JP3840400B2 - Method for producing semi-melt molded billet of aluminum alloy for transportation equipment - Google Patents

Method for producing semi-melt molded billet of aluminum alloy for transportation equipment Download PDF

Info

Publication number
JP3840400B2
JP3840400B2 JP2001342715A JP2001342715A JP3840400B2 JP 3840400 B2 JP3840400 B2 JP 3840400B2 JP 2001342715 A JP2001342715 A JP 2001342715A JP 2001342715 A JP2001342715 A JP 2001342715A JP 3840400 B2 JP3840400 B2 JP 3840400B2
Authority
JP
Japan
Prior art keywords
temperature
less
aluminum alloy
semi
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001342715A
Other languages
Japanese (ja)
Other versions
JP2003147496A (en
Inventor
滋 三久保
政文 溝内
康幸 村山
綱樹 岩下
達雄 里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Mitsui Aluminum Industries Inc
Original Assignee
Kyushu Mitsui Aluminum Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Mitsui Aluminum Industries Inc filed Critical Kyushu Mitsui Aluminum Industries Inc
Priority to JP2001342715A priority Critical patent/JP3840400B2/en
Publication of JP2003147496A publication Critical patent/JP2003147496A/en
Application granted granted Critical
Publication of JP3840400B2 publication Critical patent/JP3840400B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、輸送機器用として用いるアルミニウム合金の半溶融成型ビレットの製造方法に関するものである。
【0002】
【従来の技術】
半溶融ビレットを用いるチクソキャスト法は、従来の金型鋳造法と比較し鋳造偏析・欠陥が少なく、金型寿命が長いなどの利点があり最近注目されている技術である。これに用いるビレットの鋳造方法としては、ペシネー・アルマックス方式として知られているビレット段階で初晶α(Al)相を球状化するため、半溶融温度域で電磁・機械撹拌を行う方法(方式A)や、鋳造時に通常添加されている量よりも多量のAl−Ti−Bを添加し、その後半溶融温度域まで昇温し初晶α(Al)相を球状化させる方法(方式B)がある。また、押出・圧延にて歪みを導入後、方式Bのように昇温し球状化させる方法(方式C)が広く知られている。
【0003】
【発明が解決しようとする課題】
従来の半溶融製造法の場合、方式Aでは工程が非常に煩雑で、製造コストが高くつく不具合があった。
また、方式Bでは、多量のAl−Ti−Bを添加するため溶融炉内でのTiB 沈降による品質不安定が発生し、更に方式Cの圧延により歪みを導入する方法は均一な歪みの導入が難しく、また押出では常温押出により作業工程が煩雑で、しかも均一な歪み導入が難しいし、両歪み導入法とも加工後の製品加工が必要となり、量産化や低コスト化が図れないという問題があった。
【0004】
特許第2976073号には、改良された方法が開示されている。即ち、そこには第1項中に「完全に固化した金属または金属合金材料をその再結晶温度未満の温度で変形する工程、該材料の微小構造の再結晶を起こさせるために変形材料を加熱する工程、および該材料の温度をその固相線温度を上回る温度に上昇させることによりチキソトロピック的な挙動を呈する液状マトリックス中に独立した粒子を形成させるために、再結晶構造を部分的に融解させる工程を備えた方法」である。
この方法は、該材料の微小構造の再結晶を起こさせるために変形材料を加熱する工程、および該材料の温度をその固相線温度を上回る温度に上昇させるといういわば2段階加熱とも言うべき加熱が行われる。このような方法は、従来の技術に比べれば、改善された技術と言えるが、やはり2段階の加熱を必要とし、工程が複雑で加熱制御が難しいという問題があった。
【0005】
本発明は、上記従来技術の欠点を解消し、工程が簡素で低コスト化を促進でき、得られる製品が均質な輸送機器用アルミニウム合金の半溶融成型ビレットの製造方法を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
上記目的を達成するため、本願の輸送機器用アルミニウム合金の半溶融成型ビレットの製造方法は、Cu0.40〜5.5wt%、Si11.0〜15.0wt%、Zn1.0wt%以下、Fe1.5wt%以下、Mn0.65wt%以下と、Ti0.005〜0.5wt%及びB0.0001〜0.5wt%の少なくとも1種以上と、Mg0.40〜1.8wt%及びNi0.05〜1.7wt%の少なくとも1種以上を含み、残部が実質的にAlの組成から成り、共晶Siの平均粒径が200μm以下で、しかもデンドライト枝間隔(DAS)が200μm以下であるアルミニウム合金を製造し、次いで歪み率5〜50%、加工導入速度50mm/sec.以下で再結晶温度未満の温度で、冷間型枠鍛造にて加工歪みを導入し、その後共晶温度以上に昇温し、液相率が20〜80%となる温度で保持して半溶融加工する方法である。
【0007】
この場合に、成分偏析の均質化、共晶Siの分断球状化及び鋳造応力の解放のために、加工歪みを導入する前に、450〜550℃の温度で1〜10時間の均質化処理を行うと好ましい。
【0008】
また、上記目的を達成するため、本願の輸送機器用アルミニウム合金の半溶融成型ビレットの製造方法は、Cu0.40〜5.5wt%、Si11.0〜15.0wt%、Zn1.0wt%以下、Fe1.5wt%以下、Mn0.65wt%以下と、Ti0.005〜0.5wt%及びB0.0001〜0.5wt%の少なくとも1種以上と、Mg0.40〜1.8wt%及びNi0.05〜1.7wt%の少なくとも1種以上と、Sr0.001〜0.10wt%、Na0.03〜0.01wt%及びSb0.05〜0.2wt%の中の少なくとも1種以上を含み、残部が実質的にAlの組成から成り、共晶Siの平均粒径が200μm以下で、しかもデンドライト枝(DAS)が200μm以下であるアルミニウム合金を製造し、次いで歪み率5〜50%、加工導入速度50mm/sec.以下で再結晶温度未満の温度で、冷間型枠鍛造にて加工歪みを導入し、その後共晶温度以上に昇温し、液相率が20〜80%となる温度で保持して半溶融加工する方法である。
【0009】
この場合に、成分偏析の均質化、共晶Siの分断球状化及び鋳造応力の解放のために、加工歪みを導入する前に、450〜550℃の温度で1〜10時間の均質化処理を行うと好ましい。
【0010】
【発明の実施の形態】
以下本発明で用いるアルミニウム合金成分量の数値限定等種々の数値限定理由について詳述する。
【0011】
Cu成分は、機械的性質の向上のみならず、硬度・切削性・鋳造性を良くするが、0.40wt%未満ではその効果は小さく、一方5.5wt%を越えると耐食性の低下をまねくので0.40〜5.5wt%とした。
【0012】
Si成分は、鋳造性を良くする効果があるが、その量が11.0wt%未満ではその効果は小さく、一方15.0wt%を越えると伸び・靭性が劣化し冷間鍛造加工性が悪くなるので、11.0〜15.0wt%とした。
【0013】
Mg成分は、Mg Siを析出し機械的性質の向上に寄与するが、0.40wt%未満ではその効果は小さく、一方1.8wt%を超えると冷間鍛造加工性が悪くなるため、0.40〜1.8wt%とした。
【0014】
Fe成分は、Al成分と金属間化合物をつくり、多く含有されるとAl−Fe−Si系化合物となり伸び・靭性・耐食性に悪影響を及ぼすため、1.5wt%以下とした。
【0015】
Ti成分は、鋳塊の組織を微細化し、鋳塊割れの発生を防止するが、0.005wt%未満ではその効果が小さく、一方0.5wt%を超えるとTiAl の巨大な晶出物の発生を促進させ、冷間鍛造加工時の割れや輸送機器部品の機械的性質の低下をまねくので0.005〜0.5wt%とした。
【0016】
B成分もまたTi成分と共に鋳塊の組織を微細化し、鋳塊割れの発生を防止するが、0.0001wt%未満ではその効果は小さく、一方0.5wt%を越えると冷間鍛造加工時の割れや輸送機器部品の機械的性質の低下をまねくので、0.0001〜0.5wt%とした。
【0017】
Zn成分は、鋳造性を改善するが、耐食性を劣化させるため、1.0wt%以下とした。
【0018】
Mn成分は、粗大金属間化合物の生成による靭性低下を起こすことから0.65wt%以下とした。
【0019】
Ni成分は、高温強度の向上に寄与するが、0.05wt%未満ではその効果は小さく、一方1.7wt%を超えると耐食性を劣化させるため、0.05〜1.7wt%とした。
【0020】
Sr、Na、Sb成分は、共晶Siを微細化し機械的性質の向上に寄与するが、Sr0.001wt%、Na0.003wt%、Sb0.05wt%未満ではその効果は小さく、一方Sr0.10wt%、Na0.01wt%を越えると鋳造時の溶湯の流動性が低下し、Sb0.2wt%を越えると溶体化処理時に灰黒色に着色し外観を害するため、Sr0.001〜0.10wt%、Na0.003〜0.01wt%、Sb0.05〜0.2wt%とした。
【0021】
共晶Siの平均粒径が200μm以下で、しかもデンドライト枝間隔(DAS)が200μm以下であるビレットを鋳造するが、共晶Siの平均粒径が200μmを越え、しかもデンドライト枝間隔(DAS)が200μmを越えると半溶融温度域に加熱した際に初晶α(Al)相の均一微細球状化が難しくなるし、また均質化処理を行う場合には均質化処理に時間を要するので、デンドライト枝間隔(DAS)を200μm以下とした。
【0022】
鋳造で得られたビレットを均質化処理することにより、鋳造時に結晶粒界に晶出したAl Cuの晶出物がマトリックスに固溶する。また、均質化処理によって共晶Siを球状化し冷間鍛造加工時の変形抵抗を小さくする。均質化処理温度が450℃未満や1時間に達しない加熱時間では、固溶化が充分得られず、また共晶Siの球状化や鋳造歪の除去も不充分である。しかし550℃を越える処理温度では、共晶融解が発生し鍛造時の加工性を損う。また、10時間を越える加熱時間では、加熱時間の長時間に見合った均質化の効果上昇が得られず、加熱エネルギーの損失となる。このため、均質化処理条件は450〜550℃の温度で1〜10時間加熱とした。
【0023】
次に加工歪みの導入は、工程が簡素化でき、かつ少ない加工率で歪みが有効に導入されるように冷間鍛造で行い、なおかつ鍛造用ビレットの全体に均一に歪みが導入されるように型枠鍛造とする。歪み率は、5%未満の場合には歪み導入が少ないため半溶融温度域まで昇温しても初晶α(Al)相の均一な球状化は図れず、一方50%を越えると初晶α(Al)相サイズに変化は見られないのみならず冷間鍛造時に割れが発生するため、5〜50%とした。ここでの歪み率は、鍛造用ビレットの元の長さを とし、鍛造後のビレットの長さを とした時、( )/ ×100(%)で定義した。
【0024】
加工導入速度は、ビレット鋳塊の結晶粒微細化や共晶Siの微細化と均質化処理を加えることにより大幅にアップできる。生産性から言えば加工導入速度はできるだけ早い方が好ましい。しかしながら、50mm/sec.を越えると鍛造時に割れが生じたり、鍛造デッドゾーンが発生し、歪みが均一に導入されないため50mm/sec.以下とした。また冷間型枠鍛造の際のビレット温度は、再結晶温度以上では所定の加工率に対する歪み導入が不充分となり、半溶融温度に昇温しても初晶α(Al)相が粒状組織とならないため再結晶温度未満とした。
【0025】
その後、ビレットを共晶温度以上に昇温し、液相率が20〜80%となる温度で保持して半溶融成型するが、液相率が20%未満では初晶α(Al)相の均一な球状化は図れず、半溶融成型の変形抵抗が大きく加圧成型が困難となる。また、80%を越えると均一な組織を有する成型品が得られない。このため共晶温度以上の半溶融温度域での液相率は20〜80%とした。
【0026】
【実施例】
以下本発明の具体的な実施例を示す。
図1は本発明方法で用いる冷間型枠鍛造の模式図であり、図中符号1は鍛造用金型、2は鍛造用金型ポンチ、3はアルミニウム合金ビレットを示す。
【0027】
Cu、Si、Mg、Zn、Fe、Ti、B、Ni、Sr及びSbをそれぞれ下記表1に示すような組成となるように溶湯を調製し、連続鋳造にてアルミニウム合金ビレットを鋳造した。
【0028】
【表1】

Figure 0003840400
【0029】
上記表1に示すアルミニウム合金ビレットを、表2に示す条件で処理し、半溶融成型の成型性、半溶融成型後の初晶α(Al)相の形状を評価した結果も表2に併記した。
【0030】
【表2】
Figure 0003840400
【0031】
表2に示した加工歪み導入時の成型性は、表2で示す成型条件で成型した際に割れが発生せず成型性が良好なものを○とし、割れが見られるものを×で判定した。半溶融成型の成型性は、良好なものを○とし、成型性の悪いものを×と判定した。半溶融成型後の初晶α(Al)相の形状は、球状化が認められるものを○とし、球状化が不充分であるものを×と判定した。半溶融成型後の初晶α(Al)相の微細均一化では初晶α(Al)相のサイズが100μm以下を○とし、100μmを越えるサイズのものを×と判定した。
【0032】
図2は、初晶α(Al)相の微細均一化が○評価の代表例写真を示す。
【0033】
【発明の効果】
以上述べて来た如く、本発明によれば、従来の半溶融ビレットよりも工程が簡素化され低コスト化が図れる。また、得られる組織も初晶α(Al)相サイズが平均100μm以下で、かつ初晶α(Al)相の面積率50%の均一球状化組織となっており、自動車部材等の輸送機器用として使用が可能である。
【図面の簡単な説明】
【図1】冷間型枠鍛造の模式図である。
【図2】初晶α(Al)相の微細均一化が○評価の代表例の顕微鏡組織写真であり、倍率は50倍である。
【符号の説明】
1 鍛造用金型
2 鍛造用金型ポンチ
3 アルミニウム合金ビレット[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a semi-melt molded billet of an aluminum alloy used for transportation equipment.
[0002]
[Prior art]
The thixocast method using a semi-molten billet is a technology that has recently been attracting attention because it has advantages such as fewer casting segregation and defects and a longer die life compared to conventional die casting methods. The billet casting method used for this is a method (method) in which electromagnetic and mechanical stirring is performed in the semi-melting temperature range in order to spheroidize the primary crystal α (Al) phase at the billet stage known as the Pesine Almax method. A) or a method of adding a larger amount of Al-Ti-B than the amount normally added at the time of casting, and raising the temperature to the latter half melting temperature range to spheroidize the primary crystal α (Al) phase (Method B) There is. Further, a method (method C) in which strain is introduced by extrusion / rolling and then heated and spheroidized as in method B is widely known.
[0003]
[Problems to be solved by the invention]
In the case of the conventional semi-molten production method, the method A has a problem that the process is very complicated and the production cost is high.
Moreover, in method B, since a large amount of Al—Ti—B is added, quality instability occurs due to TiB 2 sedimentation in the melting furnace, and the method of introducing strain by rolling in method C introduces uniform strain. In addition, the extrusion process is cumbersome due to room temperature extrusion, and it is difficult to introduce uniform strain, and both strain introduction methods require product processing after processing, and mass production and cost reduction cannot be achieved. there were.
[0004]
Japanese Patent No. 2976073 discloses an improved method. That is, in the first item, there is described in “the step of deforming a fully solidified metal or metal alloy material at a temperature below its recrystallization temperature, heating the deformable material to cause recrystallization of the microstructure of the material. And partially melting the recrystallized structure to form independent particles in a liquid matrix that exhibits thixotropic behavior by raising the temperature of the material above its solidus temperature. It is a method including the step of
In this method, the deformation material is heated to cause recrystallization of the microstructure of the material, and heating that is called so-called two-step heating in which the temperature of the material is raised to a temperature above the solidus temperature. Is done. Such a method can be said to be an improved technique as compared with the conventional technique, but it still requires two-stage heating, and has a problem that the process is complicated and heating control is difficult.
[0005]
An object of the present invention is to provide a method for producing a semi-molten molded billet of an aluminum alloy for transportation equipment in which the disadvantages of the above prior art are eliminated, the process is simple and cost reduction can be promoted, and the resulting product is homogeneous. To do.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the manufacturing method of the semi-molten molded billet of the aluminum alloy for transportation equipment of the present application is Cu 0.40 to 5.5 wt%, Si 11.0 to 15.0 wt%, Zn 1.0 wt% or less, Fe1. 5 wt% or less, Mn 0.65 wt% or less, Ti 0.005 to 0.5 wt% and at least one of B 0.0001 to 0.5 wt%, Mg 0.40 to 1.8 wt% and Ni 0.05 to 1. An aluminum alloy containing at least one or more of 7 wt%, the balance being substantially composed of Al, the eutectic Si having an average particle diameter of 200 μm or less, and a dendrite branch interval (DAS) of 200 μm or less is manufactured. Then, the strain rate is 5 to 50%, and the processing introduction speed is 50 mm / sec. In the following, processing strain is introduced by cold mold forging at a temperature lower than the recrystallization temperature, and then the temperature is raised to the eutectic temperature or higher, and the liquid phase ratio is maintained at a temperature of 20 to 80% and semi-molten. It is a method of processing.
[0007]
In this case, homogenization for 1 to 10 hours at a temperature of 450 to 550 ° C. is performed before processing strain is introduced in order to homogenize component segregation, spheroidization of eutectic Si and release of casting stress. Preferably it is done.
[0008]
Moreover, in order to achieve the said objective, the manufacturing method of the semi-molten shaping | molding billet of the aluminum alloy for transportation apparatuses of this application is Cu0.40-5.5 wt%, Si11.0-15.0 wt%, Zn1.0 wt% or less, Fe 1.5 wt% or less, Mn 0.65 wt% or less, Ti 0.005 to 0.5 wt% and at least one of B 0.0001 to 0.5 wt%, Mg 0.40 to 1.8 wt% and Ni 0.05 to At least one or more of 1.7 wt% and at least one of Sr 0.001 to 0.10 wt%, Na 0.03 to 0.01 wt% and Sb 0.05 to 0.2 wt%, with the balance being substantially In particular, an aluminum alloy having an Al composition and an eutectic Si average particle size of 200 μm or less and a dendrite branch (DAS) of 200 μm or less is manufactured, and then strain is produced. 5% to 50%, processing introduction speed 50 mm / sec. In the following, processing strain is introduced by cold mold forging at a temperature lower than the recrystallization temperature, and then the temperature is raised to the eutectic temperature or higher, and the liquid phase ratio is maintained at a temperature of 20 to 80% and semi-molten. It is a method of processing.
[0009]
In this case, homogenization for 1 to 10 hours at a temperature of 450 to 550 ° C. is performed before processing strain is introduced in order to homogenize component segregation, spheroidization of eutectic Si and release of casting stress. Preferably it is done.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, various numerical limitation reasons such as numerical limitation of the amount of aluminum alloy components used in the present invention will be described in detail.
[0011]
The Cu component improves not only mechanical properties but also hardness, machinability, and castability. However, the effect is small if it is less than 0.40 wt%, while corrosion resistance decreases if it exceeds 5.5 wt%. It was set to 0.40 to 5.5 wt%.
[0012]
The Si component has an effect of improving the castability, but if the amount is less than 11.0 wt%, the effect is small. On the other hand, if it exceeds 15.0 wt%, the elongation / toughness deteriorates and the cold forgeability deteriorates. Therefore, it was 11.0-15.0 wt%.
[0013]
The Mg component precipitates Mg 2 Si and contributes to the improvement of mechanical properties. However, if the content is less than 0.40 wt%, the effect is small. On the other hand, if it exceeds 1.8 wt%, the cold forging workability deteriorates. 40-1.8 wt%.
[0014]
The Fe component produces an Al component and an intermetallic compound, and if it is contained in a large amount, it becomes an Al—Fe—Si compound and adversely affects elongation, toughness, and corrosion resistance.
[0015]
The Ti component refines the structure of the ingot and prevents the occurrence of ingot cracking, but the effect is small if it is less than 0.005 wt%, while the TiAl 3 giant crystallized product is less than 0.5 wt%. Occurrence is promoted and causes cracking during cold forging and deterioration of mechanical properties of transport equipment parts, so 0.005 to 0.5 wt%.
[0016]
The B component also refines the structure of the ingot together with the Ti component to prevent the occurrence of ingot cracking, but the effect is small if it is less than 0.0001 wt%, while it exceeds the 0.5 wt% during cold forging. Since it causes cracks and deterioration of mechanical properties of parts for transportation equipment, the content is set to 0.0001 to 0.5 wt%.
[0017]
The Zn component improves the castability but deteriorates the corrosion resistance.
[0018]
The Mn component is set to 0.65 wt% or less because it causes a decrease in toughness due to the formation of coarse intermetallic compounds.
[0019]
The Ni component contributes to the improvement of the high-temperature strength, but the effect is small when the content is less than 0.05 wt%, whereas the corrosion resistance is deteriorated when the content exceeds 1.7 wt%, so that the Ni content is set to 0.05 to 1.7 wt%.
[0020]
Sr, Na, and Sb components contribute to the improvement of mechanical properties by refining eutectic Si. However, the effect is small when Sr is 0.001 wt%, Na is 0.003 wt%, and Sb is less than 0.05 wt%, while Sr is 0.10 wt%. When Na exceeds 0.01 wt%, the fluidity of the molten metal at the time of casting deteriorates, and when exceeding 0.2 wt%, Sr0.001 to 0.10 wt%, Na0 0.003 to 0.01 wt% and Sb 0.05 to 0.2 wt%.
[0021]
A billet having an average particle size of eutectic Si of 200 μm or less and a dendrite branch interval (DAS) of 200 μm or less is cast, but the average particle size of eutectic Si exceeds 200 μm and the dendrite branch interval (DAS) is If it exceeds 200 μm, it becomes difficult to make the primary α (Al) phase into uniform fine spheroids when heated to the semi-melting temperature range, and it takes time for the homogenization to be performed. The interval (DAS) was set to 200 μm or less.
[0022]
By homogenizing the billet obtained by casting, a crystallized product of Al 2 Cu crystallized at the grain boundary during casting is dissolved in the matrix. Further, the eutectic Si is spheroidized by homogenization treatment to reduce deformation resistance during cold forging. When the homogenization temperature is less than 450 ° C. or when the heating time does not reach 1 hour, sufficient solution cannot be obtained, and eutectic Si spheroidization and removal of casting strain are insufficient. However, if the processing temperature exceeds 550 ° C., eutectic melting occurs and the workability during forging is impaired. On the other hand, when the heating time exceeds 10 hours, the homogenization effect corresponding to the long heating time cannot be obtained, resulting in a loss of heating energy. For this reason, the homogenization treatment conditions were heating at a temperature of 450 to 550 ° C. for 1 to 10 hours.
[0023]
Next, processing strain is introduced by cold forging so that the process can be simplified and strain is effectively introduced at a low processing rate, and strain is uniformly introduced into the entire forging billet. Formwork forging. When the strain rate is less than 5%, the introduction of strain is small, so even if the temperature is raised to the semi-melting temperature range, uniform spheroidization of the primary crystal α (Al) phase cannot be achieved. In addition to no change in the α (Al) phase size, cracks occurred during cold forging, so 5-50%. The distortion rate here is ( L 1 −L 2 ) / L 1 × 100 (%), where L 1 is the original length of the billet for forging and L 2 is the length of the billet after forging. Defined.
[0024]
The processing introduction speed can be greatly increased by adding refinement of crystal grains of billet ingots and refinement and homogenization of eutectic Si. In terms of productivity, it is preferable that the processing introduction speed is as fast as possible. However, 50 mm / sec. Exceeds 50 mm / sec., Because cracking occurs during forging, forging dead zones occur, and strain is not uniformly introduced. It was as follows. Further, when the billet temperature during cold mold forging is higher than the recrystallization temperature, the introduction of strain for the predetermined processing rate is insufficient, and even when the temperature is raised to the semi-melting temperature, the primary α (Al) phase has a granular structure. Therefore, it was set below the recrystallization temperature.
[0025]
Thereafter, the billet is heated to a temperature equal to or higher than the eutectic temperature and held at a temperature at which the liquid phase ratio becomes 20 to 80%, and semi-molten molding is performed. Uniform spheroidization cannot be achieved, and the deformation resistance of semi-molten molding is large, making pressure molding difficult. On the other hand, if it exceeds 80%, a molded product having a uniform structure cannot be obtained. For this reason, the liquid phase ratio in the semi-melting temperature range above the eutectic temperature was set to 20 to 80%.
[0026]
【Example】
Specific examples of the present invention are shown below.
FIG. 1 is a schematic view of cold mold forging used in the method of the present invention, in which 1 is a forging die, 2 is a forging die punch, and 3 is an aluminum alloy billet.
[0027]
A molten metal was prepared so that Cu, Si, Mg, Zn, Fe, Ti, B, Ni, Sr, and Sb each had a composition as shown in Table 1 below, and an aluminum alloy billet was cast by continuous casting.
[0028]
[Table 1]
Figure 0003840400
[0029]
The aluminum alloy billet shown in Table 1 was processed under the conditions shown in Table 2, and the results of evaluating the moldability of semi-melt molding and the shape of the primary crystal α (Al) phase after semi-melt molding are also shown in Table 2. .
[0030]
[Table 2]
Figure 0003840400
[0031]
The moldability at the time of introducing the processing strain shown in Table 2 was judged as “Good” when the mold did not generate a crack when molded under the molding conditions shown in Table 2 and the moldability was good. . Regarding the moldability of the semi-melt molding, a good one was evaluated as “good”, and a poor one was determined as “poor”. The shape of the primary crystal α (Al) phase after semi-melt molding was evaluated as “◯” when spheroidization was observed, and “×” when the spheroidization was insufficient. In the fine homogenization of the primary crystal α (Al) phase after semi-melt molding, the primary crystal α (Al) phase size was evaluated as ○ when the size of the primary crystal α (Al) phase was 100 μm or less, and × when the size exceeded 100 μm.
[0032]
FIG. 2 shows a photograph of a representative example in which fine homogenization of the primary crystal α (Al) phase is evaluated as o.
[0033]
【The invention's effect】
As described above, according to the present invention, the process can be simplified and the cost can be reduced as compared with the conventional semi-molten billet. The resulting structure also has a uniform spheroidized structure with an average primary crystal α (Al) phase size of 100 μm or less and an area ratio of primary crystal α (Al) phase of 50%. It can be used as
[Brief description of the drawings]
FIG. 1 is a schematic diagram of cold mold forging.
FIG. 2 is a photomicrograph of a representative example of evaluation of fine homogenization of primary crystal α (Al) phase, with a magnification of 50 times.
[Explanation of symbols]
1 Forging die 2 Forging die punch 3 Aluminum alloy billet

Claims (4)

Cu0.40〜5.5wt%、Si11.0〜15.0wt%、Zn1.0wt%以下、Fe1.5wt%以下、Mn0.65wt%以下と、Ti0.005〜0.5wt%及びB0.0001〜0.5wt%の少なくとも1種以上と、Mg0.40〜1.8wt%及びNi0.05〜1.7wt%の少なくとも1種以上を含み、残部が不可避的不純物及びAlの組成から成り、共晶Siの平均粒径が200μm以下で、しかもデンドライト枝間隔が200μm以下であるアルミニウム合金を製造し、次いで歪み率5〜50%、加工導入速度50mm/sec.以下で再結晶温度未満の温度で、冷間型枠鍛造にて加工歪みを導入し、その後共晶温度以上に昇温し、液相率が20〜80%となる温度で保持して半溶融加工することを特徴とする輸送機器用アルミニウム合金の半溶融成型ビレットの製造方法。Cu 0.40 to 5.5 wt%, Si 11.0 to 15.0 wt%, Zn 1.0 wt% or less, Fe 1.5 wt% or less, Mn 0.65 wt% or less, Ti 0.005 to 0.5 wt%, and B0.0001 to It contains at least one or more of 0.5 wt% and at least one or more of Mg 0.40 to 1.8 wt% and Ni 0.05 to 1.7 wt%, and the balance consists of the composition of inevitable impurities and Al, eutectic An aluminum alloy having an average particle diameter of Si of 200 μm or less and a dendrite branch interval of 200 μm or less is manufactured, and then a strain rate of 5 to 50% and a processing introduction speed of 50 mm / sec. In the following, processing strain is introduced by cold mold forging at a temperature lower than the recrystallization temperature, and then the temperature is raised to the eutectic temperature or higher, and the liquid phase ratio is maintained at a temperature of 20 to 80% and semi-molten. A method for producing a semi-melt molded billet of an aluminum alloy for transportation equipment, characterized by processing. アルミニウム合金を製造し、加工歪みを導入する前に、450〜550℃の温度で1〜10時間の均質化処理を行うことを特徴とする請求項1記載の輸送機器用アルミニウム合金の半溶融成型ビレットの製造方法。  The semi-molten molding of an aluminum alloy for transportation equipment according to claim 1, wherein the aluminum alloy is manufactured and homogenized for 1 to 10 hours at a temperature of 450 to 550 ° C before introducing processing strain. Billet manufacturing method. Cu0.40〜5.5wt%、Si11.0〜15.0wt%、Zn1.0wt%以下、Fe1.5wt%以下、Mn0.65wt%以下と、Ti0.005〜0.5wt%及びB0.0001〜0.5wt%の少なくとも1種以上と、Mg0.40〜1.8wt%及びNi0.05〜1.7wt%の少なくとも1種以上と、Sr0.001〜0.10wt%、Na0.003〜0.01wt%及びSb0.05〜0.2wt%の中の少なくとも1種以上を含み、残部が不可避的不純物及びAlの組成から成り、共晶Siの平均粒径が200μm以下で、しかもデンドライト枝間隔が200μm以下であるアルミニウム合金を製造し、次いで歪み率5〜50%、加工導入速度50mm/sec.以下で再結晶温度未満の温度で、冷間型枠鍛造にて加工歪みを導入し、その後共晶温度以上に昇温し、液相率が20〜80%となる温度で保持して半溶融加工することを特徴とする輸送機器用アルミニウム合金の半溶融成型ビレットの製造方法。Cu 0.40 to 5.5 wt%, Si 11.0 to 15.0 wt%, Zn 1.0 wt% or less, Fe 1.5 wt% or less, Mn 0.65 wt% or less, Ti 0.005 to 0.5 wt%, and B0.0001 to At least one or more of 0.5 wt%, at least one or more of Mg 0.40 to 1.8 wt% and Ni 0.05 to 1.7 wt%, Sr 0.001 to 0.10 wt%, Na 0.003 to 0.3. 01 wt% and at least one of 0.05 to 0.2 wt% of Sb, the balance is composed of inevitable impurities and Al, the average grain size of eutectic Si is 200 μm or less, and the dendrite branch spacing is An aluminum alloy having a thickness of 200 μm or less is manufactured, and then a strain rate of 5 to 50% and a processing introduction speed of 50 mm / sec. In the following, processing strain is introduced by cold mold forging at a temperature lower than the recrystallization temperature, and then the temperature is raised to the eutectic temperature or higher, and the liquid phase ratio is maintained at a temperature of 20 to 80% and semi-molten. A method for producing a semi-melt molded billet of an aluminum alloy for transportation equipment, characterized by processing. アルミニウム合金を製造し、加工歪みを導入する前に、450〜550℃の温度で1〜10時間の均質化処理を行うことを特徴とする請求項3記載の輸送機器用アルミニウム合金の半溶融成型ビレットの製造方法。  The semi-molten molding of an aluminum alloy for transport equipment according to claim 3, wherein the aluminum alloy is manufactured and homogenized for 1 to 10 hours at a temperature of 450 to 550 ° C before introducing processing strain. Billet manufacturing method.
JP2001342715A 2001-11-08 2001-11-08 Method for producing semi-melt molded billet of aluminum alloy for transportation equipment Expired - Fee Related JP3840400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001342715A JP3840400B2 (en) 2001-11-08 2001-11-08 Method for producing semi-melt molded billet of aluminum alloy for transportation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001342715A JP3840400B2 (en) 2001-11-08 2001-11-08 Method for producing semi-melt molded billet of aluminum alloy for transportation equipment

Publications (2)

Publication Number Publication Date
JP2003147496A JP2003147496A (en) 2003-05-21
JP3840400B2 true JP3840400B2 (en) 2006-11-01

Family

ID=19156523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001342715A Expired - Fee Related JP3840400B2 (en) 2001-11-08 2001-11-08 Method for producing semi-melt molded billet of aluminum alloy for transportation equipment

Country Status (1)

Country Link
JP (1) JP3840400B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001954A (en) * 2006-06-23 2008-01-10 Toyota Central Res & Dev Lab Inc Aluminum alloy for use in semisolid casting and manufacturing method of aluminum alloy casting
DE502007002411D1 (en) * 2007-05-24 2010-02-04 Rheinfelden Aluminium Gmbh Heat-resistant aluminum alloy
JP5449754B2 (en) * 2008-12-08 2014-03-19 宮本工業株式会社 Forging piston for engine or compressor
KR101738038B1 (en) * 2015-08-13 2017-05-19 현대자동차주식회사 Excellent high elasticity and wear resistance hyper-eutectic al-si alloy
CN107400792A (en) * 2017-06-27 2017-11-28 太仓市雅兴精密冲压件厂 A kind of preparation method of die casting impact resistance alloy
JP7293696B2 (en) * 2019-02-06 2023-06-20 株式会社レゾナック Aluminum alloy casting material and manufacturing method thereof
CN113005341A (en) * 2021-02-23 2021-06-22 珠海市润星泰电器有限公司 High-thermal-conductivity aluminum alloy and preparation method thereof

Also Published As

Publication number Publication date
JP2003147496A (en) 2003-05-21

Similar Documents

Publication Publication Date Title
JPH07145441A (en) Superplastic aluminum alloy and its production
JP2010018875A (en) High strength aluminum alloy, method for producing high strength aluminum alloy casting, and method for producing high strength aluminum alloy member
CN111101034A (en) Low-rare-earth high-performance rare earth aluminum alloy and preparation method thereof
CN110983128A (en) High-strength heat-resistant wrought aluminum alloy and preparation method thereof
JPH07109536A (en) Aluminum alloy for forging and heat treatment therefor
JP2001220639A (en) Aluminum alloy for casting
JP3548709B2 (en) Method for producing semi-solid billet of Al alloy for transportation equipment
KR20210130455A (en) Wrought magnesium alloys with high mechanical properties and method for preparing the same
JP4433916B2 (en) Magnesium alloy and magnesium alloy member for plastic working
CN111020303A (en) 4XXX series aluminum alloy and preparation method thereof
JP4145242B2 (en) Aluminum alloy for casting, casting made of aluminum alloy and method for producing casting made of aluminum alloy
JP3840400B2 (en) Method for producing semi-melt molded billet of aluminum alloy for transportation equipment
JP3852915B2 (en) Method for producing semi-melt molded billet of aluminum alloy for transportation equipment
US20200354818A1 (en) High Strength Microalloyed Magnesium Alloy
JP3676723B2 (en) Method for producing semi-melt molded billet of aluminum alloy for transportation equipment
WO2019023818A1 (en) Readily cold-formable deformable zinc alloy material, preparation method therefor, and application thereof
JP3798676B2 (en) Method for producing semi-melt molded billet of aluminum alloy for transportation equipment
JP4121266B2 (en) Method for producing semi-molten billet of aluminum alloy for transportation equipment
JPH10110231A (en) Aluminum alloy material for casting-forging excellent in wear resistance, castability and forgeability and its production
JP4152095B2 (en) Method for producing semi-molten billet of aluminum alloy for transportation equipment
JP5575028B2 (en) High strength aluminum alloy, high strength aluminum alloy casting manufacturing method and high strength aluminum alloy member manufacturing method
KR20160089794A (en) Method for manufacturing high-strength wrought magnesium alloy by conducting aging treatment prior to plastic working and high-strength wrought magnesium alloy manufactured thereby
WO2007114345A1 (en) DIECASTING Zn ALLOY, PROCESS FOR PRODUCTION THEREOF, AND Al MASTER ALLOY FOR DIECASTING ALLOY
JP3802796B2 (en) Method for producing semi-melt molded billet of aluminum alloy for transportation equipment
JPH0959736A (en) Aluminum alloy sheet excellent in high speed superplastic formability and its formation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060807

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees