JP3852915B2 - Method for producing semi-melt molded billet of aluminum alloy for transportation equipment - Google Patents
Method for producing semi-melt molded billet of aluminum alloy for transportation equipment Download PDFInfo
- Publication number
- JP3852915B2 JP3852915B2 JP2001338928A JP2001338928A JP3852915B2 JP 3852915 B2 JP3852915 B2 JP 3852915B2 JP 2001338928 A JP2001338928 A JP 2001338928A JP 2001338928 A JP2001338928 A JP 2001338928A JP 3852915 B2 JP3852915 B2 JP 3852915B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- aluminum alloy
- less
- semi
- billet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Forging (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、輸送機器用として用いるアルミニウム合金の半溶融成型ビレットの製造方法に関するものである。
【0002】
【従来の技術】
半溶融ビレットを用いるチクソキャスト法は、従来の金型鋳造法と比較し鋳造偏析・欠陥が少なく、金型寿命が長いなどの利点があり最近注目されている技術である。これに用いるビレットの鋳造方法としては、ペネシー・アルマックス方式として知られているビレット段階で初晶α(Al)相を球状化するため、半溶融温度域で電磁・機械撹拌を行う方法(方式A)や、鋳造時に通常添加されている量よりも多量のAl−Ti−Bを添加し、その後半溶融温度域まで昇温し初晶α(Al)相を球状化させる方法(方式B)がある。また、押出・圧延にて歪みを導入後、方式Bのように昇温し球状化させる方法(方式C)が広く知られている。
【0003】
【発明が解決しようとする課題】
従来の半溶融製造法の場合、方式Aでは工程が非常に煩雑で、製造コストが高くつく不具合があった。
また、方式Bでは、多量のAl−Ti−Bを添加するため溶融炉内でのTiB2沈降による品質不安定が発生し、更に方式Cの圧延により歪みを導入する方法は均一な歪みの導入が難しく、また押出では常温押出により作業工程が煩雑で、しかも均一な歪み導入が難しいし、両歪み導入法とも加工後の製品加工が必要となり、量産化や低コスト化が図れないという問題があった。
【0004】
特許第2976073号には、改良された方法が開示されている。即ち、そこには第1項中に「完全に固化した金属または金属合金材料をその再結晶温度未満の温度で変形する工程、該材料の微小構造の再結晶を起こさせるために変形材料を加熱する工程、および該材料の温度をその固相線温度を上回る温度に上昇させることによりチキソトロピック的な挙動を呈する液状マトリックス中に独立した粒子を形成させるために、再結晶構造を部分的に融解させる工程を備えた方法」である。
この方法は、該材料の微小構造の再結晶を起こさせるために変形材料を加熱する工程、および該材料の温度をその固相線温度を上回る温度に上昇させるといういわば2段階加熱とも言うべき加熱が行われる。このような方法は、従来の技術に比べれば、改善された技術と言えるが、やはり2段階の加熱を必要とし、工程が複雑で加熱制御が難しいという問題があった。
【0005】
本発明は、上記従来技術の欠点を解消し、工程が簡素で低コスト化を促進でき、得られる製品が均質な輸送機器用アルミニウム合金の半溶融成型ビレットの製造方法を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本願の輸送機器用アルミニウム合金の半溶融成型ビレットの製造方法は、Zn3.5〜7.5wt%、Mg0.50〜4.0wt%、Si0.50wt%以下、Fe0.55wt%以下と、Ti0.001〜0.50wt%及びB0.0001〜0.5wt%の少なくとも1種以上と、Cu0.30〜3.0wt%、Mn0.03〜0.80wt%、Zr0.03〜0.35wt%、Cr0.03〜0.35wt%及びV0.03〜0.2wt%の中の少なくとも1種以上を含み、残部が実質的にAlの組成から成り、デンドライト枝間隔が200μm以下であるアルミニウム合金を製造し、次いで歪み率5〜50%、加工導入速度50mm/sec.以下で再結晶温度未満の温度で、冷間型枠鍛造にて加工歪みを導入し、その後固相線温度以上に昇温し、液相率が20〜80%となる温度で保持して半溶融加工する方法である。
【0007】
この場合に、成分偏析の均質化及び鋳造応力の解放のために、加工歪みを導入する前に、400〜520℃の温度で1〜24時間の均質化処理を行うと好ましい。
【0008】
【発明の実施の形態】
以下本発明で用いるアルミニウム合金成分量の数値限定等種々の数値限定理由について詳述する。
【0009】
Zn成分は、Mg成分と共存することにより、機械的性質や機械加工性の向上に寄与するが、3.5wt%未満ではその効果は小さく、一方7.5wt%を越えると冷間鍛造加工性が悪くなり、耐食性を劣化させるため、3.5〜7.5wt%とした。
【0010】
Mg成分は、Zn成分と共存することにより、機械的性質の向上に寄与するが、0.50wt%未満ではその効果は小さく、一方4.0wt%を越えると冷間鍛造加工性が悪くなるため、0.50〜4.0wt%とした。
【0011】
Si成分は、その量が0.50wt%を越えると伸び・靭性が劣化し、冷間鍛造加工性が悪くなるので、0.50wt%以下とした。
【0012】
Fe成分は、Al成分と金属間化合物を作り、多く含有されるとAl−Fe−Si系化合物となり伸び・靭性・耐食性に悪影響を及ぼすため、0.55wt%以下とした。
【0013】
Ti成分は、鋳塊の組織を微細化し、鋳塊割れの発生を防止するが、0.001wt%未満ではその効果は小さく、一方0.5wt%を越えるとTiAl3の巨大な晶出物の発生を促進させ、冷間鍛造加工時の割れや輸送機器部品の機械的性質の低下をまねくので、0.001〜0.5wt%とした。
【0014】
B成分は、Ti成分と共に鋳塊の組織を微細化し、鋳塊割れの発生を防止するが、0.0001wt%未満ではその効果は小さく、一方0.5wt%を越えると冷間鍛造加工時の割れや輸送機器部品の機械的性質の低下をまねくので、0.0001〜0.5wt%とした。
【0015】
Cu成分は、機械的性質の向上のみならず、耐応力腐食割れ性の改善や耐疲労特性を高めるが、0.30wt%未満ではその効果は小さく、一方3.0wt%を超えると冷間鍛造加工時の割れや耐食性の低下をまねくので、0.30〜3.0wt%とした。
【0016】
Mn成分は、再結晶の抑制や再結晶粒の微細化による機械的性質の向上のみならず、耐応力腐食割れ性の改善や耐疲労特性を高めるが、0.03wt%未満ではその効果は小さく、一方0.80wt%を越えると延性の低下をまねくので、0.03〜0.80wt%とした。
【0017】
Cr、Zr、V成分は、Mn成分と同様に再結晶粒の微細化あるいは再結晶を抑制し、強度・伸び・靭性を向上させると同時に耐応力腐食割れ性の改善に寄与する。Cr0.03wt%未満、Zr0.03wt%未満、V0.03wt%未満ではその効果が小さく、Cr0.35wt%、Zr0.35wt%、V0.2wt%をそれぞれ越えると、延性に悪影響を及ぼすので、Cr0.03〜0.35wt%、Zr0.03〜0.35wt%、V0.03〜0.2wt%とした。
【0018】
デンドライト枝間隔(DAS)が200μm以下であるビレットを鋳造するが、デンドライト枝間隔(DAS)が200μmを越えると、半溶融温度域に加熱した際に初晶α(Al)相の均一微細球状化が難しくなるし、また均質化処理を行う場合には均質化処理に時間を要するのでデンドライト枝間隔(DAS)を200μm以下とした。
【0019】
鋳造で得られたビレットを均質化処理することにより、鋳造時に結晶粒界に晶出したMgZn2、MgSi2等の晶出物がマトリックスに固溶する。均質化処理温度が400℃未満や1時間に達しない加熱時間では、固溶化が充分得られず、鋳造歪の除去も不充分である。しかし520℃を越える処理温度では、共晶融解が発生し、鍛造時の加工性を損う。また、24時間を越える加熱時間では、加熱時間の長時間に見合った均質化の効果上昇が見られず、加熱エネルギーの損失となる。このため、均質化処理条件は400〜520℃の温度で1〜24時間加熱とした。
【0020】
次に加工歪みの導入は、工程が簡素化でき、かつ少ない加工率で歪みが有効に導入されるように冷間鍛造で行い、なおかつ鍛造用ビレットの全体に均一に歪みが導入されるように型枠鍛造とする。歪み率は、5%未満の場合には歪み導入が少ないため半溶融温度域まで昇温しても初晶α(Al)相の均一な球状化は図れず、一方50%を越えると初晶α(Al)相サイズに変化は見られないのみならず冷間鍛造時に割れが発生するため、5〜50%とした。ここでの歪み率は、鍛造用ビレットの元の長さをL1とし、鍛造後のビレットの長さをL2とした時、(L1−L2)/L1×100(%)で定義した。
【0021】
加工導入速度は、ビレット鋳塊の結晶粒微細化と均質化処理を加えることにより大幅にアップできる。生産性から言えば加工導入速度はできるだけ早いほうが好ましい。しかしながら50mm/sec.を越えると鍛造時に割れが生じたり、鍛造デッドゾーンが発生し、歪みが均一に導入されないため50mm/sec.以下とした。また冷間型枠鍛造の際のビレット温度は、再結晶温度以上では所定の加工率に対する歪み導入が不充分となり、半溶融温度に昇温しても初晶α(Al)相が粒状組織とならないため再結晶温度未満とした。
【0022】
その後ビレットを固相線温度以上に昇温し、液相率が20〜80%となる温度で保持して半溶融成型するが、液相率が20%未満では初晶α(Al)相の均一な球状化は図れず、半溶融成型の変形抵抗が大きく加圧成型が困難となる。また80%を越えると均一な組織を有する成型品が得られない。このため、固相線温度以上での半溶融温度域での液相率は20〜80%とした。
【0023】
【実施例】
以下本発明の具体的な実施例を示す。
図1は本発明方法で用いる冷間型枠鍛造の模式図であり、図中符号1は鍛造用金型、2は鍛造用金型ポンチ、3はアルミニウム合金ビレットを示す。
【0024】
Si、Mg、Zn、Fe、Ti、B、Cu、Cr及びZrをそれぞれ下記表1に示すような組成となるように溶湯を調製し、連続鋳造にてアルミニウム合金ビレットを鋳造した。
【0025】
【表1】
【0026】
上記表1に示すアルミニウム合金ビレットを、表2に示す条件で処理し、半溶融成型の成型性、半溶融成型後の初晶α(Al)相の形状を評価した結果も表2に併記した。
【0027】
【表2】
【0028】
表2に示した加工歪導入時の成型性は、表2で示す成型条件で成型した際に割れが発生せず成型性が良好なものを○とし、割れが見られるものを×で判定した。半溶融成型の成型性は、良好なものを○とし、成型性の悪いものを×と判定した。半溶融成型後の初晶α(Al)相の形状は、球状化が認められるものを○とし、球状化が不充分であるものを×と判定した。半溶融成型後の初晶α(Al)相の微細均一化では初晶α(Al)相のサイズが100μm以下を○とし、100μmを越えるサイズのものを×と判定した。
【0029】
図2は、初晶α(Al)相の微細均一化が○評価の代表例写真を示す。
【0030】
【発明の効果】
以上述べて来た如く、本発明方法によれば、従来の半溶融ビレットよりも工程が簡素化され低コスト化が図れる。また、得られる組織も初晶α(Al)相サイズが平均100μm以下で、かつ初晶α(Al)相の面積率50%の均一球状化組織となっており、自動車部材等の輸送機器用として使用が可能である。
【図面の簡単な説明】
【図1】冷間型枠鍛造の模式図である。
【図2】初晶α(Al)相の微細均一化が○評価の代表例の顕微鏡組織写真であり、倍率は50倍である。
【符号の説明】
1 鍛造用金型
2 鍛造用金型ポンチ
3 アルミニウム合金ビレット[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a semi-melt molded billet of an aluminum alloy used for transportation equipment.
[0002]
[Prior art]
The thixocast method using a semi-molten billet is a technology that has recently been attracting attention because it has advantages such as fewer casting segregation and defects and a longer die life compared to conventional die casting methods. The billet casting method used for this is a method (method) in which electromagnetic and mechanical stirring is performed in the semi-melting temperature range in order to spheroidize the primary crystal α (Al) phase in the billet stage, known as the Pennecy Almax method. A) or a method of adding a larger amount of Al-Ti-B than the amount normally added at the time of casting, and raising the temperature to the latter half melting temperature range to spheroidize the primary crystal α (Al) phase (Method B) There is. Further, a method (method C) in which strain is introduced by extrusion / rolling and then heated and spheroidized as in method B is widely known.
[0003]
[Problems to be solved by the invention]
In the case of the conventional semi-molten production method, the method A has a problem that the process is very complicated and the production cost is high.
Moreover, in method B, since a large amount of Al—Ti—B is added, quality instability occurs due to TiB 2 sedimentation in the melting furnace, and the method of introducing strain by rolling in method C introduces uniform strain. In addition, the extrusion process is cumbersome due to room temperature extrusion, and it is difficult to introduce uniform strain, and both strain introduction methods require product processing after processing, and mass production and cost reduction cannot be achieved. there were.
[0004]
Japanese Patent No. 2976073 discloses an improved method. That is, in the first item, there is described in “the step of deforming a fully solidified metal or metal alloy material at a temperature below its recrystallization temperature, heating the deformable material to cause recrystallization of the microstructure of the material. And partially melting the recrystallized structure to form independent particles in a liquid matrix that exhibits thixotropic behavior by raising the temperature of the material above its solidus temperature. It is a method including the step of
In this method, the deformation material is heated to cause recrystallization of the microstructure of the material, and heating that is called so-called two-step heating in which the temperature of the material is raised to a temperature above the solidus temperature. Is done. Such a method can be said to be an improved technique as compared with the conventional technique, but it still requires two-stage heating, and has a problem that the process is complicated and heating control is difficult.
[0005]
An object of the present invention is to provide a method for producing a semi-molten molded billet of an aluminum alloy for transportation equipment in which the disadvantages of the above prior art are eliminated, the process is simple and cost reduction can be promoted, and the resulting product is homogeneous. To do.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the manufacturing method of the semi-molten molded billet of the aluminum alloy for transportation equipment of the present application is Zn 3.5-7.5 wt%, Mg 0.50-4.0 wt%, Si 0.50 wt% or less, Fe0 .55 wt% or less, at least one of Ti 0.001 to 0.50 wt% and B 0.0001 to 0.5 wt%, Cu 0.30 to 3.0 wt%, Mn 0.03 to 0.80 wt%, Zr0. It contains at least one or more of 03 to 0.35 wt%, Cr 0.03 to 0.35 wt% and V 0.03 to 0.2 wt%, with the balance being substantially composed of Al, with a dendrite branch interval of 200 μm The following aluminum alloy was manufactured, and then the strain rate was 5 to 50% and the processing introduction speed was 50 mm / sec. In the following, processing strain is introduced by cold mold forging at a temperature lower than the recrystallization temperature, and then the temperature is raised to the solidus temperature or higher and maintained at a temperature at which the liquid phase ratio becomes 20 to 80%. It is a method of melt processing.
[0007]
In this case, for homogenization of component segregation and release of casting stress, it is preferable to perform a homogenization treatment at a temperature of 400 to 520 ° C. for 1 to 24 hours before introducing processing strain.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, various numerical limitation reasons such as numerical limitation of the amount of aluminum alloy components used in the present invention will be described in detail.
[0009]
The Zn component contributes to improvement of mechanical properties and machinability by coexisting with the Mg component, but the effect is small if it is less than 3.5 wt%, while cold forging processability if it exceeds 7.5 wt%. In order to deteriorate the corrosion resistance, the content was set to 3.5 to 7.5 wt%.
[0010]
The Mg component contributes to the improvement of mechanical properties by coexisting with the Zn component, but the effect is small if it is less than 0.50 wt%, while the cold forging processability is worse if it exceeds 4.0 wt%. 0.50 to 4.0 wt%.
[0011]
If the amount of Si component exceeds 0.50 wt%, elongation and toughness deteriorate and cold forgeability deteriorates, so the content was set to 0.50 wt% or less.
[0012]
The Fe component forms an intermetallic compound with the Al component, and if it is contained in a large amount, it becomes an Al—Fe—Si compound and adversely affects elongation, toughness, and corrosion resistance.
[0013]
The Ti component refines the structure of the ingot and prevents the occurrence of ingot cracking, but the effect is small if it is less than 0.001 wt%, while the TiAl 3 giant crystallized material is exceeded if it exceeds 0.5 wt%. The generation is promoted and causes cracking during cold forging and deterioration of mechanical properties of parts for transportation equipment, so 0.001 to 0.5 wt% was set.
[0014]
The B component, together with the Ti component, refines the ingot structure and prevents the occurrence of ingot cracking, but the effect is small if it is less than 0.0001 wt%, while if it exceeds 0.5 wt%, the effect during cold forging is reduced. Since it causes cracks and deterioration of mechanical properties of parts for transportation equipment, the content is set to 0.0001 to 0.5 wt%.
[0015]
The Cu component not only improves mechanical properties, but also improves stress corrosion cracking resistance and fatigue resistance, but the effect is small at less than 0.30 wt%, while cold forging when it exceeds 3.0 wt%. Since it causes cracking during processing and a decrease in corrosion resistance, it is set to 0.30 to 3.0 wt%.
[0016]
The Mn component not only improves mechanical properties by suppressing recrystallization and refinement of recrystallized grains, but also improves stress corrosion cracking resistance and fatigue resistance. However, the effect is small at less than 0.03 wt%. On the other hand, if it exceeds 0.80 wt%, the ductility is lowered, so 0.03 to 0.80 wt% was set.
[0017]
Cr, Zr, and V components, like the Mn component, suppress refining of recrystallized grains or recrystallization, improve strength, elongation, and toughness, and at the same time contribute to improvement of stress corrosion cracking resistance. When Cr is less than 0.03 wt%, Zr is less than 0.03 wt%, and less than V0.03 wt%, the effect is small. 0.03 to 0.35 wt%, Zr 0.03 to 0.35 wt%, and V 0.03 to 0.2 wt%.
[0018]
Billets with a dendrite branch spacing (DAS) of 200 μm or less are cast. When the dendrite branch spacing (DAS) exceeds 200 μm, the primary α (Al) phase becomes uniform and fine spheroidized when heated to the semi-melting temperature range. When the homogenization process is performed, it takes time for the homogenization process, so the dendrite branch interval (DAS) is set to 200 μm or less.
[0019]
By homogenizing the billet obtained by casting, crystallized substances such as MgZn 2 and MgSi 2 crystallized at the grain boundaries during casting are dissolved in the matrix. When the homogenization temperature is less than 400 ° C. or when the heating time does not reach 1 hour, sufficient solution cannot be obtained, and the removal of casting strain is insufficient. However, at a processing temperature exceeding 520 ° C., eutectic melting occurs and the workability during forging is impaired. In addition, when the heating time exceeds 24 hours, no increase in homogenization effect corresponding to the long heating time is observed, resulting in a loss of heating energy. For this reason, the homogenization treatment conditions were heating at a temperature of 400 to 520 ° C. for 1 to 24 hours.
[0020]
Next, processing strain is introduced by cold forging so that the process can be simplified and strain is effectively introduced at a low processing rate, and strain is uniformly introduced into the entire forging billet. Formwork forging. When the strain rate is less than 5%, the introduction of strain is small, so even if the temperature is raised to the semi-melting temperature range, uniform spheroidization of the primary crystal α (Al) phase cannot be achieved. In addition to no change in the α (Al) phase size, cracks occurred during cold forging, so 5-50%. The distortion rate here is (L 1 −L 2 ) / L 1 × 100 (%), where L 1 is the original length of the forging billet and L 2 is the length of the billet after forging. Defined.
[0021]
The processing introduction speed can be greatly increased by adding grain refinement and homogenization treatment of the billet ingot. In terms of productivity, it is preferable that the processing introduction speed is as fast as possible. However, 50 mm / sec. Exceeds 50 mm / sec., Because cracking occurs during forging, forging dead zones occur, and strain is not uniformly introduced. It was as follows. Further, when the billet temperature during cold mold forging is higher than the recrystallization temperature, the introduction of strain for the predetermined processing rate is insufficient, and even when the temperature is raised to the semi-melting temperature, the primary α (Al) phase has a granular structure. Therefore, it was set below the recrystallization temperature.
[0022]
Thereafter, the billet is heated to a temperature higher than the solidus temperature and held at a temperature at which the liquid phase ratio becomes 20 to 80%, and semi-molten molding is performed. However, when the liquid phase ratio is less than 20%, the primary α (Al) phase Uniform spheroidization cannot be achieved, and the deformation resistance of semi-molten molding is large, making pressure molding difficult. If it exceeds 80%, a molded product having a uniform structure cannot be obtained. For this reason, the liquid phase rate in the semi-melting temperature range above the solidus temperature was set to 20 to 80%.
[0023]
【Example】
Specific examples of the present invention are shown below.
FIG. 1 is a schematic view of cold mold forging used in the method of the present invention, in which 1 is a forging die, 2 is a forging die punch, and 3 is an aluminum alloy billet.
[0024]
A molten metal was prepared so that Si, Mg, Zn, Fe, Ti, B, Cu, Cr, and Zr each had a composition as shown in Table 1 below, and an aluminum alloy billet was cast by continuous casting.
[0025]
[Table 1]
[0026]
The aluminum alloy billet shown in Table 1 was processed under the conditions shown in Table 2, and the results of evaluating the moldability of semi-melt molding and the shape of the primary crystal α (Al) phase after semi-melt molding are also shown in Table 2. .
[0027]
[Table 2]
[0028]
The moldability at the time of introducing the processing strain shown in Table 2 was evaluated as “Good” when the mold did not generate a crack when molded under the molding conditions shown in Table 2 and the moldability was good. . Regarding the moldability of the semi-melt molding, a good one was evaluated as “good”, and a poor one was determined as “poor”. The shape of the primary crystal α (Al) phase after semi-melt molding was evaluated as “◯” when spheroidization was observed, and “×” when the spheroidization was insufficient. In the fine homogenization of the primary crystal α (Al) phase after semi-melt molding, the primary crystal α (Al) phase size was evaluated as ○ when the size of the primary crystal α (Al) phase was 100 μm or less, and × when the size exceeded 100 μm.
[0029]
FIG. 2 shows a photograph of a representative example in which fine homogenization of the primary crystal α (Al) phase is evaluated as o.
[0030]
【The invention's effect】
As described above, according to the method of the present invention, the process can be simplified and the cost can be reduced as compared with the conventional semi-molten billet. The resulting structure also has a uniform spheroidized structure with an average primary crystal α (Al) phase size of 100 μm or less and an area ratio of primary crystal α (Al) phase of 50%. It can be used as
[Brief description of the drawings]
FIG. 1 is a schematic diagram of cold mold forging.
FIG. 2 is a photomicrograph of a representative example of evaluation of fine homogenization of primary crystal α (Al) phase, with a magnification of 50 times.
[Explanation of symbols]
1 Forging die 2 Forging die punch 3 Aluminum alloy billet
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001338928A JP3852915B2 (en) | 2001-11-05 | 2001-11-05 | Method for producing semi-melt molded billet of aluminum alloy for transportation equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001338928A JP3852915B2 (en) | 2001-11-05 | 2001-11-05 | Method for producing semi-melt molded billet of aluminum alloy for transportation equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003147498A JP2003147498A (en) | 2003-05-21 |
JP3852915B2 true JP3852915B2 (en) | 2006-12-06 |
Family
ID=19153347
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001338928A Expired - Lifetime JP3852915B2 (en) | 2001-11-05 | 2001-11-05 | Method for producing semi-melt molded billet of aluminum alloy for transportation equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3852915B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2426979B (en) | 2003-04-10 | 2007-05-23 | Corus Aluminium Walzprod Gmbh | An Al-Zn-Mg-Cu alloy with improved damage tolerance-strength combination properties |
US20050238529A1 (en) * | 2004-04-22 | 2005-10-27 | Lin Jen C | Heat treatable Al-Zn-Mg alloy for aerospace and automotive castings |
US7883591B2 (en) | 2004-10-05 | 2011-02-08 | Aleris Aluminum Koblenz Gmbh | High-strength, high toughness Al-Zn alloy product and method for producing such product |
FR2907796B1 (en) | 2006-07-07 | 2011-06-10 | Aleris Aluminum Koblenz Gmbh | ALUMINUM ALLOY PRODUCTS OF THE AA7000 SERIES AND METHOD FOR MANUFACTURING THE SAME |
EP2038447B1 (en) | 2006-07-07 | 2017-07-19 | Aleris Aluminum Koblenz GmbH | Method of manufacturing aa2000-series aluminium alloy products |
WO2013002082A1 (en) * | 2011-06-28 | 2013-01-03 | 国立大学法人電気通信大学 | Method for producing high-strength magnesium alloy material and rod produced from magnesium alloy |
CN102994829A (en) * | 2012-09-29 | 2013-03-27 | 吴雅萍 | High-strength aluminium alloy |
CN104152762A (en) * | 2014-08-21 | 2014-11-19 | 东北轻合金有限责任公司 | Method for manufacturing 7B50T7451 aluminum alloy prestretching thick plate for aviation |
CN116179909B (en) * | 2023-02-20 | 2024-09-20 | 浙江春旭铝业有限公司 | High-hardness aluminum alloy and production process thereof |
-
2001
- 2001-11-05 JP JP2001338928A patent/JP3852915B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2003147498A (en) | 2003-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4951343B2 (en) | Sn-containing copper alloy and method for producing the same | |
JP3194742B2 (en) | Improved lithium aluminum alloy system | |
JPH07145441A (en) | Superplastic aluminum alloy and its production | |
JP4534573B2 (en) | Al-Mg alloy plate excellent in high-temperature high-speed formability and manufacturing method thereof | |
JP2001220639A (en) | Aluminum alloy for casting | |
CN110983128A (en) | High-strength heat-resistant wrought aluminum alloy and preparation method thereof | |
JPH07109536A (en) | Aluminum alloy for forging and heat treatment therefor | |
CN109136681B (en) | 6061 aluminum cast bar and casting process thereof | |
JP3548709B2 (en) | Method for producing semi-solid billet of Al alloy for transportation equipment | |
JP3852915B2 (en) | Method for producing semi-melt molded billet of aluminum alloy for transportation equipment | |
KR101400140B1 (en) | Preparing method for magnesium alloy extrudate and the magnesium alloy extrudate thereby | |
JP3346186B2 (en) | Aluminum alloy material for casting and forging with excellent wear resistance, castability and forgeability, and its manufacturing method | |
JP4145242B2 (en) | Aluminum alloy for casting, casting made of aluminum alloy and method for producing casting made of aluminum alloy | |
CN111020303A (en) | 4XXX series aluminum alloy and preparation method thereof | |
JP3840400B2 (en) | Method for producing semi-melt molded billet of aluminum alloy for transportation equipment | |
JP3676723B2 (en) | Method for producing semi-melt molded billet of aluminum alloy for transportation equipment | |
JP3798676B2 (en) | Method for producing semi-melt molded billet of aluminum alloy for transportation equipment | |
JP4152095B2 (en) | Method for producing semi-molten billet of aluminum alloy for transportation equipment | |
JP4121266B2 (en) | Method for producing semi-molten billet of aluminum alloy for transportation equipment | |
JP3145904B2 (en) | Aluminum alloy sheet excellent in high speed superplastic forming and its forming method | |
WO2020052129A1 (en) | Rare-earth aluminum alloy material having high ductility and high strength and preparation method therefor | |
JPH06330264A (en) | Production of aluminum alloy forged material excellent in strength and toughness | |
JP3802796B2 (en) | Method for producing semi-melt molded billet of aluminum alloy for transportation equipment | |
JPH07150312A (en) | Manufacture of aluminum alloy forged base stock | |
JPH08134614A (en) | Production of superplastic magnesium alloy material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041102 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060606 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060710 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060809 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060830 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060904 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100915 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100915 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110915 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120915 Year of fee payment: 6 |