JP4285188B2 - Heat-resistant magnesium alloy for casting, casting made of magnesium alloy and method for producing the same - Google Patents

Heat-resistant magnesium alloy for casting, casting made of magnesium alloy and method for producing the same Download PDF

Info

Publication number
JP4285188B2
JP4285188B2 JP2003358137A JP2003358137A JP4285188B2 JP 4285188 B2 JP4285188 B2 JP 4285188B2 JP 2003358137 A JP2003358137 A JP 2003358137A JP 2003358137 A JP2003358137 A JP 2003358137A JP 4285188 B2 JP4285188 B2 JP 4285188B2
Authority
JP
Japan
Prior art keywords
casting
mass
magnesium alloy
heat
heat resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003358137A
Other languages
Japanese (ja)
Other versions
JP2005120449A (en
Inventor
俊男 堀江
博 川原
勇 上田
弘昭 岩堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2003358137A priority Critical patent/JP4285188B2/en
Publication of JP2005120449A publication Critical patent/JP2005120449A/en
Application granted granted Critical
Publication of JP4285188B2 publication Critical patent/JP4285188B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、ダイカスト鋳造等の鋳造性に優れる耐熱マグネシウム合金に関するものである。   The present invention relates to a heat-resistant magnesium alloy having excellent castability such as die casting.

近年、材料の軽量化へのニーズが高まり、アルミニウム合金よりも軽量なマグネシウム合金が注目を集めている。マグネシウム合金は、実用金属中最も軽量であり、航空機用材料の他に、自動車用材料等として使用されつつある。例えば、自動車のホイールやエンジンのヘッドカバー材料等にマグネシウム合金が既に使用されている。さらに、最近の強い軽量化の要請により、このマグネシウム合金の適用範囲が一段と拡大しつつある。例えば、高温になるエンジンブロック等の構造部品やピストン等の機能部品にまで、マグネシウム合金の適用が考えられている。   In recent years, the need for lighter materials has increased, and magnesium alloys that are lighter than aluminum alloys have attracted attention. Magnesium alloys are the lightest among practical metals and are being used as materials for automobiles in addition to aircraft materials. For example, magnesium alloys have already been used for automobile wheels and engine head cover materials. Furthermore, due to the recent demand for strong weight reduction, the applicable range of this magnesium alloy is further expanding. For example, it is considered to apply a magnesium alloy to a structural part such as an engine block that becomes high temperature and a functional part such as a piston.

ところで、マグネシウム合金製品は、通常、ダイカスト鋳造等によって製造されることが多い。このため、マグネシウム合金の普及を図るためには、その鋳造性も重要となる。つまり、鋳造割れの発生等を抑制・防止して、歩留向上やコスト低減を図る必要もある。
このような事情の下、耐熱性や鋳造性の向上を狙った種々のマグネシウム合金がこれまで開発されてきた。例えば、下記の特許文献1〜3には、耐熱性および鋳造性を両立させたマグネシウム合金が提案されている。
By the way, a magnesium alloy product is usually manufactured by die casting or the like in many cases. For this reason, in order to spread the magnesium alloy, its castability is also important. In other words, it is necessary to suppress and prevent the occurrence of casting cracks and to improve yield and cost.
Under such circumstances, various magnesium alloys aimed at improving heat resistance and castability have been developed so far. For example, the following Patent Documents 1 to 3 propose magnesium alloys that achieve both heat resistance and castability.

特開平7−331375号公報Japanese Patent Laid-Open No. 7-331375 特開2001−59125号公報JP 2001-59125 A 特表平10−513225号公報Japanese National Patent Publication No. 10-513225

上記特許文献1には、Mg−Al−Zn−R.E.−Mn−Ca系合金が開示されている。しかし、本発明者の研究によると、Alは、マグネシウム合金の鋳造性を改善するものの、耐クリープ性等の耐熱性をむしろ低下させる。従って、Alを多く含有するMg合金は鋳造用耐熱マグネシウム合金として好ましくない。   Patent Document 1 discloses an Mg—Al—Zn—RE—Mn—Ca alloy. However, according to the study of the present inventor, Al improves the castability of the magnesium alloy, but rather lowers the heat resistance such as creep resistance. Therefore, an Mg alloy containing a large amount of Al is not preferable as a heat-resistant magnesium alloy for casting.

特許文献2に開示されているMg−Zn−Ca−R.E.−Zr系合金は、優れた耐熱性および鋳造性を示す。しかし、Znを多く含有する場合、大きな鋳造割れこそ発生しないものの、鋳物の形状によっては鋳物の表面に微細な鋳造割れが発生し得る。   The Mg—Zn—Ca—R.E.—Zr alloy disclosed in Patent Document 2 exhibits excellent heat resistance and castability. However, when a large amount of Zn is contained, although a large casting crack does not occur, a fine casting crack can occur on the surface of the casting depending on the shape of the casting.

特許文献3には、耐熱性、鋳造性および耐蝕性を改善したMg−Zn−R.E.系合金が開示されており、鋳造性改善のためにCaを加えると好ましい旨も記載されている。但し、実際にCaを添加した実施例は開示されていない。本発明者の研究によると、後述するように、Caは耐熱性を改善させる元素であるものの、Znとの共存下において鋳造性を改善させるものではない。   Patent Document 3 discloses an Mg-Zn-RE alloy having improved heat resistance, castability and corrosion resistance, and also describes that it is preferable to add Ca for improving castability. . However, examples in which Ca is actually added are not disclosed. According to the inventor's research, as will be described later, Ca is an element that improves heat resistance, but does not improve castability in the presence of Zn.

本発明は、このような事情に鑑みてなされたものであり、Mg−(Zn)−Ca−R.E.系合金をベースにして従来以上に耐熱性および鋳造性を改善できる鋳造用耐熱マグネシウム合金を提供する。また、耐熱性に優れると共に鋳造割れ等を抑制したマグネシウム合金製鋳物およびその製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and based on an Mg- (Zn) -Ca-RE alloy, the heat-resistant magnesium for casting that can improve heat resistance and castability more than ever. Provide alloy. Another object of the present invention is to provide a magnesium alloy casting that has excellent heat resistance and suppresses casting cracks and the like, and a method for producing the same.

本発明者らはこの課題を解決すべく鋭意研究し各種系統的実験を重ねた結果、CaとZnとの共存が鋳造割れ性に大きく影響を与えることを発見し、この結果を踏まえて、耐熱性および鋳造割れの両立を高次元で図れる合金組成を新たに見出して、本発明を完成させるに至った。   As a result of intensive studies and various systematic experiments to solve this problem, the present inventors have found that the coexistence of Ca and Zn has a great influence on the cast cracking property. Thus, the present inventors have completed the present invention by newly finding an alloy composition capable of achieving both compatibility and cast cracking at a high level.

(鋳造用耐熱マグネシウム合金)
すなわち、本発明の鋳造用耐熱マグネシウム合金は、全体を100質量%としたときに、0.2〜3質量%のカルシウム(Ca)と、1〜4質量%の希土類元素(R.E.)と、1質量%未満の亜鉛(Zn)と、0.3〜1質量%のジルコニウム(Zr)とを含み、残部がマグネシウム(Mg)および不可避的不純物とからなり、前記Caの前記Znに対する含有量比(Ca/Zn)は0.2〜4であり、鋳造性および耐熱性に優れることを特徴とする。
(Heat-resistant magnesium alloy for casting)
That is, the heat-resistant magnesium alloy for casting of the present invention is 0.2 to 3% by mass of calcium (Ca) and 1 to 4% by mass of rare earth element (RE) when the whole is 100% by mass. And less than 1% by mass of zinc (Zn) and 0.3 to 1% by mass of zirconium (Zr) , the balance consisting of magnesium (Mg) and inevitable impurities, and the inclusion of Ca in the Zn The quantity ratio (Ca / Zn) is 0.2 to 4, and is characterized by excellent castability and heat resistance.

(マグネシウム合金製鋳物)
また、本発明は、上記鋳造用耐熱マグネシウム合金のみならず、それを用いて鋳造したマグネシウム合金製鋳物としても把握できる。
すなわち、本発明は、全体を100質量%としたときに、0.2〜3質量%のCaと、1〜4質量%のR.E.と、 1質量%未満のZnと、0.3〜1質量%のZrとを含み、残部がMgおよび不可避的不純物とからなり、前記Caの前記Znに対する含有量比(Ca/Zn)は0.2〜4であり、耐熱性に優れると共に鋳造割れがほとんどないことを特徴とするマグネシウム合金製鋳物としても良い。
(Magnesium alloy castings)
Moreover, this invention can be grasped | ascertained not only as the said heat-resistant magnesium alloy for casting but as a magnesium alloy casting casted using it.
That is, according to the present invention, when the total is 100% by mass, 0.2 to 3% by mass of Ca, 1 to 4% by mass of RE, less than 1% by mass of Zn, and 0.3 % -1% by mass of Zr , the balance being Mg and inevitable impurities, the content ratio of Ca to Zn (Ca / Zn) is 0.2-4, excellent heat resistance and casting It may be a magnesium alloy casting characterized by almost no cracks.

(マグネシウム合金製鋳物の製造方法)
さらに、本発明は、上記マグネシウム合金製鋳物の製造方法としても把握できる。
すなわち、本発明のマグネシウム合金製鋳物の製造方法は、全体を100質量%としたときに、0.2〜3質量%のCaと、1〜4質量%のR.E.と、1質量%未満のZnと、0.3〜1質量%のZrとを含み、残部がMgおよび不可避的不純物とからなり、前記Caの前記Znに対する含有量比(Ca/Zn)は0.2〜4であるマグネシウム合金の溶湯を鋳型に注入する注入工程と、該鋳型に注入された溶湯を凝固させる凝固工程とを備え、耐熱性に優れると共に鋳造割れがほとんどないマグネシウム合金製鋳物が得られることを特徴とするマグネシウム合金製鋳物の製造方法としても良い。
(Manufacturing method of magnesium alloy casting)
Furthermore, this invention can be grasped | ascertained also as a manufacturing method of the said magnesium alloy casting.
That is, in the method for producing a magnesium alloy casting according to the present invention, when the whole is 100% by mass, 0.2 to 3% by mass of Ca, 1 to 4% by mass of RE, and 1% by mass. Less than Zn and 0.3-1 mass% Zr , the balance consists of Mg and inevitable impurities, and the content ratio of Ca to Zn (Ca / Zn) is 0.2-4 an injection step of the molten magnesium alloy is injected into a mold Ru Oh, and a solidifying step of solidifying the molten metal injected into the template, that the magnesium alloy casting casting cracks hardly with excellent heat resistance obtained It is good also as the manufacturing method of the casting made from the magnesium alloy characterized.

(発明の作用効果)
本発明の鋳造用耐熱マグネシウム合金を用いて鋳造すると、鋳造割れ等が著しく少なく、高温強度や耐クリープ性等の耐熱性に優れたマグネシウム合金製鋳物が得られる。この理由は必ずしも定かではないが、現状、次のように考えられる。
(Effects of the invention)
When cast using the heat-resistant magnesium alloy for casting of the present invention, a casting made of a magnesium alloy having extremely low heat resistance such as high-temperature strength and creep resistance can be obtained. The reason for this is not necessarily clear, but it can be considered as follows.

本発明の鋳造用耐熱マグネシウム合金(以下、適宜、単に「マグネシウム合金」という。)が耐熱性に優れるのは、R.E.およびCaを適量含有するためである。例えば、本発明者の研究によると、マグネシウム合金の耐熱性に対する各合金元素の寄与度は、本発明に関連する元素について、R.E.>Ca>Zr>Znの順となる。従って、Caは、R.E.と共にマグネシウム合金の耐熱性の向上に非常に有効な元素である。   The reason why the heat-resistant magnesium alloy for casting of the present invention (hereinafter simply referred to as “magnesium alloy”) is excellent in heat resistance is that it contains appropriate amounts of RE and Ca. For example, according to the research of the present inventors, the contribution of each alloy element to the heat resistance of the magnesium alloy is in the order of RE> Ca> Zr> Zn for the elements related to the present invention. Therefore, Ca is a very effective element for improving the heat resistance of the magnesium alloy together with RE.

ところが、従来、Caはマグネシウム合金の鋳造性を低下させる元素であるといわれてきた。このため、例えば、前述の特許文献2にもあるように、鋳造性を改善する観点から、Ca量を抑制することが推奨されてきた(例えば、0.3質量%以下)。   However, conventionally, Ca has been said to be an element that lowers the castability of magnesium alloys. For this reason, for example, as described in Patent Document 2, it has been recommended to suppress the Ca content (for example, 0.3% by mass or less) from the viewpoint of improving castability.

しかし、本発明者がさらに研究したところ、Caが比較的多くのZnと共存するとき、その鋳造性が大きく低下することが新たにわかった。これは、CaがZnと共存すると、固相線温度が低くなり合金溶湯の凝固温度が拡大するためであると考えられる。なぜなら、鋳造性は主に鋳造割れによって評価できるが、この鋳造割れは鋳造時の凝固収縮に伴う歪みによって発生する。凝固温度範囲が拡大すると、凝固収縮に伴う収縮応力が脆弱な液相部分に集中し、鋳造割れも発生し易くなる。   However, further research by the present inventors has revealed that when Ca coexists with a relatively large amount of Zn, its castability is greatly reduced. This is considered to be because when Ca coexists with Zn, the solidus temperature decreases and the solidification temperature of the molten alloy increases. This is because castability can be evaluated mainly by casting cracks, but the casting cracks are caused by strain accompanying solidification shrinkage during casting. When the solidification temperature range is expanded, the shrinkage stress accompanying solidification shrinkage concentrates on the weak liquid phase portion, and casting cracks are likely to occur.

従って、本発明の鋳造用耐熱マグネシウム合金では、適量のCaを残存させることで耐熱性が確保され、凝固温度範囲を広げるZnを抑制することで、鋳造時の固相線温度を上昇させることによって、鋳造性が確保されていると考えられる。   Therefore, in the heat-resistant magnesium alloy for casting according to the present invention, heat resistance is ensured by leaving an appropriate amount of Ca, and by suppressing Zn that expands the solidification temperature range, the solidus temperature during casting is increased. It is considered that castability is secured.

なお、本明細書では各元素の組成範囲を「x〜y質量%」という形式で示したが、これは特に断らない限り、下限値(x質量%)および上限値(y質量%)も含む。また、本明細書でいう「鋳造性」は、例えば、合金溶湯を冷却凝固させた際の鋳造割れの発生の有無で評価できる。ここで、本明細書でいう鋳造は、特に断らない限り、特定の鋳造方法を対象としたものではなく、砂型鋳造、金型鋳造、重力鋳造、高圧鋳造等のあらゆる鋳造方法を対象としている。もっとも、ダイカスト鋳造等の冷却速度が速い鋳造方法に本発明の鋳造用耐熱マグネシウム合金は特に有効である。Zn量が少ないので溶湯の凝固温度範囲が狭く、鋳造割れ等が発生し難く、しかも冷却速度が速いためにマグネシウム合金製鋳物の組織も微細となるからである。「耐熱性」は、例えば、高温雰囲気中におけるマグネシウム合金の機械的性質(クリープ特性、高温強度、軸力保持率等)で評価できる。   In the present specification, the composition range of each element is shown in the form of “x to y mass%”, but this also includes the lower limit (x mass%) and the upper limit (y mass%) unless otherwise specified. . Further, the “castability” in the present specification can be evaluated by, for example, the presence or absence of occurrence of casting cracks when the molten alloy is cooled and solidified. Here, unless otherwise specified, the casting referred to in this specification is not intended for a specific casting method, but is intended for all casting methods such as sand casting, die casting, gravity casting, and high pressure casting. However, the heat-resistant magnesium alloy for casting of the present invention is particularly effective for a casting method having a high cooling rate such as die casting. This is because the amount of Zn is small, the solidification temperature range of the molten metal is narrow, casting cracks and the like hardly occur, and the cooling rate is fast, and the structure of the magnesium alloy casting becomes fine. “Heat resistance” can be evaluated by, for example, the mechanical properties (creep characteristics, high temperature strength, axial force retention, etc.) of a magnesium alloy in a high temperature atmosphere.

本発明でいう鋳物用マグネシウム合金は、主に鋳造原料となるものである。例えば、インゴット等の一次的な形態をしている。マグネシウム合金製鋳物は、素材、中間素材または中間製品、最終製品等のいずれでも良い。また、鋳放状態でも、熱処理を施したものでも、仕上加工をしたものでも良い。その形態も問わず、例えば、棒状、板状、環状等の他、最終製品形状またはそれに近い形状をしていても良い。   The magnesium alloy for casting referred to in the present invention is mainly used as a casting raw material. For example, it has a primary form such as an ingot. The magnesium alloy casting may be a raw material, an intermediate material, an intermediate product, an end product, or the like. Further, it may be in an as-cast state, heat-treated, or finished. Regardless of the form, for example, in addition to a rod shape, a plate shape, an annular shape, or the like, the shape may be a final product shape or a shape close thereto.

発明の実施形態を挙げて、本発明をより詳しく説明する。なお、以下の実施形態を含め、本明細書で説明する内容は、本発明の鋳造用耐熱マグネシウム合金のみならずマグネシウム合金製鋳物(以下、適宜、両者を単に「マグネシウム合金」という。)およびその製造方法にも適宜該当する。また、いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。   The present invention will be described in more detail with reference to embodiments of the invention. In addition, the content described in this specification including the following embodiments includes not only the heat-resistant magnesium alloy for casting of the present invention but also a magnesium alloy casting (hereinafter, both are simply referred to as “magnesium alloy”) and the same. Applicable to the manufacturing method as appropriate. Which embodiment is the best depends on the target, required performance, and the like.

(1)合金組成
本発明のマグネシウム合金は、Caを0.2〜3質量%と、R.E.を1〜4質量%と、Znを1質量%未満含有してなる。
(1) Alloy composition The magnesium alloy of the present invention contains 0.2 to 3% by mass of Ca, 1 to 4% by mass of RE, and less than 1% by mass of Zn.

Caは、Mg基地中に固溶してα−Mgを強化すると共にMgと化合物を形成し、微細な析出物や晶出物として組織を形成して、マグネシウム合金の耐熱性と耐力を向上させる元素である。特に、その微細な析出物によって耐熱性が向上し、粒界に晶出するMg−Ca系化合物によって耐力が向上する。Caが0.2質量%未満ではこのような効果が薄く、Caが3質量%を超えるとCa化合物(粒界化合物)が粒界に多量に連続して晶出するようになり、マグネシウム合金の伸びや靱性を低下させる。また、Caの過多は鋳造割れの誘因ともなる。Caの下限を0.2質量%さらには0.5質量%とし、Caの上限を3質量%、1.5質量%さらには1質量%とするとより好ましい。   Ca is solid-solved in the Mg base to strengthen α-Mg and form a compound with Mg to form a structure as a fine precipitate or crystallized substance, thereby improving the heat resistance and proof stress of the magnesium alloy. It is an element. In particular, the heat resistance is improved by the fine precipitates, and the proof stress is improved by the Mg—Ca compound crystallized at the grain boundary. When Ca is less than 0.2% by mass, such an effect is weak. When Ca exceeds 3% by mass, a large amount of Ca compound (grain boundary compound) is crystallized at the grain boundary, Reduces elongation and toughness. Moreover, excess of Ca also causes casting cracks. More preferably, the lower limit of Ca is 0.2% by mass, further 0.5% by mass, and the upper limit of Ca is 3% by mass, 1.5% by mass, and further 1% by mass.

R.E.は、Mg基地中への固溶及び粒界への晶出(析出)によって、マグネシウム合金の耐熱性を向上させる元素である。R.E.が1質量%未満ではこのような効果が薄く、R.E.が4質量%を超えるとマグネシウム合金の靱性が低下する。R.E.の下限を1質量%、1.5質量%とし、R.E.の上限を3質量%、2.5質量%とするとより好ましい。   RE is an element that improves the heat resistance of the magnesium alloy by solid solution in the Mg matrix and crystallization (precipitation) at the grain boundary. If the RE is less than 1% by mass, such an effect is thin, and if the RE exceeds 4% by mass, the toughness of the magnesium alloy decreases. More preferably, the lower limit of RE is 1% by mass and 1.5% by mass, and the upper limit of RE is 3% by mass and 2.5% by mass.

なお、R.E.には、スカンジウム(Sc)、イットリウム(Y)、ランタノイド、アクチノイドがあるが、本発明でいうR.E.として代表的なものは、ランタン、セリウム、プラセオジウム、ネオジム等である。これらのR.E.は、1種類でも2種類以上でも良い。特に、ランタン、セリウム、プラセオジウム、ネオジム等の混合物であるミッシュメタル(Mm)を用いると、比較的入手が容易で安価なので好ましい。   Re.E. includes scandium (Sc), yttrium (Y), lanthanoids, and actinoids. Typical examples of R.E. in the present invention are lanthanum, cerium, praseodymium, neodymium, and the like. is there. These RE may be one type or two or more types. In particular, it is preferable to use misch metal (Mm) which is a mixture of lanthanum, cerium, praseodymium, neodymium and the like because it is relatively easy to obtain and inexpensive.

Znは、固溶強化により母相であるα−Mg相を強化し、マグネシウム合金の室温強度を改善する元素である。また、Znは、マグネシウム合金の耐熱性の向上にも効果がある。しかし、前述したように、ZnがCaと共存すると、マグネシウム合金の鋳造性が大きく低下する。そこで本発明では、Zn量を比較的少なくして、概して、固相線温度を上昇させ、凝固温度範囲を狭めている。固相線温度や液相線温度は合金組成によっても変化するが、本発明者が調査したところ、本発明のマグネシウム合金では、その固相線温度が概ね490℃以上となり、そのときの液相線温度は640〜650℃となる。従って、凝固温度範囲を示す液相線温度と固相線温度との温度差は160℃以下となる。本発明ではZnの上限を1質量%としたが、0.8質量%さらには0.5質量%であるとより好ましい。なお、Znの下限は0質量%でも良いが、室温強度や耐熱性の向上を図るために、その下限を0.1質量%さらには0.3質量%とするとより好ましい。   Zn is an element that strengthens the α-Mg phase, which is the parent phase, by solid solution strengthening and improves the room temperature strength of the magnesium alloy. Zn is also effective in improving the heat resistance of the magnesium alloy. However, as described above, when Zn coexists with Ca, the castability of the magnesium alloy is greatly reduced. Therefore, in the present invention, the amount of Zn is relatively reduced to generally increase the solidus temperature and narrow the solidification temperature range. The solidus temperature and the liquidus temperature also vary depending on the alloy composition. However, as a result of investigation by the present inventors, the magnesium alloy of the present invention has a solidus temperature of approximately 490 ° C. or higher, and the liquid phase at that time. The line temperature is 640-650 ° C. Therefore, the temperature difference between the liquidus temperature and solidus temperature indicating the solidification temperature range is 160 ° C. or less. In this invention, although the upper limit of Zn was 1 mass%, it is more preferable in it being 0.8 mass% further 0.5 mass%. The lower limit of Zn may be 0% by mass. However, in order to improve room temperature strength and heat resistance, it is more preferable that the lower limit is 0.1% by mass and further 0.3% by mass.

ここで、CaおよびZnの共存下でZn量が増加した場合に鋳造用耐熱マグネシウム合金の鋳造性が低下するのは、Zn量の増加によって合金の固相線温度が低下し、凝固温度範囲が拡大することにより、脆弱な残留液相が鋳造割れの起点となるためであると考えられる。
このような観点から、前記Caの前記Znに対する含有量比(Ca/Zn)を0.2〜4とすると好ましい。Ca/Znが0.2未満では、耐熱性が劣り、Ca/Znが4を超えると鋳造性および靱性が低下するからである。このCa/Znが0.2〜2.5であるとより好ましい。
Here, when the Zn content increases in the presence of Ca and Zn, the castability of the heat-resistant magnesium alloy for casting decreases because the solidus temperature of the alloy decreases due to the increase of the Zn content, and the solidification temperature range is It is thought that this is because the fragile residual liquid phase becomes the starting point of the casting crack by expanding.
From such a viewpoint, the content ratio of Ca to Zn (Ca / Zn) is preferably 0.2 to 4. When Ca / Zn is less than 0.2, the heat resistance is inferior, and when Ca / Zn exceeds 4, castability and toughness are lowered. The Ca / Zn is more preferably 0.2 to 2.5.

本発明のマグネシウム合金は、さらに、ストロンチウム(Sr)を0.1〜1質量%含むと好適である。また、ジルコニウム(Zr)およびマンガン(Mn)の1種以上を合計で0.3〜1質量%含むと好適である。   The magnesium alloy of the present invention preferably further contains 0.1 to 1% by mass of strontium (Sr). Further, it is preferable that one or more of zirconium (Zr) and manganese (Mn) are contained in a total amount of 0.3 to 1% by mass.

Srは、鋳造性を向上させる元素である。Srが0.1質量%未満ではその効果が薄く、1質量%を超えるとSr系化合物が多量に晶出して合金を脆弱化させてしまうため好ましくない。Srは0.3〜0.8質量%であるとより好ましい。   Sr is an element that improves castability. If Sr is less than 0.1% by mass, the effect is small, and if it exceeds 1% by mass, a large amount of Sr-based compound is crystallized and the alloy becomes brittle. Sr is more preferably 0.3 to 0.8% by mass.

ZrおよびMnは、合金の結晶粒を微細化させる働きをする。また、Zrは耐熱性の向上にも寄与する元素である。それらの合計が0.3質量%未満ではその効果が薄く、1質量%を超えると靱性が低下するため好ましくない。ZrおよびMnは合計で0.3〜0.8質量%であるとより好ましい。   Zr and Mn serve to refine the crystal grains of the alloy. Zr is an element that also contributes to improvement in heat resistance. If the total is less than 0.3% by mass, the effect is small, and if it exceeds 1% by mass, the toughness is lowered, which is not preferable. Zr and Mn are more preferably 0.3 to 0.8% by mass in total.

(2)マグネシウム合金製鋳物の製造方法
本発明のマグネシウム合金製鋳物は、その鋳造方法が特に限定されるものではないが、例えば、前述したように、上述の組成を有するマグネシウム合金の溶湯を鋳型に注入する注入工程と、この鋳型に注入された溶湯を凝固させる凝固工程とによって製造される。これにより、耐熱性に優れると共に鋳造割れ(表面割れ)がほとんどないマグネシウム合金製鋳物が得られる。ここで、マグネシウム合金製鋳物を量産する場合、ダイカスト鋳造が主となる。本発明の製造方法によってダイカスト鋳造すれば、薄肉、複雑形状等をした鋳物であっても、鋳造割れ等が少ない。
(2) Manufacturing method of magnesium alloy casting The casting method of the magnesium alloy casting of the present invention is not particularly limited. For example, as described above, a molten magnesium alloy having the above composition is used as a mold. And a solidification step of solidifying the molten metal injected into the mold. As a result, a magnesium alloy casting having excellent heat resistance and almost no casting cracks (surface cracks) can be obtained. Here, when mass-producing magnesium alloy castings, die casting is mainly used. If die casting is performed by the production method of the present invention, casting cracks and the like are few even in a thin-walled, complex-shaped casting.

ところで、ダイカスト鋳造は、セットされた金型のキャビティへ、合金溶湯をプランジャ等から高速供給すると共に加圧しつつ急冷凝固させるものである。通常は、ダイカストマシン等によって、短いタクトでほぼ自動的、連続的に行われる。   By the way, in die casting, a molten alloy is supplied from a plunger or the like to a cavity of a set mold at a high speed and rapidly solidified while being pressurized. Usually, it is performed almost automatically and continuously with a short tact by a die casting machine or the like.

ダイカスト鋳造の条件は、例えば、鋳造圧力、射出温度、射出速度(または溶湯の注入時間)、冷却速度等によってほぼ規定される。鋳造圧力は、例えば20〜60MPaである。射出速度(プランジャ速度)は、例えば、1〜4m/secさらには1〜7m/secである。これを溶湯の製品キャビティ内への注入時間でいえば、例えば300msec以下さらには100msec以下である。冷却速度は、厳密にいうと鋳造部位により異なるため、一律には特定できないが、遅くとも、例えば、20℃/sec以上である。このようなダイキャスト鋳造の場合、上記注入工程は、溶湯を鋳型に高速注入する工程となり、凝固工程は、その注入された溶湯を急冷凝固させる工程となる。   The die casting conditions are substantially defined by, for example, casting pressure, injection temperature, injection speed (or molten metal injection time), cooling speed, and the like. The casting pressure is, for example, 20 to 60 MPa. The injection speed (plunger speed) is, for example, 1 to 4 m / sec, or 1 to 7 m / sec. Speaking of this as the injection time of the molten metal into the product cavity, it is, for example, 300 msec or less, further 100 msec or less. Strictly speaking, the cooling rate differs depending on the casting site, and thus cannot be specified uniformly. However, the cooling rate is, for example, 20 ° C./sec or more at the latest. In the case of such die casting, the injection step is a step of injecting the molten metal into the mold at a high speed, and the solidification step is a step of rapidly cooling and solidifying the injected molten metal.

(3)マグネシウム合金製鋳物の用途
本発明のマグネシウム合金製鋳物は、鋳造後に溶体化処理や時効処理等の熱処理を施しても良いが、熱処理を施さない鋳放し状態で優れた耐熱性等を発揮する。このため、高耐熱性のマグネシウム合金製鋳物が歩留り良く低コストで得られる。特に、それがダイカスト鋳造品の場合、鋳造に要するサイクルタイムも短かく、鋳造後の加工等もほとんど不要となり、マグネシウム合金製鋳物の量産化、低コスト化を一層図れる。
(3) Use of magnesium alloy casting The magnesium alloy casting of the present invention may be subjected to heat treatment such as solution treatment or aging treatment after casting, but has excellent heat resistance in an as-cast state without heat treatment. Demonstrate. For this reason, a highly heat-resistant magnesium alloy casting can be obtained with a good yield and at a low cost. In particular, in the case of a die cast product, the cycle time required for casting is short, and post-casting processing is almost unnecessary, so that mass production and cost reduction of a magnesium alloy casting can be further achieved.

本発明のマグネシウム合金製鋳物の用途は種々あるが、例えば、次のようなものがある。自動車や二輪車の分野では、ボディ構造用部材、シャシ部材、ホイール、スペースフレーム、ステアリングホイール(芯金)、シートフレーム、サスペンションメンバー、ミッションケース、プーリ、オイルパン、シフトレバー、インスツルメントパネル、ドアインパクトパネル、吸気用サージタンク、ペダルブラケット、フロントシュラウドパネル等である。特に、本発明のマグネシウム合金製鋳物は優れた耐熱性を有するので、高温環境下で使用される製品、例えば自動車のエンジンルーム内に配置されるエンジン、トランスミッション又はそれらの関連製品に使用されると一層好適である。   There are various uses of the magnesium alloy casting of the present invention, for example, the following. In the field of automobiles and motorcycles, body structural members, chassis members, wheels, space frames, steering wheels (core bars), seat frames, suspension members, transmission cases, pulleys, oil pans, shift levers, instrument panels, doors Impact panels, intake surge tanks, pedal brackets, front shroud panels, etc. In particular, since the magnesium alloy casting of the present invention has excellent heat resistance, when used in a product used in a high temperature environment, for example, an engine, a transmission, or a related product disposed in an engine room of an automobile. More preferred.

本発明のマグネシウム合金の鋳造性および耐熱性を具体的に評価するため、Zn量およびCa量を種々変更してダイキャスト鋳造した試験片(マグネシウム合金製鋳物)を製造した。以下、それらの試験片の製造方法、試験方法および試験結果について説明する。   In order to specifically evaluate the castability and heat resistance of the magnesium alloy of the present invention, test pieces (magnesium alloy castings) produced by die casting with various changes in Zn content and Ca content were produced. Hereinafter, the manufacturing method, test method, and test result of those test pieces will be described.

(1)鋳造割れとZn量との関係
(試験片の製造)
先ず、電気炉中で予熱した高クロム合金鋼(SUS430)製るつぼの内面に、塩化マグネシウム系のフラックスを塗布し、その中に純マグネシウム地金を投入して溶解した。700℃に保持した溶湯中に、Ca、Znおよびミッシュメタル(Mm)を添加した。さらに、その溶湯を780℃に昇温後、Mg−Zr合金を添加した。それらを充分に攪拌して完全に溶解させた後、その溶湯を780℃に保持した。
(1) Relationship between casting crack and Zn content (Manufacture of test pieces)
First, magnesium chloride-based flux was applied to the inner surface of a crucible made of high chromium alloy steel (SUS430) preheated in an electric furnace, and pure magnesium metal was put into the crucible and melted. Ca, Zn and misch metal (Mm) were added to the molten metal maintained at 700 ° C. Further, the molten metal was heated to 780 ° C., and then an Mg—Zr alloy was added. After sufficiently stirring them to dissolve completely, the molten metal was kept at 780 ° C.

このとき、試験片の合金組成がCa:0.2質量%、ミッシュメタル:2.0質量%、Zr:0.5質量%およびZn:x質量%(xは試験片によって異なる。)で残部がMgとなるように、各原料を調製した。そのZn量は、それぞれ、0質量%、0.25質量%、0.5質量%、0.75質量%、1質量%または2質量%とした。なお、使用したMmは、セリウム(Ce)52.2質量%、ランタン(La)25.47質量%、プラセオジム(Pr)16.1質量%、ネオジム(Nd)5.4質量%、サマリウム(Sm)0.1質量%の組成割合であった。   At this time, the alloy composition of the test piece was Ca: 0.2 mass%, Misch metal: 2.0 mass%, Zr: 0.5 mass%, and Zn: x mass% (x varies depending on the test piece), and the balance. Each raw material was prepared so that becomes Mg. The Zn amount was 0% by mass, 0.25% by mass, 0.5% by mass, 0.75% by mass, 1% by mass or 2% by mass, respectively. Mm used was 52.2% by mass of cerium (Ce), 25.47% by mass of lanthanum (La), 16.1% by mass of praseodymium (Pr), 5.4% by mass of neodymium (Nd), samarium (Sm ) The composition ratio was 0.1% by mass.

溶解作業中の燃焼を防止するため、溶湯表面に炭酸ガスとSF6ガスとの混合ガスを流速0.2L/分で吹き付け、適宜、フラックスを溶湯表面に散布した。こうして得た合金溶湯を図1に示す試験片形状のキャビティをもつ金型へ注入し(注入工程)、その後、急冷凝固させて(凝固工程)、ダイキャスト鋳物を得た。 In order to prevent combustion during the melting operation, a mixed gas of carbon dioxide gas and SF 6 gas was sprayed on the surface of the molten metal at a flow rate of 0.2 L / min, and flux was appropriately sprayed on the surface of the molten metal. The molten alloy thus obtained was poured into a mold having a test piece-shaped cavity shown in FIG. 1 (injection step), and then rapidly solidified (solidification step) to obtain a die-cast casting.

この際行ったダイカスト鋳造は、縦型ダイカスト機を使用して行った。つまり、上記組成に調製した各種溶湯をプランジャ(φ40mm)で金型のキャビティへ加圧注入後(注入工程)、冷却速度を100℃/秒程度として凝固させた(凝固工程)。このときの鋳造条件は、鋳造圧力:64MPa、射出(プランジャ)速度:0.6m/s、射出(溶解)温度:液相線温度+20℃とした。また、金型温度は50〜100℃としておいた。   The die casting performed at this time was performed using a vertical die casting machine. That is, various molten metals prepared to the above composition were injected by pressure into the mold cavity with a plunger (φ40 mm) (injection step), and then solidified at a cooling rate of about 100 ° C./second (solidification step). The casting conditions at this time were casting pressure: 64 MPa, injection (plunger) speed: 0.6 m / s, injection (melting) temperature: liquidus temperature + 20 ° C. The mold temperature was set to 50 to 100 ° C.

図1に示した試験片は、ゲートに連なる幅40x長さ70x厚さ3mmの薄板部と、この薄板部から奥に連なる幅40x長さ65x厚さ11mmの厚板部と、薄板部の中央表面から突出し厚板部からゲートへと架橋する幅2x長さ70x高さ8mmのリブとで構成されている。そして、薄板部と厚板部との裏面は面一の平坦面となっている。   The test piece shown in FIG. 1 includes a thin plate portion having a width 40 × length 70 × 3 mm thickness connected to the gate, a width 40 × length 65 × thickness plate 11 mm continuous from the thin plate portion, and the center of the thin plate portion. The ribs protrude from the surface and are bridged from the thick plate portion to the gate. The ribs are 2x length 70x height 8mm. And the back surfaces of the thin plate portion and the thick plate portion are flush with each other.

(測定および評価)
各試験片のリブ背面(リブ裏側の平坦面)と、リブと薄板部との付け根部分に形成された隅R部とに鋳造割れが発生した否かを調べた。すなわち、ゲートから高さ方向に50mmの位置にあるリブ背面と隅R部とについて、鋳造割れの深さを組織観察によって測定した。この結果を図2に示す。図2中、総和(△)は、リブ背面の割れ深さ(◆)と隅R部の割れ深さ(■)との算術和である。また、図2には、代表的な鋳造用耐熱マグネシウム合金であるAZ91を用いたときの割れ深さも参考に示した。図2から明らかなように、Mg−x%Zn−0.2%Ca−2%Mm−0.5%Zr(単位:質量%)の場合、Znが1質量%未満(特に、Zn:0.5質量%)のときに割れ深さが非常に小さくなることが確認された。
(Measurement and evaluation)
It was examined whether or not casting cracks occurred on the rib back surface (flat surface on the rib back side) of each test piece and the corner R portion formed at the base portion of the rib and the thin plate portion. That is, the depth of the casting crack was measured by microstructure observation on the rib back surface and the corner R portion at a position of 50 mm in the height direction from the gate. The result is shown in FIG. In FIG. 2, the sum (Δ) is an arithmetic sum of the crack depth (♦) on the rib back surface and the crack depth (■) at the corner R portion. FIG. 2 also shows the crack depth when AZ91, which is a typical heat-resistant magnesium alloy for casting, is shown for reference. As is clear from FIG. 2, in the case of Mg-x% Zn-0.2% Ca-2% Mm-0.5% Zr (unit: mass%), Zn is less than 1 mass% (in particular, Zn: 0 .5 mass%), it was confirmed that the crack depth was very small.

(2)鋳造割れとCa量との関係
上記結果を踏まえて、上記の場合と同様に、Mg−0.5%Zn−x%Ca−2%Mm−0.5%Zr(単位:質量%)からなる試験片を製造して、鋳造割れとCa量との関係を調査した。この結果を図3に示す。用意した各試験片のCa量(x)は、0.2%、1%、2%、3%とした。
(2) Relationship between casting crack and Ca content Based on the above results, Mg-0.5% Zn-x% Ca-2% Mm-0.5% Zr (unit: mass%) as in the above case ) Was manufactured, and the relationship between casting crack and Ca content was investigated. The result is shown in FIG. The Ca amount (x) of each prepared test piece was 0.2%, 1%, 2%, and 3%.

ところが、Znが0.5%のとき、Ca量が変化しても、微細な鋳造割れはAZ91合金と同等あるいはそれ以下と少なかった。但し、Ca量が3質量%を超えると、金型の拘束によって鋳物の破断を生じた。破断した箇所は図1の厚板部と薄板部との境界部分であった。ちなみに、鋳物の鋳造割れは溶湯の凝固途中(液相線温度〜固相線温度の温度)で生じるものであるが、鋳物の破断は凝固後に(固相線温度以下の温度で)生じるものである。   However, when Zn was 0.5%, even if the amount of Ca changed, fine casting cracks were as small as or less than that of the AZ91 alloy. However, when the amount of Ca exceeded 3% by mass, the casting was broken by restraint of the mold. The broken portion was the boundary portion between the thick plate portion and the thin plate portion in FIG. Incidentally, casting cracks occur in the middle of the solidification of the molten metal (liquidus temperature to solidus temperature), but the casting breaks after solidification (at a temperature below the solidus temperature). is there.

この結果から、Znが1質量%未満で少ないと、Ca量(但し、3質量%以内)に拘らず優れた鋳造性が得られることが解った。この結果の見方を変えれば、マグネシウム合金の高耐熱性を確保するために、CaおよびMm(R.E.)を適量(または比較的多く)含有させても、Zn量を抑制することで鋳造性も確保されることがわかる。   From this result, it was found that when the Zn content was less than 1% by mass, excellent castability was obtained regardless of the Ca content (however, within 3% by mass). In other words, in order to ensure the high heat resistance of the magnesium alloy, even if Ca and Mm (R.E.) are contained in appropriate amounts (or relatively large amounts), the amount of Zn is suppressed by suppressing the amount of Zn. It can be seen that the property is also secured.

参考までに、本実施例である試験片(Mg−0.2%Zn−0.8%Ca−2%Mm−0.5%Zr)の耐クリープ特性と、他の組成をもつ試験片の耐クリープ特性とを図4に対比して示した。このクリープ試験では、150℃の高温環境下で100MPaの引張応力を試験片に印加した。図4の縦軸にはそのとき生じた歪みεをとり、横軸には時間(sec)をとって示した。   For reference, the creep resistance of the test piece of this example (Mg-0.2% Zn-0.8% Ca-2% Mm-0.5% Zr) and the test pieces having other compositions The creep resistance is shown in comparison with FIG. In this creep test, a tensile stress of 100 MPa was applied to the test piece in a high temperature environment of 150 ° C. The vertical axis of FIG. 4 represents the strain ε generated at that time, and the horizontal axis represents time (sec).

以上のように、本発明の鋳造用耐熱マグネシウム合金を用いると、耐熱性は勿論のこと、薄肉で複雑形状の鋳物であっても、鋳造割れ等を非常に少なくできる。つまり、ダイキャスト鋳造等を行う場合のロバスト性が向上して、鋳造可能な条件を拡大でき、既存設備でも十分な耐熱性をもつマグネシウム合金製鋳物の製造が可能となる。   As described above, when the heat-resistant magnesium alloy for casting of the present invention is used, not only heat resistance but also casting cracks and the like can be extremely reduced even in a thin and complex-shaped casting. That is, the robustness in the case of performing die casting or the like is improved, the conditions under which casting can be performed can be expanded, and a magnesium alloy casting having sufficient heat resistance can be manufactured even with existing equipment.

試験片の形状を表す斜視図である。It is a perspective view showing the shape of a test piece. Zn量と鋳造割れの深さとの関係を示す図である。It is a figure which shows the relationship between Zn amount and the depth of a casting crack. Ca量と鋳造割れの深さとの関係を示す図である。It is a figure which shows the relationship between Ca amount and the depth of a casting crack. 各試験片のクリープ特性(150℃x100MPa)を示すグラフである。It is a graph which shows the creep characteristic (150 degreeC x 100 Mpa) of each test piece.

Claims (6)

全体を100質量%としたときに、
0.2〜3質量%のカルシウム(Ca)と、
1〜4質量%の希土類元素(R.E.)と、
1質量%未満の亜鉛(Zn)と、
0.3〜1質量%のジルコニウム(Zr)とを含み、
残部がマグネシウム(Mg)および不可避的不純物とからなり、
前記Caの前記Znに対する含有量比(Ca/Zn)は0.2〜4であり、
鋳造性および耐熱性に優れることを特徴とする鋳造用耐熱マグネシウム合金。
When the total is 100% by mass,
0.2-3 mass% calcium (Ca),
1-4% by weight of rare earth elements (RE),
Less than 1% by weight of zinc (Zn);
0.3 to 1% by mass of zirconium (Zr) ,
The balance consists of magnesium (Mg) and inevitable impurities,
The content ratio of Ca to Zn (Ca / Zn) is 0.2 to 4,
A heat-resistant magnesium alloy for casting characterized by excellent castability and heat resistance.
ダイカスト鋳造に用いられるダイカスト鋳造用耐熱マグネシウム合金である請求項1に記載の鋳造用耐熱マグネシウム合金。   The heat-resistant magnesium alloy for casting according to claim 1, which is a heat-resistant magnesium alloy for die-casting used in die-casting. 液相線温度と固相線温度との温度差は160℃以下である請求項1または2に記載の鋳造用耐熱マグネシウム合金。 The heat-resistant magnesium alloy for casting according to claim 1 or 2 , wherein a temperature difference between the liquidus temperature and the solidus temperature is 160 ° C or less. 全体を100質量%としたときに、
0.2〜3質量%のCaと、
1〜4質量%のR.E.と、
1質量%未満のZnと、
0.3〜1質量%のZrとを含み、
残部がMgおよび不可避的不純物とからなり、
前記Caの前記Znに対する含有量比(Ca/Zn)は0.2〜4であり、
耐熱性に優れると共に鋳造割れがほとんどないことを特徴とするマグネシウム合金製鋳物。
When the total is 100% by mass,
0.2-3 mass% Ca,
1-4% by weight of RE,
Less than 1% by weight of Zn,
0.3 to 1% by mass of Zr ,
The balance consists of Mg and inevitable impurities,
The content ratio of Ca to Zn (Ca / Zn) is 0.2 to 4,
Magnesium alloy casting characterized by excellent heat resistance and almost no casting cracks.
ダイカスト鋳造されたものである請求項4に記載のマグネシウム合金製鋳物。   The magnesium alloy casting according to claim 4, which is die-cast. 全体を100質量%としたときに、0.2〜3質量%のCaと、1〜4質量%のR.E.と、1質量%未満のZnと、0.3〜1質量%のZrとを含み、残部がMgおよび不可避的不純物とからなり、前記Caの前記Znに対する含有量比(Ca/Zn)が0.2〜4であるマグネシウム合金の溶湯を鋳型に注入する注入工程と、
該鋳型に注入された溶湯を凝固させる凝固工程とを備え、
耐熱性に優れると共に鋳造割れがほとんどないマグネシウム合金製鋳物が得られることを特徴とするマグネシウム合金製鋳物の製造方法。
0.2 to 3% by mass of Ca, 1 to 4% by mass of R.E., less than 1% by mass of Zn, and 0.3 to 1% by mass of Zr when the whole is taken as 100% by mass. wherein the door, the balance Ri Do from the Mg and inevitable impurities, implanting step the content ratio relative to the Zn of the Ca (Ca / Zn) injects a melt of 0.2-4 der Ru magnesium alloy into a mold When,
A solidification step of solidifying the molten metal injected into the mold,
A method for producing a magnesium alloy casting, characterized in that a magnesium alloy casting having excellent heat resistance and almost no casting cracks is obtained.
JP2003358137A 2003-10-17 2003-10-17 Heat-resistant magnesium alloy for casting, casting made of magnesium alloy and method for producing the same Expired - Fee Related JP4285188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003358137A JP4285188B2 (en) 2003-10-17 2003-10-17 Heat-resistant magnesium alloy for casting, casting made of magnesium alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003358137A JP4285188B2 (en) 2003-10-17 2003-10-17 Heat-resistant magnesium alloy for casting, casting made of magnesium alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005120449A JP2005120449A (en) 2005-05-12
JP4285188B2 true JP4285188B2 (en) 2009-06-24

Family

ID=34614805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003358137A Expired - Fee Related JP4285188B2 (en) 2003-10-17 2003-10-17 Heat-resistant magnesium alloy for casting, casting made of magnesium alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JP4285188B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20063703L (en) * 2006-08-18 2008-02-19 Magontec Gmbh Magnesium stop process and alloy composition
JP4980096B2 (en) * 2007-02-28 2012-07-18 本田技研工業株式会社 Motorcycle seat rail structure
JP2009144215A (en) * 2007-12-17 2009-07-02 Japan Steel Works Ltd:The Heat resistant magnesium alloy material and its manufacturing method
US8424207B2 (en) 2008-10-27 2013-04-23 Honda Motor Co., Ltd. Method of making a composite component and apparatus
JP5720926B2 (en) * 2010-10-12 2015-05-20 住友電気工業株式会社 Magnesium alloy wire, bolt, nut and washer
CN104936726B (en) * 2012-11-15 2016-09-07 新东工业株式会社 Test specimen acquisition method, test specimen data managing method and test specimen model
KR101863573B1 (en) * 2013-04-15 2018-06-01 고꾸리쯔다이가꾸호오진 구마모또 다이가꾸 Fire-resistant magnesium alloy and production method therefor
CN104404331A (en) * 2014-12-15 2015-03-11 春兴精工(常熟)有限公司 Preparation method for magnesium alloy with high tensile strength
CN114855041A (en) * 2022-05-06 2022-08-05 上海大学 Die-casting magnesium alloy containing rare earth and forming process thereof

Also Published As

Publication number Publication date
JP2005120449A (en) 2005-05-12

Similar Documents

Publication Publication Date Title
RU2213796C2 (en) High-temperature magnesium alloy
JP5290764B2 (en) Casting method and alloy composition for forming a cast part having a combination of excellent high temperature deformation characteristics, malleability and corrosion performance
JP5327515B2 (en) Magnesium alloys for casting and magnesium alloy castings
JP2005264301A (en) Casting aluminum alloy, casting of aluminum alloy and manufacturing method therefor
KR101258470B1 (en) High-Strength High-Ductility Ignition-Proof Magnesium Alloy
AU753538B2 (en) Die casting magnesium alloy
KR101757013B1 (en) Copper aluminum alloy molded part having high mechanical strength and hot creep resistance
JP2011509350A (en) Magnesium alloy
JP5482787B2 (en) Al-Mg-Si aluminum alloy for casting having excellent proof stress and cast member comprising the same
JP3592659B2 (en) Magnesium alloys and magnesium alloy members with excellent corrosion resistance
JPH0718364A (en) Heat resistant magnesium alloy
KR20160011136A (en) Magnesium alloy having improved corrosion resistance and method for manufacturing magnesium alloy member using the same
JP4852082B2 (en) Magnesium alloy
JP4285188B2 (en) Heat-resistant magnesium alloy for casting, casting made of magnesium alloy and method for producing the same
JP4145242B2 (en) Aluminum alloy for casting, casting made of aluminum alloy and method for producing casting made of aluminum alloy
JP2002327231A (en) Cast article of heat-resistant magnesium alloy, and manufacturing method therefor
JP2004162090A (en) Heat resistant magnesium alloy
JP2005187896A (en) Heat resistant magnesium alloy casting
US20100316524A1 (en) Magnesium alloy and method for making the same
JP2005240129A (en) Heat resistant magnesium alloy casting
JP4575645B2 (en) Heat-resistant magnesium alloy for casting and heat-resistant magnesium alloy casting
JP2001316752A (en) Magnesium alloy for diecasting
JP2019173111A (en) Aluminum alloy for die casting and aluminum alloy cast
JP2005187895A (en) Heat resistant magnesium alloy casting
JP4155509B2 (en) Aluminum alloy for casting, casting made of aluminum alloy and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees