JP4145242B2 - Aluminum alloy for casting, casting made of aluminum alloy and method for producing casting made of aluminum alloy - Google Patents

Aluminum alloy for casting, casting made of aluminum alloy and method for producing casting made of aluminum alloy Download PDF

Info

Publication number
JP4145242B2
JP4145242B2 JP2003527140A JP2003527140A JP4145242B2 JP 4145242 B2 JP4145242 B2 JP 4145242B2 JP 2003527140 A JP2003527140 A JP 2003527140A JP 2003527140 A JP2003527140 A JP 2003527140A JP 4145242 B2 JP4145242 B2 JP 4145242B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
casting
mass
whole
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003527140A
Other languages
Japanese (ja)
Other versions
JPWO2003023080A1 (en
Inventor
博 川原
吉広 清水
義雄 杉山
俊男 堀江
弘昭 岩堀
義彦 杉本
実 山下
裕二 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Publication of JPWO2003023080A1 publication Critical patent/JPWO2003023080A1/en
Application granted granted Critical
Publication of JP4145242B2 publication Critical patent/JP4145242B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)

Description

本発明は、鋳物用アルミニウム合金およびアルミニウム合金製鋳物の製造方法に関するものである。さらに詳しくは、薄肉鋳物等の製作にも好適な鋳造性と鋳放しの状態でも高い強度および優れた延性とを発揮する鋳造用アルミニム合金、およびそのアルミニウム合金からなる鋳物の製造方法に関するものである。   The present invention relates to an aluminum alloy for castings and a method for producing an aluminum alloy casting. More particularly, the present invention relates to an aluminum alloy for casting that exhibits high castability suitable for production of a thin-walled casting and the like, and high strength and excellent ductility even in an as-cast state, and a method for producing a casting made of the aluminum alloy. .

近年、各種製品の軽量化が要請されており、従来の鋳鉄製品から軽量なアルミニウム合金製品に急速に移行しつつある。例えば、自動車の場合、軽量化により燃費向上が期待でき、軽量化は環境改善にも有効となる。   In recent years, there has been a demand for weight reduction of various products, and there is a rapid shift from conventional cast iron products to lightweight aluminum alloy products. For example, in the case of an automobile, improvement in fuel efficiency can be expected by reducing the weight, and the reduction in weight is also effective for improving the environment.

ところで、従来なら、強度や延性への要求が比較的緩やかであった薄肉の鋳物(特に、ダイカスト製品)にさえ、高強度、高延性が要求されるようになってきている。高強度、高延性の薄肉鋳物等を製作する方法として、例えば、鋳型内を真空引きして鋳造した後、または、逆に鋳型内に酸素を充満させて鋳造した後に、得られた鋳物を熱処理する方法等が従来から提案されている。しかし、このような方法では、熱処理が必要となり製造コストの上昇を招く。また、薄肉、大型の鋳物ほど、その熱処理によって歪み(ふくれ、変形等)が発生し、その矯正にさらにコストがかかる。   By the way, high strength and high ductility have been demanded even for thin-walled castings (especially die-cast products), which conventionally have been relatively demanding for strength and ductility. As a method of producing a thin casting having high strength and high ductility, for example, after casting the mold by evacuating, or conversely, filling the mold with oxygen and casting, the resulting casting is heat treated. A method for performing the above has been proposed. However, such a method requires heat treatment and causes an increase in manufacturing cost. In addition, the thinner and larger castings are distorted (blurred, deformed, etc.) by the heat treatment, and the correction is more costly.

そこで、このような課題を解決するために、鋳放しの状態でも、高強度、高延性を発現するアルミニウム合金の開発が盛んに行なわれている。例えば、(a)特開平9−3582号公報、(b)特開平11−293375号公報、(c)特開平11−193434号公報、(d)特開平9−268340号公報、特開平9−316581号公報、特開平11−80872号公報等に、そのようなアルミニウム合金に関する開示がある。以下、各公報に記載されたアルミニウム合金について具体的に説明する。   Therefore, in order to solve such problems, aluminum alloys that exhibit high strength and high ductility even in an as-cast state have been actively developed. For example, (a) JP-A-9-3582, (b) JP-A-11-293375, (c) JP-A-11-193434, (d) JP-A-9-268340, JP-A-9- Japanese Patent No. 316581, Japanese Patent Application Laid-Open No. 11-80872, etc. disclose such aluminum alloys. Hereinafter, the aluminum alloy described in each publication will be specifically described.

(a)特開平9−3582には、Mg:3.0〜5.5%(質量%:以下同様)、Zn:1.0〜2.0%(Mg/Zn:1.5〜5.5)、Mn:0.05〜1.0%、Cu:0.05〜0.8%、Fe:0.1〜0.8%を含有したアルミニウム合金鋳物が開示されている。このAl−Mg−Mn−Zn−Cu系合金は、所定範囲のZnとCuとを必須含有元素としている。 (a) In JP-A-9-3582, Mg: 3.0 to 5.5% (mass%: the same applies hereinafter), Zn: 1.0 to 2.0% (Mg / Zn: 1.5 to 5.5). 5) An aluminum alloy casting containing Mn: 0.05 to 1.0%, Cu: 0.05 to 0.8%, and Fe: 0.1 to 0.8% is disclosed. This Al—Mg—Mn—Zn—Cu-based alloy has a predetermined range of Zn and Cu as essential elements.

本発明者がこの合金製鋳物を試験研究したところ、MgZn2やMg32(Al、Zn)49等の中間相が鋳物中に析出し、自然時効による強度特性の変化や、応力腐食割れが現れた。また、この合金は鋳造割れが発生し易く、薄肉部材の鋳造には向かないことも解った。 When the present inventor conducted a test study on this alloy casting, an intermediate phase such as MgZn 2 or Mg 32 (Al, Zn) 49 was precipitated in the casting, resulting in changes in strength characteristics due to natural aging and stress corrosion cracking. It was. It has also been found that this alloy is prone to casting cracks and is not suitable for casting thin-walled members.

(b)特開平11−293375には、Mg:2.5〜7.0、Mn:0.2〜1.0%、Ti:0.05〜0.2%でFeを0.3%未満、Siを0.5%以下とし、1〜5mmの肉厚部位の気孔率が0.5%以下、晶出物の平均円相当径が1.1μm以下、晶出物の面積率が5%以下であることを特徴とする高延性アルミ合金ダイカストが開示されている。このAl−Mg−Mn−Ti系合金は、Feを不可避不純物として扱っており、その含有量を0.3%未満に制限している。 (b) In JP-A-11-293375, Mg: 2.5-7.0, Mn: 0.2-1.0%, Ti: 0.05-0.2% and Fe less than 0.3% , Si is 0.5% or less, the porosity of the 1-5 mm thick portion is 0.5% or less, the average equivalent circle diameter of the crystallized material is 1.1 μm or less, and the crystallized material area ratio is 5% A highly ductile aluminum alloy die casting characterized by the following is disclosed. This Al—Mg—Mn—Ti alloy handles Fe as an inevitable impurity, and its content is limited to less than 0.3%.

本発明者が試験研究したところ、この合金を使用した薄肉金型鋳物は、鋳造割れが発生し易かった。また、Mg量が多くなると肉厚中心部に引け巣を発生し易かった。鋳造割れや引け巣の発生は、強度特性や伸びのバラツキを大きくするため好ましくない。   As a result of a test study by the present inventor, a thin-walled mold casting using this alloy was prone to casting cracks. Further, when the amount of Mg increased, shrinkage cavities were easily generated in the central portion of the thickness. The occurrence of casting cracks and shrinkage cavities is undesirable because it increases the variation in strength characteristics and elongation.

(c)特開平11−193434には、Mg:3.0〜5.5、Mn:1.5〜2.0%、Ni:0.5〜0.9とする高靱性ダイカスト鋳物用アルミニウム合金が開示されている。
このAl−Mg−Mn−Ni系合金では、Niを必須含有元素とし、その含有量を適切に調整することにより、ダイカスト鋳物の靱性を向上させている。また、Mnの含有量が多いため、化合物の晶出量が多くなり、その実施例にあるように、伸びは10%程度である。
(c) Japanese Patent Application Laid-Open No. 11-193434 discloses an aluminum alloy for high toughness die-casting with Mg: 3.0 to 5.5, Mn: 1.5 to 2.0%, and Ni: 0.5 to 0.9. Is disclosed.
In this Al—Mg—Mn—Ni-based alloy, Ni is an essential element, and the toughness of the die casting is improved by appropriately adjusting the content thereof. Moreover, since there is much content of Mn, the amount of crystallization of a compound increases, and as the Example shows, elongation is about 10%.

(d)特開平9−268340号公報には、Mg:0.01〜1.2%、Mn:0.5〜2.5%、Fe:0.1〜1.5%とする高延性アルミニウム合金が開示されている。
このAl−Mg−Mn−Fe系合金では、Mgの含有量を少なくして鋳造割れや引け巣等の欠陥の発生を抑制して、鋳造性と伸びとを改善しているに過ぎない。このため、その実施例からも解るように、その合金は、引張強さが190MPaにも満たず、強度的に十分ではない。なお、特開平9−316581号公報や特開平11−80872号公報に開示されたアルミニウム合金も、この合金と同様である。
(d) Japanese Patent Laid-Open No. 9-268340 discloses high ductility aluminum with Mg: 0.01 to 1.2%, Mn: 0.5 to 2.5%, and Fe: 0.1 to 1.5%. An alloy is disclosed.
In this Al—Mg—Mn—Fe alloy, the content of Mg is reduced to suppress the occurrence of defects such as casting cracks and shrinkage cavities, thereby improving castability and elongation. For this reason, as can be seen from the examples, the alloy has a tensile strength of less than 190 MPa and is not sufficient in strength. The aluminum alloys disclosed in JP-A-9-316581 and JP-A-11-80872 are the same as this alloy.

特開平9−3582号公報Japanese Patent Laid-Open No. 9-3582 特開平11−293375号公報JP 11-293375 A 特開平11−193434号公報JP 11-193434 A 特開平9−268340号公報Japanese Patent Laid-Open No. 9-268340 特開平9−316581号公報Japanese Patent Laid-Open No. 9-316581 特開平11−80872号公報Japanese Patent Laid-Open No. 11-80872

本発明は、このような事情に鑑みて為されたものである。つまり、鋳造割れ、ミクロポロシティの発生等が少ない、鋳造性に優れた鋳物用アルミニウム合金を提供することを目的とする。特に、鋳放し状態でも、高強度で延性に優れた鋳物が得られる鋳物用アルミニウム合金を提供することを目的とする。さらに、鋳物の機械的特性等の経時変化が小さい鋳物用アルミニウム合金を提供することを目的とする。また、このアルミニウム合金を用いた鋳物の製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances. That is, an object of the present invention is to provide an aluminum alloy for castings that has less cast cracking, microporosity, etc. and has excellent castability. In particular, an object of the present invention is to provide an aluminum alloy for castings that can obtain a casting having high strength and excellent ductility even in an as-cast state. Furthermore, it aims at providing the aluminum alloy for castings with a small temporal change, such as a mechanical characteristic of a casting. Moreover, it aims at providing the manufacturing method of the casting using this aluminum alloy.

本発明者はこの課題を解決すべく鋭意研究し、各種系統的実験を重ねた結果、Mg、MnおよびFeの組成割合を適切に管理することにより、鋳造性に優れ、また、鋳放し状態でも、高強度で高延性の鋳物が得られるアルミニウム合金を発見し、本発明を完成させるに至った。   As a result of intensive studies to solve this problem and repeated various systematic experiments, the present inventor is excellent in castability by properly managing the composition ratio of Mg, Mn and Fe, and also in an as-cast state. The inventors have discovered an aluminum alloy capable of obtaining a high-strength and high-ductility casting, and have completed the present invention.

(鋳物用アルミニウム合金)
すなわち、本発明の鋳物用アルミニウム合金は、全体を100質量%としたときに、4.0〜6.0%のマグネシウム(Mg)と、0.3〜0.6%のマンガン(Mn)と、0.5〜0.9%の鉄(Fe)とを含み、残部がアルミニウム(Al)と不可避不純物とからなることを特徴とする。
(Aluminum alloy for casting)
That is, the aluminum alloy for castings according to the present invention has 4.0 to 6.0% magnesium (Mg) and 0.3 to 0.6% manganese (Mn) when the total is 100% by mass. , and a from 0.5 to 0.9% of iron (Fe), the balance being made of aluminum (Al) and unavoidable impurities.

本発明のアルミニウム合金(Al−Mg−Mn−Fe合金)は、Mg、MnおよびFeを適切な組成割合で含有したことにより、鋳造性が改善され、高強度、高延性を発現したものである。以下、現状考えられる理由と上述の組成に至った経緯について説明する。   The aluminum alloy (Al-Mg-Mn-Fe alloy) of the present invention contains Mg, Mn, and Fe in an appropriate composition ratio, so that castability is improved and high strength and high ductility are expressed. . Hereinafter, the reason that can be considered at present and the background of the above composition will be described.

MgやMnがAl基地中に固溶することにより、アルミニウム合金の強度を向上させることは知られているが、Al−Mg−Mn合金で薄肉金型鋳物を製作した場合、凝固収縮に伴う鋳造割れやポロシティ等が発生し、鋳造性が悪い。また、それに関連して伸びのバラツキも大きくなる。   It is known that Mg and Mn are dissolved in an Al base to improve the strength of the aluminum alloy. However, when a thin-walled mold casting is produced with an Al-Mg-Mn alloy, casting accompanying solidification shrinkage. Cracking, porosity, etc. occur and castability is poor. In addition, the variation in growth also increases.

そこで、本発明者は、鋳造性に優れ、高強度、高延性のアルミニウム合金を得るために、凝固過程における晶出物の晶出形態と鋳造性や機械的性質との関係に着目した。そして、アルミニウム合金製鋳物の鋳造割れは、凝固過程で成長する初晶Alのデンドライト間に残留した脆弱な液相の部分で多発することを突きとめた。これは、初晶デンドライトの発達、結合によって鋳物が形成されていく過程において、鋳物が形をなし強度をもち始める温度範囲(準固相線温度範囲)で鋳型によって拘束を受けると、凝固収縮の際に、鋳物には収縮応力が作用する。その応力がデンドライト間に残留する脆弱な液相の部分に集中し、熱間割れを多発するためと考えられる。   Therefore, in order to obtain an aluminum alloy having excellent castability and high strength and high ductility, the present inventor has focused on the relationship between the crystallized form of the crystallized product and the castability and mechanical properties in the solidification process. It was found that casting cracks in aluminum alloy castings frequently occur in the fragile liquid phase portion remaining between the primary Al dendrites growing in the solidification process. This is because, in the process of forming a casting by the development and bonding of primary dendrites, if the casting is constrained by the mold in the temperature range (quasi-solidus temperature range) where the casting begins to form and has strength, At that time, shrinkage stress acts on the casting. This is because the stress concentrates on the fragile liquid phase remaining between the dendrites, causing frequent hot cracking.

そこで、本発明者は、Al−Mg−Mn合金にFeを添加することを思い付き、Mg量に応じてMn、Fe量を調整することにより、固液共存域における晶出挙動を変化させ、優れた耐鋳造割れを得ることに成功した。具体的には、初晶Alの晶出温度域を狭くし、初晶Alのデンドライトを大きく成長させずに、晶出を終えた初晶Alのネットワーク峡間にAl−Mn−Fe共晶を晶出させた。そして、その状態で各固相間の連結が急激に進むため、鋳造割れが発生しずらくなったと考えられる。   Therefore, the present inventor came up with the idea of adding Fe to the Al-Mg-Mn alloy, and changed the crystallization behavior in the solid-liquid coexistence region by adjusting the amount of Mn and Fe in accordance with the amount of Mg, which is excellent. We succeeded in obtaining anti-casting cracks. Specifically, the Al—Mn—Fe eutectic is crystallized between the network of primary Al after the crystallization is completed without narrowing the crystallization temperature range of primary Al and greatly growing the dendrites of primary Al. I made it come out. And since the connection between each solid phase advances rapidly in that state, it is thought that it was hard to generate | occur | produce a casting crack.

さらに、本発明のアルミニウム合金によると、液相から初晶として微細なAlが晶出した後に、Al(Mn、Fe)化合物が微細に晶出するため、延性低下を招く粗大な晶出物が少なく、高強度を維持しつつも、優れた延性を発現するようになったと考えられる。   Furthermore, according to the aluminum alloy of the present invention, since Al (Mn, Fe) compound is crystallized finely after fine Al is crystallized from the liquid phase as primary crystals, there is a coarse crystallized product that causes a decrease in ductility. It is thought that excellent ductility has been developed while maintaining high strength.

ところで、本発明でいう「アルミニウム合金」には、鋳造用素材としてのアルミニウム合金(鋳物用アルミニウム合金)に限らず、鋳造後のアルミニウム合金製鋳物(製品)をも含む。   By the way, the “aluminum alloy” referred to in the present invention includes not only an aluminum alloy (aluminum alloy for casting) as a casting material but also an aluminum alloy casting (product) after casting.

従って、本発明は、全体を100質量%としたときに、4.0〜6.0%のMgと、0.3〜0.5%のMnと、0.5〜0.9%のFeと、0.1〜0.2%のTiとを含み、残部がAlと不可避不純物とからなり、20℃/秒以上の冷却速度で冷却凝固されて微細な初晶アルミニウムと化合物とが均一に分散していることを特徴とするアルミニウム合金製鋳物としても良い。   Therefore, in the present invention, when the total is 100% by mass, 4.0 to 6.0% Mg, 0.3 to 0.5% Mn, and 0.5 to 0.9% Fe And 0.1 to 0.2% Ti, and the balance is made of Al and inevitable impurities, and is cooled and solidified at a cooling rate of 20 ° C./second or more to uniformly form fine primary aluminum and the compound. An aluminum alloy casting characterized by being dispersed may also be used.

本発明の鋳物用アルミニウム合金は、デンドライトセルサイズが10μm以下の初晶アルミニウムと粒径が5μm以下の化合物とが均一に分散しているものであると、強度、延性の点からより好適である。さらに、前記初晶アルミニウムのデンドライトセルサイズが5μm以下、前記化合物の粒径が3μm以下であると、より好ましい。   The aluminum alloy for castings according to the present invention is more preferable in terms of strength and ductility when the primary crystal aluminum having a dendrite cell size of 10 μm or less and the compound having a particle size of 5 μm or less are uniformly dispersed. . Furthermore, it is more preferable that the dendritic cell size of the primary crystal aluminum is 5 μm or less and the particle size of the compound is 3 μm or less.

ここで、デンドライトセル(樹枝状晶)のサイズは、長手方向に測定した場合の長さであり、100個のセルを測定した値の平均値である。また、化合物の粒径は、長手方向(最大長)で評価したものであり、画像処理装置を用いて1000倍に撮影した組織写真(視野面積70×100μm)10視野について測定した値の平均値である。   Here, the size of the dendrite cell (dendritic crystal) is a length when measured in the longitudinal direction, and is an average value of values obtained by measuring 100 cells. Moreover, the particle size of the compound was evaluated in the longitudinal direction (maximum length), and the average value of the values measured for 10 visual fields of a tissue photograph (visual field area 70 × 100 μm) photographed 1000 times using an image processing apparatus. It is.

このように、本発明のアルミニウム合金によれば、例えば、薄肉金型鋳物を製作する場合であっても、鋳造割れや引け巣等のポロシティをほとんど発生させることなく、十分な強度と優れた延性とをもつ鋳物を得ることができる。例えば、鋳造後に熱処理を施さない鋳放し状態で、0.2%耐力が130MPa以上で破断伸びが13%以上であるアルミニウム合金が得られる。   Thus, according to the aluminum alloy of the present invention, sufficient strength and excellent ductility can be obtained, for example, even in the case of producing a thin-walled mold casting, with almost no porosity such as casting cracks and shrinkage cavities. Can be obtained. For example, in an as-cast state in which heat treatment is not performed after casting, an aluminum alloy having a 0.2% proof stress of 130 MPa or more and a breaking elongation of 13% or more is obtained.

さらに、上記組成範囲でMg、Mnによって固溶強化されたアルミニウム合金は、自然時効による硬さ変化をほとんど生じず、機械的性質の経時変化が小さいという利点をも有している。   Furthermore, the aluminum alloy solid-solution strengthened with Mg and Mn within the above composition range has the advantage that almost no change in hardness due to natural aging occurs and the change in mechanical properties over time is small.

(アルミニウム合金製鋳物の製造方法)
上述した本発明のアルミニウム合金からなる鋳物は、例えば、次の製造方法により得ることができる。
(Production method of aluminum alloy castings)
The casting made of the above-described aluminum alloy of the present invention can be obtained, for example, by the following manufacturing method.

すなわち、本発明のアルミニウム合金製鋳物の製造方法は、全体を100質量%としたときに、4.0〜6.0%のMgと0.3〜0.5%のMnと0.5〜0.9%のFeと0.1〜0.2%のTiとを含み残部がAlと不可避不純物とからなるアルミニウム合金の溶湯を鋳型に注入する注入工程と、該注入工程後に該アルミニウム合金の溶湯を冷却凝固させる凝固工程とを備え、本発明に係るアルミニウム合金製鋳物が得られることを特徴とする。 That is, in the method for producing an aluminum alloy casting according to the present invention, when the whole is 100% by mass, 4.0 to 6.0% Mg, 0.3 to 0.5% Mn, and 0.5 to 0.5%. An injection step of injecting a molten aluminum alloy containing 0.9% Fe and 0.1-0.2% Ti into the mold, the balance being Al and inevitable impurities; and after the injection step, and a solidifying step of the molten metal is cooling solidified, characterized in that the aluminum alloy casting can be obtained according to the present invention.

前記凝固工程が、20℃/秒以上の冷却速度で冷却凝固される工程であると、前述した微細な初晶アルミニウムと化合物とが均一に分散したアルミニウム合金製鋳物が確実に得られる。その冷却速度を、50℃/秒以上とすると、一層好ましい。   When the solidification step is a step of cooling and solidifying at a cooling rate of 20 ° C./second or higher, an aluminum alloy casting in which the fine primary crystal aluminum and the compound described above are uniformly dispersed can be obtained with certainty. More preferably, the cooling rate is 50 ° C./second or more.

また、本明細書中でいう「鋳造性」とは、溶湯の湯回り性や離型性等に限らず、鋳造割れや引け巣(ポロシティ)の発生率等をも含む概念である。   In addition, “castability” in the present specification is a concept including not only the meltability and mold release property of the molten metal but also the occurrence rate of casting cracks and shrinkage cavities (porosity).

次に、実施形態を挙げ、本発明をより詳しく説明する。
(1)合金組成
(a)Mg
Mgは、アルミニウムのマトリックス中に固溶して、アルミニウム合金の機械的強度(例えば、引張強さ)を向上させる元素である。また、Mgは、アルミニウム合金の延性や鋳造性にも影響を及ぼす元素である。
Next, the present invention will be described in more detail with reference to embodiments.
(1) Alloy composition
(a) Mg
Mg is an element that improves the mechanical strength (for example, tensile strength) of an aluminum alloy by being dissolved in an aluminum matrix. Mg is an element that affects the ductility and castability of an aluminum alloy.

Mgが4.0%(質量百分率、以下同様)未満では機械的強度の向上が十分ではなく、特に、130MPa以上の耐力(0.2%耐力、以下同様)を確保することが難しい。また、Mgが6.0%を超えると溶湯の酸化が著しい。また、Mg量の増加に応じて初晶として粗大晶出物が晶出し始めるMn、Feの組成が低濃度側に移動するため、MnやFeを上記組成範囲とした場合、Mg量が6%を超えると粗大化合物の晶出により延性が悪化してしまう。従って、全体を100質量%としたときに、Mgは、4.0〜6.0%であると好ましく、4.0〜5.0%であると一層好ましい。   When Mg is less than 4.0% (mass percentage, the same applies hereinafter), the mechanical strength is not sufficiently improved, and in particular, it is difficult to ensure a yield strength of 130 MPa or more (0.2% yield strength, the same applies hereinafter). On the other hand, when Mg exceeds 6.0%, the molten metal is significantly oxidized. In addition, since the composition of Mn and Fe, where coarse crystals start to crystallize as primary crystals as the amount of Mg increases, moves to a lower concentration side. If it exceeds 1, ductility deteriorates due to crystallization of the coarse compound. Therefore, when the whole is taken as 100% by mass, Mg is preferably 4.0 to 6.0%, and more preferably 4.0 to 5.0%.

(b)Mn
Mnは、Mgと同様にアルミニウムのマトリックス中に固溶したり、アルミニウムと化合物を生成してマトリックス中に微細に析出して、アルミニウム合金の機械的強度を向上させる元素である。また、金型との耐焼き付き性を向上させる効果もある。
(b) Mn
Mn is an element that improves the mechanical strength of an aluminum alloy by forming a solid solution in an aluminum matrix, or forming a compound with aluminum to form a fine precipitate in the matrix, similarly to Mg. In addition, there is an effect of improving the seizure resistance with the mold.

Mnが、0.3%未満では機械的強度の向上が十分ではなく、0.6%を超えると、粗大晶出物が晶出して延性の抵下を招くため好ましくない。従って、全体を100質量%としたときに、Mnは、0.3〜0.6%であると好ましく、0.3〜0.5%であると、一層好ましい。   If Mn is less than 0.3%, the mechanical strength is not sufficiently improved, and if it exceeds 0.6%, a coarse crystallized product is crystallized, resulting in ductility degradation. Therefore, Mn is preferably 0.3 to 0.6% and more preferably 0.3 to 0.5% when the whole is 100% by mass.

(c)Fe
Feは、凝固時の晶出過程を変えて、凝固収縮による鋳造割れを抑制する元素である。また、Feは、ダイカストを行う際に、金型との耐焼き付きを向上させる効果もある。
(c) Fe
Fe is an element that changes the crystallization process during solidification and suppresses casting cracking due to solidification shrinkage. Fe also has an effect of improving seizure resistance with a mold when die casting is performed.

Feが0.5%未満では晶出過程を大きく変えるには不十分であり、鋳造割れの抑制効果も小さい。一方、Feが0.9%を超えると、粗大晶出物が晶出し延性が低下するので好ましくない。従って、全体を100質量%としたときに、Feは、0.5〜0.9%であると好ましい。本発明者のさらなる研究によると、Feが0.5〜0.8%若しくは0.5〜0.7%であると一層好ましいことが明らかとなった。   If Fe is less than 0.5%, it is insufficient for greatly changing the crystallization process, and the effect of suppressing casting cracks is small. On the other hand, if the Fe content exceeds 0.9%, the coarse crystallized product is not preferable because the crystallization ductility is lowered. Therefore, when the whole is taken as 100% by mass, Fe is preferably 0.5 to 0.9%. Further research by the present inventors has revealed that Fe is more preferably 0.5 to 0.8% or 0.5 to 0.7%.

(d)Cr
CrはMgやMnと同様に、アルミニウムのマトリックスに固溶して、機械的強度を向上させる元素である。
(d) Cr
Cr, like Mg and Mn, is an element that improves the mechanical strength by being dissolved in an aluminum matrix.

Crが0.1%未満では、機械的強度の向上が十分ではなく、0.7%を超えると、粗大晶出物が晶出して延性の低下を招くため好ましくない。従って、全体を100質量%としたときに、Crは、0.1〜0.7%であると好ましく、0.2〜0.5%であると、一層好ましい。   When Cr is less than 0.1%, the mechanical strength is not sufficiently improved, and when it exceeds 0.7%, a coarse crystallized product is crystallized, resulting in a decrease in ductility. Therefore, when the whole is 100 mass%, Cr is preferably 0.1 to 0.7%, and more preferably 0.2 to 0.5%.

(e)Ti、B
Ti、Bは初晶Alの核生成サイトとなる。そのため、それらの元素が添加され増加すると、初晶Alの各結晶粒径は小さくなる。その結果、高固相率側まで固液流動状態が維持され、凝固収縮による応力発生時期が低温側にずれ込み、耐鋳造割れ性が向上すると考えられる。具体的には、次の通りである。
(e) Ti, B
Ti and B serve as nucleation sites for primary Al. Therefore, when these elements are added and increased, the crystal grain sizes of primary Al become smaller. As a result, it is considered that the solid-liquid flow state is maintained up to the high solid fraction rate side, the stress generation time due to solidification shrinkage shifts to the low temperature side, and the casting crack resistance is improved. Specifically, it is as follows.

Tiは、α−Alの核生成サイトとなり、微細組織を構成し、鋳造割れの抑制ならびに延性の改善効果を発揮し、また、アルミニウム合金の耐力も向上させ得る。   Ti becomes a nucleation site of α-Al, constitutes a fine structure, exhibits an effect of suppressing cast cracking and improving ductility, and can also improve the yield strength of an aluminum alloy.

そこで、全体を100質量%としたときに、0.01〜0.3%のTiを含むと、好適である。Tiが、0.01%未満では微細な組織が得られず、Tiが0.3%を超えると粗大晶出物(Al3Ti等)が晶出し延性が低下するからである。Tiを0.1〜0.2%とすると、より好ましい。 Therefore, when the whole is 100% by mass, it is preferable that 0.01 to 0.3% of Ti is included. This is because when Ti is less than 0.01%, a fine structure cannot be obtained, and when Ti exceeds 0.3%, crystallization ductility of a coarse crystallized product (Al 3 Ti or the like) decreases. It is more preferable that Ti is 0.1 to 0.2%.

Bは、特にTiとの共存下で、結晶粒を微細化させる大きな効果を発揮する。Bが、0.01%未満では微細な組織が得られず、0.05%を超えると結晶粒径の変化が小さく経済的でない。従って、Tiとの共存下で、全体を100質量%としたときに、0.01〜0.05%のホウ素(B)を含むと、好適である。0.03〜0.05%であると、より好適である。なお、Bは、単体で添加する場合の他、TiB2等のホウ化チタンとして添加すると経済的である。 B exhibits a great effect of refining crystal grains, particularly in the presence of Ti. If B is less than 0.01%, a fine structure cannot be obtained, and if it exceeds 0.05%, the change in crystal grain size is small and not economical. Accordingly, it is preferable that 0.01 to 0.05% of boron (B) is contained when the whole is 100% by mass in the presence of Ti. It is more preferable that it is 0.03 to 0.05%. B is economical when added as a titanium boride such as TiB 2 in addition to the case where B is added alone.

(f)Be
Beは、単独でも耐酸化性に効果を発揮し、溶解時にMgの酸化消耗を抑える。従って、単独でも(Ti等と共存することなく)、全体を100質量%としたときに、0.001〜0.01%のベリリウム(Be)を含むと、好適である。0.005〜0.01%であると、より好適である。勿論、いうまでもなく、BeはTi等と共存しても良い。
(f) Be
Be alone exerts an effect on oxidation resistance and suppresses oxidative consumption of Mg during dissolution. Accordingly, it is preferable that 0.001 to 0.01% of beryllium (Be) be contained alone (without coexisting with Ti or the like) when the total is 100% by mass. It is more suitable in it being 0.005-0.01%. Needless to say, Be may coexist with Ti or the like.

(g)Mo
Moは、Al−Mg合金溶湯の酸化に伴うノロの生成を抑制する効果がある。Moが0.05%未満では酸化抑制効果が十分ではなく、0.3%を超えると、粗大結晶物が晶出して延性の低下を招くため好ましくない。従って、全体を100重量%としたときに、Moは、0.05〜0.3%であると好ましく、0.1〜0.2%であると、一層好ましい。
(g) Mo
Mo has an effect of suppressing generation of noro accompanying oxidation of the Al—Mg alloy molten metal. If Mo is less than 0.05%, the effect of inhibiting oxidation is not sufficient, and if it exceeds 0.3%, a coarse crystal is crystallized and ductility is lowered, which is not preferable. Therefore, when the whole is 100% by weight, Mo is preferably 0.05 to 0.3%, and more preferably 0.1 to 0.2%.

(h)不可避不純物
不可避不純物は、アルミニウム合金の特性に悪影響を与えない限り、その種類や含有量は限定されないが、本発明者は、不可避不純物であるSi、Cuの含有量を管理することにより、アルミニウム合金の鋳造性、強度または延性が向上することを見出した。
(h) Inevitable impurities The inevitable impurities are not limited in type and content unless they adversely affect the properties of the aluminum alloy, but the present inventor has managed by controlling the contents of Si and Cu, which are inevitable impurities. The present inventors have found that the castability, strength or ductility of an aluminum alloy is improved.

すなわち、全体を100質量%としたときに、不可避不純物であるSiが0.5%以下であり、Cuが0.3%以下であると、好適である。   That is, when the whole is 100% by mass, it is preferable that Si, which is an inevitable impurity, is 0.5% or less and Cu is 0.3% or less.

Siは、アルミ地金等に含まれる不可避不純物であり、0.5%を超えて含有すると、Mg2Siが自然時効によりマトリックス中に析出し、アルミニウム合金の機械的特性が経時的に変化するため、好ましくない。 Si is an unavoidable impurity contained in aluminum ingots and the like. If it exceeds 0.5%, Mg 2 Si precipitates in the matrix by natural aging, and the mechanical properties of the aluminum alloy change over time. Therefore, it is not preferable.

Cuは、鋳造割れを助長すると共に、耐食性を阻害する元素である。従って、本発明に係るアルミニウム合金を構造部材として用いる場合、特に、0.3%以下とすることが好ましい。   Cu is an element that promotes casting cracking and inhibits corrosion resistance. Therefore, when using the aluminum alloy which concerns on this invention as a structural member, it is preferable to set it as 0.3% or less especially.

(2)用途
本発明のアルミニウム合金または鋳物の製造方法は、種々のアルミニウム合金製鋳物に利用できる。
(2) Applications The method for producing an aluminum alloy or casting according to the present invention can be used for various aluminum alloy castings.

例えば、自動車や二輪車の分野では、ボディ構造用部材、シャシ部材、ホイール、スペースフレーム、ステアリングホイール(芯金)、シートフレーム、サスペンションメンバー、エンジンブロック、ミッションケース、プーリ、オイルパン、シフトレバー、インスツルメントパネル、ドアインパクトパネル、吸気用サージタンク、ペダルブラケット、フロントシュラウドパネル等に本発明のアルミニウム合金やその製造方法を用いることにより、熱処理を施さずに低コストでそれらの各部材を製作できる。   For example, in the field of automobiles and motorcycles, body structural members, chassis members, wheels, space frames, steering wheels (core bars), seat frames, suspension members, engine blocks, transmission cases, pulleys, oil pans, shift levers, By using the aluminum alloy of the present invention and its manufacturing method for instrument panels, door impact panels, intake surge tanks, pedal brackets, front shroud panels, etc., these members can be manufactured at low cost without heat treatment. .

なお、本発明のアルミニウム合金は、鋳放し状態でも高強度、高延性であるが、鋳造後に冷間加工や熱処理を行っても勿論良い。   The aluminum alloy of the present invention has high strength and high ductility even in an as-cast state, but it is of course possible to perform cold working or heat treatment after casting.

次に、本発明に係る実施例を挙げて、本発明をより詳細に説明する。
(試験片の製作と試験)
(1)第1実施例
表1に示す試料No.1〜5と試料No.C1〜C7の合金組成をもつアルミニウム合金を用いて、各試料毎に、拘束長さを種々変化させた試験片を製作し、それぞれの鋳造割れ性を評価した。なお、表1では主成分のAlを省略して表示した(以下、同様)。
Next, the present invention will be described in more detail with reference to examples according to the present invention.
(Production and testing of test pieces)
(1) First Example Sample No. 1 shown in Table 1 was used. 1-5 and sample no. Using aluminum alloys having an alloy composition of C1 to C7, test pieces having various restraint lengths were produced for each sample, and the cast cracking properties were evaluated. In Table 1, the main component Al is omitted (hereinafter the same).

具体的には、図1に示すように、キャビティの断面が厚さ7mm、幅10mmで、その拘束長さを種々変更可能な金型を備えた縦型ダイカスト機により種々の試験片を製作し、鋳造割れ評価を行った。   Specifically, as shown in FIG. 1, various test pieces are manufactured by a vertical die-casting machine having a die having a cavity having a cross section of 7 mm in thickness and a width of 10 mm, and the constraint length of which can be variously changed. The casting crack was evaluated.

鋳造条件は、溶解温度750℃、金型温度50〜100℃、鋳造圧力63.7MPa、プランジャ速度0.6m/sとした。各溶湯をプランジャで加圧注入後(注入工程)、冷却速度を100℃/秒程度として凝固させた(凝固工程)。   The casting conditions were a melting temperature of 750 ° C., a mold temperature of 50 to 100 ° C., a casting pressure of 63.7 MPa, and a plunger speed of 0.6 m / s. Each molten metal was pressurized and injected with a plunger (injection step), and then solidified at a cooling rate of about 100 ° C./second (solidification step).

耐鋳造割れ性の評価は、割れが発生したときの拘束長さで評価した。その拘束長さが長いほど、鋳造割れを起こしにくい合金であることを示す。こうして得た各試験片の試験結果を図3に示した。   The cast cracking resistance was evaluated based on the restraint length when cracking occurred. It shows that it is an alloy which is hard to raise | generate a casting crack, so that the restraint length is long. The test results of the test pieces thus obtained are shown in FIG.

なお、この試験では、拘束長さ方向の中央部に、厚さ0.5mmx高さ10mmの断熱シートを上記キャビティの三方に貼り付け、鋳造割れの発生する位置をその部分に限定して行った。この断熱シートの三方張りの様子を、図1中のA−A断面図である図2に示す。   In this test, a heat insulating sheet having a thickness of 0.5 mm × a height of 10 mm was attached to the three portions of the cavity in the central portion in the restraining length direction, and the position where the casting crack occurred was limited to that portion. . The state of the three-sided tension of the heat insulating sheet is shown in FIG. 2 which is a cross-sectional view taken along the line AA in FIG.

(2)第2実施例
表1に示す試料No.6〜14と試料No.C8〜C10の合金組成をもつアルミニウム合金を用いて、縦型ダイカスト機により厚さ2m、幅50mm、長さ70mmの板状鋳物を作製した。
(2) Second Example Sample No. 2 shown in Table 1 was used. 6-14 and sample no. A plate-shaped casting having a thickness of 2 m, a width of 50 mm, and a length of 70 mm was produced by a vertical die casting machine using an aluminum alloy having an alloy composition of C8 to C10.

鋳造条件は、溶解温度750℃、金型温度50〜100℃、鋳造圧力63.7MPa、プランジャ速度1.4m/sとした。また、溶湯をキャビティ内に加圧注入後(注入工程)、冷却速度を100℃/秒程度として凝固させた(凝固工程)。   The casting conditions were a melting temperature of 750 ° C., a mold temperature of 50 to 100 ° C., a casting pressure of 63.7 MPa, and a plunger speed of 1.4 m / s. Further, the molten metal was injected into the cavity under pressure (injection step) and then solidified at a cooling rate of about 100 ° C./second (solidification step).

この鋳放しの状態の板状鋳物から、平面部が鋳肌のままの平板引張試験片を作製した。各試験片を用いて、引張強さ、0.2%耐力および破断伸びを調べた。この結果を表2に示す。なお、各試験片の引張試験は、島津製のオートグラフ引張試験機を用いて行い、各試験片について得られた応力−歪み線図から上記の各特性を求めた。   From this as-cast plate-like casting, a flat plate tensile test piece having a flat surface as cast surface was produced. Each specimen was examined for tensile strength, 0.2% yield strength and elongation at break. The results are shown in Table 2. In addition, the tensile test of each test piece was performed using the autograph tensile tester made from Shimadzu, and said each characteristic was calculated | required from the stress-strain diagram obtained about each test piece.

(3)第3実施例
表1に示す試料No.15〜19と試料No.C11、C12の合金組成をもつアルミニウム合金を用いて、第2実施例と同様にして、鋳放しの状態の板状鋳物を製作した。
(3) Third Example Sample No. shown in Table 1 was used. 15 to 19 and sample no. Using an aluminum alloy having an alloy composition of C11 and C12, an as-cast plate-like casting was manufactured in the same manner as in the second example.

ここでは、各板状鋳物の機械的特性の経時変化(人工時効)の影響を調べるために、鋳放しの状態の板状鋳物と、それを175℃で10時間加熱した後の板状鋳物とを用意し、各板状鋳物の硬さ(ビッカース硬さ)を調べた。その結果を表3に示す。   Here, in order to investigate the influence of the time-dependent change (artificial aging) of the mechanical properties of each plate-like casting, the plate-like casting in an as-cast state, and the plate-like casting after heating it at 175 ° C. for 10 hours, Was prepared, and the hardness (Vickers hardness) of each plate casting was examined. The results are shown in Table 3.

なお、ビッカース硬さは、明石製ビッカス硬度計を用いて、荷重5kgを30秒間ロードさせ、そのときできる圧跡サイズから換算して硬さを求めた。   In addition, Vickers hardness calculated | required hardness converted into the size of the impression mark made by loading 5 kg of loads for 30 second using the Akashi Bickus hardness meter.

(4)第4実施例
さらに、Al合金鋳物の耐鋳造割れ性とFe量との関係を詳細に調べた。つまり、表4に示す試料No.20〜26の合金組成からなる、種々の拘束長さの試験片を、第1実施例と同様に製作した。各試料はMg、MnおよびTiの含有量を同程度としつつ、Feの含有量を主に変化させたものである。耐鋳造割れ性を割れが発生したときの拘束長さで評価した点も、第1実施例の場合と同様である。こうして得た各試験片の試験結果を図4に示した。
(4) Fourth Example Further, the relationship between the cast cracking resistance of the Al alloy casting and the amount of Fe was examined in detail. That is, the sample Nos. Test pieces having various restraint lengths having an alloy composition of 20 to 26 were produced in the same manner as in the first example. In each sample, the contents of Fe were mainly changed while the contents of Mg, Mn, and Ti were made similar. The point that the casting crack resistance is evaluated by the restraint length when a crack occurs is the same as in the case of the first embodiment. The test results of the test pieces thus obtained are shown in FIG.

(5)第5実施例
Al合金溶湯の耐酸化性に及す合金組成の影響を調べた。先ず、表5に示す試料No.27および試料No.28の合金組成からなるAl合金溶湯を用意した。各溶湯は、予め重量を測定しておいた。これらの溶湯をアルミナ製坩堝に入れ、大気雰囲気中で750℃x5時間保持した。
(5) Fifth Example The influence of the alloy composition on the oxidation resistance of the Al alloy molten metal was examined. First, sample Nos. Shown in Table 5 were used. 27 and sample no. An Al alloy melt having an alloy composition of 28 was prepared. Each molten metal was measured in advance. These molten metals were put into an alumina crucible and held at 750 ° C. for 5 hours in an air atmosphere.

その溶湯を冷却後、凝固したAl合金の重量を測定した。そして、前記の加熱保持前後における重量差から、Al合金の酸化増量を求めた。この結果も併せて表5に示した。なお、表5には、前記加熱保持前の溶湯重量に対する酸化増量の割合(酸化増量率)を示した。   After the molten metal was cooled, the weight of the solidified Al alloy was measured. And the oxidation increase of Al alloy was calculated | required from the weight difference before and behind the said heating holding. The results are also shown in Table 5. Table 5 shows the rate of increase in oxidation (oxidation increase rate) relative to the weight of the molten metal before the heating and holding.

(評価)
(1)鋳造性
本発明の組成範囲内にある試料No.1〜5のアルミニウム合金は、試料No.C1〜C7に対し、いずれも割れの発生する拘束長さが十分に長いことが図3から分る。具体的には、試料No.1の拘束長さは50mm、試料No.2、3の拘束長さは70mm、試料No.4、5の拘束長さは80mmまで割れが発生しなかった。
(Evaluation)
(1) Castability Sample No. in the composition range of the present invention. The aluminum alloys 1 to 5 are sample Nos. It can be seen from FIG. 3 that the constraint length at which cracks occur is sufficiently long for C1 to C7. Specifically, Sample No. No. 1 has a restrained length of 50 mm, sample No. The restraint length of Nos. 2 and 3 is 70 mm. No cracking occurred until the restraint lengths of 4 and 5 were 80 mm.

これらから、Mn量を抑制しつつ、適量のFe量を加えることで、耐鋳造割れ性が大きく向上することが分った。また、Mg、MnおよびFeを本発明に係る組成範囲としつつ、核生成サイトとなるTiを添加することで、耐鋳造割れ性が一層向上することも分った。   From these, it was found that the cast cracking resistance was greatly improved by adding an appropriate amount of Fe while suppressing the amount of Mn. It has also been found that casting crack resistance is further improved by adding Ti as a nucleation site while Mg, Mn and Fe are in the composition range according to the present invention.

特に、表4および図4から明らかなように、Mg、MnおよびTiを本発明の好適な組成範囲内としつつ、Fe量を0.5〜0.8%含有させた試料No.222〜24のAl合金鋳物は、耐鋳造割れ性が一層向上した。   In particular, as is apparent from Table 4 and FIG. 4, sample No. 1 containing Mg, Mn and Ti within the preferred composition range of the present invention and containing 0.5 to 0.8% of Fe was used. The castings of 222 to 24 Al alloy were further improved in casting crack resistance.

(2)強度と延性
(a)試料No.6〜14は、いずれも本発明の組成範囲内にあるアルミニウム合金である。そして、表2から分るように、それらのアルミニウム合金は、いずれも、引張強さが250MPa以上で、0.2%耐力が130MPa以上であり、しかも、伸びが15%以上である。よって、鋳放し状態でも、本発明に係るアルミニウム合金は、十分な強度を維持しつつ優れた延性を発揮することが分った。特に、引張強さが300MPa以上、0.2%耐力が150MPa以上で、伸びが20%を超えるものも存在する。
(2) Strength and ductility
(a) Sample No. 6 to 14 are all aluminum alloys within the composition range of the present invention. As can be seen from Table 2, these aluminum alloys all have a tensile strength of 250 MPa or more, a 0.2% proof stress of 130 MPa or more, and an elongation of 15% or more. Therefore, it has been found that even in an as-cast state, the aluminum alloy according to the present invention exhibits excellent ductility while maintaining sufficient strength. In particular, there are those having a tensile strength of 300 MPa or more, a 0.2% proof stress of 150 MPa or more, and an elongation exceeding 20%.

また、試料No.6のアルミニウム合金にTiを含有させた試料No.7は、結晶粒がより微細化し、延性が一層向上した。   Sample No. Sample No. 6 containing Ti in the aluminum alloy No. 6 In No. 7, crystal grains were further refined and ductility was further improved.

(b)一方、本発明に係る組成範囲から外れる試料No.C8〜C10のアルミニウム合金は、強度と延性とを両立させることはできなかった。例えば、試料No.C8は、Mn量が0.6質量%を超えるため、引張強度や0.2%耐力は高いものの、伸びが10%未満で低延性であった。逆に、Mnが0.3質量%未満の試料No.C9やMgが4.0質量%未満である試料No.C10は、高延性であるものの強度が不十分であった。 (b) On the other hand, Sample No. deviating from the composition range according to the present invention. C8-C10 aluminum alloys were unable to achieve both strength and ductility. For example, sample No. C8 had a tensile strength and a 0.2% proof stress high because the amount of Mn exceeded 0.6% by mass, but had an elongation of less than 10% and low ductility. On the contrary, sample No. with Mn of less than 0.3% by mass was obtained. Sample No. C9 or Mg containing less than 4.0% by mass. Although C10 was highly ductile, its strength was insufficient.

(3)時効の影響
試料No.15〜19は、いずれも本発明の組成範囲内にあるアルミニウム合金である。表3から分るように、これらのアルミニウム合金は、鋳放しの状態と175℃で10時間加熱後との硬さの変化は僅かであった。
(3) Effect of aging Sample No. 15 to 19 are all aluminum alloys within the composition range of the present invention. As can be seen from Table 3, these aluminum alloys had little change in hardness between the as-cast state and after heating at 175 ° C. for 10 hours.

一方、試料No.C11、C12のアルミニウム合金は、Siが不可避的不純物の域を超えて多量に含むため、鋳放しの状態と175℃で10時間加熱後との硬さの変化が大きかった。つまり、時効硬化を生じており、そのような組成のアルミニウム合金では、自然時効による特性の変化が懸念される。   On the other hand, sample No. Since the C11 and C12 aluminum alloys contain a large amount of Si beyond the inevitable impurities, the change in hardness between the as-cast state and after heating at 175 ° C. for 10 hours was large. In other words, age hardening occurs, and there is a concern that the aluminum alloy having such a composition may change characteristics due to natural aging.

(4)耐酸化性
表5の試料No.27、28に示すように、Mg、Mn、TiおよびFeをそれぞれ本発明の好適な組成範囲内としつつ、さらに、Moを0.1〜0.2%含有させると、Al合金溶湯は、より優れた耐酸化性を示すことも明らかとなった。
(4) Oxidation resistance Sample No. in Table 5 27, 28, while Mg, Mn, Ti and Fe are each within the preferred composition range of the present invention, and further containing 0.1 to 0.2% of Mo, It was also revealed that it exhibits excellent oxidation resistance.

Figure 0004145242
Figure 0004145242

Figure 0004145242
Figure 0004145242

Figure 0004145242
Figure 0004145242

Figure 0004145242
Figure 0004145242

Figure 0004145242
Figure 0004145242

拘束長さを変更可能な鋳造割れ評価用金型を備えた縦型ダイカスト機を示す断面図である。It is sectional drawing which shows the vertical die-casting machine provided with the metal mold | die for casting crack evaluation which can change restraint length. 図1中のA−A断面図である。It is AA sectional drawing in FIG. 各試験片について、拘束長さと鋳造性との関係を示した棒グラフである。It is the bar graph which showed the relationship between restraint length and castability about each test piece. 鋳造割れ性とFe量との関係を示すグラフである。It is a graph which shows the relationship between casting cracking property and Fe amount.

Claims (12)

全体を100質量%(質量百分率)としたときに、4.0〜6.0%のマグネシウム(Mg)と、0.3〜0.5%のマンガン(Mn)と、0.5〜0.9%の鉄(Fe)と、0.1〜0.2%のチタン(Ti)とを含み、残部がアルミニウム(Al)と不可避不純物とからなることを特徴とする鋳物用アルミニウム合金。When the whole is 100 mass% (mass percentage), 4.0-6.0% magnesium (Mg), 0.3-0.5% manganese (Mn), 0.5-0. and 9% of iron (Fe), 0.1 to 0.2 percent of titanium (Ti) and a, foundry aluminum alloy balance being made of aluminum (Al) and unavoidable impurities. さらに、全体を100質量%としたときに、0.1〜0.7%のクロム(Cr)を含む請求項1に記載の鋳物用アルミニウム合金。  Furthermore, the aluminum alloy for castings of Claim 1 containing 0.1-0.7% of chromium (Cr) when the whole is 100 mass%. さらに、全体を100質量%としたときに、0.01〜0.05%のホウ素(B)を含む請求項1に記載の鋳物用アルミニウム合金。  Furthermore, the aluminum alloy for castings of Claim 1 containing 0.01-0.05% boron (B) when the whole is 100 mass%. さらに、全体を100質量%としたときに、0.001〜0.01%のベリリウム(Be)を含む請求項1に記載の鋳物用アルミニウム合金。  Furthermore, the aluminum alloy for castings of Claim 1 containing 0.001-0.01% of beryllium (Be) when the whole is 100 mass%. さらに、全体を100質量%としたときに、0.05〜0.3%のモリブデン(Mo)を含む請求項1に記載の鋳物用アルミニウム合金。  Furthermore, the aluminum alloy for castings of Claim 1 containing 0.05-0.3% molybdenum (Mo) when the whole is 100 mass%. 全体を100質量%としたときに、前記不可避不純物は、ケイ素(Si)が0.5%以下であり銅(Cu)が0.3%以下である請求項1に記載の鋳物用アルミニウム合金。  2. The aluminum alloy for casting according to claim 1, wherein the inevitable impurities are 0.5% or less of silicon (Si) and 0.3% or less of copper (Cu) when the total is 100 mass%. 前記Feは、0.5〜0.8質量%である請求項1に記載の鋳物用アルミニウム合金。  The aluminum alloy for casting according to claim 1, wherein the Fe is 0.5 to 0.8 mass%. 全体を100質量%としたときに、4.0〜6.0%のMgと、0.3〜0.5%のMnと、0.5〜0.9%のFeと、0.1〜0.2%のTiとを含み、残部がAlと不可避不純物とからなることを特徴とするアルミニウム合金製鋳物。When the whole is 100 mass%, 4.0 to 6.0% Mg, 0.3 to 0.5% Mn, 0.5 to 0.9% Fe, 0.1 to and a 0.2% Ti, aluminum alloy casting the balance being made of Al and unavoidable impurities. 鋳造後に熱処理を施さない鋳放し状態で、引張強さが250MPa以上である請求項8に記載のアルミニウム合金製鋳物。  The aluminum alloy casting according to claim 8, wherein the tensile strength is 250 MPa or more in an as-cast state in which heat treatment is not performed after casting. 鋳造後に熱処理を施さない鋳放し状態で、0.2%耐力が130MPa以上である請求項8に記載のアルミニウム合金製鋳物。  The aluminum alloy casting according to claim 8, wherein the 0.2% proof stress is 130 MPa or more in an as-cast state in which heat treatment is not performed after casting. 鋳造後に熱処理を施さない鋳放し状態で、破断伸びが13%以上である請求項8に記載のアルミニウム合金製鋳物。  The aluminum alloy casting according to claim 8, wherein the elongation at break is 13% or more in an as-cast state in which heat treatment is not performed after casting. 全体を100質量%としたときに、4.0〜6.0%のMgと0.3〜0.5%のMnと0.5〜0.9%のFeと0.1〜0.2%のTiとを含み残部がAlと不可避不純物とからなるアルミニウム合金の溶湯を鋳型に注入する注入工程と、
該注入工程後に該アルミニウム合金の溶湯を冷却凝固させる凝固工程とを備え、
請求項8〜11のいずれかに記載したアルミニウム合金製鋳物が得られることを特徴とするアルミニウム合金製鋳物の製造方法。
When the whole is 100 mass%, 4.0 to 6.0% Mg, 0.3 to 0.5% Mn, 0.5 to 0.9% Fe and 0.1 to 0.2 An injection process for injecting a molten aluminum alloy containing Al and unavoidable impurities into the mold.
After infusion step and a solidifying step of the molten metal of the aluminum alloy is cooling solidified,
A method for producing an aluminum alloy casting, wherein the aluminum alloy casting according to any one of claims 8 to 11 is obtained.
JP2003527140A 2001-09-04 2002-08-30 Aluminum alloy for casting, casting made of aluminum alloy and method for producing casting made of aluminum alloy Expired - Fee Related JP4145242B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001267932 2001-09-04
JP2001267932 2001-09-04
PCT/JP2002/008854 WO2003023080A1 (en) 2001-09-04 2002-08-30 Aluminum alloy, cast article of aluminum alloy, and method for producing cast article of aluminum alloy

Publications (2)

Publication Number Publication Date
JPWO2003023080A1 JPWO2003023080A1 (en) 2004-12-24
JP4145242B2 true JP4145242B2 (en) 2008-09-03

Family

ID=19093992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003527140A Expired - Fee Related JP4145242B2 (en) 2001-09-04 2002-08-30 Aluminum alloy for casting, casting made of aluminum alloy and method for producing casting made of aluminum alloy

Country Status (5)

Country Link
US (1) US20050000604A1 (en)
EP (1) EP1477577B1 (en)
JP (1) JP4145242B2 (en)
DE (1) DE60220835T2 (en)
WO (1) WO2003023080A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100393450C (en) * 2006-12-13 2008-06-11 中国铝业股份有限公司 Low temperature casting process of 3140 flat aluminium alloy ingot
CN100393451C (en) * 2006-12-13 2008-06-11 中国铝业股份有限公司 Casting process of 3140 flat aluminium alloy ingot
KR20120052666A (en) * 2010-11-16 2012-05-24 삼성전자주식회사 Bottom chassis, method for fabricating the same, and liquid crystal display including the same
US9038705B2 (en) * 2011-09-15 2015-05-26 Tohoku University Die-casting method, die-casting device, and die-cast article
US20150044090A1 (en) * 2012-02-29 2015-02-12 Nsk Ltd. Strength Evaluation Method of Die Casting Product and Die Casting Product
US10118219B2 (en) * 2013-10-09 2018-11-06 Tohoku University Semisolid casting/forging apparatus and method as well as a cast and forged product
CN105886856B (en) * 2014-12-29 2018-12-25 通力股份公司 A kind of aluminium alloy, the mechanical part being produced from it, with and application thereof
JP6900199B2 (en) * 2017-02-10 2021-07-07 エス・エス・アルミ株式会社 Manufacturing method of aluminum alloy for casting, aluminum alloy casting products and aluminum alloy casting products
GB2568310A (en) * 2017-11-14 2019-05-15 Jaguar Land Rover Ltd Aluminium alloy for high presure die casting
JP6864704B2 (en) * 2019-01-16 2021-04-28 株式会社豊田中央研究所 How to regenerate Al alloy
MX2021010903A (en) 2019-03-13 2021-10-01 Novelis Inc Age-hardenable and highly formable aluminum alloys, monolithic sheet made therof and clad aluminum alloy product comprising it.
CN115786785B (en) * 2022-11-17 2024-04-02 大连科天新材料有限公司 High-strength and high-toughness heat-treatment-free die-casting aluminum magnesium alloy, and preparation method and application thereof

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4636091B1 (en) * 1968-04-10 1971-10-22
DE2129352C3 (en) * 1971-06-14 1982-03-18 Honsel-Werke Ag, 5778 Meschede Use of AlMgSi casting alloys for cylinder heads subject to alternating thermal loads
JPS545810A (en) * 1977-06-16 1979-01-17 Kubota Ltd Aluminium alloy for casting
JPS62139857A (en) * 1985-12-12 1987-06-23 Mitsui Alum Kogyo Kk Manufacture of aluminum alloy casting
JPH0613748B2 (en) * 1986-03-17 1994-02-23 スカイアルミニウム株式会社 Method for producing stress corrosion resistant aluminum-magnesium alloy soft material
JPS62243748A (en) * 1986-04-15 1987-10-24 Kobe Steel Ltd Manufacture of aluminum alloy sheet excellent in can-openability
AU631037B2 (en) * 1989-12-28 1992-11-12 Kabushiki Kaisha Toyota Chuo Kenkyusho Hard and lubricant thin film of amorphous carbon-hydrogen-silicon, iron base metallic material coated therewith, and the process for producing the same
JP3286982B2 (en) * 1990-04-25 2002-05-27 菱化マックス株式会社 Mold material
JPH055149A (en) * 1991-01-28 1993-01-14 Sky Alum Co Ltd Hard aluminum alloy sheet for forming and its production
JP2818721B2 (en) * 1992-11-12 1998-10-30 川崎製鉄株式会社 Method for producing aluminum alloy sheet for body sheet and aluminum alloy sheet obtained by the method
US5667602A (en) * 1995-03-31 1997-09-16 Aluminum Company Of America Alloy for cast components
JP3453033B2 (en) * 1996-10-23 2003-10-06 株式会社豊田中央研究所 Coating member and method of manufacturing the same
EP0892077A1 (en) * 1997-07-18 1999-01-20 Aluminum Company Of America Cast aluminium alloy and components produced thereof
JP3398835B2 (en) * 1997-09-11 2003-04-21 日本軽金属株式会社 Automotive aluminum alloy sheet with excellent continuous resistance spot weldability
JP2002129271A (en) * 2000-10-23 2002-05-09 Toyota Central Res & Dev Lab Inc Aluminum alloy and method for producing casting made of aluminum alloy

Also Published As

Publication number Publication date
EP1477577A4 (en) 2004-11-17
WO2003023080A1 (en) 2003-03-20
EP1477577B1 (en) 2007-06-20
US20050000604A1 (en) 2005-01-06
EP1477577A1 (en) 2004-11-17
DE60220835D1 (en) 2007-08-02
JPWO2003023080A1 (en) 2004-12-24
DE60220835T2 (en) 2008-03-06

Similar Documents

Publication Publication Date Title
JP5344527B2 (en) Aluminum alloy for casting, aluminum alloy casting and method for producing the same
JP2005264301A (en) Casting aluminum alloy, casting of aluminum alloy and manufacturing method therefor
US9180515B2 (en) Magnesium alloy and magnesium-alloy cast product
JP5482787B2 (en) Al-Mg-Si aluminum alloy for casting having excellent proof stress and cast member comprising the same
CN114457263B (en) High-strength high-toughness high-heat-conductivity die-casting aluminum alloy and manufacturing method thereof
JP5703881B2 (en) High strength magnesium alloy and method for producing the same
JP2006322032A (en) Aluminum alloy for semi-solid casting, and aluminum-alloy casting and its manufacturing method
JP2001220639A (en) Aluminum alloy for casting
JP2006291327A (en) Heat-resistant magnesium alloy casting
KR20160011136A (en) Magnesium alloy having improved corrosion resistance and method for manufacturing magnesium alloy member using the same
JP2009108409A (en) Al-Mg TYPE ALUMINUM ALLOY FOR FORGING, WITH EXCELLENT TOUGHNESS, AND CAST MEMBER COMPOSED THEREOF
JP4145242B2 (en) Aluminum alloy for casting, casting made of aluminum alloy and method for producing casting made of aluminum alloy
EP1882754A1 (en) Aluminium alloy
KR20210130455A (en) Wrought magnesium alloys with high mechanical properties and method for preparing the same
JPH0967635A (en) Aluminum alloy casting excellent in strength and toughness, by high pressure casting, and its production
JP2008025003A (en) Casting aluminum alloy, and casting of the aluminum alloy
JP4285188B2 (en) Heat-resistant magnesium alloy for casting, casting made of magnesium alloy and method for producing the same
JP2005139552A (en) Aluminum alloy for casting, aluminum-alloy casting and method for manufacturing aluminum-alloy casting
JP2005240129A (en) Heat resistant magnesium alloy casting
JP2005187896A (en) Heat resistant magnesium alloy casting
WO2005056846A1 (en) Casting of aluminum based wrought alloys and aluminum based casting alloys
JP3840400B2 (en) Method for producing semi-melt molded billet of aluminum alloy for transportation equipment
JP7147647B2 (en) Aluminum alloy and aluminum alloy die-cast material
JP4155509B2 (en) Aluminum alloy for casting, casting made of aluminum alloy and method for producing the same
JP4121266B2 (en) Method for producing semi-molten billet of aluminum alloy for transportation equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140627

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees