JP4575645B2 - Heat-resistant magnesium alloy for casting and heat-resistant magnesium alloy casting - Google Patents

Heat-resistant magnesium alloy for casting and heat-resistant magnesium alloy casting Download PDF

Info

Publication number
JP4575645B2
JP4575645B2 JP2003024095A JP2003024095A JP4575645B2 JP 4575645 B2 JP4575645 B2 JP 4575645B2 JP 2003024095 A JP2003024095 A JP 2003024095A JP 2003024095 A JP2003024095 A JP 2003024095A JP 4575645 B2 JP4575645 B2 JP 4575645B2
Authority
JP
Japan
Prior art keywords
magnesium alloy
mass
casting
heat
solidification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003024095A
Other languages
Japanese (ja)
Other versions
JP2004232060A (en
Inventor
元治 谷澤
恭一 木下
英治 岸
勝章 田中
夕紀 岡本
崇行 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2003024095A priority Critical patent/JP4575645B2/en
Priority to US10/763,686 priority patent/US20040151613A1/en
Priority to FR0400859A priority patent/FR2850672B1/en
Priority to DE102004004892A priority patent/DE102004004892B4/en
Publication of JP2004232060A publication Critical patent/JP2004232060A/en
Priority to US11/975,381 priority patent/US8123877B2/en
Application granted granted Critical
Publication of JP4575645B2 publication Critical patent/JP4575645B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent

Description

【0001】
【発明の属する技術分野】
本発明は、鋳造割れを抑制できる鋳造性と耐熱性とに優れた鋳造用耐熱マグネシウム合金に関するものである。
【0002】
【従来の技術】
近年の軽量化ニーズの高まりにより、アルミニウム合金よりさらに軽量なマグネシウム合金が注目を集めている。マグネシウム合金は、実用金属中で最も軽量であり、航空機用材料の他、自動車用材料等としても使用されつつある。例えば、自動車のホイールやエンジンのヘッドカバー等にマグネシウム合金が使用されている。これらに加えて最近の環境意識の高揚に伴い、車両等のさらなる軽量化が求められるようになった。このため、高温域で使用される機器や装置等にまでマグネシウム合金の使用が検討されている。このとき当然に問題となるのが耐熱性である。例えば、一般的なマグネシウム合金であるAZ91(JIS)等はクリープ強度が非常に低いため、高温環境下で使用する部材には適さない。そこで、このような耐熱性を向上させた材料として、例えば、AE42(米国DowChemical社規格)があり、また、下記の特許文献1〜3等にも耐クリープ強度等に優れたマグネシウム合金が提案されている。
【0003】
【特許文献1】
特許3229954号公報
【特許文献2】
特開2002−129272号公報
【特許文献3】
特開平2002−275569号公報
【0004】
【発明が解決しようとする課題】
これらのマグネシウム合金は、いずれも、0.5〜3質量%程度の希土類元素(以下、適宜、「RE」という。)を含んでいる。確かに希土類元素はマグネシウム合金の耐熱性向上に有効な元素である。
しかし、希土類元素は高価であり、マグネシウム合金やその鋳物のコストを上昇させてしまう。さらに、本発明者が調査研究したところ、希土類元素は非常に鋳造割れを生じさせ易い元素であった。このため、鋳造合金中に希土類元素を含有させるのは好ましくない。そして、本発明者は希土類元素を含有しなくても十分な耐クリープ性等の耐熱性が得られることをも新たに知見した。
【0005】
本発明はこのような事情に鑑みてなされたものである。すなわち、希土類元素等を使用せず、それよりも安価な元素を使用して、耐熱性は勿論、鋳造割れの発生を抑止できる耐熱性および鋳造性に優れた鋳造用耐熱マグネシウム合金を提供することを目的とする。また、そのマグネシウム合金を使用して鋳造したマグネシウム合金鋳物も併せて提供する。
【0006】
【課題を解決するための手段および発明の効果】
そこで、本発明者らはこの問題点を解決すべく、鋭意研究し各種系統的実験を重ねた結果、基本的に安価なAlとCaとのみを適量含有させることで、十分な耐熱性を有すると共に鋳造割れを生じ難い鋳造性に優れたマグネシウム合金が得られることを見出し、これに基づいて本発明を完成するに至ったものである。
(鋳造用耐熱マグネシウム合金)
すなわち、本発明の鋳造用耐熱マグネシウム合金は、全体を100質量%(以下、単に、「%」という。)としたときに、10%を越え、15%以下のカルシウム(Ca)と、該Caとの合計が4〜25質量%であって下限が3質量%以上のアルミニウム(Al)と、0.2〜0.7質量%のマンガン(Mn)とを含み、残部がマグネシウム(Mg)および不可避不純物からなり、CaのAlに対する質量比(Ca/Al)が2以上である鋳造性および耐熱性に優れることを特徴とする。
【0007】
本発明のマグネシウム合金は、高価なREを含有せず、必須元素はCaおよびAlのみであるため、得られたマグネシウム合金およびそれからなる耐熱マグネシウム合金鋳物等は、材料費のみならず製造費を含めて考えても、安価でコスト競争力に著しく優れる。そして、前述したように、十分な耐熱性と鋳造割れ抑止効果とを発揮する。
ところで、本発明のマグネシウム合金が、上記範囲のAlおよびCaのみを含有することで、優れた耐熱性および鋳造性が得られる理由は必ずしも明らかではないが、現状次のように考えられる。
【0008】
先ず、本発明のマグネシウム合金が耐熱性に優れる理由について説明する。
Alは、Mg結晶粒中に固溶して、マグネシウム合金の室温強度を向上させる上で重要な元素である。また、マグネシウム合金の耐蝕性を向上させる上でも重要な元素である。ところが、マグネシウム合金中のAl量が増えると、Alはそのマトリックス(デンドライトセルやα結晶粒)中に過飽和に固溶してAlリッチ相を形成する。このAlリッチ相は熱的に不安定であるため、マグネシウム合金が高温になると、Mg−Al化合物(Mg17Al12)となってMgマトリックス中やMg結晶粒界中に析出する。そして、そのマグネシウム合金を高温域で長時間放置すると、その金属間化合物は凝集し粗大化し、マグネシウム合金のクリープ変形を増大させる。つまり、マグネシウム合金の耐熱性を低下させる。
【0009】
Caには、このAlの増加に伴う耐熱性の低下を抑止する効果がある。これはCaが上記Mg−Al化合物やマトリックスと反応することにより、クリープの低下要因となるMg17Al12を減少させると共に高温域で安定なCa−Al化合物やMg−Ca化合物等を形成するためであると考えられる。これらの金属間化合物は、主に結晶粒界中にネットワーク状に晶出または析出して、マグネシウム合金の転位運動をくい止める楔作用をすると考えられる。
このような理由により、本発明のマグネシウム合金は、AlおよびCaをそれぞれ適量含有することにより、高温域でもクリープ変形等の少ない優れた耐熱性を発現するようになったと思われる。
【0010】
次に、本発明のマグネシウム合金が鋳造性に優れる理由について説明する。なお、本明細書でいう鋳造性とは、主に、鋳造割れの有無をいう。この鋳造割れにはいわゆる熱間割れと引け割れとがある。熱間割れは固液共存状態下で液相部分が体積収縮して生じる割れであって、破面にはデンドライド組織(樹枝状組織)が出現する。一方、引け割れは液相のない状態下で鋳残応力によって引裂かれて生じるため、破面はデンドライド組織のない脆性破面となる。本明細書では特に断らない限り、両割れを区別せずに単に鋳造割れというが、敢ていうなら主に熱間割れを考えれば良い。熱間割れはマグネシウム合金自体の特性に大きく影響を受け、方案や製造工程等の見直しによって解決するのが難しいが、引け割れは鋳型形状や鋳造方法等の工夫により解決可能な場合も多いからである。もっとも、本発明のマグネシウム合金は、熱間割れの抑止に優れた効果を発揮するのみならず、現実には引け割れに対しても十分な抑止効果を発揮する。以下では、この鋳造割れが本発明のマグネシウム合金によって如何に抑止されたかを説明する。
【0011】
本発明者は、鋳造割れを抑止するために、先ず、凝固温度幅を狭くすることを考えた。凝固温度幅とは、溶湯が凝固を開始する液相線温度と溶湯が凝固を完了する固相線温度との温度差である。この凝固温度幅を狭くすることで、マグネシウム合金の溶湯が凝固する際の収縮応力等が小さくなり、鋳造割れの抑止に効果を発揮し得る。凝固温度幅を狭めるには、マグネシウム合金の固相線温度を上昇させ、液相線温度を下降させることが必要となる。
【0012】
本発明者が調査研究したところ、本発明のマグネシウム合金(Mg−Ca−Alの3元系)の固相線温度は、Caの影響を強く受け、Caが少量含有されることで515℃付近まで急上昇する。Alがここに加わると、その固相線温度は緩やかながらもAl量に応じて上昇をする。例えば、Mg−3%Ca−3%AlのようにCa量およびAl量が同等程度(つまりAl/Caが1程度)なら、Caの影響が支配的で、その固相線温度はMg−Caの2元系状態図から求まる温度(約515℃)となることが解った。また、質量比でAlのCaに対する割合(Al/Ca)が3以上になった場合、Alの影響も少し加わって、その固相線温度は約530℃程度となった。固相線温度に対するCaの影響が強いのは、本発明のCa量の範囲では、Mg−Caの2元系状態図の固相線温度がほぼ一定の約515℃であるためと考えられる。
【0013】
一方、液相線温度については、Caの方がAlより液相線温度を低下させる作用が少し強いものの、全体的に観るとCaおよびAlが協調し液相線温度に影響した。例えば、Mg−3%Al−3%Caの場合の液相線温度は620℃、Mg−6%Al−3%Caの場合の液相線温度は603℃、Mg−3%Al−9%Caの場合の液相線温度は581℃となった。
これらのことから、凝固温度幅を狭くするには、少なくともCaを1質量%以上含有させて固相線温度を515℃以上にまで上昇させること、および、CaとAlとの合計量を所定量以上として液相線温度を適度に低下させることが重要となる。勿論、CaおよびAlの含有量が増加する程、固相線温度が上昇し液相線温度が下降するため、単に、凝固温度幅を狭めるだけなら好ましい。しかし、それらの含有量が増加し過ぎると、マグネシウム合金のコストが高くなり経済的に好ましくない。また、Caに対してAlが増加し過ぎると、前述した耐熱性の低下を招き好ましくない。さらに、Caが増加し過ぎると、溶湯の流動性の低下、金型との焼付き、伸び低下等が懸念される。
【0014】
このような耐熱性および鋳造性の両観点から考えて、本発明のマグネシウム合金では、必須元素であるCaおよびAlの含有量を、Ca:1〜15%、4%≦Ca+Al≦25%とした。これは、Ca:1〜15%、Al:3〜10%と観ることもできる。このCaの下限が2%さらには3%であり、その上限が10%さらには9%であるとより好ましい。Ca+Alの下限が5%、6%さらには9%であり、その上限が20%、18%さらには12%であるとより好ましい。Alについていうと、その下限が4%さらには5%であり、その上限が10%さらには9%であるとより好ましい。
そして前述したように、AlがCaよりも多くなると、上記Mg17Al12の析出を十分に抑制できず、マグネシウム合金の耐クリープ性を低下させる。そこで、CaのAlに対する質量比(Ca/Al)が1以上、2以上さらには3以上とするのが好ましい。
【0015】
上記組成とすることで、凝固温度幅は110℃以下、さらには、100℃以下、90℃以下、80℃以下、75℃以下等となる。このように凝固温度幅が狭くなるということは、特定の鋳造方法において単に冷却速度を高めた場合と異なり、いずれの鋳造方法においても冷却速度が高まり凝固時間が短縮されることを意味する。具体的にいうなら、冷却速度が比較的遅い重力鋳造等でも凝固時間が十分に短縮され、冷却速度が非常に速いダイカスト鋳造等であればなおさらである。この凝固時間が短縮されることで、溶湯凝固時の収縮応力等が抑制されて、鋳造割れが抑止されると考えられる。
【0016】
さらに本発明者が本発明のマグネシウム合金からなる鋳物の組織観察を行ったところ、その組織が非常に微細になっていることが解った。これは上記凝固時間が短縮されたことも一因ではあるが、本発明のマグネシウム合金の組成も影響していると思われる。何故なら、凝固温度幅を80℃前後まで低くした場合であっても、REを含有している場合には、組織があまり微細にはならなかったからである。従って、鋳造割れの抑止には、組織粗さを微細にすることも有効と考えられる。この組織粗さは平均結晶粒径で指標されるところ、平均結晶粒径が18μm以下、さらには16μm以下、14μm以下、12μm以下、10μm以下等となる程、鋳造割れには有効であると考えられる。
【0017】
本発明のマグネシウム合金は、さらに、Mnを含有していても良い。
Mnは、Mg結晶粒中に固溶してマグネシウム合金を固溶強化させる元素である。また、MnはAlとも反応して、クリープの低下要因であるMg17Al12の析出を抑制すると共に熱的に安定な金属間化合物を形成する。これにより、Mnは、マグネシウム合金の室温強度のみならず高温強度も向上させ得る元素である。さらに、Mnはマグネシウム合金の鋳造性に悪影響を与えない。加えて、Mnは、腐食原因となる不純物のFeを沈降除去等する効果もある。Mnが少なすぎるとこのような効果が薄く、1質量%を超えても効果の向上は期待できず経済的でない。そこで、Mnを0.1〜1質量%さらには0.2〜0.7質量%含有していると好適である。
【0018】
(耐熱マグネシウム合金鋳物)
本発明は、上記鋳造用耐熱マグネシウム合金としてのみならず、それからなる鋳物としても把握できる。
すなわち、本発明の耐熱マグネシウム合金鋳物は、全体を100質量%としたときに、10%を越え、15%以下の1〜15%のCaと、該Caとの合計が4〜25質量%であって下限が3質量%以上のAlと、0.2〜0.7質量%のMnとを含み、残部がMgおよび不可避不純物からなり、CaのAlに対する質量比(Ca/Al)が2以上の合金溶湯を鋳型に注湯する注湯工程と、
該注湯工程後の合金溶湯を冷却し凝固させる凝固工程とを経て得られ、組織粗さを指標する平均結晶粒径が18μm以下であることを特徴とする。
【0019】
この耐熱マグネシウム合金鋳物は、通常の重力鋳造や加圧鋳造に限らず、ダイカスト鋳造したものでも良い。また、本発明でいう「鋳造用」または「鋳造性」についても、その鋳造方法を問わない。また、鋳造に使用される鋳型も砂型、金型等を問わない。
また、本発明でいう「耐熱性」は、高温雰囲気中におけるマグネシウム合金の機械的性質(例えば、応力緩和試験や軸力保持試験によるクリープ特性または高温強度等)で評価されるものである。
【0020】
本明細書では、各元素の組成範囲を「x〜y質量%」という形式で示しているが、これは特に断らない限り、下限値(x質量%)および上限値(y質量%)も含む意味である。
本発明のマグネシウム合金の用途は、宇宙、軍事、航空の分野を初めとして、自動車、家庭電気機器等、各種分野に及ぶ。もっとも、その耐熱性を生かして、高温環境下で使用される製品、例えば自動車のエンジンルーム内に配置されるエンジン、トランスミッション、エアコン用コンプレッサまたはそれらの関連製品に、本発明のマグネシウム合金が使用されると一層好適である。
【0021】
【実施例】
以下に実施例を挙げて、本発明を具体的に説明する。
マグネシウム合金中のAl、CaおよびMnの含有量(添加量)を種々変更した試験片を複数製作し、それらの鋳造割れの有無と組織粗さを観察した。
(試験片の製造)
電気炉中で予熱した鉄製るつぼの内面に塩化物系のフラックスを塗布し、その中に秤量した純マグネシウム地金、純AlおよびMg−Mn合金を投入して溶解した。さらに750℃に保持したこの溶湯中に秤量したCaを添加した(溶湯調製工程)。
この溶湯を十分に攪拌し、原料を完全に溶解させた後、同温度でしばらく沈静保持した。この溶解作業中、Mgの燃焼を防止するため、溶湯表面に炭酸ガスとSF6ガスとの混合ガスを吹き付け、適宜、フラックスを溶湯表面に散布した。
こうして得た各種の合金溶湯を図1に示す形状の金型に流し込み(注湯工程)、大気雰囲気中で凝固させた(凝固工程)。こうして、厚さ約3mmの底面に約φ17mmの開孔をもち、外径約φ60mmの有底円筒状の試験片(耐熱マグネシウム合金鋳物)を重力鋳造により製造した。各試験片毎の化学組成は表1に示した。
【0022】
(鋳造割れおよび組織粗さの観察と凝固温度幅の算出)
得られた各種試験片について、目視および金属顕微鏡によって、鋳造割れの有無と鋳造割れの種類を観察した。鋳造割れの破面にデンドライド組織が形成されているときは熱間割れ、その破面が脆性破面のときは引け割れとした。各試験片の鋳造割れの有無を表1に併せて示した。
また、各試験片の中央の部分を切断して、その組織粗さを金属顕微鏡(倍率500)で観察した。この結果を表1に併せて示した。表1に示した組織粗さは平均粗さであって、Mgのα相の大きさの平均値により算出した平均結晶粒径で示した。参考までに、試験片No.5および試験片No.7の組織写真を図2(a)、(b)にそれぞれ示した。
さらに、各試験片固相線温度および液相線温度から算出した凝固温度幅を表1に併せて示した。
こうして得られた、凝固温度幅、組織粗さおよび鋳造割れの有無を図3のグラフにまとめた。
【0023】
(評価)
表1および図3から次のことが解る。
(1)試験片No.1〜7の組成は本発明の範囲内にあり、いずれの場合も凝固温度幅が105℃以下で組織粗さが16μm以下と微細であった。そして、熱間割れは勿論、引け割れも生じなかった。
また、Alに対してCaが多い程、つまりCa/Alが大きい程、凝固温度幅が狭く、組織粗さも微細となった。
【0024】
(2)試験片No.C1〜C10の組成は本発明の範囲外であり、試験片No.10を除き、いずれの場合も鋳造割れを生じた。なお、試験片No.10で鋳造割れを生じなかったのは、もともと耐熱性(特に耐クリープ性)が低い材料であるため、鋳造時の応力によって容易に変形したためと思われる。
REを含む試験片No.C4〜C9の場合、凝固温度幅に依らず、いずれも組織粗さが粗かった。この内、試験片No.C6〜C8のようにCaの絶対量が少なくCa量に対するAl量が多いものは、凝固温度幅が狭いにも拘らず、組織粗さが粗くなっていた。そして、それらの鋳造割れはいずれも引け割れであった。
【0025】
【表1】

Figure 0004575645

【図面の簡単な説明】
【図1】鋳型の形状を示す断面図である。
【図2】試験片の断面を金属顕微鏡で観察した金属組織写真であり、同図(a)は試験片No.5のものであり、同図(b)は試験片No.7のものである。
【図3】各試験片の凝固温度幅、組織粗さおよび鋳造割れの有無を示す分散図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat-resistant magnesium alloy for casting excellent in castability and heat resistance capable of suppressing casting cracks.
[0002]
[Prior art]
Due to the growing needs for weight reduction in recent years, magnesium alloys that are lighter than aluminum alloys are attracting attention. Magnesium alloys are the lightest among practical metals and are being used as materials for automobiles as well as aircraft materials. For example, magnesium alloys are used for automobile wheels, engine head covers, and the like. In addition to these, with the recent heightening of environmental awareness, further weight reduction of vehicles and the like has been demanded. For this reason, use of a magnesium alloy is considered to the apparatus and apparatus etc. which are used in a high temperature range. At this time, of course, heat resistance is a problem. For example, AZ91 (JIS), which is a general magnesium alloy, has a very low creep strength and is not suitable for a member used in a high temperature environment. Therefore, for example, AE42 (US Dow Chemical standard) is a material with improved heat resistance, and the following patent documents 1 to 3 propose a magnesium alloy having excellent creep resistance and the like. ing.
[0003]
[Patent Document 1]
Japanese Patent No. 3229954 [Patent Document 2]
JP 2002-129272 A [Patent Document 3]
Japanese Patent Application Laid-Open No. 2002-275569
[Problems to be solved by the invention]
All of these magnesium alloys contain about 0.5 to 3% by mass of a rare earth element (hereinafter referred to as “RE” as appropriate). Certainly, rare earth elements are effective elements for improving the heat resistance of magnesium alloys.
However, rare earth elements are expensive and increase the cost of magnesium alloys and castings. Furthermore, as a result of investigation and research by the present inventor, rare earth elements are elements that are very likely to cause casting cracks. For this reason, it is not preferable to include rare earth elements in the cast alloy. And this inventor newly discovered that heat resistance, such as sufficient creep resistance, was obtained even if it did not contain rare earth elements.
[0005]
The present invention has been made in view of such circumstances. That is, to provide a heat-resistant magnesium alloy for casting excellent in heat resistance and castability that can suppress the occurrence of casting cracks as well as heat resistance by using an element cheaper than that, without using rare earth elements, etc. With the goal. Moreover, the magnesium alloy casting cast using the magnesium alloy is also provided.
[0006]
[Means for Solving the Problems and Effects of the Invention]
Therefore, as a result of earnestly researching and various systematic experiments to solve this problem, the present inventors have sufficient heat resistance by containing only appropriate amounts of basically inexpensive Al and Ca. At the same time, it has been found that a magnesium alloy excellent in castability that hardly causes casting cracks can be obtained, and based on this, the present invention has been completed.
(Heat-resistant magnesium alloy for casting)
That is, the heat-resistant magnesium alloy for casting according to the present invention has a total amount of 100% by mass (hereinafter, simply referred to as “%”) , more than 10% and not more than 15% calcium (Ca) and the Ca. total and 3 mass% or more aluminum lower a 4 to 25 wt% (Al), and a manganese (Mn) of from 0.2 to 0.7 wt%, the balance being magnesium (Mg) and the It consists of inevitable impurities and is characterized by excellent castability and heat resistance, in which the mass ratio of Ca to Al (Ca / Al) is 2 or more.
[0007]
Since the magnesium alloy of the present invention does not contain expensive RE and the essential elements are only Ca and Al, the obtained magnesium alloy and the heat-resistant magnesium alloy casting made thereof include not only the material cost but also the manufacturing cost. Even if it thinks, it is cheap and remarkably excellent in cost competitiveness. And as mentioned above, sufficient heat resistance and a casting crack inhibitory effect are exhibited.
By the way, although the magnesium alloy of this invention contains only Al and Ca of the said range and the outstanding heat resistance and castability are not necessarily acquired, it is thought as follows at present.
[0008]
First, the reason why the magnesium alloy of the present invention is excellent in heat resistance will be described.
Al is an important element for improving the room temperature strength of a magnesium alloy by dissolving in Mg crystal grains. It is also an important element for improving the corrosion resistance of magnesium alloys. However, when the amount of Al in the magnesium alloy increases, Al is dissolved in supersaturation in the matrix (dendritic cell and α crystal grains) to form an Al-rich phase. Since this Al-rich phase is thermally unstable, when the magnesium alloy reaches a high temperature, it becomes an Mg—Al compound (Mg 17 Al 12 ) and precipitates in the Mg matrix and Mg grain boundaries. When the magnesium alloy is left in a high temperature range for a long time, the intermetallic compound aggregates and coarsens, increasing the creep deformation of the magnesium alloy. That is, the heat resistance of the magnesium alloy is reduced.
[0009]
Ca has an effect of suppressing a decrease in heat resistance accompanying the increase in Al. This is because Ca reacts with the Mg-Al compound and the matrix, thereby reducing Mg 17 Al 12 which causes a decrease in creep and forming a Ca-Al compound or Mg-Ca compound which is stable at high temperatures. It is thought that. These intermetallic compounds are thought to crystallize or precipitate mainly in the form of a network in the grain boundaries and to act as a wedge that stops the dislocation movement of the magnesium alloy.
For these reasons, it is considered that the magnesium alloy of the present invention has developed excellent heat resistance with little creep deformation or the like even in a high temperature region by containing appropriate amounts of Al and Ca.
[0010]
Next, the reason why the magnesium alloy of the present invention is excellent in castability will be described. In addition, the castability as used in this specification mainly refers to the presence or absence of casting cracks. This casting crack includes a so-called hot crack and a tear crack. Hot cracking is a crack that occurs due to volume contraction of the liquid phase part in a solid-liquid coexistence state, and a dendrid structure (dendritic structure) appears on the fracture surface. On the other hand, since tear cracks are caused by tearing due to residual casting stress in the absence of a liquid phase, the fracture surface becomes a brittle fracture surface without a dendrid structure. In the present specification, unless otherwise specified, both cracks are simply referred to as casting cracks without distinction, but hot cracking may be mainly considered. Hot cracking is greatly affected by the characteristics of the magnesium alloy itself, and it is difficult to solve it by reviewing the plan and manufacturing process.However, shrinkage cracks are often solved by devising the mold shape and casting method. is there. However, the magnesium alloy of the present invention not only exhibits an excellent effect in suppressing hot cracking, but actually exhibits a sufficient suppressing effect on shrinkage cracks. Below, it demonstrates how this casting crack was suppressed by the magnesium alloy of this invention.
[0011]
The present inventor first considered reducing the solidification temperature range in order to suppress casting cracks. The solidification temperature range is a temperature difference between the liquidus temperature at which the molten metal starts to solidify and the solidus temperature at which the molten metal completes solidification. By narrowing the solidification temperature range, the shrinkage stress and the like when the molten magnesium alloy solidifies can be reduced, and the effect of suppressing casting cracking can be exerted. In order to narrow the solidification temperature range, it is necessary to raise the solidus temperature of the magnesium alloy and lower the liquidus temperature.
[0012]
As a result of investigation and research by the present inventor, the solidus temperature of the magnesium alloy (Mg—Ca—Al ternary system) of the present invention is strongly influenced by Ca. Soars to When Al is added here, the solidus temperature gradually increases according to the amount of Al. For example, if the Ca amount and the Al amount are about the same (that is, Al / Ca is about 1) like Mg-3% Ca-3% Al, the influence of Ca is dominant, and the solidus temperature is Mg-Ca. It was found that the temperature was found from the binary system phase diagram (about 515 ° C.). Further, when the ratio of Al to Ca (Al / Ca) by mass ratio was 3 or more, the influence of Al was slightly added, and the solidus temperature was about 530 ° C. The strong influence of Ca on the solidus temperature is considered to be because the solidus temperature of the Mg—Ca binary phase diagram is approximately constant at about 515 ° C. in the range of the Ca content of the present invention.
[0013]
On the other hand, regarding the liquidus temperature, although Ca has a slightly stronger effect of lowering the liquidus temperature than Al, Ca and Al cooperated to affect the liquidus temperature as a whole. For example, the liquidus temperature in the case of Mg-3% Al-3% Ca is 620 ° C., and the liquidus temperature in the case of Mg-6% Al-3% Ca is 603 ° C., Mg-3% Al-9% The liquidus temperature in the case of Ca was 581 ° C.
From these facts, in order to narrow the solidification temperature range, at least 1 mass% of Ca is contained and the solidus temperature is increased to 515 ° C. or more, and the total amount of Ca and Al is a predetermined amount. As described above, it is important to appropriately reduce the liquidus temperature. Of course, as the Ca and Al contents increase, the solidus temperature rises and the liquidus temperature falls, so it is preferable to simply narrow the solidification temperature range. However, if the content thereof increases excessively, the cost of the magnesium alloy increases, which is not economically preferable. On the other hand, if Al is excessively increased with respect to Ca, the aforementioned heat resistance is lowered, which is not preferable. Furthermore, when Ca increases too much, there are concerns about a decrease in fluidity of the molten metal, seizure with a mold, a decrease in elongation, and the like.
[0014]
Considering from both viewpoints of heat resistance and castability, in the magnesium alloy of the present invention, the contents of Ca and Al, which are essential elements, are set to Ca: 1 to 15%, 4% ≦ Ca + Al ≦ 25%. . This can also be seen as Ca: 1 to 15% and Al: 3 to 10%. More preferably, the lower limit of Ca is 2% or 3%, and the upper limit is 10% or 9%. The lower limit of Ca + Al is 5%, 6%, and further 9%, and the upper limit is more preferably 20%, 18%, and further 12%. With regard to Al, the lower limit is more preferably 4% or 5%, and the upper limit is more preferably 10% or 9%.
As described above, when Al is more than Ca, the precipitation of Mg 17 Al 12 cannot be sufficiently suppressed, and the creep resistance of the magnesium alloy is lowered. Therefore, the mass ratio of Ca to Al (Ca / Al) is preferably 1 or more, 2 or more, and more preferably 3 or more.
[0015]
By setting it as the said composition, the solidification temperature range will be 110 degrees C or less, Furthermore, it will be 100 degrees C or less, 90 degrees C or less, 80 degrees C or less, 75 degrees C or less. Thus, the narrowing of the solidification temperature range means that the cooling rate is increased and the solidification time is shortened in any casting method, unlike the case where the cooling rate is simply increased in a specific casting method. More specifically, the solidification time is sufficiently shortened even in gravity casting or the like where the cooling rate is relatively slow, and more particularly in die casting or the like where the cooling rate is very fast. By shortening the solidification time, it is considered that shrinkage stress and the like during solidification of the molten metal are suppressed, and casting cracks are suppressed.
[0016]
Furthermore, when the inventor observed the structure of a casting made of the magnesium alloy of the present invention, it was found that the structure was very fine. This is partly due to the shortening of the solidification time, but it seems that the composition of the magnesium alloy of the present invention also has an influence. This is because even when the solidification temperature range is lowered to around 80 ° C., the structure does not become very fine when RE is contained. Therefore, it is considered effective to reduce the roughness of the structure to suppress casting cracks. This texture roughness is indicated by an average crystal grain size. It is considered that the average crystal grain size is 18 μm or less, more preferably 16 μm or less, 14 μm or less, 12 μm or less, 10 μm or less, etc. It is done.
[0017]
The magnesium alloy of the present invention may further contain Mn.
Mn is an element that causes solid solution strengthening of the magnesium alloy by solid solution in the Mg crystal grains. Mn also reacts with Al to form a thermally stable intermetallic compound while suppressing the precipitation of Mg 17 Al 12 which is a cause of creep reduction. Thereby, Mn is an element that can improve not only the room temperature strength of the magnesium alloy but also the high temperature strength. Furthermore, Mn does not adversely affect the castability of the magnesium alloy. In addition, Mn also has an effect of precipitating and removing Fe, which is an impurity that causes corrosion. If the amount of Mn is too small, such an effect is thin, and even if it exceeds 1% by mass, an improvement in the effect cannot be expected and it is not economical. Therefore, it is preferable that Mn is contained in an amount of 0.1 to 1% by mass, further 0.2 to 0.7% by mass.
[0018]
(Heat-resistant magnesium alloy casting)
The present invention can be grasped not only as the above heat-resistant magnesium alloy for casting but also as a casting made thereof.
That is, the heat-resistant magnesium alloy casting of the present invention has a total of 4 to 25% by mass, when the total is 100% by mass , exceeding 10% and 1 to 15% Ca of 15% or less and the Ca. The lower limit is 3 mass% or more of Al and 0.2 to 0.7 mass% of Mn, the balance is Mg and inevitable impurities, and the mass ratio of Ca to Al (Ca / Al) is 2 or more. A pouring process of pouring the molten alloy into a mold,
It is obtained through a solidification step in which the molten alloy after the pouring step is cooled and solidified, and an average crystal grain size indexing the structure roughness is 18 μm or less .
[0019]
This heat-resistant magnesium alloy casting is not limited to ordinary gravity casting or pressure casting, but may be die casting. Further, the “casting” or “castability” in the present invention is not limited to the casting method. The mold used for casting may be a sand mold, a mold, or the like.
The “heat resistance” as used in the present invention is evaluated by the mechanical properties of the magnesium alloy in a high temperature atmosphere (for example, creep characteristics or high temperature strength by a stress relaxation test or an axial force retention test).
[0020]
In this specification, although the composition range of each element is shown in the form of “x to y mass%”, this includes a lower limit (x mass%) and an upper limit (y mass%) unless otherwise specified. Meaning.
The use of the magnesium alloy of the present invention extends to various fields such as automobiles, home electric appliances, etc., in the fields of space, military and aviation. However, the magnesium alloy of the present invention is used for products that are used in high-temperature environments, for example, engines, transmissions, compressors for air conditioners, and related products that are used in an engine room of an automobile by taking advantage of its heat resistance. This is more preferable.
[0021]
【Example】
The present invention will be specifically described below with reference to examples.
A plurality of test pieces with various contents (addition amounts) of Al, Ca and Mn in the magnesium alloy were manufactured, and the presence or absence of cast cracks and the roughness of the structure were observed.
(Manufacture of test pieces)
Chloride-based flux was applied to the inner surface of an iron crucible preheated in an electric furnace, and weighed pure magnesium ingot, pure Al, and Mg-Mn alloy were added and dissolved. Furthermore, weighed Ca was added to the molten metal maintained at 750 ° C. (molten preparation step).
The molten metal was sufficiently stirred to completely dissolve the raw material, and then kept calm at the same temperature for a while. During the melting operation, a mixed gas of carbon dioxide gas and SF 6 gas was sprayed on the molten metal surface to prevent Mg from burning, and a flux was appropriately sprayed on the molten metal surface.
Various molten alloys thus obtained were poured into a mold having the shape shown in FIG. 1 (pouring process) and solidified in an air atmosphere (solidification process). In this way, a bottomed cylindrical test piece (heat-resistant magnesium alloy casting) having an opening of about φ17 mm on the bottom surface having a thickness of about 3 mm and an outer diameter of about φ60 mm was manufactured by gravity casting. The chemical composition for each test piece is shown in Table 1.
[0022]
(Observation of casting crack and structure roughness and calculation of solidification temperature range)
About the obtained various test pieces, the presence or absence of a casting crack and the kind of casting crack were observed visually and with a metal microscope. When a dendrid structure was formed on the fracture surface of the casting crack, it was considered hot cracking, and when the fracture surface was brittle fracture surface, it was regarded as shrinkage cracking. Table 1 also shows the presence or absence of casting cracks in each test piece.
Moreover, the center part of each test piece was cut | disconnected and the structure roughness was observed with the metal microscope (500 times magnification). The results are also shown in Table 1. The texture roughness shown in Table 1 is an average roughness, and is represented by an average crystal grain size calculated from an average value of the size of the α phase of Mg. For reference, test piece no. 5 and test piece No. 7 is shown in FIGS. 2 (a) and 2 (b).
Further, Table 1 shows the solidification temperature range calculated from the solidus temperature and the liquidus temperature of each test piece.
The solidification temperature width, structure roughness, and presence / absence of casting cracks thus obtained are summarized in the graph of FIG.
[0023]
(Evaluation)
The following can be understood from Table 1 and FIG.
(1) Test piece No. The compositions of 1 to 7 were within the scope of the present invention, and in each case, the solidification temperature range was 105 ° C. or less and the texture was as fine as 16 μm or less. And not only the hot crack but also the crack did not occur.
Moreover, the greater the amount of Ca relative to Al, that is, the greater the Ca / Al, the narrower the solidification temperature range and the finer the texture.
[0024]
(2) Test piece No. The composition of C1 to C10 is out of the scope of the present invention. In all cases, except for 10, a casting crack occurred. The test piece No. The reason why no casting crack occurred in No. 10 is considered to be because the material was originally low in heat resistance (particularly creep resistance) and thus easily deformed by the stress during casting.
Specimen No. including RE In the case of C4 to C9, the texture roughness was rough regardless of the solidification temperature range. Among these, test piece No. Although the absolute amount of Ca and the amount of Al relative to the amount of Ca were large like C6 to C8, the roughness of the structure was rough despite the narrow solidification temperature range. And all of those casting cracks were tear cracks.
[0025]
[Table 1]
Figure 0004575645

[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing the shape of a mold.
2 is a metallographic photograph of a cross section of the test piece observed with a metallographic microscope. FIG. No. 5 is shown in FIG. 7 things.
FIG. 3 is a dispersion diagram showing solidification temperature width, structure roughness, and presence / absence of casting cracks of each test piece.

Claims (3)

全体を100質量%(以下、単に、「%」という。)としたときに、
10%を越え、15%以下のカルシウム(Ca)と、
該Caとの合計が4〜25質量%であって下限が3質量%以上のアルミニウム(Al)と、
0.2〜0.7質量%のマンガン(Mn)とを含み、
残部がマグネシウム(Mg)および不可避不純物からなり、
CaのAlに対する質量比(Ca/Al)が2以上である鋳造性および耐熱性に優れることを特徴とする鋳造用耐熱マグネシウム合金。
When the total is 100 mass% (hereinafter simply referred to as “%”),
More than 10% and not more than 15% calcium (Ca),
Aluminum (Al) having a total amount of 4 to 25% by mass with Ca and a lower limit of 3% by mass or more;
0.2 to 0.7 mass% manganese (Mn),
The balance consists of magnesium (Mg) and inevitable impurities,
Weight ratio Al of Ca (Ca / Al) is larger than 2, castability and heat-resistant casting magnesium alloy, wherein the excellent heat resistance.
溶湯が凝固を開始する液相線温度と該溶湯が凝固を完了する固相線温度との温度差である凝固温度幅が110℃以下である請求項1に記載の鋳造用耐熱マグネシウム合金。The heat-resistant magnesium alloy for casting according to claim 1, wherein a solidification temperature range, which is a temperature difference between a liquidus temperature at which the molten metal starts solidifying and a solidus temperature at which the molten metal completes solidification, is 110 ° C or less. 全体を100質量%としたときに、10%を越え、15%以下のCaと、該Caとの合計が4〜25質量%であって下限が3質量%以上のAlと、0.2〜0.7質量%のMnとを含み、残部がMgおよび不可避不純物からなり、CaのAlに対する質量比(Ca/Al)が2以上の合金溶湯を鋳型に注湯する注湯工程と、
該注湯工程後の合金溶湯を冷却し凝固させる凝固工程とを経て得られ
組織粗さを指標する平均結晶粒径が18μm以下であることを特徴とする耐熱性に優れた耐熱マグネシウム合金鋳物。
When the total is 100% by mass, it exceeds 10% and 15% or less of Ca, and the total of the Ca is 4 to 25% by mass and the lower limit is 3% by mass or more of Al, 0.2 to A pouring step of pouring a molten alloy containing 0.7% by mass of Mn, the balance of Mg and inevitable impurities, and a mass ratio of Ca to Al (Ca / Al) of 2 or more into a mold;
Obtained through a solidification step of cooling and solidifying the molten alloy after the pouring step ,
Heat magnesium alloy castings which the average crystal grain size of an index of tissue roughness excellent heat resistance characterized by less der Rukoto 18 [mu] m.
JP2003024095A 2003-01-31 2003-01-31 Heat-resistant magnesium alloy for casting and heat-resistant magnesium alloy casting Expired - Fee Related JP4575645B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003024095A JP4575645B2 (en) 2003-01-31 2003-01-31 Heat-resistant magnesium alloy for casting and heat-resistant magnesium alloy casting
US10/763,686 US20040151613A1 (en) 2003-01-31 2004-01-23 Heat-resistant magnesium alloy for casting and heat-resistant magnesium alloy cast product
FR0400859A FR2850672B1 (en) 2003-01-31 2004-01-29 HEAT RESISTANT MOLDING MAGNESIUM ALLOY AND HEAT RESISTANT MAGNESIUM ALLOY MOLDED MOLD
DE102004004892A DE102004004892B4 (en) 2003-01-31 2004-01-30 Method for producing a casting from a heat-resistant magnesium alloy
US11/975,381 US8123877B2 (en) 2003-01-31 2007-10-18 Heat-resistant magnesium alloy for casting heat-resistant magnesium alloy cast product, and process for producing heat-resistant magnesium alloy cast product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003024095A JP4575645B2 (en) 2003-01-31 2003-01-31 Heat-resistant magnesium alloy for casting and heat-resistant magnesium alloy casting

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008196041A Division JP2009007676A (en) 2008-07-30 2008-07-30 Heat resistant magnesium alloy for casting, and heat resistant magnesium alloy casting

Publications (2)

Publication Number Publication Date
JP2004232060A JP2004232060A (en) 2004-08-19
JP4575645B2 true JP4575645B2 (en) 2010-11-04

Family

ID=32709271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003024095A Expired - Fee Related JP4575645B2 (en) 2003-01-31 2003-01-31 Heat-resistant magnesium alloy for casting and heat-resistant magnesium alloy casting

Country Status (4)

Country Link
US (1) US20040151613A1 (en)
JP (1) JP4575645B2 (en)
DE (1) DE102004004892B4 (en)
FR (1) FR2850672B1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008120497A1 (en) * 2007-04-03 2010-07-15 株式会社豊田自動織機 Heat resistant magnesium alloy
JP2010083473A (en) * 2008-09-05 2010-04-15 Washi Kosan Co Ltd Method of manufacturing wheel and wheel
JP5445820B2 (en) * 2008-10-03 2014-03-19 株式会社豊田自動織機 Heat resistant magnesium alloy
JP5327515B2 (en) 2008-11-14 2013-10-30 株式会社豊田自動織機 Magnesium alloys for casting and magnesium alloy castings
JP2012097309A (en) * 2010-10-29 2012-05-24 Sanden Corp Magnesium alloy member, compressor for air conditioner, and method for manufacturing magnesium alloy member
JP6013755B2 (en) * 2012-04-10 2016-10-25 サンデンホールディングス株式会社 Compression function member and method of manufacturing the same
JP5700005B2 (en) * 2012-09-05 2015-04-15 株式会社豊田中央研究所 Composite magnesium alloy member and manufacturing method thereof
CN111155011A (en) * 2020-02-21 2020-05-15 江苏理工学院 High-performance Mg-Al-Ca magnesium alloy and preparation method thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1163200A (en) * 1967-01-30 1969-09-04 Norsk Hydro Elektrisk Improvements in or relating to Magnesium Base Alloys
FR2642439B2 (en) * 1988-02-26 1993-04-16 Pechiney Electrometallurgie
FR2651244B1 (en) * 1989-08-24 1993-03-26 Pechiney Recherche PROCESS FOR OBTAINING MAGNESIUM ALLOYS BY SPUTTERING.
DE69007920T2 (en) * 1989-08-24 1994-07-21 Pechiney Electrometallurgie High-strength magnesium alloys and processes for their production through rapid solidification.
JP2741642B2 (en) * 1992-03-25 1998-04-22 三井金属鉱業株式会社 High strength magnesium alloy
JPH07118785A (en) * 1993-10-25 1995-05-09 Mitsui Mining & Smelting Co Ltd Mg alloy for casting, non porosity mg alloy casting and their production
JPH08269609A (en) * 1995-03-27 1996-10-15 Toyota Central Res & Dev Lab Inc Mg-al-ca alloy excellent in die castability
JP3415987B2 (en) * 1996-04-04 2003-06-09 マツダ株式会社 Molding method of heat-resistant magnesium alloy molded member
JP3522963B2 (en) * 1996-04-04 2004-04-26 三井金属鉱業株式会社 Method for producing heat-resistant magnesium alloy member, magnesium alloy used therefor, and magnesium alloy molded member
JP2000104137A (en) * 1998-09-30 2000-04-11 Mazda Motor Corp Magnesium alloy forging stock, forged member and production of the forged member
JP3370009B2 (en) * 1999-03-30 2003-01-27 マツダ株式会社 Manufacturing method of magnesium alloy member
JP3603658B2 (en) * 1999-03-31 2004-12-22 マツダ株式会社 Manufacturing method of forged member
US6264763B1 (en) * 1999-04-30 2001-07-24 General Motors Corporation Creep-resistant magnesium alloy die castings
EP1060817B1 (en) * 1999-06-04 2004-09-15 Mitsui Mining and Smelting Co., Ltd Pressure die-casting process of magnesium alloys
JP2001316753A (en) * 2000-05-10 2001-11-16 Japan Steel Works Ltd:The Magnesium alloy and magnesium alloy member excellent in corrosion resistance and heat resistance
JP2004162090A (en) * 2002-11-11 2004-06-10 Toyota Industries Corp Heat resistant magnesium alloy

Also Published As

Publication number Publication date
FR2850672B1 (en) 2007-12-21
DE102004004892A1 (en) 2004-09-09
DE102004004892B4 (en) 2009-04-30
US20040151613A1 (en) 2004-08-05
FR2850672A1 (en) 2004-08-06
JP2004232060A (en) 2004-08-19

Similar Documents

Publication Publication Date Title
JP5327515B2 (en) Magnesium alloys for casting and magnesium alloy castings
CN102676887B (en) Aluminum alloy for compression casting and casting of aluminum alloy
JP5852580B2 (en) Flame retardant magnesium alloy having excellent mechanical properties and method for producing the same
EP2481822B1 (en) Magnesium-aluminum based alloy with grain refiner
KR19980702067A (en) Magnesium alloy
AU2010322541B2 (en) Aluminum alloy and manufacturing method thereof
KR101395276B1 (en) Mg-Al based alloys for high temperature casting
JPH0718364A (en) Heat resistant magnesium alloy
WO2010056130A1 (en) Magnesium based alloys and processes for preparation thereof
JP4852082B2 (en) Magnesium alloy
JP5595891B2 (en) Method for producing heat-resistant magnesium alloy, heat-resistant magnesium alloy casting and method for producing the same
CN101285144A (en) Magnesium alloy for semi-solid forming and preparation method of semi- solid blank
JP2004162090A (en) Heat resistant magnesium alloy
JP4575645B2 (en) Heat-resistant magnesium alloy for casting and heat-resistant magnesium alloy casting
JP4433916B2 (en) Magnesium alloy and magnesium alloy member for plastic working
US8123877B2 (en) Heat-resistant magnesium alloy for casting heat-resistant magnesium alloy cast product, and process for producing heat-resistant magnesium alloy cast product
JP4145242B2 (en) Aluminum alloy for casting, casting made of aluminum alloy and method for producing casting made of aluminum alloy
CN109161767B (en) Creep-resistant magnesium alloy containing W phase and preparation method thereof
JP4285188B2 (en) Heat-resistant magnesium alloy for casting, casting made of magnesium alloy and method for producing the same
JP2005240129A (en) Heat resistant magnesium alloy casting
Sheggaf et al. Solidification, microstructure, and mechanical properties of the as-cast ZRE1 magnesium alloy with different praseodymium contents
WO2008133218A1 (en) Magnesium alloy for casting and magnesium alloy cast
JP2005187896A (en) Heat resistant magnesium alloy casting
JP2009007676A (en) Heat resistant magnesium alloy for casting, and heat resistant magnesium alloy casting
JP6900199B2 (en) Manufacturing method of aluminum alloy for casting, aluminum alloy casting products and aluminum alloy casting products

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080730

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20080912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080912

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081029

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20081205

RD14 Notification of resignation of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7434

Effective date: 20090120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100820

R151 Written notification of patent or utility model registration

Ref document number: 4575645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees