JP3676723B2 - Method for producing semi-melt molded billet of aluminum alloy for transportation equipment - Google Patents

Method for producing semi-melt molded billet of aluminum alloy for transportation equipment Download PDF

Info

Publication number
JP3676723B2
JP3676723B2 JP2001334666A JP2001334666A JP3676723B2 JP 3676723 B2 JP3676723 B2 JP 3676723B2 JP 2001334666 A JP2001334666 A JP 2001334666A JP 2001334666 A JP2001334666 A JP 2001334666A JP 3676723 B2 JP3676723 B2 JP 3676723B2
Authority
JP
Japan
Prior art keywords
less
temperature
aluminum alloy
billet
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001334666A
Other languages
Japanese (ja)
Other versions
JP2003136198A (en
Inventor
滋 三久保
政文 溝内
康幸 村山
綱樹 岩下
達雄 里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Mitsui Aluminum Industries Inc
Original Assignee
Kyushu Mitsui Aluminum Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Mitsui Aluminum Industries Inc filed Critical Kyushu Mitsui Aluminum Industries Inc
Priority to JP2001334666A priority Critical patent/JP3676723B2/en
Publication of JP2003136198A publication Critical patent/JP2003136198A/en
Application granted granted Critical
Publication of JP3676723B2 publication Critical patent/JP3676723B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Forging (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、輸送機器用として用いるアルミニウム合金の半溶融成型ビレットの製造方法に関するものである。
【0002】
【従来の技術】
半溶融成型ビレットを用いるチクソキャスト法は、従来の金型鋳造法と比較し鋳造偏析やガス巻き込み、引け巣等の欠陥が少なく、金型寿命が長いなどの利点があり最近注目されている技術である。これに使用するビレットの鋳造方法としては、ペネシー・アルマックス方式として知られているビレット段階で初晶α(Al)相を球状化するため、半溶融温度域で電磁撹拌を行う方法(方式A)や、鋳造時に通常添加されている量よりも多量のAl−Ti−Bを添加し、その後半溶融温度域まで昇温し、初晶α(Al)相を球状化させる方法(方式B)がある。また、押出・圧延にて歪みを導入後、方式Bのように昇温し球状化させる方法(方式C)が広く知られている。
【0003】
【発明が解決しようとする課題】
従来の半溶融製造法の場合、方式Aでは工程が非常に煩雑で、製造コストが高くつく不具合があった。
また、方式Bでは、多量のAl−Ti−Bを添加するため溶融炉内でのTiB2沈降による品質不安定が発生し、更に方式Cの圧延により歪みを導入する方法は均一な歪みの導入が難しく、また押出では常温押出により作業工程が煩雑で、しかも均一な歪み導入が難しいし、両歪み導入法とも加工後の製品加工が必要となり、量産化や低コスト化が図れないという問題があった。
【0004】
特許第2976073号には、改良された方法が開示されている。即ち、そこには第1項中に「完全に固化した金属または金属合金材料をその再結晶温度未満の温度で変形する工程、該材料の微小構造の再結晶を起こさせるために変形材料を加熱する工程、および該材料の温度をその固相線温度を上回る温度に上昇させることによりチキソトロピック的な挙動を呈する液状マトリックス中に独立した粒子を形成させるために、再結晶構造を部分的に融解させる工程を備えた方法」である。
この方法は、該材料の微小構造の再結晶を起こさせるために変形材料を加熱する工程、および該材料の温度をその固相線温度を上回る温度に上昇させるといういわば2段階加熱とも言うべき加熱が行われる。このような方法は、従来の技術に比べれば、改善された技術と言えるが、やはり2段階の加熱を必要とし、工程が複雑で加熱制御が難しいという問題があった。
【0005】
本発明は、上記従来技術の欠点を解消し、工程が簡素で低コスト化を促進でき、得られる製品が均質な輸送機器用アルミニウム合金の半溶融成型ビレットの製造方法を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
上記目的を達成するため、本願の輸送機器用アルミニウム合金の半溶融成型ビレットの製造方法は、Cu4.0wt%以下、Si5.0〜10wt%、Mg0.2〜0.7wt%、Zn0.35wt%以下、Fe0.55wt%以下、Mn0.5wt%以下と、Ti0.005〜0.5wt%及びB0.0001〜0.5wt%の少なくとも1種以上を含み、残部が実質的にAlの組成から成り、共晶Siの平均粒径が40μm以下で、しかもデンドライト枝間隔(DAS)が200μm以下であるアルミニウム合金を製造し、次いで歪み率5〜50%、加工導入速度11〜50mm/sec.で200℃以下の温度で冷間型枠鍛造にて加工歪みを導入し、その後共晶温度以上に昇温し、液相率が20〜80%となる温度で保持して半溶融成型する方法である。
【0007】
この場合に、成分偏析の均質化、共晶Siの分断球状化及び鋳造応力の解放のために、加工歪みを導入する前に、450〜550℃の温度で1〜10時間の均質化処理を行うと好ましい。
【0008】
また、上記目的を達成するため、本願の輸送機器用アルミニウム合金の半溶融成型ビレットの製造方法は、Cu4.0wt%以下、Si5.0〜10wt%、Mg0.2〜0.7wt%、Zn0.35wt%以下、Fe0.55wt%以下、Mn0.5wt%以下と、Ti0.005〜0.5wt%及びB0.0001〜0.5wt%の少なくとも1種以上と、Sr0.001〜0.10wt%、Na0.003〜0.02wt%及びSb0.05〜0.3wt%の中の少なくとも1種以上を含み、残部が実質的にAlの組成から成り、共晶Siの平均粒径が40μm以下でしかも、デンドライト枝間隔(DAS)が200μm以下であるアルミニウム合金を製造し、次いで歪み率5〜50%、加工導入速度11〜50mm/sec.で200℃以下の温度で冷間型枠鍛造にて加工歪みを導入し、その後共晶温度以上に昇温し、液相率が20〜80%となる温度で保持して半溶融成型する方法である。
【0009】
この場合に、成分偏析の均質化、共晶Siの分断球状化及び鋳造応力の解放のために、加工歪みを導入する前に、450〜550℃の温度で1〜10時間の均質化処理を行うと好ましい。
【0010】
【発明の実施の形態】
以下本発明で用いるアルミニウム合金成分量の数値限定等種々の数値限定理由について詳述する。
【0011】
Cu成分は、固溶体硬化によりマトリックスの強化に寄与するが、4.0wt%を超えると耐食性が悪くなるので4.0wt%以下とした。
【0012】
Si成分は、鋳造する際の湯流れを良くし、鋳造割れ・引け巣を改善し、耐摩摩耗性を向上させるが、その量が5.0wt%未満ではそれらの効果が少なく、一方10wt%を超えると伸び・靱性が劣化し冷間鍛造加工性が悪くなるので5.0〜10wt%とした。
【0013】
Mg成分は、MgSiを析出し強度の向上に寄与するが、0.2wt%未満ではその効果が少なく、一方0.7wt%を超えるとMgSiの析出量が過多となり靱性の低下をまねくので0.2〜0.7wt%とした。
【0014】
Zn成分は、耐食性を劣化させるため0.35wt%を上限とした。
【0015】
Fe成分は、Al−Fe−Si系化合物となり伸び・靱性・耐食性に悪影響を及ぼすが、0.55wt%以下ならば実質的に悪影響が見られない。
【0016】
Mn成分は、強度・伸び・靱性を向上させるが、0.5wt%を超えると、Al−Fe−Si−Mn系化合物の脆い金属間化合物が多くなり、加工性に悪影響を及ぼすので0.5wt%を上限とした。
【0017】
Ti成分は、鋳塊の組織を微細化し、鋳塊割れの発生を防止するが、0.005wt%未満ではその効果が少なく、一方0.5wt%を超えると、TiAlの巨大な晶出物の発生を促進させ、冷間鍛造加工時の割れを生じるため0.005〜0.5wt%とした。
【0018】
B成分もまたTi成分と共に鋳塊の組織を微細化し、鋳塊割れの発生を防止するが、0.0001wt%未満ではその効果は小さく、一方0.5wt%を超えると冷間鍛造加工時の割れをまねくので0.0001〜0.5wt%とした。
【0019】
Sr成分は、共晶Siを微細化し衝撃値・伸びを向上させるが、その量が0.001wt%未満ではそれらの効果が少なく、一方0.10wt%を超えると加工性の低下や、ガス・介在物混入の原因となるためその量を0.001〜0.10wt%とした。
【0020】
Na成分は、共晶Siを微細化し衝撃値・伸びを向上させるが、その量が0.003wt%未満ではそれらの効果が少なく、一方0.02wt%を超えると流動性や、脱ガス性の低下の原因となるためその量を0.003〜0.2wt%とした。
【0021】
Sb成分は、同じく共晶Siを微細化させるが、その量が0.05wt%未満ではその効果を発現させるのに不充分であり、一方0.3wt%を超えると靱性が低下するためその量を0.05〜0.3wt%とした。
【0022】
共晶Siの平均粒径が40μm以下でしかも、デンドライト枝間隔(DAS)が200μm以下であるビレットを鋳造するが、共晶Siの平均粒径が40μmを超えしかも、デンドライト枝間隔(DAS)が200μmを超えると、半溶融温度域に加熱した際に初晶α(Al)相の均一微細球状化が難しくなるし、また均質化処理を行う場合には均質化処理に時間を要するので、共晶Siの平均粒径が40μm以下でしかも、デンドライト枝間隔(DAS)を200μm以下とした。
【0023】
鋳造で得られたビレットを均質化処理することにより、鋳造時に結晶粒界に晶出したAlCu、MgSi等の晶出物がマトリックスに固溶する。また、均質化処理によって共晶Siを球状化し冷間鍛造加工時の変形抵抗を小さくする。均質化処理温度が450℃未満や1時間に達しない加熱時間では、固溶化が充分得られず、また、共晶Siの球状化や、鋳造歪の除去も不充分である。しかし550℃を超える処理温度では、共晶融解が発生し鍛造時の加工性を損なう。また、10時間を越える加熱時間では、加熱時間の長時間に見合った均質化の効果上昇が見られず、加熱エネルギーの損失となる。このため、均質化処理条件は450〜550℃の温度で1〜10時間加熱とした。
【0024】
次に加工歪みの導入は、工程が簡素化でき、かつ少ない加工率で歪みが有効に導入されるように冷間鍛造で行い、なおかつ鍛造用ビレットの全体に均一に歪みが導入されるように型枠鍛造とする。歪み率は、5%未満の場合には歪み導入が少ないため半溶融温度域まで昇温しても初晶α(Al)相の均一な球状化は図れず、一方50%を超えると初晶α(Al)相サイズに変化は見られないのみならず冷間鍛造時に割れが発生するため、5〜50%とした。ここでの歪み率は、鍛造用ビレットの元の長さをLとし、鍛造後のビレットの長さをLとした時、(L−L)/L×100(%)で定義した。
【0025】
加工導入速度は、ビレット鋳塊の結晶粒微細化と均質化処理を加えることにより大幅にアップできる、生産性から言えば、加工導入速度はできるだけ早い方が好ましい。11mm/sec.未満では生産性が劣り、しかしながら50mm/sec.を超えると冷間鍛造時に割れが生じたり、鍛造デットゾーンが発生し、歪みが均一に導入されないため11〜50mm/sec.とした。また、冷間型粋鍛造の際のビレット温度は、200℃を越えると所定の加工率に対する歪み導入が不充分となり、半溶融温度に昇温しても初晶α(Al)相が粒状組織とならないため200℃以下とした。
【0026】
その後、ビレットを共晶温度以上に昇温し、液相率が20〜80%となる温度で保持して半溶融成型するが、液相率が20%未満では初晶α(Al)相の均一な球状化は図れず、半溶融成型の変形抵抗が大きく加圧成型が困難となる。また、80%を超えると均一な組織を有する成型品が得られない。このため、共晶温度以上の半溶融温度域での液相率は20〜80%とした。
【0027】
【実施例】
以下本発明の具体的な実施例を示す。
図1は本発明方法で用いる冷間型枠鍛造の模式図であり、図中符号1は鍛造用金型、2は鍛造用金型ポンチ、3はアルミニウム合金ビレットを示す。
【0028】
Cu、Si、Mg、Zn、Fe、Mn、Ti、B及びSrをそれぞれ下記表1に示すような組成となるように溶湯を調製し、連続鋳造にてアルミニウム合金ビレットを鋳造した。
【0029】
【表1】

Figure 0003676723
【0030】
上記表1に示すアルミニウム合金ビレットを、表2に示す条件で処理し、半溶融成型の成型性、半溶融成型後の初晶α(Al)相の形状を評価した結果も表2に併記した。
【0031】
【表2】
Figure 0003676723
【0032】
表2に示した加工歪導入時の成型性は、表2で示す成型条件で成型した際に割れが発生せず成型性が良好なものを○とし、割れが見られるものを×で判定した。半溶融成型の成型性は、良好なものを○とし、成型性の悪いものを×と判定した。半溶融成型後の初晶α(Al)相の形状は、球状化が認められているものを○とし、球状化が不充分であるものを×と判定した。半溶融成型後の初晶α(Al)相の微細均一化では、初晶α(Al)相のサイズが100μm以下を○とし、100μmを越えるサイズのものを×と判定した。
【0033】
図2は、初晶α(Al)相の微細均一化が○評価の代表例顕微鏡組織写真を示し、図3は、微細均一化が×評価の代表例顕微鏡組織写真を示している。
【0034】
【発明の効果】
以上述べて来た如く、本発明方法によれば、従来の半溶融ビレットよりも工程が簡素化され低コスト化が図れる。また、得られる組織も初晶α(Al)相サイズが平均100μm以下で、かつ初晶α(Al)相の面積率50%の均一球状化組織となっており、自動車部材等の輸送機器用として使用が可能である。
【図面の簡単な説明】
【図1】冷間型枠鍛造の模式図である。
【図2】初晶α(Al)相の微細均一化が○評価の代表例の顕微鏡組織写真であり、倍率は92倍である。
【図3】初晶α(Al)相の微細均一化が×評価の代表例の顕微鏡組織写真であり、倍率は92倍である。
【符号の説明】
1 鍛造用金型
2 鍛造用金型ポンチ
3 アルミニウム合金ビレット[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a semi-melt molded billet of an aluminum alloy used for transportation equipment.
[0002]
[Prior art]
The thixocast method using a semi-molten billet is a technology that has recently been attracting attention because it has advantages such as fewer casting segregations, gas entrainment, shrinkage and other defects, and a longer die life compared to conventional die casting methods. It is. The billet casting method used for this is a method in which the primary α (Al) phase is spheroidized in the billet stage, known as the Pennessy Almax method, so that electromagnetic stirring is performed in the semi-melting temperature range (method A). ) And a method of adding a larger amount of Al-Ti-B than the amount normally added at the time of casting, raising the temperature to the latter half melting temperature range, and spheroidizing the primary crystal α (Al) phase (Method B) There is. Further, a method (method C) in which strain is introduced by extrusion / rolling and then heated and spheroidized as in method B is widely known.
[0003]
[Problems to be solved by the invention]
In the case of the conventional semi-molten production method, the method A has a problem that the process is very complicated and the production cost is high.
Further, in method B, since a large amount of Al-Ti-B is added, quality instability occurs due to TiB2 sedimentation in the melting furnace, and the method of introducing strain by rolling in method C introduces uniform strain. Extrusion is difficult, and the working process is complicated due to room temperature extrusion, and it is difficult to introduce uniform strain. Both strain methods require product processing after processing, and mass production and cost reduction cannot be achieved. It was.
[0004]
Japanese Patent No. 2976073 discloses an improved method. That is, in the first item, there is described in “the step of deforming a fully solidified metal or metal alloy material at a temperature below its recrystallization temperature, heating the deformable material to cause recrystallization of the microstructure of the material. And partially melting the recrystallized structure to form independent particles in a liquid matrix that exhibits thixotropic behavior by raising the temperature of the material above its solidus temperature. It is a method including the step of
In this method, the deformation material is heated to cause recrystallization of the microstructure of the material, and heating that is called so-called two-step heating in which the temperature of the material is raised to a temperature above the solidus temperature. Is done. Such a method can be said to be an improved technique as compared with the conventional technique, but it still requires two steps of heating, and has a problem that the process is complicated and heating control is difficult.
[0005]
An object of the present invention is to provide a method for producing a semi-molten molded billet of an aluminum alloy for transportation equipment in which the disadvantages of the above prior art are eliminated, the process is simple and cost reduction can be promoted, and the resulting product is homogeneous. To do.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the manufacturing method of the semi-molten molded billet of aluminum alloy for transportation equipment of the present application is Cu 4.0 wt% or less, Si 5.0 to 10 wt%, Mg 0.2 to 0.7 wt%, Zn 0.35 wt% Hereinafter, Fe 0.55 wt% or less, Mn 0.5 wt% or less, Ti 0.005 to 0.5 wt% and at least one of B 0.0001 to 0.5 wt%, with the balance being substantially composed of Al. An aluminum alloy having an eutectic Si average particle size of 40 μm or less and a dendrite branch interval (DAS) of 200 μm or less is manufactured, and then a strain rate of 5 to 50% and a processing introduction speed of 11 to 50 mm / sec. In this method, processing distortion is introduced by cold mold forging at a temperature of 200 ° C. or less, and then the temperature is raised to the eutectic temperature or higher, and the liquid phase ratio is maintained at a temperature of 20 to 80% and semi-molten molding is performed. It is.
[0007]
In this case, homogenization for 1 to 10 hours at a temperature of 450 to 550 ° C. is performed before processing strain is introduced in order to homogenize component segregation, spheroidization of eutectic Si and release of casting stress. Preferably it is done.
[0008]
Moreover, in order to achieve the said objective, the manufacturing method of the semi-molten shaping | molding billet of the aluminum alloy for transportation apparatuses of this application is Cu4.0 wt% or less, Si5.0-10 wt%, Mg0.2-0.7 wt%, Zn0. 35 wt% or less, Fe 0.55 wt% or less, Mn 0.5 wt% or less, at least one of Ti 0.005 to 0.5 wt% and B0.0001 to 0.5 wt%, Sr0.001 to 0.10 wt%, It contains at least one of Na 0.003-0.02 wt% and Sb 0.05-0.3 wt%, the balance is substantially composed of Al, and the average grain size of eutectic Si is 40 μm or less. An aluminum alloy having a dendrite branch interval (DAS) of 200 μm or less is manufactured, and then a strain rate of 5 to 50% and a processing introduction speed of 11 to 50 mm / sec. In this method, processing distortion is introduced by cold mold forging at a temperature of 200 ° C. or less, and then the temperature is raised to the eutectic temperature or higher, and the liquid phase ratio is maintained at a temperature of 20 to 80% and semi-molten molding is performed. It is.
[0009]
In this case, homogenization for 1 to 10 hours at a temperature of 450 to 550 ° C. is performed before processing strain is introduced in order to homogenize component segregation, spheroidization of eutectic Si and release of casting stress. Preferably it is done.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, various numerical limitation reasons such as numerical limitation of the amount of aluminum alloy components used in the present invention will be described in detail.
[0011]
The Cu component contributes to the strengthening of the matrix by solid solution hardening, but if it exceeds 4.0 wt%, the corrosion resistance deteriorates, so it was made 4.0 wt% or less.
[0012]
Si component improves the flow of hot water during casting, improves casting cracks and shrinkage cavities, and improves wear resistance. However, if the amount is less than 5.0 wt%, these effects are small, while 10 wt% is reduced. If it exceeds, the elongation and toughness deteriorate and the cold forging workability deteriorates.
[0013]
The Mg component precipitates Mg 2 Si and contributes to improving the strength. However, if it is less than 0.2 wt%, the effect is small, while if it exceeds 0.7 wt%, the precipitation amount of Mg 2 Si is excessive and the toughness is reduced. Therefore, the content was set to 0.2 to 0.7 wt%.
[0014]
The Zn component has an upper limit of 0.35 wt% in order to deteriorate the corrosion resistance.
[0015]
The Fe component becomes an Al—Fe—Si compound and adversely affects elongation, toughness, and corrosion resistance. However, if it is 0.55 wt% or less, substantially no adverse effect is observed.
[0016]
The Mn component improves the strength, elongation and toughness, but if it exceeds 0.5 wt%, the brittle intermetallic compound of the Al-Fe-Si-Mn compound increases, and the workability is adversely affected. % Was the upper limit.
[0017]
The Ti component refines the structure of the ingot and prevents the occurrence of ingot cracking, but the effect is less if it is less than 0.005 wt%, while the TiAl 3 giant crystallized product if it exceeds 0.5 wt%. Of 0.005 to 0.5 wt% in order to promote generation of cracks and cause cracks during cold forging.
[0018]
The B component also refines the structure of the ingot together with the Ti component and prevents the occurrence of ingot cracking. However, the effect is small if it is less than 0.0001 wt%, while it is less than 0.5 wt% during cold forging. Since it causes cracking, the content was set to 0.0001 to 0.5 wt%.
[0019]
Sr component refines eutectic Si and improves impact value / elongation, but if its amount is less than 0.001 wt%, these effects are small, while if it exceeds 0.10 wt%, workability decreases, The amount is set to 0.001 to 0.10 wt% because it causes inclusion inclusion.
[0020]
The Na component refines the eutectic Si to improve the impact value and elongation. However, when the amount is less than 0.003 wt%, the effect is small. On the other hand, when the amount exceeds 0.02 wt%, the fluidity and degassing properties are reduced. Since it causes a decrease, the amount is set to 0.003 to 0.2 wt%.
[0021]
The Sb component also refines the eutectic Si, but if its amount is less than 0.05 wt%, it is insufficient to exhibit its effect, while if it exceeds 0.3 wt%, the toughness decreases, so its amount Was set to 0.05 to 0.3 wt%.
[0022]
A billet having an average particle size of eutectic Si of 40 μm or less and a dendrite branch interval (DAS) of 200 μm or less is cast, but the average particle size of eutectic Si exceeds 40 μm and the dendrite branch interval (DAS) is If it exceeds 200 μm, it becomes difficult to make the primary α (Al) phase into uniform fine spheroids when heated to the semi-melting temperature range, and it takes time for the homogenization process to take place. The average grain size of crystal Si was 40 μm or less, and the dendrite branch interval (DAS) was 200 μm or less.
[0023]
By homogenizing the billet obtained by casting, crystallized substances such as Al 2 Cu and Mg 2 Si crystallized at the crystal grain boundaries during casting are dissolved in the matrix. Further, the eutectic Si is spheroidized by homogenization treatment to reduce deformation resistance during cold forging. When the homogenization temperature is less than 450 ° C. or when the heating time does not reach 1 hour, sufficient solid solution cannot be obtained, and eutectic Si spheroidization and removal of casting strain are insufficient. However, if the processing temperature exceeds 550 ° C., eutectic melting occurs and the workability during forging is impaired. On the other hand, when the heating time exceeds 10 hours, no increase in homogenization effect corresponding to the long heating time is observed, resulting in a loss of heating energy. For this reason, the homogenization treatment conditions were heating at a temperature of 450 to 550 ° C. for 1 to 10 hours.
[0024]
Next, processing strain is introduced by cold forging so that the process can be simplified and strain is effectively introduced at a low processing rate, and strain is uniformly introduced into the entire forging billet. Formwork forging. When the strain rate is less than 5%, strain introduction is small, so even if the temperature is raised to the semi-melting temperature range, uniform spheroidization of the primary crystal α (Al) phase cannot be achieved. In addition to no change in the α (Al) phase size, cracks occur during cold forging, so the content was set to 5 to 50%. The distortion rate here is (L 1 −L 2 ) / L 1 × 100 (%), where L 1 is the original length of the forging billet and L 2 is the length of the billet after forging. Defined.
[0025]
The processing introduction speed can be greatly increased by adding crystal grain refining and homogenization treatment of the billet ingot. From the viewpoint of productivity, the processing introduction speed is preferably as fast as possible. 11 mm / sec. The productivity is inferior at less than 50 mm / sec. Exceeds 50 mm, cracks occur during cold forging, forging dead zones occur, and strain is not uniformly introduced, so that the thickness is 11 to 50 mm / sec. It was. In addition, when the billet temperature during cold die forging exceeds 200 ° C., strain introduction for a predetermined processing rate becomes insufficient, and even when the temperature is raised to a semi-melting temperature, the primary α (Al) phase has a granular structure. Therefore, the temperature was set to 200 ° C. or lower.
[0026]
Thereafter, the billet is heated to a temperature equal to or higher than the eutectic temperature and held at a temperature at which the liquid phase ratio becomes 20 to 80%, and semi-molten molding is performed, but if the liquid phase ratio is less than 20%, the primary crystal α (Al) phase Uniform spheroidization cannot be achieved, and the deformation resistance of semi-molten molding is large, making pressure molding difficult. On the other hand, if it exceeds 80%, a molded product having a uniform structure cannot be obtained. For this reason, the liquid phase ratio in the semi-melting temperature range above the eutectic temperature was set to 20 to 80%.
[0027]
【Example】
Specific examples of the present invention are shown below.
FIG. 1 is a schematic view of cold mold forging used in the method of the present invention, in which 1 is a forging die, 2 is a forging die punch, and 3 is an aluminum alloy billet.
[0028]
A molten metal was prepared so that Cu, Si, Mg, Zn, Fe, Mn, Ti, B, and Sr each had a composition as shown in Table 1 below, and an aluminum alloy billet was cast by continuous casting.
[0029]
[Table 1]
Figure 0003676723
[0030]
The aluminum alloy billet shown in Table 1 was processed under the conditions shown in Table 2, and the results of evaluating the moldability of semi-melt molding and the shape of the primary crystal α (Al) phase after semi-melt molding are also shown in Table 2. .
[0031]
[Table 2]
Figure 0003676723
[0032]
The moldability at the time of introducing the processing strain shown in Table 2 was judged as “Good” when the mold did not generate a crack when molded under the molding conditions shown in Table 2 and the moldability was good, and “C” was judged as cracked. . Regarding the moldability of the semi-melt molding, a good one was evaluated as “good”, and a poor one was determined as “poor”. As for the shape of the primary crystal α (Al) phase after the semi-melt molding, a case where spheroidization was recognized was evaluated as ◯, and a case where the spheroidization was insufficient was determined as X. In the fine homogenization of the primary crystal α (Al) phase after semi-melt molding, the size of the primary crystal α (Al) phase was set to ○ when the size of the primary crystal α (Al) phase was 100 μm or less, and × when the size exceeded 100 μm.
[0033]
FIG. 2 shows a representative example microstructure photograph in which fine homogenization of the primary crystal α (Al) phase is evaluated as “good”, and FIG. 3 shows a representative example microstructure photograph in which fine homogenization is evaluated as “x”.
[0034]
【The invention's effect】
As described above, according to the method of the present invention, the process is simplified and the cost can be reduced as compared with the conventional semi-molten billet. The resulting structure also has a uniform spheroidized structure with an average primary crystal α (Al) phase size of 100 μm or less and an area ratio of primary crystal α (Al) phase of 50%. It can be used as
[Brief description of the drawings]
FIG. 1 is a schematic diagram of cold form forging.
FIG. 2 is a microstructural photograph of a representative example of evaluation where fine homogenization of the primary α (Al) phase is ○, and the magnification is 92 times.
FIG. 3 is a microstructural photograph of a representative example in which fine homogenization of the primary crystal α (Al) phase is x evaluation, and the magnification is 92 times.
[Explanation of symbols]
1 Forging die 2 Forging die punch 3 Aluminum alloy billet

Claims (4)

Cu4.0wt%以下、Si5.0〜10wt%、Mg0.2〜0.7wt%、Zn0.35wt%以下、Fe0.55wt%以下、Mn0.5wt%以下と、Ti0.005〜0.5wt%及びB0.0001〜0.5wt%の少なくとも1種以上を含み、残部が実質的にAlの組成から成り、共晶Siの平均粒径が40μm以下でしかも、デンドライト枝間隔が200μm以下であるアルミニウム合金を製造し、次いで歪み率5〜50%、加工導入速度11〜50mm/sec.で200℃以下のビレット温度で、冷間型枠鍛造にて加工歪みを導入し、その後共晶温度以上に昇温し、液相率が20〜80%となる温度で保持して半溶融成型することを特徴とする輸送機器用アルミニウム合金の半溶融成型ビレットの製造方法。Cu 4.0 wt% or less, Si 5.0 to 10 wt%, Mg 0.2 to 0.7 wt%, Zn 0.35 wt% or less, Fe 0.55 wt% or less, Mn 0.5 wt% or less, Ti 0.005 to 0.5 wt%, and Aluminum alloy containing at least one of B0.0001 to 0.5 wt%, the balance being substantially composed of Al, the average grain size of eutectic Si being 40 μm or less, and the dendrite branch interval being 200 μm or less Next, the strain rate is 5 to 50%, the processing introduction speed is 11 to 50 mm / sec. At a billet temperature of 200 ° C. or less at the billet temperature, work distortion is introduced by cold forging, and then the temperature is raised to the eutectic temperature or higher, and the liquid phase ratio is kept at a temperature of 20 to 80% and semi-molten molding A method for producing a semi-molten molded billet of an aluminum alloy for transportation equipment. アルミニウム合金を製造し、加工歪みを導入する前に、450〜550℃の温度で1〜10時間の均質化処理を行うことを特徴とする請求項1記載の輸送機器用アルミニウム合金の半溶融成型ビレットの製造方法。  The semi-molten molding of an aluminum alloy for transport equipment according to claim 1, wherein the aluminum alloy is manufactured and homogenized for 1 to 10 hours at a temperature of 450 to 550 ° C before introducing processing strain. Billet manufacturing method. Cu4.0wt%以下、Si5.0〜10wt%、Mg0.2〜0.7wt%、Zn0.35wt%以下、Fe0.55wt%以下、Mn0.5wt%以下と、Ti0.005〜0.5wt%及びB0.0001〜0.5wt%の少なくとも1種以上と、Sr0.001〜0.10wt%、Na0.003〜0.02wt%及びSb0.05〜0.3wt%の中の少なくとも1種以上を含み、残部が実質的にAlの組成から成り、共晶Siの平均粒径が40μm以下でしかも、デンドライト枝間隔が200μm以下であるアルミニウム合金を製造し、次いで歪み率5〜50%、加工導入速度11〜50mm/sec.で200℃以下のビレット温度で冷間型枠鍛造にて加工歪みを導入し、その後共晶温度以上に昇温し、液相率が20〜80%となる温度で保持して半溶融成型することを特徴とする輸送機器用アルミニウム合金の半溶融成型ビレットの製造方法。Cu 4.0 wt% or less, Si 5.0 to 10 wt%, Mg 0.2 to 0.7 wt%, Zn 0.35 wt% or less, Fe 0.55 wt% or less, Mn 0.5 wt% or less, Ti 0.005 to 0.5 wt%, and Including at least one of B0.0001 to 0.5 wt% and at least one of Sr0.001 to 0.10 wt%, Na 0.003 to 0.02 wt% and Sb 0.05 to 0.3 wt% In addition, an aluminum alloy in which the balance is substantially composed of Al, the average particle diameter of eutectic Si is 40 μm or less, and the dendrite branch interval is 200 μm or less is manufactured, and then the strain rate is 5 to 50%, the processing introduction speed 11-50 mm / sec. Then, processing distortion is introduced by cold mold forging at a billet temperature of 200 ° C. or lower, and then the temperature is raised to the eutectic temperature or higher, and the liquid phase ratio is maintained at a temperature of 20 to 80%, and semi-molten molding is performed. A method for producing a semi-molten molded billet of an aluminum alloy for transportation equipment. アルミニウム合金を製造し、加工歪みを導入する前に、450〜550℃の温度で1〜10時間の均質化処理を行うことを特徴とする請求項3記載の輸送機器用アルミニウム合金の半溶融成型ビレットの製造方法。  The semi-molten molding of an aluminum alloy for transportation equipment according to claim 3, wherein the aluminum alloy is manufactured and homogenized for 1 to 10 hours at a temperature of 450 to 550 ° C before introducing processing strain. Billet manufacturing method.
JP2001334666A 2001-10-31 2001-10-31 Method for producing semi-melt molded billet of aluminum alloy for transportation equipment Expired - Fee Related JP3676723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001334666A JP3676723B2 (en) 2001-10-31 2001-10-31 Method for producing semi-melt molded billet of aluminum alloy for transportation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001334666A JP3676723B2 (en) 2001-10-31 2001-10-31 Method for producing semi-melt molded billet of aluminum alloy for transportation equipment

Publications (2)

Publication Number Publication Date
JP2003136198A JP2003136198A (en) 2003-05-14
JP3676723B2 true JP3676723B2 (en) 2005-07-27

Family

ID=19149765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001334666A Expired - Fee Related JP3676723B2 (en) 2001-10-31 2001-10-31 Method for producing semi-melt molded billet of aluminum alloy for transportation equipment

Country Status (1)

Country Link
JP (1) JP3676723B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5300118B2 (en) * 2007-07-06 2013-09-25 日産自動車株式会社 Aluminum alloy casting manufacturing method
JP2011144443A (en) * 2010-01-18 2011-07-28 Yasuo Sugiura Aluminum alloy for semisolid casting
JP5862406B2 (en) * 2012-03-27 2016-02-16 株式会社豊田中央研究所 Aluminum alloy member and manufacturing method thereof
CN102676862B (en) * 2012-05-31 2014-12-31 无锡格莱德科技有限公司 Process for manufacturing aluminum alloy ingot
JP6704276B2 (en) * 2016-03-29 2020-06-03 アイシン軽金属株式会社 Method for producing cast material using aluminum alloy for casting
CN112760527B (en) * 2020-12-22 2021-08-17 衢州学院 High-pressure directional solidification material and method thereof

Also Published As

Publication number Publication date
JP2003136198A (en) 2003-05-14

Similar Documents

Publication Publication Date Title
CN102796925B (en) High-strength die-casting aluminum alloy for pressure casting
RU2463371C2 (en) Magnesium-containing high-silica aluminium alloys used as structural materials and method of their manufacturing
JPH07145441A (en) Superplastic aluminum alloy and its production
JP2010018875A (en) High strength aluminum alloy, method for producing high strength aluminum alloy casting, and method for producing high strength aluminum alloy member
CN109972009B (en) High-toughness high-modulus wrought magnesium alloy and preparation method thereof
CN111101034A (en) Low-rare-earth high-performance rare earth aluminum alloy and preparation method thereof
CN110079712A (en) As cast condition high-ductility diecasting aluminum-silicon alloy and its preparation method and application
CN110983128A (en) High-strength heat-resistant wrought aluminum alloy and preparation method thereof
JP2001220639A (en) Aluminum alloy for casting
CN112626401B (en) 2XXX series aluminum alloy and preparation method thereof
JP3548709B2 (en) Method for producing semi-solid billet of Al alloy for transportation equipment
CN110284086B (en) Method for eliminating segregation of crystalline phase in cast aluminum-copper-manganese alloy
JPH0967635A (en) Aluminum alloy casting excellent in strength and toughness, by high pressure casting, and its production
JP4145242B2 (en) Aluminum alloy for casting, casting made of aluminum alloy and method for producing casting made of aluminum alloy
JP3852915B2 (en) Method for producing semi-melt molded billet of aluminum alloy for transportation equipment
JP3676723B2 (en) Method for producing semi-melt molded billet of aluminum alloy for transportation equipment
JP3840400B2 (en) Method for producing semi-melt molded billet of aluminum alloy for transportation equipment
JPH10110231A (en) Aluminum alloy material for casting-forging excellent in wear resistance, castability and forgeability and its production
JP3798676B2 (en) Method for producing semi-melt molded billet of aluminum alloy for transportation equipment
WO2019023818A1 (en) Readily cold-formable deformable zinc alloy material, preparation method therefor, and application thereof
JP5575028B2 (en) High strength aluminum alloy, high strength aluminum alloy casting manufacturing method and high strength aluminum alloy member manufacturing method
JP4121266B2 (en) Method for producing semi-molten billet of aluminum alloy for transportation equipment
CN116397139A (en) High-strength high-toughness aluminum alloy for vehicle body and preparation method thereof
JP3829164B2 (en) Semi-melt molding material manufacturing method
JP4152095B2 (en) Method for producing semi-molten billet of aluminum alloy for transportation equipment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees