JPH0613748B2 - Method for producing stress corrosion resistant aluminum-magnesium alloy soft material - Google Patents

Method for producing stress corrosion resistant aluminum-magnesium alloy soft material

Info

Publication number
JPH0613748B2
JPH0613748B2 JP5892586A JP5892586A JPH0613748B2 JP H0613748 B2 JPH0613748 B2 JP H0613748B2 JP 5892586 A JP5892586 A JP 5892586A JP 5892586 A JP5892586 A JP 5892586A JP H0613748 B2 JPH0613748 B2 JP H0613748B2
Authority
JP
Japan
Prior art keywords
stress corrosion
soft material
alloy
corrosion resistance
magnesium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5892586A
Other languages
Japanese (ja)
Other versions
JPS62214163A (en
Inventor
健三 岡田
宗太郎 関田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP5892586A priority Critical patent/JPH0613748B2/en
Publication of JPS62214163A publication Critical patent/JPS62214163A/en
Publication of JPH0613748B2 publication Critical patent/JPH0613748B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明はLNGタンクなどの各種大型溶接構造材など
に使用されるAl−Mg合金、特に高強度化のためにM
g量を5.3%以上と高強度化したAl−Mg合金軟質材
の耐応力腐食性を向上させる方法に関するものである。
TECHNICAL FIELD The present invention relates to an Al—Mg alloy used for various large-scale welded structural materials such as LNG tanks, and in particular M for increasing strength.
The present invention relates to a method for improving the stress corrosion resistance of an Al-Mg alloy soft material having a high g content of 5.3% or more.

従来の技術 従来の代表的なAl−Mg合金である5083合金は、非熱
処理型高強度材であることから、近年のAl溶接技術の
進歩に伴なってLNG(液化天然ガス)の陸上貯蔵タン
クや、タンカー用タンクなどの大型溶接構造物などに広
く用いられるようになっているが、最近では材料使用量
低減によるコストダウンを目的として、この種の合金の
強度をさらに向上させて薄肉化を図ることが強く望まれ
ている。
2. Description of the Related Art Conventional 5083 alloy, which is a typical Al-Mg alloy, is a high-strength non-heat treatment material. Therefore, LNG (liquefied natural gas) land storage tanks have advanced along with recent advances in Al welding technology. It has been widely used for large welded structures such as tanker tanks, but recently, for the purpose of cost reduction by reducing the amount of materials used, the strength of this type of alloy has been further improved to reduce the wall thickness. There is a strong desire for this.

ところで5083合金は、JIS規格によればMg4.0〜4.9
%、Mn0.30〜1.0%、Cr0.05〜0.25%を含有し、残
部がAlおよび不可避的不純物よりなるものであって、
その他不純物成分として、Cu0.10%以下、Si0.40%
以下、Fe0.40%以下、Zn0.25%以下、Ti0.15%以
下が許容されている。
By the way, according to JIS standard, 5083 alloy has Mg4.0-4.9
%, Mn 0.30 to 1.0%, Cr 0.05 to 0.25%, and the balance being Al and inevitable impurities,
Other impurity components: Cu 0.10% or less, Si 0.40%
Below, Fe 0.40% or less, Zn 0.25% or less, and Ti 0.15% or less are allowed.

このような5083合金の強度に寄与している合金元素は主
としてMg、Mn、Crであり、これらのうちでも特に
Mgの含有量が高いことから、Mgの強度に対する寄与
が最も高い。そこでAl−Mg合金の強度を従来の5083
合金よりも高めるためには、Mg添加量を5083合金の場
合よりも増量して5.3%以上とすることが考えられ、本
願発明者等も既に特願昭59−195516号において
そのようにMg量を増量することにより高強度化したA
l−Mg合金を提案している。
The alloying elements that contribute to the strength of the 5083 alloy are mainly Mg, Mn, and Cr. Among these, the Mg content is particularly high, so that the contribution of Mg to the strength is highest. Therefore, the strength of Al-Mg alloy is
In order to raise the Mg content higher than that of the alloy, it is considered that the Mg addition amount is increased to 5.3% or more as compared with the case of the 5083 alloy, and the inventors of the present application have already disclosed such a Mg content in Japanese Patent Application No. 59-195516. Strengthened by increasing the amount of A
An l-Mg alloy is proposed.

発明が解決すべき問題点 Al−Mg合金は一般に耐食性が優れてはいるが、Mg
量が増せば応力腐食割れが生じ易くなることが明らかに
されており、一方硬質材(例えばH12材)よりも軟質材
(O材)の方が応力腐食割れが生じにくいことが知られ
ているが、Dixら(文献名Corrosion15[2](1959)P5
5〜)によれば、Mgが5%を越えれば軟質材でも応力
腐食割れの可能性があることが明らかにされている。種
々の環境下でしかも応力下で使用されるLNGタンク等
の構造物においては、安全性確保のためには応力腐食割
れの可能性のある素材を使用することは避けねばなら
ず、したがって高強度化のためにMgを5.3%以上添加
したAl−Mg合成軟質材においても、それを実際にL
NGタンク等に使用するためには、応力腐食割れの可能
性を排除しておかなければならない。
Problems to be Solved by the Invention Al-Mg alloys generally have excellent corrosion resistance, but Mg
It has been clarified that stress corrosion cracking is likely to occur when the amount is increased, while it is known that the soft material (O material) is less likely to undergo stress corrosion cracking than the hard material (for example, H12 material). , Dix et al. (Reference name Corrosion 15 [2] (1959) P5
According to 5), it is clear that stress corrosion cracking may occur even in a soft material if Mg exceeds 5%. For structures such as LNG tanks that are used under various environments and under stress, it is necessary to avoid using materials that may cause stress corrosion cracking in order to ensure safety, and therefore high strength. Even in the case of Al-Mg synthetic soft material with more than 5.3% Mg added to make it
For use in NG tanks and the like, the possibility of stress corrosion cracking must be eliminated.

一般にMgを過飽和固溶体の状態で含有する高Mg合金
においては、20年にも及ぶような長期の経時変化により
Mgがβ相(AlMg)の形で粒界や辷り線に析出
する傾向があり、特に粒界に析出した場合、粒界が局部
的に腐食されやすくなって、耐応力腐食性が低下するこ
とが知られている。上記のDixらによれば、このよう
な長期の経時変化は、増感処理と称される100〜120℃×
1週間の熱処理によりほぼ代用できるとされており、し
たがってこのような増感処理を行なった状態において応
力腐食割れ試験を行なえば、耐応力腐食性を判定するこ
とができる。
Generally, in a high-Mg alloy containing Mg in a supersaturated solid solution state, Mg tends to precipitate in the β phase (Al 3 Mg 2 ) at grain boundaries and on the trailing line due to long-term aging such as 20 years. It is known that, particularly when it precipitates at the grain boundary, the grain boundary is likely to be locally corroded, and the stress corrosion resistance decreases. According to the above-mentioned Dix et al., Such a long-term change with time is referred to as sensitization treatment at 100 to 120 ° C.
It is said that the heat treatment for one week can be used almost as a substitute, and therefore a stress corrosion cracking test can be performed in a state where such a sensitization treatment is performed to determine the stress corrosion resistance.

前述のような長期の経時変化による粒界へのβ相の析出
量を少なくするためには、総Mg量を制限して過飽和に
固溶しているMg量を少なくすることが有効であるが、
この方法は、Mg量を増量することによりAl−Mg合
金の強度向上を図るこの発明の目的には沿わない。また
一方、β相の粒内析出を促進してβ相の粒界析出を防止
するために、Zr、Vのような遷移金属を添加して、こ
れらの元素を含む析出物を粒内に均一に分散させる方法
も行なわれているが、この方法の場合、添加合金元素コ
ストの上昇を招いたり、また添加量によっては鋳塊に粗
大な金属間化合物が生じて組織の均一性を阻害したりす
る問題を招くことがある。
In order to reduce the amount of β-phase precipitation on the grain boundaries due to the long-term aging as described above, it is effective to limit the total amount of Mg and reduce the amount of Mg dissolved in supersaturation. ,
This method does not meet the object of the present invention to improve the strength of the Al-Mg alloy by increasing the amount of Mg. On the other hand, in order to promote the precipitation of the β phase in the grain and prevent the precipitation of the grain boundary of the β phase, a transition metal such as Zr or V is added to make the precipitate containing these elements uniform in the grain. However, in the case of this method, it causes an increase in the cost of alloying elements to be added, and depending on the amount added, coarse intermetallic compounds are generated in the ingot, which hinders the homogeneity of the structure. May lead to problems.

この発明は以上の事情に鑑みてなされたもので、Mgを
5.3%以上含有する高Mg系のAl−Mg合金軟質材に
おいて、上述のような諸問題を招くことなく、粒界への
β相(AlMg)の析出を極力抑制して耐応力腐食
性を充分に向上させる方法を提供することを基本的な目
的とするものである。
The present invention has been made in view of the above circumstances.
In a high Mg-based Al-Mg alloy soft material containing 5.3% or more, precipitation of β phase (Al 3 Mg 2 ) at grain boundaries is suppressed as much as possible without causing the above problems, and stress corrosion resistance. The basic purpose is to provide a method for sufficiently improving the sex.

問題点を解決するための手段 この発明は、基本的には、Mgを5.3%以上含有しかつ
Fe、Mnを含有する高Mg系のAl−Mg合金軟質材
(O材)を製造するにあたって、圧延および必要に応じ
て仕上焼鈍を行なって、所要の板厚の軟質材に仕上げた
後に、さらに特定の条件で冷間加工歪を与えることによ
ってβ相の粒内析出を従来法以上に積極的に促進させ、
これにより長期の経時変化による応力腐食性の低下を防
止するようにしたものである。
Means for Solving the Problems This invention is basically for producing a high Mg-based Al—Mg alloy soft material (O material) containing Mg in an amount of 5.3% or more and containing Fe and Mn. After rolling and finishing annealing as necessary to finish the soft material with the required plate thickness, cold working strain is further applied under specific conditions to make β-phase intragranular precipitation more aggressive than the conventional method. To promote
This is intended to prevent the deterioration of stress corrosion resistance due to long-term aging.

すなわち本願発明者等は、5.3〜9%のMgを含有しか
つ所定量のMn、Feを含有するAl−Mg合金軟質材
について、引張矯正により永久歪で0.5%を越え2.0%ま
での冷間加工歪を付与すれば、長期経時変化相当の変
化、例えば120℃×1週間の増感処理後においても粒内
へのβ相の均一な析出が促進されて、耐応力腐食性が著
しく改善されることを見出し、この発明をなすに至った
のである。
That is, the inventors of the present application have found that, with respect to an Al-Mg alloy soft material containing 5.3 to 9% of Mg and containing a predetermined amount of Mn and Fe, a cold set of 0.5% to 2.0% in permanent set by tensile straightening. When a processing strain is applied, a change corresponding to long-term aging is promoted, for example, even after sensitizing treatment at 120 ° C for 1 week, uniform precipitation of β phase in the grains is promoted, and stress corrosion resistance is significantly improved. Therefore, they have come to make the present invention.

具体的には、本願の第1発明のアルミニウム−マグネシ
ウム合金軟質材の製造方法は、Mg5.3〜9%、Mn0.0
5〜1.0%、Cr0.05〜0.3%、Ti0.005〜0.2%、Fe
0.25〜1.00%を含有し、残部がAlおよび不可避的不純
物よりなる合金を素材とし、圧延および必要に応じて仕
上焼鈍を施して、所要の板厚を有する軟質材に仕上げた
後、引張矯正により永久歪で0.5%を越え2.0%以下の冷
間加工歪を付与して耐応力腐食性を向上させることを特
徴とするものである。
Specifically, the manufacturing method of the aluminum-magnesium alloy soft material of the first invention of the present application is Mg5.3-9%, Mn0.0.
5 to 1.0%, Cr 0.05 to 0.3%, Ti 0.005 to 0.2%, Fe
An alloy containing 0.25 to 1.00% with the balance Al and unavoidable impurities is used as a raw material, rolled and optionally subjected to finish annealing to finish a soft material having a required plate thickness, and then by tensile straightening. It is characterized by imparting a cold work strain of more than 0.5% and not more than 2.0% in terms of permanent strain to improve stress corrosion resistance.

また第2発明のアルミニウム−マグネシウム合金軟質材
の製造方法は、前記第1発明で規定した成分のほか、さ
らにCuを0.05〜0.3%含有する合金を素材とし、前記
同様なプロセスを適用するものである。
The method for producing a soft aluminum-magnesium alloy material according to the second aspect of the present invention is to apply the same process as described above, using an alloy containing 0.05 to 0.3% of Cu in addition to the components specified in the first aspect of the invention. is there.

作用 Mg含有量が5.3〜9%のAl−Mg合金に添加された
Mn、Feは、鋳造凝固過程および均熱・熱間圧延工程
を経て、Al−Fe−Mn系の第二相化合物として均
一、かつ微細に分散される。このように第二相化合物が
均一に分散された金属組織に引張り荷重を付与すれば、
冷間加工歪が辷り変形として粒界ばかりに集中すること
なく第二相化合物の分布と対応して均一に分配される。
その結果、長期の経時変化、あるいはそれに相当する例
えば120℃×1週間の増感処理後においても、β相(A
Mg)の析出が粒界のみならず粒内へも均一に行
なわれることになる。したがってβ相の粒界への優先析
出に起因する応力腐食割れの発生の可能性が少なくな
り、耐応力腐食性が向上するのである。
Action Mn and Fe added to an Al-Mg alloy having a Mg content of 5.3 to 9% are uniform as an Al-Fe-Mn-based second phase compound through a casting solidification process and a soaking / hot rolling process. , And finely dispersed. Thus, if a tensile load is applied to the metal structure in which the second phase compound is uniformly dispersed,
The cold-working strain does not concentrate as grain deformation at grain boundaries but is uniformly distributed corresponding to the distribution of the second phase compound.
As a result, the β phase (A
The precipitation of l 3 Mg 2 ) will be carried out uniformly not only at the grain boundaries but also within the grains. Therefore, the possibility of occurrence of stress corrosion cracking due to preferential precipitation of β phase at grain boundaries is reduced, and stress corrosion resistance is improved.

ここで、所要の板厚とされかつ軟質材とされたAl−M
g合金板に対して付与する引張矯正による冷間加工歪
は、永久歪にして0.5%を越え2%以下とする必要があ
る。0.5%以下では、β相の粒内への均一析出を促進す
る効果が得られず、0.5%を越えた場合にはじめて粒内
への均一析出を促進することができる。一方、2%を越
える永久歪を与えれば、軟質材としての特性が損われる
ばかりでなく、剪断帯が生じてβ相の析出も不均一とな
り、耐応力腐食性の向上に好ましくなくなる。したがっ
て0.5%を越えて2.0%以下の永久歪を与えるものとし
た。
Here, Al-M having a required plate thickness and a soft material
The cold-working strain applied to the g-alloy plate by the straightening must be more than 0.5% and not more than 2% in terms of permanent set. If it is 0.5% or less, the effect of promoting uniform precipitation of β phase in the grains cannot be obtained, and if it exceeds 0.5%, uniform precipitation in grains can be promoted only. On the other hand, if a permanent strain of more than 2% is given, not only the characteristics as a soft material are impaired, but also a shear band is generated and the precipitation of β phase becomes uneven, which is not preferable for improving the stress corrosion resistance. Therefore, a permanent set of more than 0.5% and 2.0% or less is set.

ここで、上述のように引張矯正により冷間加工歪を与え
る前の工程、すなわち所要の厚みの軟質材を製造する方
法は一般的なものであれば良く、例えばDC鋳造法ある
いは半連続鋳造法、連続鋳造法などによって常法にした
がって鋳塊を鋳造した後、必要に応じて鋳塊の均質化処
理を例えば400〜500℃の温度で行ない、次いで400〜500
℃に加熱して熱間圧延を行ない、その熱間圧延のみによ
り最終板厚に仕上げる方法、あるいは前記同様に熱間圧
延を施した後、必要に応じて300〜500℃で中間焼鈍を行
ない、さらに冷間圧延を施して最終板厚に仕上げ、その
後軟質材とするために300〜500℃の仕上焼鈍を行なう方
法を適用すれば良い。但し、熱間圧延のみによって最終
板厚に仕上げる場合であっても、熱間圧延最終温度が35
0℃未満の場合には、軟質材とするために300〜500℃の
温度で仕上焼鈍を施す必要がある。
Here, the step before applying the cold working strain by the straightening of the tension as described above, that is, the method for producing the soft material having the required thickness may be a general method, for example, the DC casting method or the semi-continuous casting method. , After casting the ingot according to a conventional method such as continuous casting method, if necessary, homogenization treatment of the ingot at a temperature of 400 ~ 500 ℃, for example 400 ~ 500
Performing hot rolling by heating to ℃, a method of finishing the final plate thickness by only the hot rolling, or after performing hot rolling in the same manner as described above, perform intermediate annealing at 300 ~ 500 ℃, if necessary, Further, a method may be applied in which cold rolling is performed to finish the final plate thickness, and then finish annealing is performed at 300 to 500 ° C. to obtain a soft material. However, even when finishing to the final plate thickness only by hot rolling, the final temperature of hot rolling is 35
If the temperature is lower than 0 ° C, it is necessary to perform finish annealing at a temperature of 300 to 500 ° C to obtain a soft material.

次にこの発明で使用する合金の成分組成の限定理由につ
いて説明する。
Next, the reasons for limiting the component composition of the alloy used in the present invention will be described.

Mg: Mgは非熱処理型Al合金において高強度化のために有
効な元素であるが、5.3%未満の量ではこの発明で目的
とする程度の高強度が達成されず、また5.3%未満のM
g量では軟質材の場合長期の経時変化による耐応力腐食
性の低下はさほど問題とならない。一方9%を越えてM
gを増量しても強度向上への寄与は少なくなり、経済的
でなくなるから、5.3〜9%の範囲に限定した。なおこ
の範囲内でも特に高強度を得るためには、Mgを6%以
上、さらには7%以上とすることが望ましい。
Mg: Mg is an element effective for increasing the strength in the non-heat treatment type Al alloy, but if the amount is less than 5.3%, the high strength as intended in the present invention cannot be achieved, and the M content is less than 5.3%.
In the case of a soft material, a decrease in stress corrosion resistance due to long-term aging does not pose a serious problem in terms of g. On the other hand, over 9% M
Even if the amount of g is increased, the contribution to the improvement of strength is reduced and it becomes uneconomical. Therefore, the range is limited to 5.3 to 9%. In order to obtain a particularly high strength within this range, it is desirable that the Mg content be 6% or more, and further 7% or more.

Mn: Mnは強度、特に耐力の確保に有効であるとともに、前
述のようにFeとの共存により鋳造以降の各種熱履歴過
程において高温で安定なAl−Fe−Mn系の第二相化
合物を生成しかつ熱間圧延や冷間圧延工程でこれが均一
に破壊、分散されることにより耐応力腐食性の向上に寄
与する。すなわちこの第二相化合物が微細かつ均一に分
散された状態で、前述のように引張矯正により冷間加工
歪を永久歪で0.5%を越え2%以下付与することによ
り、その歪が粒界のみならず粒内にも均一に分配され、
これにより長期の経時変化によるβ相の析出が粒界のみ
ならず粒内にも均一に行なわれるのである。ここで、M
n量が0.05%未満ではこのような効果が得られず、一方
Mnが1.0%を越えれば化合物晶出量が多くなって、時
には巨大金属間化合物が晶出されて健全な鋳塊が得られ
ず、圧延材の品質の均一性を損なうおそれがあるから、
Mnは0.05〜1.0%の範囲に限定した。
Mn: Mn is effective for securing strength, especially proof stress, and as described above, coexistence with Fe produces a stable second phase compound of Al-Fe-Mn system at high temperature in various thermal history processes after casting. In addition, it contributes to the improvement of stress corrosion resistance by being uniformly broken and dispersed in the hot rolling or cold rolling process. That is, in the state in which the second phase compound is finely and uniformly dispersed, the cold working strain is imparted with a permanent strain of more than 0.5% and 2% or less by the tensile straightening as described above, and the strain is only the grain boundary. Not evenly distributed in the grains,
As a result, β-phase precipitation due to long-term aging is performed uniformly not only at grain boundaries but also within grains. Where M
If the amount of n is less than 0.05%, such an effect cannot be obtained. On the other hand, if the amount of Mn exceeds 1.0%, the amount of compound crystallization increases, and sometimes the giant intermetallic compound is crystallized to obtain a sound ingot. The quality of the rolled material may be impaired,
Mn was limited to the range of 0.05 to 1.0%.

Fe: FeもMnとの共存によりAl−Fe−Mn系化合物を
晶出させ、前記同様に耐応力腐食性を向上させるに有効
な元素である。Feが0.25%未満ではその効果が充分に
得られず、一方1.0%を越えれば化合物の分布数が多く
なり過ぎて延性、靱性を劣化させるおそれがある。した
がってFeは0.25〜1.0%の範囲内とした。
Fe: Fe is also an element effective for crystallizing an Al-Fe-Mn compound by coexistence with Mn and improving the stress corrosion resistance similarly to the above. If Fe is less than 0.25%, the effect cannot be sufficiently obtained, while if it exceeds 1.0%, the distribution number of the compound becomes too large and ductility and toughness may be deteriorated. Therefore, Fe is set within the range of 0.25 to 1.0%.

Cr: Crも強度、特に耐力の確保と耐応力腐食性の向上に有
効な元素であるが、0.05%未満ではその効果が充分に得
られず、一方0.3%を越えれば鋳塊に巨大な金属間化合
物が晶出されて、圧延材品質の均一性を損なうおそれが
あるから、0.05〜0.3%の範囲内に限定した。
Cr: Cr is also an element effective for securing strength, particularly for securing proof stress and improving stress corrosion resistance, but if it is less than 0.05%, its effect is not sufficiently obtained, while if it exceeds 0.3%, a large metal in the ingot is formed. Since the intermetallic compound may be crystallized and impair the homogeneity of the quality of the rolled material, it is limited to the range of 0.05 to 0.3%.

Ti: Tiは鋳塊の結晶粒微細化に効果がある元素であるが、
0.005%未満ではその効果が認められず、一方0.2%を越
えれば靱性を劣化させるから、Tiは0.005〜0.2%の範
囲内とした。なおTiの添加と併せてBを添加すれば鋳
塊結晶粒微細化の効果は一層顕著となる。但しBが0.00
1%未満ではその効果が少なく、一方Bが0.1%を越えれ
ば靱性が低下するから、BをTiと複合添加する場合の
B量は0.001〜0.1%の範囲内とすることが好ましい。
Ti: Ti is an element effective in refining the crystal grains of the ingot,
If it is less than 0.005%, the effect is not recognized, while if it exceeds 0.2%, the toughness is deteriorated. Therefore, Ti is set within the range of 0.005 to 0.2%. If B is added in addition to Ti, the effect of refining the ingot crystal grains becomes more remarkable. However, B is 0.00
If it is less than 1%, its effect is small, and if B exceeds 0.1%, the toughness is lowered. Therefore, when B is added in combination with Ti, the amount of B is preferably in the range of 0.001 to 0.1%.

Cu: Cuは耐応力腐食性の向上に有効な元素であり、したが
って本願第2発明において添加することとした。但しC
uが0.05%未満ではその効果が認められず、一方0.30%
を越えれば高濃度にMgを含有するAl−Mg合金では
熱間加工性を損なうおそれがあるから、第2発明のCu
添加量は0.05〜0.30%の範囲内とした。
Cu: Cu is an element effective for improving the stress corrosion resistance, and is therefore added in the second invention of the present application. However, C
If u is less than 0.05%, the effect is not observed, while 0.30%
If it exceeds the range, the hot workability of the Al-Mg alloy containing Mg in a high concentration may be impaired.
The amount added was in the range of 0.05 to 0.30%.

このほか、Al合金においてはZn、Si等が不純物と
して含有されるのが通常であるが、Znが0.50%を越え
れば溶接熱影響部の耐食性に問題が生じ、またSiが0.
40%を越えればAl−Mg−Si系共晶化合物が増加
し、これが大入熱溶接において溶融して熱影響部のミク
ロ割れを招き易くなる。したがってZnは0.50%以下、
Siは0.40%以下に規制することが好ましい。
In addition, Zn, Si, etc. are usually contained as impurities in Al alloys, but if Zn exceeds 0.50%, a problem occurs in the corrosion resistance of the weld heat affected zone, and Si is less than 0.
If it exceeds 40%, the amount of Al-Mg-Si eutectic compound increases, and this tends to melt in high heat input welding and cause microcracks in the heat affected zone. Therefore, Zn is 0.50% or less,
It is preferable to control Si to 0.40% or less.

なおこの発明の合金は易酸化性のMgを高濃度に含む合
金であるから、合金の溶製、鋳造時における溶湯酸化を
防止するため、Beを0.0001〜0.002%程度添加してお
くことが好ましい。
Since the alloy of the present invention is an alloy containing easily oxidizable Mg in a high concentration, it is preferable to add Be in an amount of about 0.0001 to 0.002% in order to prevent molten metal oxidation during melting and casting of the alloy. .

実施例 第1表の合金番号1〜6に示される成分組成の合金を、
Beを1〜2ppm添加して溶製し、金型により厚さ40mm、
幅110mm、高さ150mmのインゴッドに鋳造した。次いでそ
のインゴッドに対し、460℃×30時間以上の均質化熱処
理を施した後、厚さ方向および幅方向の両面を片側1mm
ずつ面削して、厚さ38mm、幅108mm、高さ150mmとした。
その面削後のインゴッドを460℃にて1時間加熱後、実
験用圧延機による1パスの圧下量2mmの圧延と、460℃
炉中再加熱とを繰返して、初期厚38mmから5mmまで熱間
圧延を行ない、さらに5mm厚から1mm厚まで冷間圧延を
行なった。冷間圧延後の各板に対し350℃×5時間の仕
上焼鈍を施してO材(軟質材)とした後、引張試験機に
て永久歪で0.5%、1%、2%の種々の引張歪を加え
た。それらの引張歪を与えた各板および引張歪を与えな
い板(O材のまま)について、120℃×1週間保持の増
感処理を行ない、β相の析出分布状況を調べた。
EXAMPLES Alloys having the compositional compositions shown in Alloy Nos. 1 to 6 in Table 1 were
1 to 2 ppm of Be is added and melted, and the thickness is 40 mm depending on the mold.
It was cast into an ingot with a width of 110 mm and a height of 150 mm. Then, after subjecting the ingot to homogenization heat treatment at 460 ° C for 30 hours or more, both sides in the thickness and width directions are 1 mm on each side.
Each was chamfered to a thickness of 38 mm, a width of 108 mm, and a height of 150 mm.
After the ingot after the chamfering is heated at 460 ° C for 1 hour, it is rolled at a pass of 2 mm in one pass by an experimental rolling mill and 460 ° C.
Reheating in the furnace was repeated, hot rolling was performed from an initial thickness of 38 mm to 5 mm, and cold rolling was further performed from 5 mm to 1 mm. After cold-rolling, each plate was subjected to finish annealing at 350 ° C for 5 hours to make O material (soft material), and then various tensile tests of 0.5%, 1% and 2% of permanent strain were made by a tensile tester. Added distortion. A sensitizing treatment of 120 ° C. for 1 week was performed on each of the plates to which the tensile strain was applied and the plate to which the tensile strain was not applied (as it was the O material) to examine the β-phase precipitation distribution state.

その結果、この発明の成分組成の合金1,2において
は、0.5%を越える1%、2%の永久歪を与えた場合に
は、合金番号4,5,6のZr、Vなどの遷移金属を添
加してβ相の粒内析出を図った従来の方法による例と同
様に増感処理後のβ相の析出が粒内に均一に生じている
のに対し、Al−Mg純2元系の合金3においては、β
相は一定して粒界に析出していることが判明した。
As a result, in alloys 1 and 2 of the composition of the present invention, when a permanent strain of 1% or 2% exceeding 0.5% is applied, transition metals such as Zr and V of alloy numbers 4, 5 and 6 are given. In the same manner as in the conventional method in which the β phase is precipitated in the grain by the addition of β, the precipitation of the β phase after the sensitization treatment is uniformly generated in the grain, while the pure Al-Mg binary system is used. In alloy 3 of
It was found that the phases were constantly deposited at the grain boundaries.

第1図に、引張永久歪付与および増感処理後の各合金板
のβ相の析出状況の代表的な例を示す。
FIG. 1 shows a typical example of the β-phase precipitation state of each alloy sheet after the tensile set and the sensitization treatment.

次いで、前述の各合金1〜6のうち、合金1〜3のO材
板(永久歪を付与していないもの)およびこれらに1
%、2%、3%の永久歪を引張りにより付与した板につ
いて、前記同様な増感処理を施した後、U字曲げ試験片
を用いて塩水交互浸漬による応力腐食割れ試験を施し
た。その結果を第2表に示す。なおこの応力腐食割れ試
験で用いたU字曲げ試験片は、サンプル採取方向LT方
向、曲げ半径9mmのものであり、また塩水としては30℃
の3.5%NaCl水溶液を用い、交互浸漬は10分間浸漬
−50分間乾燥の繰返しで、6ケ月行ない、その6ケ月後
の割れ発生状況を調べた。第2表中の試験結果の[n/
m]は、試験サンプル数m、割れ発生サンプル数nで表
わした。
Next, among the alloys 1 to 6 described above, the O material plates of alloys 1 to 3 (without permanent set) and 1
%, 2%, 3%, the plate was stretched, and then subjected to the same sensitization treatment as described above, and then subjected to a stress corrosion cracking test by alternate immersion in salt water using a U-shaped bending test piece. The results are shown in Table 2. The U-shaped bending test piece used in this stress corrosion cracking test had a bending direction of 9 mm and a sampling direction of LT, and a salt water of 30 ° C.
Alternate immersion was repeated for 10 minutes and 50 minutes for drying for 6 months, and the state of cracking after 6 months was examined. [N / of the test results in Table 2
m] was represented by the number of test samples m and the number of crack generation samples n.

第2表に示すように、この発明の成分組成の合金1およ
び合金2においては、O材に1%、2%の永久歪を与え
た状態で、長期の経時変化に相当する増感処理を施して
も応力腐食割れの発生が全く認められないのに対し、A
l−Mg純二元系の合金3では、応力腐食割れが著しく
発生し易い状況にあることが明らかである。
As shown in Table 2, in the alloys 1 and 2 having the component composition of the present invention, the sensitizing treatment corresponding to the long-term aging was performed in the state where the O material was subjected to permanent strain of 1% and 2%. Although no stress corrosion cracking was observed at all when applied, A
It is clear that the 1-Mg pure binary alloy 3 is in a state where stress corrosion cracking is likely to occur remarkably.

発明の効果 以上の実施例からも明らかなように、この発明の方法に
よれば、高強度化を図るためにMgを5.3〜9%と高濃
度に含有させたAl−Mg合金軟質材を製造するにあた
って、長期の経時変化によってもβ相が粒内に均一に析
出するようにして、耐応力腐食性を充分に向上させたA
l−Mg合金軟質材を得ることができる。したがってこ
の発明の方法により得られたAl−Mg合金軟質材は、
LNGタンクで代表される大型構造物など、高い強度と
優れた耐応力腐食性が要求される構造用材料に最適なも
のである。
EFFECTS OF THE INVENTION As is clear from the above examples, according to the method of the present invention, an Al-Mg alloy soft material containing Mg in a high concentration of 5.3 to 9% for the purpose of increasing strength is manufactured. In this case, the β phase was allowed to precipitate uniformly in the grains even with a long-term aging, so that the stress corrosion resistance was sufficiently improved.
An l-Mg alloy soft material can be obtained. Therefore, the Al-Mg alloy soft material obtained by the method of the present invention is
It is suitable for structural materials that require high strength and excellent stress corrosion resistance, such as large structures represented by LNG tanks.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の実施例による各合金板の引張りによ
る冷間永久歪付与および増感処理後のβ相の析出状況を
示すための金属組織断面写真である。
FIG. 1 is a photograph of a metallographic cross section showing the state of precipitation of β phase after cold permanent strain imparting and sensitizing treatment of each alloy sheet according to an embodiment of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】Mg5.3〜9%(重量%、以下同じ)、M
n0.05〜1.0%、Cr0.05〜0.3%、Ti0.005〜0.2%、
Fe0.25〜1.00%を含有し、残部がAlおよび不可避的
不純物よりなる合金を素材とし、圧延および必要に応じ
て仕上焼鈍を施して、所要の板厚を有する軟質材に仕上
げた後、引張矯正により永久歪で0.5%を越え2.0%以下
の冷間加工歪を付与して耐応力腐食性を向上させること
を特徴とするアルミニウム−マグネシウム合金軟質材の
製造方法。
1. Mg 5.3-9% (weight%, the same applies hereinafter), M
n0.05-1.0%, Cr0.05-0.3%, Ti0.005-0.2%,
An alloy containing Fe 0.25 to 1.00% and the balance Al and unavoidable impurities is used as a raw material, and after rolling and finishing annealing as necessary, a soft material having a required plate thickness is finished, and then stretched. A method for producing an aluminum-magnesium alloy soft material, which comprises imparting a cold working strain of more than 0.5% and 2.0% or less by straightening to improve stress corrosion resistance.
【請求項2】Mg5.3〜9%(重量%、以下同じ)、M
n0.05〜1.0%、Cr0.05〜0.3%、Ti0.005〜0.2%、
Fe0.25〜1.00%、Cu0.05〜0.3%を含有し、残部が
Alおよび不可避的不純物よりなる合金を素材とし、圧
延および必要に応じて仕上焼鈍を施して、所要の板厚を
有する軟質材に仕上げた後、引張矯正により永久歪で0.
5%を越え2.0%以下の冷間加工歪を付与して耐応力腐食
性を向上させることを特徴とするアルミニウム−マグネ
シウム合金軟質材の製造方法。
2. Mg 5.3-9% (weight%, the same applies hereinafter), M
n0.05-1.0%, Cr0.05-0.3%, Ti0.005-0.2%,
An alloy containing Fe 0.25 to 1.00% and Cu 0.05 to 0.3% with the balance Al and unavoidable impurities as the raw material. Rolled and finish annealed as necessary to obtain a soft plate with the required thickness. After the material is finished, it is set to 0 with permanent set by tension straightening.
A method for producing an aluminum-magnesium alloy soft material, which comprises applying a cold work strain of more than 5% and not more than 2.0% to improve stress corrosion resistance.
JP5892586A 1986-03-17 1986-03-17 Method for producing stress corrosion resistant aluminum-magnesium alloy soft material Expired - Fee Related JPH0613748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5892586A JPH0613748B2 (en) 1986-03-17 1986-03-17 Method for producing stress corrosion resistant aluminum-magnesium alloy soft material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5892586A JPH0613748B2 (en) 1986-03-17 1986-03-17 Method for producing stress corrosion resistant aluminum-magnesium alloy soft material

Publications (2)

Publication Number Publication Date
JPS62214163A JPS62214163A (en) 1987-09-19
JPH0613748B2 true JPH0613748B2 (en) 1994-02-23

Family

ID=13098404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5892586A Expired - Fee Related JPH0613748B2 (en) 1986-03-17 1986-03-17 Method for producing stress corrosion resistant aluminum-magnesium alloy soft material

Country Status (1)

Country Link
JP (1) JPH0613748B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050000604A1 (en) * 2001-09-04 2005-01-06 Hiroshi Kawahara Aluminum alloy, cast article of aluminum alloy, and method for producing cast article of aluminum alloy
JP5059353B2 (en) * 2006-07-24 2012-10-24 株式会社神戸製鋼所 Aluminum alloy plate with excellent stress corrosion cracking resistance
CN115710659A (en) * 2021-08-23 2023-02-24 宝山钢铁股份有限公司 Aluminum magnesium alloy for tank body and manufacturing method thereof

Also Published As

Publication number Publication date
JPS62214163A (en) 1987-09-19

Similar Documents

Publication Publication Date Title
JP4577218B2 (en) Method for producing Al-Mg-Si alloy sheet excellent in bake hardness and hemmability
EP0610006B1 (en) Superplastic aluminum alloy and process for producing same
JP5343333B2 (en) Method for producing high-strength aluminum alloy material with excellent resistance to stress corrosion cracking
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
JP2021526594A (en) A method for producing an Al-Mg-Mn alloy plate product having improved corrosion resistance.
JP2001032031A (en) Aluminum alloy sheet for structural material, excellent in stress corrosion cracking resistance
JP3145904B2 (en) Aluminum alloy sheet excellent in high speed superplastic forming and its forming method
JPH0340104B2 (en)
JPH0613748B2 (en) Method for producing stress corrosion resistant aluminum-magnesium alloy soft material
JPH11350058A (en) Aluminum alloy sheet excellent in formability and baking hardenability and its production
JPH10259464A (en) Production of aluminum alloy sheet for forming
JPH07116567B2 (en) Method for producing A1-Cu-Li-Zr superplastic plate
JP2011144410A (en) METHOD FOR MANUFACTURING HIGHLY FORMABLE Al-Mg-Si-BASED ALLOY SHEET
JPH0469220B2 (en)
JPH10259441A (en) Aluminum alloy sheet excellent in high speed superplastic formability and small number of cavity after forming and its production
JPH0718389A (en) Production of al-mg series alloy sheet for forming
JPS63270446A (en) Production of al-mg base alloy thick plate for welded structure
JP2858069B2 (en) Stress corrosion cracking resistant high strength aluminum alloy sheet and method for producing the same
JPH04160131A (en) Al-mg-si alloy plate excellent in strength and formability, and its manufacture
JP4204295B2 (en) Manufacturing method of aluminum alloy hot-rolled sheet for automobile undercarriage parts
IE44313B1 (en) Weldable aluminium alloy and process for the production of weldable sheets or plates of such alloy
JPH086162B2 (en) Method for producing aluminum alloy material for baking coating
JPH06287670A (en) Al-mg alloy having high corrosion resistance and high strength and its production
JP3539996B2 (en) Manufacturing method of high strength aluminum alloy sheet for forming
JP3543362B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees