taiho Kogyo Co., Ltd. Swash plate of swash plate compressor
JP2001049376A (en) * 1999-05-12 2001-02-20 Daiki Aluminium Industry Co Ltd High strength aluminum alloy for pressure-casting and the same aluminum alloy casting
CN100392129C (en) * 2004-11-18 2008-06-04 东北大学 Large-sized hypereutectic high-seleium aluminium alloy billet and preparation method thereof
CN106563704A (en) * 2016-11-04 2017-04-19 银邦金属复合材料股份有限公司 Aluminum alloy plate for brazing, manufactured composite plate and preparation method
CN112805397A (en) * 2018-10-10 2021-05-14 伊苏瓦尔肯联铝业 High performance 2XXX alloy plates for aircraft fuselages
CN113174515A (en) * 2021-04-03 2021-07-27 北京冬曦既驾科技咨询有限公司 High-toughness aluminum alloy and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109500552B (en) * 2018-12-21 2020-04-24 昆山市长盈铝业有限公司 Vehicle luggage rack section bar and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999050556A1 (en) * 1998-03-27 1999-10-07 Taiho Kogyo Co., Ltd. Swash plate of swash plate compressor
US6344280B1 (en) 1998-03-27 2002-02-05 Taiho Kogyo Co., Ltd. Swash-plate of swash-plate type compressor
JP2001049376A (en) * 1999-05-12 2001-02-20 Daiki Aluminium Industry Co Ltd High strength aluminum alloy for pressure-casting and the same aluminum alloy casting
CN100392129C (en) * 2004-11-18 2008-06-04 东北大学 Large-sized hypereutectic high-seleium aluminium alloy billet and preparation method thereof
CN106563704A (en) * 2016-11-04 2017-04-19 银邦金属复合材料股份有限公司 Aluminum alloy plate for brazing, manufactured composite plate and preparation method
CN112805397A (en) * 2018-10-10 2021-05-14 伊苏瓦尔肯联铝业 High performance 2XXX alloy plates for aircraft fuselages
CN113174515A (en) * 2021-04-03 2021-07-27 北京冬曦既驾科技咨询有限公司 High-toughness aluminum alloy and preparation method thereof

Also Published As

Publication number Publication date
JP2848368B2 (en) 1999-01-20

Similar Documents

Publication Publication Date Title
JP3194742B2 (en) Improved lithium aluminum alloy system
KR101333915B1 (en) Aluminum-zinc-magnesium-scandium alloys and methods of fabricating same
US5240519A (en) Aluminum based Mg-Si-Cu-Mn alloy having high strength and superior elongation
JP3301919B2 (en) Aluminum alloy extruded material with excellent chip breaking performance
JP3335732B2 (en) Hypoeutectic Al-Si alloy and casting method thereof
CA3085858A1 (en) 6xxx aluminium alloy extruded forging stock and method of manufacturing thereof
JPH09507532A (en) Lead-free 6XXX aluminum alloy
JPH07109536A (en) Aluminum alloy for forging and heat treatment therefor
JP2000144296A (en) High-strength and high-toughness aluminum alloy forged material
JP3107517B2 (en) High corrosion resistant aluminum alloy extruded material with excellent machinability
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
JP3346186B2 (en) Aluminum alloy material for casting and forging with excellent wear resistance, castability and forgeability, and its manufacturing method
JP4201434B2 (en) Method for producing high-strength aluminum alloy extruded material with excellent corrosion resistance
JP2848368B2 (en) Manufacturing method of aluminum alloy for compressor parts with excellent wear resistance and toughness
JPH11293363A (en) Manufacture of aluminum alloy for automobile member, and automobile member obtained thereby
JPH07197165A (en) High wear resistant free cutting aluminum alloy and its production
JPH0790459A (en) Production of wear resistant aluminum alloy for extrusion and wear resistant aluminum alloy material
JP3324093B2 (en) Aluminum alloy material for forging for automotive parts and forged automotive parts
JPH04341546A (en) Production of high strength aluminum alloy-extruded shape material
JPH07145440A (en) Aluminum alloy forging stock
JP2907389B2 (en) Aluminum alloy material for wear resistance processing with excellent toughness
JPS62149839A (en) Wear resistant aluminum alloy for working excellent in strength
JPH06330264A (en) Production of aluminum alloy forged material excellent in strength and toughness
JPH08232035A (en) High strength aluminum alloy material for bumper, excellent in bendability, and its production
JPH07150312A (en) Manufacture of aluminum alloy forged base stock

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term