JP3346186B2 - Aluminum alloy material for casting and forging with excellent wear resistance, castability and forgeability, and its manufacturing method - Google Patents

Aluminum alloy material for casting and forging with excellent wear resistance, castability and forgeability, and its manufacturing method

Info

Publication number
JP3346186B2
JP3346186B2 JP26688496A JP26688496A JP3346186B2 JP 3346186 B2 JP3346186 B2 JP 3346186B2 JP 26688496 A JP26688496 A JP 26688496A JP 26688496 A JP26688496 A JP 26688496A JP 3346186 B2 JP3346186 B2 JP 3346186B2
Authority
JP
Japan
Prior art keywords
forging
casting
weight
forgeability
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26688496A
Other languages
Japanese (ja)
Other versions
JPH10110231A (en
Inventor
一 神尾
健二 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP26688496A priority Critical patent/JP3346186B2/en
Publication of JPH10110231A publication Critical patent/JPH10110231A/en
Application granted granted Critical
Publication of JP3346186B2 publication Critical patent/JP3346186B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、自動車部品,家電製品
等に使用される鍛造性,耐摩耗性に優れたアルミ合金材
であって、金型やダイカスト等で鋳造した後、鍛造で成
形するための鋳造・鍛造用合金材及びその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy material having excellent forgeability and abrasion resistance used for automobile parts, home electric appliances, etc., which is cast by a die or die casting and then formed by forging. The present invention relates to a casting / forging alloy material and a method for producing the same.

【0002】[0002]

【従来の技術】鍛造用のアルミ合金素材には、水冷され
たモールド中で溶湯を連続的に凝固させた連鋳棒や、連
鋳棒から押出加工された丸棒等が一般的に使用されてい
る。しかし、これらの素材を使用して複雑形状の製品を
成形する場合、歩留りが低く、コスト高になる。そこ
で、最近では金型やダイカスト等で製造した予成形体を
1工程の鍛造で成形する鋳造・鍛造法が普及してきた。
すなわち、この鋳造・鍛造法では、鋳造時に極力最終製
品に近い予成形体に鋳造し、押出工程を経ることなく予
成形体を熱間鍛造している。予成形体を1工程の鍛造で
成形するためには、鍛造の前工程で健全な予成形体が得
られることが重要であり、鋳造性の良好な合金の開発が
要求される。しかしながら、現在のアルミ合金では、鋳
造性,鍛造性,製品強度の全てを満足する材料は実用化
されていない。たとえば、現在鍛造に用いられているア
ルミ合金としては、JIS A6061,A6151等
のAl−Mg−Si系合金やJISA2017,A70
75等の高強度の展伸材がある。しかし、これらの材料
は、連続鋳造材や押出材を鍛造素材として使用するの
で、金型鋳造によって三次元形状の予成形体を得ようと
すると、鋳造時の割れ,流動性不良等に起因して鋳造欠
陥が発生し易く、目的とする予成形体形状が得られな
い。また、材料内部に欠陥を内在しやすいため、鍛造用
素材としては不向きである。
2. Description of the Related Art Aluminum alloy materials for forging are commonly used as a continuously cast rod obtained by continuously solidifying a molten metal in a water-cooled mold, or a round bar extruded from a continuously cast rod. ing. However, when a product having a complicated shape is formed using these materials, the yield is low and the cost is high. Therefore, recently, a casting / forging method for forming a preformed body manufactured by a die or die casting by one-step forging has become widespread.
That is, in this casting / forging method, a preformed body is cast as close as possible to a final product at the time of casting, and the preformed body is hot forged without going through an extrusion step. In order to form the preformed body by one-step forging, it is important to obtain a sound preformed body in the pre-forging step, and development of an alloy having good castability is required. However, with the current aluminum alloy, a material satisfying all of castability, forgeability, and product strength has not been put to practical use. For example, aluminum alloys currently used for forging include Al-Mg-Si based alloys such as JIS A6061 and A6151 and JIS2017 and A70.
There is a high strength wrought material such as 75. However, since these materials use a continuously cast material or an extruded material as a forging material, when trying to obtain a three-dimensionally shaped preform by die casting, cracks during casting, poor fluidity, and the like are caused. As a result, casting defects are likely to occur, and the desired preformed body shape cannot be obtained. Further, since defects are likely to be present inside the material, it is not suitable as a forging material.

【0003】[0003]

【発明が解決しようとする課題】押出し・鍛造用の合金
素材として、本発明者等は、Si,Sb,Fe,Ti,
Mg,B,Cuの間で成分バランスを図り、展伸用合金
に匹敵する引張強さをもつアルミ合金材を特願平4−1
43405号で提案した。このアルミ合金は、押出性,
鍛造性を確保するためCr及びMgの含有量を低く抑え
ている。しかし、Cr含有量が少ないことから、鍛造後
のT6処理時の溶体化処理で再結晶粒の粗大化が散見さ
れる。また、特開平8−3675号公報で紹介した鋳造
・鍛造用合金では、鍛造性を確保するためにSi含有量
を調整しているが、Si含有量が低いために鋳造性が十
分でない。また、耐摩耗性も十分でない。本発明は、先
に提案した2種類の合金を改良したものであり、他の合
金成分との関連でSi,Crを増量させることにより鋳
造性,鍛造性等を改善し、複雑形状の予成形体が得ら
れ、溶体化処理時に再結晶粒の粗大化が抑制され、耐摩
耗性に優れ、且つ予成形体を均質化処理することにより
更に鍛造性にも優れたアルミ合金材を得ることを目的と
する。
SUMMARY OF THE INVENTION As an alloy material for extrusion and forging, the present inventors have proposed Si, Sb, Fe, Ti,
Japanese Patent Application No. 4-1 discloses an aluminum alloy material that balances the components among Mg, B, and Cu and has a tensile strength comparable to that of the wrought alloy.
No. 43405. This aluminum alloy is extrudable,
In order to ensure forgeability, the contents of Cr and Mg are kept low. However, since the Cr content is small, coarsening of recrystallized grains is sometimes observed in the solution treatment during the T6 treatment after forging. Further, in the casting / forging alloy introduced in Japanese Patent Application Laid-Open No. H8-3675, the Si content is adjusted to ensure the forgeability, but the castability is not sufficient because the Si content is low. Also, the wear resistance is not sufficient. The present invention is an improvement of the two types of alloys proposed above, and improves castability and forgeability by increasing the amount of Si and Cr in relation to other alloy components, thereby preforming a complex shape. To obtain an aluminum alloy material that suppresses coarsening of recrystallized grains during solution treatment, is excellent in wear resistance, and is excellent in forgeability by homogenizing the preformed body. Aim.

【0004】[0004]

【課題を解決するための手段】本発明の鋳造・鍛造用ア
ルミ合金材は、その目的を達成するため、Si:3.0
〜7.0重量%,Mg:0.6〜1.5重量%,Mn:
0.1〜0.5重量%,Cu:0.3〜0.9重量%,
Cr:0.35〜0.5重量%,Fe:0.25重量%
以下,Ti:0.01〜0.2重量%,B:0.001
〜0.01重量%を含み、残部が実質的にAlの組成を
もつことを特徴とする。この鋳造・鍛造用アルミ合金材
は、更にSr:0.001〜0.05重量%,Sb:
0.05〜0.15重量%の1種又は2種を含み、鋳造
時の共晶Siの平均長さが3〜6μmであることが好ま
しい。この鋳造・鍛造用アルミ合金材は、溶製後、型鋳
造で予成形体を製造し、予成形体を500〜535℃に
2〜12時間加熱する均質化処理を施した後、強制冷却
し、次いで鍛造上りの材料表面温度が400〜500℃
となる条件下で熱間鍛造し、更にT6処理を施し、機械
加工することにより製造される。予成形体は、ガス含有
量を0.30cc/100g以下に規制することが好ま
しい。また、溶製に際しては、アルゴン又は窒素と塩素
との混合ガス雰囲気中で合金溶湯を脱ガスすることが好
ましい。なお、予成形体が単純な形状で鍛造が容易な場
合には、均質化処理及び強制冷却を省略することも可能
である。なお、本明細書に記載している「鋳造・鍛造
用」とは、「金型やダイカスト等で鋳造した後、鍛造で
成形するための素材」を意味するものである。
Means for Solving the Problems The aluminum alloy material for casting and forging according to the present invention has a Si: 3.0 to achieve the object.
To 7.0% by weight, Mg: 0.6 to 1.5% by weight, Mn:
0.1 to 0.5% by weight, Cu: 0.3 to 0.9% by weight,
Cr: 0.35 to 0.5% by weight, Fe: 0.25% by weight
Hereinafter, Ti: 0.01 to 0.2% by weight, B: 0.001
~ 0.01% by weight, with the balance being substantially Al. This aluminum alloy material for casting / forging further contains Sr: 0.001 to 0.05% by weight, Sb:
It is preferable that one or two kinds of the eutectic Si are contained at 0.05 to 0.15% by weight, and the average length of eutectic Si at the time of casting is 3 to 6 μm. This aluminum alloy material for casting and forging is manufactured by melting, then producing a preformed body by die casting, performing a homogenizing treatment of heating the preformed body to 500 to 535 ° C. for 2 to 12 hours, and then forcibly cooling. And then the surface temperature of the forged material is 400-500 ° C
It is manufactured by hot forging under the following conditions, further performing T6 treatment, and machining. It is preferable that the gas content of the preformed body is restricted to 0.30 cc / 100 g or less. Further, at the time of melting, it is preferable to degas the molten alloy in an atmosphere of a mixed gas of argon or nitrogen and chlorine. When the preformed body has a simple shape and can be easily forged, the homogenization treatment and the forced cooling can be omitted. In addition, "for casting / forging" described in this specification means "a material for molding by forging after casting with a die or die casting or the like".

【0005】[0005]

【作用】本発明のアルミ合金材においては、鋳造で複雑
形状の予成形体を製造し、押出工程を経ずに鍛造で最終
形状に成形するため、鋳造性,鍛造性を改良した合金設
計を採用している。なかでも、Si含有量の増加は、湯
流れ性,鋳造割れ,ヒケ性等を有効に改善し、複雑な形
状をもつ予成形体の製造を可能にしている。Si含有量
の増加は、耐摩耗性を改善する上でも有効である。ま
た、Cr含有量の増加により、鍛造後のT6処理時の溶
体化処理において再結晶粒の粗大化が抑制され、材料に
伸びが付与される。Si,Crの増量による鍛造性の劣
化は、予成形体が複雑形状で鍛造性が悪い場合、予成形
体を高温で均質化処理することにより解消される。均質
化処理は、従来の鋳造・鍛造法で使用される予成形体で
は実施されていないが、押出工程が省略できることから
結果としてコスト節減に寄与している。
In the aluminum alloy material of the present invention, a preform having a complicated shape is manufactured by casting, and is formed into a final shape by forging without going through an extrusion process. Has adopted. Above all, an increase in the Si content effectively improves the fluidity, casting cracks, sink marks and the like, and enables the production of a preformed body having a complicated shape. Increasing the Si content is also effective in improving wear resistance. In addition, due to the increase in the Cr content, coarsening of recrystallized grains is suppressed in the solution treatment during the T6 treatment after forging, and elongation is given to the material. Deterioration of the forgeability due to an increase in the amount of Si and Cr can be eliminated by homogenizing the preform at a high temperature when the preform has a complicated shape and poor forgeability. Although the homogenization treatment is not performed on the preformed body used in the conventional casting / forging method, the extrusion step can be omitted, thereby contributing to cost reduction.

【0006】以下、本発明アルミ合金材に含まれる合金
成分,含有量等を説明する。 Si:3.0〜7.0重量% 複雑な予成形体を鋳造する際の鋳型に対する湯流れを良
くし、鋳造割れ,ヒケ性を改善する作用を呈し、健全な
予成形体が鋳造される。また、製品の耐摩耗性を向上す
る作用もある。このような作用は、3.0重量%以上の
Si含有で顕著になる。しかし、7.0重量%を超える
多量のSiが含まれると、伸び,靭性が劣化し、鍛造加
工性が悪くなる。 Mg:0.6〜1.5重量% T6処理で微細なMg2 Siをマトリックスに析出さ
せ、材料強度を向上させる作用を呈する合金成分であ
る。Mg含有量が0.6重量%未満では強度向上作用が
少なく、1.5重量%を超えると鍛造時の加工性が劣化
する。
Hereinafter, alloy components, contents, and the like contained in the aluminum alloy material of the present invention will be described. Si: 3.0 to 7.0% by weight The function of improving the flow of molten metal to the mold when casting a complicated preform, improving the casting cracking and sinking properties, and casting a sound preform. . It also has the effect of improving the wear resistance of the product. Such an effect becomes remarkable when the content of Si is 3.0% by weight or more. However, when a large amount of Si exceeding 7.0% by weight is contained, elongation and toughness are deteriorated, and forgeability is deteriorated. Mg: 0.6 to 1.5% by weight An alloy component that exhibits an effect of improving the material strength by precipitating fine Mg 2 Si into a matrix by T6 treatment. If the Mg content is less than 0.6% by weight, the effect of improving the strength is small, and if it exceeds 1.5% by weight, the workability during forging is deteriorated.

【0007】Mn:0.1〜0.5重量% T6処理時の溶体化処理において再結晶粒の粗大化を抑
制し、強度,伸び,靭性を向上する作用を呈する合金成
分である。Mnの作用は、0.1重量%以上の含有量で
顕著になる。しかし、0.5重量%を超える多量のMn
が含まれると、Al−Si−Fe−Mn系等の硬質で脆
い金属間化合物の析出量が多くなり、加工性に悪影響を
及ぼす。この点、Mn含有量を0.1〜0.5重量%の
範囲に維持すると、Al−Fe−Si系化合物が針状か
ら塊状に変わり、これによっても靭性が向上する。 Cu:0.3〜0.9重量% T6処理の時効処理時にCuAl2 等のAl−Cu系,
Al−Cu−Mg系等の析出物となって材料強度を向上
する作用を呈する。Cuの作用は、0.3重量%以上の
含有量で顕著になる。しかし、0.9重量%を超える多
量のCuが含まれると、耐食性が劣化する。
Mn: 0.1 to 0.5% by weight An alloy component which has the effect of suppressing the coarsening of recrystallized grains and improving the strength, elongation and toughness in the solution treatment at the time of T6 treatment. The effect of Mn becomes significant at a content of 0.1% by weight or more. However, a large amount of Mn exceeding 0.5% by weight
Is contained, the precipitation amount of a hard and brittle intermetallic compound such as an Al—Si—Fe—Mn system increases, which adversely affects workability. In this regard, when the Mn content is maintained in the range of 0.1 to 0.5% by weight, the Al-Fe-Si-based compound changes from acicular to massive, thereby improving toughness. Cu: 0.3 to 0.9% by weight Al-Cu based material such as CuAl 2 during aging treatment of T6 treatment,
It becomes an Al-Cu-Mg precipitate or the like and exhibits an effect of improving the material strength. The effect of Cu becomes significant at a content of 0.3% by weight or more. However, when a large amount of Cu exceeding 0.9% by weight is included, the corrosion resistance deteriorates.

【0008】Cr:0.35〜0.5重量% Mnと同様に、T6処理時の溶体化処理において再結晶
粒の粗大化を抑制し、強度,伸び,靭性を向上する作用
を呈する。Crの作用は、0.35重量%以上で顕著に
なり、Mnとの併用添加により一層大きな効果が得られ
る。しかし、0.5重量%を超える多量のCrが含まれ
ると、加工性が劣化する。 Fe:0.25重量%以下 不純物としてアルミ合金に混入する成分であり、Al−
Fe−Si系化合物となってマトリックスに分散し、伸
び,靭性,耐食性等に悪影響を与える。そのため、Fe
含有量は少ないほど好ましいが、過度にFe含有量を下
げることは合金の溶製を困難にする。したがって、本発
明においては実質的な悪影響がみられない0.25重量
%にFe含有量の上限を設定した。
Cr: 0.35 to 0.5% by weight Like Mn, it has the effect of suppressing the coarsening of recrystallized grains and improving the strength, elongation and toughness in the solution treatment during the T6 treatment. The effect of Cr becomes remarkable at 0.35% by weight or more, and a greater effect can be obtained by adding it in combination with Mn. However, when a large amount of Cr exceeding 0.5% by weight is contained, workability is deteriorated. Fe: 0.25% by weight or less Fe is a component mixed into the aluminum alloy as an impurity.
It becomes an Fe—Si-based compound and is dispersed in the matrix, which has an adverse effect on elongation, toughness, corrosion resistance, and the like. Therefore, Fe
The lower the content, the better, but excessively lowering the Fe content makes it difficult to melt the alloy. Therefore, in the present invention, the upper limit of the Fe content is set to 0.25% by weight where no substantial adverse effect is observed.

【0009】Ti:0.01〜0.2重量% 鋳塊の組織を微細にし、鋳塊の割れ発生を防止すると共
に、塑性加工に伴うオレンジピール等の肌荒れが鍛造品
の表面に発生することを防止する作用を呈する合金成分
である。このような作用は、0.01重量%以上のTi
含有量で顕著になる。しかし、0.2重量%を超える多
量のTi含有量は、TiB2 ,TiAl3 等の巨大な晶
出物の発生を促進させ、鍛造加工時の割れ,切削加工時
の表面疵を発生させる原因となる。 B:0.001〜0.01重量% Tiと同様に、鋳造時の結晶粒の微細化に有効な合金成
分であり、0.001重量%以上でその効果が発現され
る。しかし、0.01重量%を超えて多量にTiが含ま
れると、巨大なTiB2 等の晶出物が発生し易くなり、
鍛造,切削等の加工性が低下する。
Ti: 0.01 to 0.2% by weight The structure of the ingot is made fine to prevent cracking of the ingot, and rough surface such as orange peel occurs on the surface of the forged product due to plastic working. This is an alloy component that has the effect of preventing Such an effect is obtained when 0.01% by weight or more of Ti
It becomes remarkable in the content. However, a large content of Ti exceeding 0.2% by weight promotes the generation of giant crystallized substances such as TiB 2 and TiAl 3 and causes cracks during forging and surface flaws during cutting. Becomes B: 0.001 to 0.01% by weight Like Ti, it is an alloy component effective for refining crystal grains at the time of casting. The effect is exhibited at 0.001% by weight or more. However, when Ti is contained in a large amount exceeding 0.01% by weight, crystallized substances such as huge TiB 2 are easily generated,
Workability such as forging and cutting decreases.

【0010】Sr:0.001〜0.05重量% 必要に応じて添加される合金成分であり、鋳造時の共晶
Siを微細化し、衝撃値や伸びを向上させる作用を呈す
る。また、Naのように過度の微細化を生じさせること
がないので、耐摩耗性が損なわれない。Srの作用は、
0.001重量%以上の含有量で顕著になる。しかし、
0.05重量%を超える多量の含有量では、金属間化合
物の発生に起因した加工性の低下やアルミ溶湯に対する
ガス,介在物等の介入を促進させる原因となる。 Sb:0.05〜0.15重量% 必要に応じて添加される合金成分であり、Srと同様に
鋳造時の共晶Siを微細化する作用を呈し、特に鋳造・
鍛造用合金においては伸びを改善する。また、Naのよ
うに過度の微細化を生じさせることがないので、耐摩耗
性が損なわれない。Sb添加による微細化作用は、0.
05重量%以上の含有量で顕著になる。しかし、0.1
5重量%を超える多量の含有量は、Sb2 Mg3 等の金
属間化合物の発生を促進させ、鍛造性を劣化させる。
Sr: 0.001 to 0.05% by weight An alloy component added as necessary, and has an effect of refining eutectic Si at the time of casting and improving impact value and elongation. Also, since excessive miniaturization does not occur unlike Na, wear resistance is not impaired. The effect of Sr is
It becomes remarkable at a content of 0.001% by weight or more. But,
A large content exceeding 0.05% by weight causes a reduction in workability due to the generation of intermetallic compounds and promotes intervention of gas, inclusions, and the like in the molten aluminum. Sb: 0.05 to 0.15% by weight An alloy component that is added as needed, and has an effect of refining eutectic Si at the time of casting similarly to Sr.
Forging alloys improve elongation. Also, since excessive miniaturization does not occur unlike Na, wear resistance is not impaired. The refining effect by the addition of Sb is 0.
It becomes remarkable at a content of 05% by weight or more. However, 0.1
A large content exceeding 5% by weight promotes generation of an intermetallic compound such as Sb 2 Mg 3 and deteriorates forgeability.

【0011】鋳造 以上のように成分設計されたアルミ合金の溶製・鋳造に
際しては、通常のAl−Si系合金の鋳造に比較して製
造条件を高度に制御することが重要である。具体的に
は、700〜750℃でアルミ合金を溶製し、特に合金
溶湯のガス含有量を厳しくコントロールする。このとき
の製造条件が不適当であると、鍛造時に割れが発生し易
く、均質化処理,T6処理でも製品にフクレが発生し易
くなる。たとえば、750℃を超える高温で溶製する
と、ガス含有量が増加し、鍛造時の割れや製品のフクレ
の原因となる。溶製された合金溶湯は、アルゴン又は窒
素と塩素ガスとの混合ガス雰囲気中で、通常の鋳物に比
較して十分に脱ガスされる。通常のAl−Si系鋳物の
ガス含有量は0.30〜0.35cc/100gである
が、本発明に従ったアルミ合金材では多くても0.25
〜0.30cc/100gのオーダまでガス含有量を低
減する。これにより、均質化処理時にフクレの発生が防
止される。
Casting In smelting / casting an aluminum alloy whose composition is designed as described above, it is important to control the manufacturing conditions to a higher degree than in the casting of a normal Al-Si alloy. Specifically, an aluminum alloy is melted at 700 to 750 ° C., and the gas content of the molten alloy is particularly strictly controlled. If the manufacturing conditions at this time are inappropriate, cracks are likely to occur during forging, and blisters are likely to occur in the product even in the homogenization treatment and the T6 treatment. For example, melting at a high temperature exceeding 750 ° C. increases the gas content, which causes cracking during forging and causes blistering of the product. The molten alloy melt is sufficiently degassed in a mixed gas atmosphere of argon or nitrogen and chlorine gas as compared with a normal casting. The gas content of a normal Al-Si based casting is 0.30 to 0.35 cc / 100 g, but at most 0.25 in the aluminum alloy material according to the present invention.
Reduce gas content to the order of 0.30 cc / 100 g. This prevents the occurrence of blisters during the homogenization process.

【0012】微細化には通常の方法が採用されるが、鋳
造温度を700〜750℃に設定する。鋳造方式として
は、重力鋳造,溶湯鍛造法等が好ましく、ダイカスト法
はガス含有量が多くなるので好ましくない。鋳型の材質
は、金属,グラファイト等がある。鋳型温度は、常温〜
450℃の範囲で設定されるが、常に一定温度であるこ
とが重要であり、この温度にバラツキがあると鋳造組織
が変動し、後続工程における制御が難しくなる。鋳造時
の溶湯の冷却速度は、粗大晶出物の発生を防止するため
0.3℃/秒以上に設定される。0.3℃/秒よりも遅
い冷却速度では、粗大な晶出物が結晶粒界に晶出し、鍛
造時の加工性に悪影響を及ぼす。
An ordinary method is employed for miniaturization, but the casting temperature is set at 700 to 750 ° C. As the casting method, gravity casting, molten metal forging, and the like are preferable, and the die casting method is not preferable because the gas content increases. The material of the mold includes metal, graphite, and the like. Mold temperature is from room temperature
The temperature is set in the range of 450 ° C., but it is important that the temperature is always constant. If the temperature varies, the casting structure fluctuates, making it difficult to control in the subsequent process. The cooling rate of the molten metal at the time of casting is set to 0.3 ° C./second or more to prevent generation of coarse crystals. At a cooling rate lower than 0.3 ° C./sec, coarse crystallized substances are crystallized at crystal grain boundaries, which adversely affects workability during forging.

【0013】このようにして得られた予成形体は、鋳造
欠陥がないため、押出工程を経ることなく熱間鍛造でき
る素材となる。予成形体における共晶Siが平均長さで
3〜6μmに調整されていると、鍛造時のメタル流動が
スムーズに行われ、割れやオレンジピール等の鍛造欠陥
が発生しない。他方、共晶Siの平均長さが3μm未満
では、小さすぎて均質化処理や熱処理によって耐摩耗性
に有効なSi粒子数が減少してしまう。逆に、平均長さ
が6μmを超える共晶Siでは、大きいことにより熱間
鍛造時に共晶Si粒子が破断したり、メタル流動がスム
ーズに行われず、鋳造欠陥が発生し易い。
The preformed body thus obtained has no casting defects, and is a material that can be hot forged without going through an extrusion step. When the average length of the eutectic Si in the preformed body is adjusted to 3 to 6 μm, the metal flows smoothly during forging, and forging defects such as cracks and orange peel do not occur. On the other hand, if the average length of eutectic Si is less than 3 μm, the number of Si particles effective for abrasion resistance is reduced by homogenization treatment or heat treatment because the average length is too small. Conversely, in the case of eutectic Si having an average length exceeding 6 μm, the eutectic Si particles are broken during hot forging, and metal flow is not performed smoothly due to the large size, and casting defects are likely to occur.

【0014】均質化処理:500〜535℃×2〜12
時間加熱 鋳造で得られた予成形体を均質化処理することにより、
鋳造時に結晶粒界に晶出したAl2 Cu,Mg2 Si等
の晶出物がマトリックスに固溶する。また、均質化処理
によって、Al−Fe−Si−Cr,Al−Fe−Mn
−Si系等の金属間化合物の晶出物を極力マトリックス
に固溶させる。これにより、熱間鍛造時の変形抵抗が少
なく、加工性が向上する。また、平均長さ3〜6μmの
共晶Siが球状化し、熱間鍛造時の変形抵抗が小さくな
る。均質化処理の条件についてみると、500℃未満の
処理温度や2時間に達しない加熱時間では、固溶化が十
分でなく、鋳造歪みの除去も不十分である。しかし、5
35℃を超える処理温度では、予成形体に部分的融解が
発生する。また、12時間を超える加熱時間では、加熱
処理の長期化に見合った均質化の効果上昇がみられな
い。均質化処理された予成形体は、その組織を維持する
ため均質化処理後に強制冷却される。このときの冷却速
度は200℃/時以上が必要であり、強制空冷,油中冷
却,水中冷却等が採用される。なお、鋳造で製造された
予成形体の形状が簡単なものでは鋳造欠陥が発生せず、
熱間鍛造時にもメタルの流動が単純なことから、均質化
処理を施さなくても熱間鍛造が可能である。
Homogenization treatment: 500-535 ° C. × 2-12
Time heating By pre-homogenizing the preformed body obtained by casting,
Crystallized substances such as Al 2 Cu, Mg 2 Si, etc. crystallized at the crystal grain boundaries during casting dissolve in the matrix. Further, by the homogenization treatment, Al—Fe—Si—Cr, Al—Fe—Mn
A crystallized product of an intermetallic compound such as a Si system is dissolved in a matrix as much as possible. Thereby, deformation resistance at the time of hot forging is small, and workability is improved. In addition, eutectic Si having an average length of 3 to 6 μm becomes spherical, and the deformation resistance during hot forging decreases. Regarding the conditions of the homogenization treatment, if the treatment temperature is less than 500 ° C. or the heating time does not reach 2 hours, the solution is not sufficiently dissolved and the casting distortion is not sufficiently removed. But 5
At processing temperatures above 35 ° C., partial melting of the preform occurs. When the heating time exceeds 12 hours, the effect of homogenization corresponding to the prolongation of the heat treatment does not increase. The homogenized preform is forcibly cooled after the homogenization to maintain its structure. The cooling rate at this time needs to be 200 ° C./hour or more, and forced air cooling, cooling in oil, cooling in water, or the like is employed. In addition, if the shape of the preformed body manufactured by casting is simple, casting defects do not occur,
Since the flow of metal is simple even during hot forging, hot forging is possible without performing homogenization treatment.

【0015】熱間鍛造:鍛造上りの材料表面温度が40
0〜500℃ 予成形体の熱間鍛造に先立って、合金元素を極力固溶さ
せるため、400〜500℃に加熱する。他方、熱間鍛
造用の金型を材料の大きさ及び加工率との兼ね合いで3
00〜450℃に予熱しておき、加工率30〜80%で
熱間鍛造する。このとき、鍛造上りの材料表面温度が4
00〜500℃,好ましくは450〜500℃となるよ
うに加熱条件を選定することが重要である。このように
熱間鍛造を高温条件に設定することにより、鍛造時の変
形抵抗が低下して鍛造性が良くなり、またCr,Mn系
の化合物を微細で均一に分布させることができる。その
結果、次のT6処理時の溶体化において、再結晶粒の粗
大化が防止される。これに対し、予成形体の加熱温度が
500℃を超えると鍛造時の昇温で合金材が部分溶解す
る虞れがある。400℃以下では変形抵抗が高くなり、
またCr,Mn系の化合物が微細に析出しないため、T
6処理時の溶体化で再結晶粒が粗大化することがある。
Hot forging: Material surface temperature after forging is 40
0 to 500 ° C. Prior to hot forging of the preformed body, the preformed body is heated to 400 to 500 ° C. in order to dissolve the alloy element as much as possible. On the other hand, the hot forging die is required to be 3 in consideration of the material size and the working ratio.
It is preheated to 00 to 450 ° C. and hot forged at a working ratio of 30 to 80%. At this time, the material surface temperature after forging is 4
It is important to select the heating conditions so as to be from 00 to 500 ° C, preferably from 450 to 500 ° C. By setting the hot forging to the high-temperature condition, the deformation resistance during forging is reduced, the forgeability is improved, and the Cr and Mn-based compounds can be finely and uniformly distributed. As a result, coarsening of the recrystallized grains is prevented in the solution treatment during the next T6 treatment. On the other hand, if the heating temperature of the preformed body exceeds 500 ° C., the alloy material may be partially melted by the temperature rise during forging. Below 400 ° C, deformation resistance increases,
Further, since the Cr and Mn-based compounds do not precipitate finely,
6 Recrystallization grains may be coarsened by the solution treatment during the treatment.

【0016】T6処理:熱間鍛造されたアルミ合金材
は、溶体化処理によりCu,Mg,Si等を固溶体化さ
せ、水焼入れした後、時効処理される。溶体化では、た
とえば熱間鍛造品が500〜530℃に2〜6時間加熱
される。時効処理では、150〜200℃に4〜12時
間加熱される。時効処理によりAl2 Cu,Mg2 Si
等が析出し、材料強度が上昇する。また、マトリックス
に固溶していたAl−Si−Fe−Cr系,Al−Mn
−Fe系等の金属間化合物も、少量ではあるが時効処理
により細かく析出し、材料の強度を向上させる。時効処
理されたAl合金材は、次いで機械加工され、必要に応
じて表面処理が施され、最終製品となる。
T6 treatment: The hot-forged aluminum alloy material is subjected to solution treatment to form a solid solution of Cu, Mg, Si, etc., quenched with water, and then subjected to aging treatment. In the solution treatment, for example, a hot forged product is heated to 500 to 530 ° C. for 2 to 6 hours. In the aging treatment, heating is performed at 150 to 200 ° C. for 4 to 12 hours. Al 2 Cu, Mg 2 Si by aging treatment
Etc. precipitate, and the material strength increases. Further, Al-Si-Fe-Cr-based, Al-Mn solid solution
The intermetallic compound such as an Fe-based compound is also finely precipitated by the aging treatment, though in a small amount, and improves the strength of the material. The aging-treated Al alloy material is then machined and, if necessary, subjected to a surface treatment to become a final product.

【0017】[0017]

【実施例】各種試験用に使用するアルミ合金として、表
1に示す組成をもつ各種溶湯を720℃で溶製した。
EXAMPLES Various aluminum alloys having the compositions shown in Table 1 were melted at 720 ° C. as aluminum alloys used for various tests.

【0018】 [0018]

【0019】実施例1:試料番号3のアルミ合金溶湯約
10kgを表2の条件で脱ガス処理し、400℃に加熱
保持した金型に注湯し、0.4℃/秒で冷却した。金型
には、高さ31mm,幅70mm,長さ130mmのサ
イズをもつ鋳鉄製のブロック状型を使用した。得られた
ブロック状の鋳塊からサンプルを切り出し、ガス含有量
を測定した。測定結果を、表2に併せ示す。表2から明
らかなように、窒素だけを使用した脱ガス処理では鋳塊
のガス含有量が多いが、アルゴン又は塩素−窒素の混合
ガスを使用した脱ガスでは、ガス含有量が0.30cc
/100g以下になっていた。そのため、530℃×6
時間の均熱処理を施したところ、鋳塊A,Bではフクレ
が発生しなかったのに対し、鋳塊Cではフクレが発生し
た。
Example 1 Approximately 10 kg of the molten aluminum alloy of Sample No. 3 was degassed under the conditions shown in Table 2, poured into a mold heated and maintained at 400 ° C., and cooled at 0.4 ° C./sec. The mold used was a cast iron block-shaped mold having a size of 31 mm in height, 70 mm in width, and 130 mm in length. A sample was cut out from the obtained block-shaped ingot, and the gas content was measured. Table 2 also shows the measurement results. As is clear from Table 2, the gas content of the ingot is large in the degassing treatment using only nitrogen, but the gas content is 0.30 cc in the degassing using argon or a mixed gas of chlorine-nitrogen.
/ 100 g or less. Therefore, 530 ℃ × 6
When the soaking process was performed for a long time, swelling did not occur in ingots A and B, whereas swelling occurred in ingot C.

【0020】 [0020]

【0021】実施例2:Sr,Sbの共晶Siサイズに
及ぼす影響を調査するため、N2 −Cl2 混合ガスを用
いて試料番号3,7〜9の溶湯を720℃で脱ガスした
後、実施例1と同じ金型に鋳込み、得られた鋳塊の鋳造
組織を調べた。調査結果である共晶Siの平均長さを表
3に示すように、Sr,Sbの添加によって共晶Siが
微細化されていることが判る。
Example 2 In order to investigate the effect of Sr and Sb on the eutectic Si size, the melts of Sample Nos. 3, 7 to 9 were degassed at 720 ° C. using an N 2 —Cl 2 mixed gas. The casting was cast into the same mold as in Example 1, and the casting structure of the obtained ingot was examined. As shown in Table 3, the average length of the eutectic Si, which is the result of the investigation, shows that the eutectic Si is refined by the addition of Sr and Sb.

【0022】 [0022]

【0023】本発明者等は、共晶Siの平均長さが3〜
6μmであると耐摩耗性を損なわず且つ靭性も良好であ
るとの知見をすでに得ている(たとえば、特願昭63−
260462号参照)。本発明に従った試料番号3,7
〜9の鋳塊は、何れも共晶Siの平均長さ3〜6μmの
要件を満足しており、耐摩耗性及び靭性が良好なものと
いえる。
The present inventors have found that the average length of eutectic Si is 3 to
It has already been found that a thickness of 6 μm does not impair the abrasion resistance and has good toughness.
260462). Sample Nos. 3 and 7 according to the invention
All of the ingots No. to No. 9 satisfy the requirement of the average length of eutectic Si of 3 to 6 μm, and can be said to have good wear resistance and toughness.

【0024】実施例3:N2 −Cl2 混合ガスを用いて
試料番号1〜5の溶湯を720℃で脱ガスした後、40
0℃に加熱保持した鋳鉄製のブロック状金型に鋳込ん
だ。得られた鋳塊から直径14mm,高さ21mmのサ
ンプルを切り出し、As Cast 材及び530℃×6時間の
均熱処理後に強制空冷した材料(HO材)を用意した。
各材料を350℃,400℃,450℃に加熱し、圧縮
試験法で熱間変形抵抗を調べた。圧縮試験法では、図1
に示すように350℃,400℃又は450℃に加熱保
持した上金型1と下金型2との間にAs Cast 材又はHO
材3を挟み、圧縮速度100mm/秒でAs Cast 材又は
HO材3を圧縮した。そして、各材料について図2の荷
重−変位曲線を求め、この荷重−変位曲線から加工率5
0%での所要荷重を読み取り、計算で求められた理想断
面積で除すことにより熱間変形抵抗値を算出した。調査
結果を表4に示す。なお、圧縮試験直後の材料表面温度
は、サンプルが小さいことからほぼ型温に近い値であっ
た。
Example 3 The melts of Sample Nos. 1 to 5 were degassed at 720 ° C. using an N 2 —Cl 2 mixed gas,
It was cast into a block mold made of cast iron that was heated and maintained at 0 ° C. A sample having a diameter of 14 mm and a height of 21 mm was cut out from the obtained ingot to prepare an As Cast material and a material (HO material) which was forcibly air-cooled after soaking at 530 ° C. for 6 hours.
Each material was heated to 350 ° C., 400 ° C., and 450 ° C., and hot deformation resistance was examined by a compression test method. Figure 1 shows the compression test method.
As shown in the figure, an As Cast material or HO is placed between the upper mold 1 and the lower mold 2 heated and maintained at 350 ° C, 400 ° C or 450 ° C.
The As Cast material or the HO material 3 was compressed at a compression speed of 100 mm / sec. Then, the load-displacement curve shown in FIG. 2 is obtained for each material, and the processing rate 5
The required load at 0% was read, and the hot deformation resistance was calculated by dividing by the ideal cross-sectional area obtained by the calculation. Table 4 shows the survey results. Note that the material surface temperature immediately after the compression test was a value close to the mold temperature because the sample was small.

【0025】 [0025]

【0026】表4の調査結果から明らかなように、As C
ast 材に比較してHO材の変形抵抗が小さく、試験温度
が高温になるほど変形抵抗が小さくなっている。また、
Si含有量の増加に伴って変形抵抗も上昇している。こ
の調査結果から、熱間鍛造における鍛造性(加工性)の
評価として、HO材で材料の予備加熱温度及び鍛造上り
の温度を400℃以上にすることが有効であることが判
る。また、As Cast 材でも鍛造温度が450℃と高いと
き、熱間変形抵抗が小さいことから、簡単形状の鍛造品
を得る場合には均質化処理を施さなくても鍛造可能なこ
とが判る。しかし、500℃を超える高温では、材料に
部分融解が生じるため、好ましくない。
As is clear from the results of the investigation in Table 4, As C
The deformation resistance of the HO material is smaller than that of the ast material, and the deformation resistance decreases as the test temperature increases. Also,
As the Si content increases, the deformation resistance also increases. From the results of this investigation, it is found that it is effective to set the preheating temperature and the temperature after forging of the HO material to 400 ° C. or more as the evaluation of the forgeability (workability) in hot forging. Also, when the forging temperature is as high as 450 ° C., the hot deformation resistance is small even with an As Cast material, which indicates that a forging product having a simple shape can be forged without a homogenization treatment. However, a high temperature exceeding 500 ° C. is not preferable because the material partially melts.

【0027】実施例4:試料番号3の組成をもつAs Cas
t 材に種々の条件下で均質化処理を施し、均質化処理条
件が熱間変形抵抗に及ぼす影響を調査した。本実施例で
使用したサンプルの形状及び試験方法は、実施例3と同
じにした。なお、熱間試験条件は、サンプルを450℃
に予備加熱し、型温450℃,加工率50%で熱間鍛造
した。試験結果を示す表5にみられるように、本発明に
従った均質化処理を施した予成形体は、熱間変形抵抗値
が低下しており、鍛造性が良好であることが判る。しか
し、均質化処理の温度が500℃未満や処理時間が1時
間程度では、予成形体の熱間変形抵抗値がAs Cast 材と
ほとんど変わらなかった。熱間変形抵抗値に鍛造時の温
度が最も大きな影響を与えるが、鍛造温度を一定にした
場合、更に予成形体の均質化処理によって鍛造性が向上
することが判る。これにより、複雑形状をもつ予成形体
であっても、均質化処理により熱間変形抵抗値が下が
り、スムーズに鍛造できることが確認された。
Example 4: As Cas having the composition of Sample No. 3
The homogenization treatment was performed on t-materials under various conditions, and the effect of the homogenization treatment conditions on the hot deformation resistance was investigated. The shape and test method of the sample used in this example were the same as those in Example 3. The hot test conditions were as follows:
And hot forging at a mold temperature of 450 ° C. and a working ratio of 50%. As can be seen from Table 5 showing the test results, the preformed body subjected to the homogenization treatment according to the present invention has a low hot deformation resistance value and has good forgeability. However, when the temperature of the homogenization treatment was less than 500 ° C. and the treatment time was about 1 hour, the hot deformation resistance of the preformed body was almost the same as that of the As Cast material. Although the temperature at the time of forging has the greatest effect on the hot deformation resistance value, it can be seen that when the forging temperature is kept constant, the forgeability is further improved by the homogenizing treatment of the preformed body. As a result, it was confirmed that, even in a preformed body having a complicated shape, the hot deformation resistance value was reduced by the homogenization treatment and forging could be performed smoothly.

【0028】 [0028]

【0029】実施例5:試料番号1〜9の組成をもつ溶
湯をN2 −Cl2 混合ガスを用いて脱ガスし、720℃
で溶製した後、400℃に加熱保持した鋳鉄製のブロッ
ク状金型に鋳込んだ。得られた鋳塊に520℃×6時間
の均熱処理を施した後、強制空冷した。次いで、450
℃に加熱し、同じく450℃の加熱保持した金型を用い
て加工率60%で熱間鍛造した。鍛造品に520℃×2
時間の溶体化処理を施し、水焼入れした後、175℃×
6時間の時効処理を施した。時効処理後の材料から鍛造
方向と垂直な方向に試験片を切り出し、機械的性質及び
耐摩耗性を調査した。なお、耐摩耗性は、FC28を相
手材とし、潤滑剤を使用することなく摩擦速度1.21
m/秒で摩擦距離600mを摺動させ、比摩耗量で評価
した。引張強さ400N/mm2 以上,0.2%耐力3
50N/mm2 以上,伸び10%以上,比摩耗量9×1
-7mm2/kg以下が合格品と判定される。表6の調
査結果にみられるように、本発明に従って得られた鍛造
品をT6処理したものでは、引張強さ,0.2%耐力,
伸び,耐摩耗性共に良好であった。また、T6処理材の
ミクロ組織は、Cr含有量が少ない試料番号6を除き、
何れも微細な再結晶粒であった。他方、Cr含有量が少
ない試料番号6のT6処理材では、粗大化した再結晶粒
が検出された。
Example 5: A molten metal having the composition of Sample Nos. 1 to 9 was degassed using a N 2 -Cl 2 mixed gas,
And then cast into a block mold made of cast iron which was heated and maintained at 400 ° C. The obtained ingot was subjected to a soaking treatment at 520 ° C. for 6 hours, and then was forcedly cooled. Then 450
C., and hot forging was performed at a working rate of 60% using a mold that was also heated and maintained at 450.degree. 520 ℃ × 2 for forged products
175 ° C × after solution treatment of time and quenching with water
The aging treatment was performed for 6 hours. A test piece was cut out of the material after the aging treatment in a direction perpendicular to the forging direction, and mechanical properties and wear resistance were investigated. The abrasion resistance was evaluated by using FC28 as a mating material and using a friction speed of 1.21 without using a lubricant.
It was slid at a friction distance of 600 m at a rate of m / sec, and evaluated by the specific wear amount. Tensile strength 400N / mm 2 or more, 0.2% proof stress 3
50N / mm 2 or more, elongation 10% or more, specific wear 9 × 1
A product with a value of 0 -7 mm 2 / kg or less is judged to be acceptable. As can be seen from the survey results in Table 6, the forged product obtained according to the present invention was subjected to T6 treatment, and the tensile strength, 0.2% proof stress,
Both elongation and wear resistance were good. In addition, the microstructure of the T6 treated material except for Sample No. 6 having a small Cr content,
All were fine recrystallized grains. On the other hand, in the T6 treated material of Sample No. 6 with a small Cr content, coarse recrystallized grains were detected.

【0030】 [0030]

【0031】[0031]

【発明の効果】以上に説明したように、本発明において
は、Si,Crの増量により鋳造性を改善すると共に鍛
造後のT6処理時の溶体化処理で再結晶粒の粗大化を抑
制した合金設計を採用している。このアルミ合金材を比
較的高温で均質化処理すると、Si,Crの増量に起因
した鍛造性の劣化が抑制される。このようにして、本発
明のアルミ合金材は、押出工程を経ない鋳造・鍛造法で
製品形状にすることができ、しかも耐摩耗性及び機械的
特性が優れた材料であることから、自動車部品,家電製
品等として広範な分野で使用される。
As described above, according to the present invention, an alloy in which the castability is improved by increasing the amount of Si and Cr and the coarsening of recrystallized grains is suppressed by solution treatment during T6 treatment after forging. Adopt design. When this aluminum alloy material is homogenized at a relatively high temperature, deterioration of forgeability due to an increase in the amount of Si and Cr is suppressed. In this way, the aluminum alloy material of the present invention can be formed into a product shape by a casting / forging method that does not go through an extrusion step, and is a material having excellent wear resistance and mechanical properties. It is used in a wide range of fields such as home appliances.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 熱間変形抵抗試験を説明する図FIG. 1 is a diagram illustrating a hot deformation resistance test

【図2】 荷重−変位曲線を示すグラフFIG. 2 is a graph showing a load-displacement curve.

【符号の説明】[Explanation of symbols]

1:上金型 2:下金型 3:As Cast 材又は
HO材
1: Upper mold 2: Lower mold 3: As Cast material or HO material

フロントページの続き (51)Int.Cl.7 識別記号 FI C22F 1/00 682 C22F 1/00 682 683 683 691 691B 691C 694 694B (56)参考文献 特開 平7−109537(JP,A) 特開 平7−109536(JP,A) 特開 平7−48643(JP,A) 特開 平9−125181(JP,A) 国際公開95/34691(WO,A1) 西独国特許19524564(DE,B) (58)調査した分野(Int.Cl.7,DB名) C22C 21/00 - 21/18 C22F 1/04 - 1/057 Continuation of the front page (51) Int.Cl. 7 Identification code FI C22F 1/00 682 C22F 1/00 682 683 683 691 691B 691C 694 694B (56) References JP-A-7-109537 (JP, A) JP-A-7-109536 (JP, A) JP-A-7-48643 (JP, A) JP-A-9-125181 (JP, A) International publication 95/34691 (WO, A1) West German patent 1,952,564 (DE, B) (58) Field surveyed (Int. Cl. 7 , DB name) C22C 21/00-21/18 C22F 1/04-1/057

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Si:3.0〜7.0重量%,Mg:
0.6〜1.5重量%,Mn:0.1〜0.5重量%,
Cu:0.3〜0.9重量%,Cr:0.35〜0.5
重量%,Fe:0.25重量%以下,Ti:0.01〜
0.2重量%,B:0.001〜0.01重量%を含
み、残部が実質的にAlの組成をもつ耐摩耗性,鋳造
性,鍛造性に優れた鋳造・鍛造用アルミ合金材。
1. Si: 3.0 to 7.0% by weight, Mg:
0.6 to 1.5% by weight, Mn: 0.1 to 0.5% by weight,
Cu: 0.3 to 0.9% by weight, Cr: 0.35 to 0.5
% By weight, Fe: 0.25% by weight or less, Ti: 0.01 to
0.2% by weight, B: 0.001 to 0.01% by weight, the balance being substantially an Al composition, and an aluminum alloy material for casting and forging having excellent wear resistance, castability and forgeability.
【請求項2】 更にSr:0.001〜0.05重量
%,Sb:0.05〜0.15重量%の1種又は2種を
含み、鋳造時の共晶Siの平均長さが3〜6μmである
請求項1記載の耐摩耗性,鋳造性,鍛造性に優れた鋳造
・鍛造用アルミ合金材。
2. The composition according to claim 1, further comprising one or two kinds of Sr: 0.001 to 0.05% by weight and Sb: 0.05 to 0.15% by weight, wherein the average length of the eutectic Si at the time of casting is 3%. 2. The aluminum alloy material for casting and forging according to claim 1, which has an excellent wear resistance, castability and forgeability.
【請求項3】 請求項1又は2記載の組成をもつ合金を
溶製した後、型鋳造で予成形体を製造し、予成形体を5
00〜535℃に2〜12時間加熱する均質化処理を施
した後、強制冷却し、次いで鍛造上りの材料表面温度が
400〜500℃となる条件下で熱間鍛造し、更にT6
処理を施し、機械加工することを特徴とする耐摩耗性,
鋳造性,鍛造性に優れた鋳造・鍛造用アルミ合金材の製
造方法。
3. After melting the alloy having the composition according to claim 1 or 2, a preformed body is manufactured by die casting, and
After performing a homogenization treatment of heating to 00 to 535 ° C for 2 to 12 hours, forcible cooling is performed, and then hot forging is performed under the condition that the surface temperature of the forged material is 400 to 500 ° C.
Abrasion resistance characterized by processing and machining,
A method of manufacturing aluminum alloy materials for casting and forging with excellent castability and forgeability.
【請求項4】 ガス含有量を0.30cc/100g以
下に規制した予成形体を使用する請求項3記載の耐摩耗
性,鋳造性,鍛造性に優れた鋳造・鍛造用アルミ合金材
の製造方法。
4. The production of an aluminum alloy material for casting / forging having excellent wear resistance, castability and forgeability according to claim 3, wherein a preformed body whose gas content is regulated to 0.30 cc / 100 g or less is used. Method.
【請求項5】 アルゴン又は窒素と塩素との混合ガス雰
囲気中で溶製時に合金溶湯を脱ガスする請求項3記載の
耐摩耗性,鋳造性,鍛造性に優れた鋳造・鍛造用アルミ
合金材の製造方法。
5. An aluminum alloy material for casting and forging having excellent wear resistance, castability and forgeability according to claim 3, wherein the molten alloy is degassed during melting in an atmosphere of a mixed gas of argon or nitrogen and chlorine. Manufacturing method.
JP26688496A 1996-10-08 1996-10-08 Aluminum alloy material for casting and forging with excellent wear resistance, castability and forgeability, and its manufacturing method Expired - Fee Related JP3346186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26688496A JP3346186B2 (en) 1996-10-08 1996-10-08 Aluminum alloy material for casting and forging with excellent wear resistance, castability and forgeability, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26688496A JP3346186B2 (en) 1996-10-08 1996-10-08 Aluminum alloy material for casting and forging with excellent wear resistance, castability and forgeability, and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH10110231A JPH10110231A (en) 1998-04-28
JP3346186B2 true JP3346186B2 (en) 2002-11-18

Family

ID=17437003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26688496A Expired - Fee Related JP3346186B2 (en) 1996-10-08 1996-10-08 Aluminum alloy material for casting and forging with excellent wear resistance, castability and forgeability, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3346186B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106141584A (en) * 2016-07-21 2016-11-23 东莞彩龙五金弹簧制造有限公司 A kind of aluminum set and processing technique thereof

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002339030A (en) * 2001-05-17 2002-11-27 Yamaha Motor Co Ltd Aluminum alloy for diecasting
DE102008055926B4 (en) * 2007-11-08 2012-01-26 Ksm Castings Gmbh Front axle for motor vehicles
WO2009059593A2 (en) * 2007-11-08 2009-05-14 Ksm Castings Gmbh CAST Al/Si ALLOYS
DE102013108127A1 (en) 2012-08-23 2014-02-27 Ksm Castings Group Gmbh Al-cast alloy
CN102978486A (en) * 2012-11-13 2013-03-20 安徽春辉仪表线缆集团有限公司 Aluminum alloy casting forming method for valve clack of sluice valve
CN102979937B (en) * 2012-11-13 2015-06-03 安徽春辉仪表线缆集团有限公司 Check valve body aluminum alloy casting method
WO2014121785A1 (en) 2013-02-06 2014-08-14 Ksm Castings Group Gmbh Aluminium casting alloy
CN103740986B (en) * 2014-01-02 2016-01-13 上海大学 The method of the automobile component of aluminium alloys for automobile high-abrasive material and preparation Al-Si-Cu-Mg system alloy
CN104498783A (en) * 2014-11-28 2015-04-08 深圳市蓝海精密模具有限公司 Novel aluminum alloy and preparation method thereof
FR3032204B1 (en) * 2015-01-29 2019-08-09 Saint Jean Industries ALUMINUM LOW SILICON ALLOY PIECE
JP2021011604A (en) * 2019-07-05 2021-02-04 昭和電工株式会社 Aluminum alloy material and method for producing aluminum alloy forging
CN112795820A (en) * 2019-10-28 2021-05-14 晟通科技集团有限公司 Aluminum alloy template die-casting material for buildings

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106141584A (en) * 2016-07-21 2016-11-23 东莞彩龙五金弹簧制造有限公司 A kind of aluminum set and processing technique thereof
CN106141584B (en) * 2016-07-21 2019-03-05 东莞彩龙五金弹簧制造有限公司 A kind of aluminium set and its processing technology

Also Published As

Publication number Publication date
JPH10110231A (en) 1998-04-28

Similar Documents

Publication Publication Date Title
AU2016343539B2 (en) Aluminum alloy
US4834941A (en) Heat-resisting high-strength Al-alloy and method for manufacturing a structural member made of the same alloy
JP3301919B2 (en) Aluminum alloy extruded material with excellent chip breaking performance
JP3346186B2 (en) Aluminum alloy material for casting and forging with excellent wear resistance, castability and forgeability, and its manufacturing method
WO2010007484A1 (en) Aluminum alloy, method of casting aluminum alloy, and method of producing aluminum alloy product
JP3332885B2 (en) Aluminum-based alloy for semi-solid processing and method for manufacturing the processed member
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
JP2004292937A (en) Aluminum alloy forging material for transport carrier structural material, and production method therefor
JPH06293933A (en) Wear resistant aluminum alloy and its production
JP3552577B2 (en) Aluminum alloy piston excellent in high temperature fatigue strength and wear resistance and method of manufacturing the same
JP2006274415A (en) Aluminum alloy forging for high strength structural member
JP3448990B2 (en) Die-cast products with excellent high-temperature strength and toughness
JP2001316787A (en) METHOD FOR PRODUCING HALF-MELTED BILLET OF Al ALLOY FOR TRANSPORTING MACHINE
JP2004315938A (en) Forged material of aluminum alloy for structural material in transport aircraft, and manufacturing method therefor
JP2003277868A (en) Aluminum alloy forging having excellent stress corrosion cracking resistance and stock for the forging
JP4088546B2 (en) Manufacturing method of aluminum alloy forging with excellent high temperature characteristics
JPH07197165A (en) High wear resistant free cutting aluminum alloy and its production
JPH09249949A (en) Production of aluminum extruded material forged product
JP2848368B2 (en) Manufacturing method of aluminum alloy for compressor parts with excellent wear resistance and toughness
JP2003155535A (en) Aluminum alloy extruded material for automobile bracket, and production method therefor
JPS62149839A (en) Wear resistant aluminum alloy for working excellent in strength
JP3471421B2 (en) Manufacturing method of aluminum alloy forging
EP1522600B1 (en) Forged aluminium alloy material having excellent high temperature fatigue strength
JP3687505B2 (en) Aluminum alloy for casting forging and method for producing casting forging
JP2006161103A (en) Aluminum alloy member and manufacturing method therefor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090906

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090906

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100906

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110906

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110906

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120906

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees