JP3522963B2 - Method for producing heat-resistant magnesium alloy member, magnesium alloy used therefor, and magnesium alloy molded member - Google Patents

Method for producing heat-resistant magnesium alloy member, magnesium alloy used therefor, and magnesium alloy molded member

Info

Publication number
JP3522963B2
JP3522963B2 JP08282996A JP8282996A JP3522963B2 JP 3522963 B2 JP3522963 B2 JP 3522963B2 JP 08282996 A JP08282996 A JP 08282996A JP 8282996 A JP8282996 A JP 8282996A JP 3522963 B2 JP3522963 B2 JP 3522963B2
Authority
JP
Japan
Prior art keywords
magnesium alloy
semi
weight
resistant
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08282996A
Other languages
Japanese (ja)
Other versions
JPH09271919A (en
Inventor
耕平 久保田
勉 佐藤
光治 星谷
和夫 坂本
幸男 山本
宣夫 坂手
庄司 平原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mazda Motor Corp
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, Mitsui Mining and Smelting Co Ltd filed Critical Mazda Motor Corp
Priority to JP08282996A priority Critical patent/JP3522963B2/en
Publication of JPH09271919A publication Critical patent/JPH09271919A/en
Application granted granted Critical
Publication of JP3522963B2 publication Critical patent/JP3522963B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は室温及び高温強度に
優れたマグネシウム合金部材の製造方法およびそれに用
いるマグネシウム合金、並びにマグネシウム合金成形部
材に関し、より詳しくは自動車エンジン部品などの軽量
化において要請されている473°K程度までの高温で
も十分な強度を有するマグネシウム合金の射出成形に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a magnesium alloy member excellent in room temperature and high temperature strength, a magnesium alloy used for the method, and a magnesium alloy molded member, and more specifically, it is demanded for weight reduction of automobile engine parts and the like. The present invention relates to injection molding of a magnesium alloy having sufficient strength even at high temperatures up to about 473 ° K.

【0002】[0002]

【従来の技術】近年地球環境保全の意識の高まりから、
自動車の燃費向上の要請が強まり、自動車用軽量材料の
開発が強く求められるようになってきた。マグネシウム
合金は現在実用化されている金属材料の中でも最も低密
度であり、今後の自動車用軽量材として強く期待されて
いる。現在最も一般的に用いられているマグネシウム合
金はMg−Al−Zn−Mn系合金(例えばAZ91合
金=Mg−9Al−1Zn−0.2Mn)であり、自動
車軽量化にあたって先ずこの合金が検討されてきた。し
かしながら、この種合金は約393°K以上で強度が低
下し、自動車エンジン部品の中でも耐熱性が要求される
用途には適さないとして、新たにMg−Al−Ca−M
n系合金(特開平6−25790号)が提案されてい
る。ここでは、特にCa/Alの比を0.7以上にする
とマグネシウム合金中に晶出する析出物の組織形態が変
化し、Mg−Ca化合物が晶出して優れた高温強度特性
を示すようになるとしている。
2. Description of the Related Art Due to the increasing awareness of global environmental protection in recent years,
With the increasing demand for improved fuel efficiency of automobiles, development of lightweight materials for automobiles has been strongly demanded. Magnesium alloy has the lowest density among the metallic materials currently in practical use, and is strongly expected as a lightweight material for automobiles in the future. The most commonly used magnesium alloy at present is a Mg-Al-Zn-Mn-based alloy (for example, AZ91 alloy = Mg-9Al-1Zn-0.2Mn), and this alloy has been studied first in order to reduce the weight of automobiles. It was However, the strength of this seed alloy decreases at about 393 ° K or higher, and it is not suitable for applications requiring heat resistance among automobile engine parts.
An n-based alloy (JP-A-6-25790) has been proposed. Here, particularly when the ratio of Ca / Al is 0.7 or more, the structure morphology of the precipitate crystallized in the magnesium alloy changes, and the Mg-Ca compound crystallizes to exhibit excellent high-temperature strength characteristics. I am trying.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、新たに
提案された、AC合金は従来汎用されてきたダイキャス
トにおいて熱間割れが発生しやすく、溶湯温度が高いと
金型への焼付きが発生しやすいなどの課題を残してい
る。本発明は、このような従来技術の有する課題に鑑
み、耐熱性と室温強度の両方が要求される自動車などの
エンジン部品用材料に適したマグネシウム合金のダイキ
ャストに代わる適切な成形方法を提供することを主たる
目的とする。また、本発明の他の目的は上記成形方法に
適するマグネシウム合金組成および上記成形方法で製造
された耐熱性と室温強度の両方に優れるマグネシウム合
金部材を提供することにある。
However, the newly proposed AC alloy is liable to cause hot cracking in the conventionally widely used die casting, and seizure on the mold occurs when the molten metal temperature is high. There are issues such as ease. In view of the above problems of the prior art, the present invention provides a suitable molding method instead of die casting of a magnesium alloy, which is suitable for a material for engine parts such as automobiles that requires both heat resistance and room temperature strength. The main purpose is that. Another object of the present invention is to provide a magnesium alloy composition suitable for the above molding method and a magnesium alloy member manufactured by the above molding method, which is excellent in both heat resistance and room temperature strength.

【0004】[0004]

【課題を解決するための手段】本発明者らは上記の課題
を解決するために種々検討を重ねた結果、大量生産性に
優れる、射出成形法を採用してもダイキャスト法より低
温の液相線以下の温度で実施すると、上記Ca/Alの
比と無関係にマグネシウム合金組成を設定しても、上記
Ca/Alの比を0.7以上に設定したAC合金のダイ
キャストにより製造される場合に匹敵する耐熱性と室温
強度を備える成形部材が得られるとともに、上記の熱間
割れや金型への焼付きの傾向が大幅に軽減することを見
い出した。したがって、本発明は、アルミニウム2〜1
0重量%及びカルシウム1.0〜10重量%を含有し、
残部がマグネシウムと不可避の不純物からなるマグネシ
ウム合金を略液相線またはそれ以下で射出成形すること
を特徴とする耐熱マグネシウム合金部材の製造方法を提
供するものである。
As a result of various investigations to solve the above problems, the present inventors have found that liquids at a temperature lower than that of the die-casting method, even if the injection molding method is adopted, are excellent in mass productivity. When carried out at a temperature below the phase line, even if the magnesium alloy composition is set regardless of the above Ca / Al ratio, it is manufactured by die casting of an AC alloy in which the above Ca / Al ratio is set to 0.7 or more. It has been found that a molded member having heat resistance and room temperature strength comparable to those in the case can be obtained, and the above-mentioned tendency of hot cracking and seizure on a die is significantly reduced. Therefore, the present invention relates to aluminum 2-1
Containing 0% by weight and 1.0-10% by weight calcium,
It is intended to provide a method for producing a heat-resistant magnesium alloy member, characterized in that a magnesium alloy having the balance of magnesium and inevitable impurities is injection-molded at a liquidus line or lower.

【0005】ダイキャストは一般的に溶融温度上30〜
50℃の溶湯温度で金型中に射出するのに対し、本発明
の射出成形では略液相線またはそれ以下の温度で射出す
るため、少なくとも射出温度は30〜50℃以上低下す
ることになる。
Die casting generally has a melting temperature of 30 to
Injecting into a mold at a molten metal temperature of 50 ° C., the injection temperature of the present invention decreases at least 30 to 50 ° C. or more because the injection molding of the present invention injects at a liquidus line temperature or below. .

【0006】特に略液相線の射出温度で成形する射出成
形(以下単に射出成形という)と異なり、液相線以下の
固相と液相が混在する状態で射出成形を行う半溶融成形
(以下単に半溶融成形)を採用するのが好ましい。そも
そも半溶融からの凝固であるので凝固応力が小さくなる
ことからこの方法を使用することにより熱間割れの発生
を抑制することができると思われる。
In particular, unlike injection molding (hereinafter simply referred to as injection molding) in which injection is performed at an injection temperature of substantially liquidus, injection molding is performed in a state where a solid phase and a liquid phase below the liquidus are mixed (hereinafter referred to as semi-molten molding). It is preferable to simply employ semi-melt molding. Since solidification starts from semi-melting, solidification stress is small. Therefore, it is thought that the occurrence of hot cracking can be suppressed by using this method.

【0007】特に、これらの効果は半溶融成形法におい
て固相率25%以下において顕著である。したがって、
この半溶融成形を行う際、半溶融状態時の固相率が25
%以下であるのが好ましい。一般に固相率が高いほど焼
付きも凝固応力も有利と思われるが、本発明方法では固
相率が高いと流動性が低下するため、充填性の低下や湯
境いの発生が起こり易く、健全な成形部材を得ることが
困難となる。また、固相率25%以下において成形部材
の強度も向上する傾向にある。
In particular, these effects are remarkable when the solid fraction is 25% or less in the semi-melt molding method. Therefore,
When performing this semi-melt molding, the solid fraction in the semi-molten state is 25
% Or less is preferable. Generally, the higher the solid fraction, the more likely the seizure and the solidification stress are, but in the method of the present invention, when the solid fraction is high, the fluidity is lowered, so that the filling property is lowered and the molten metal is likely to occur. It becomes difficult to obtain a sound molded member. Further, when the solid fraction is 25% or less, the strength of the molded member tends to be improved.

【0008】本発明においては、上記半溶融成形法およ
び射出成形法を汎用のAZ合金ではなく、以下の耐熱マ
グネシウム合金に適用することでダイキャスト法では得
られない効果を達成することができる。こうした合金と
成形法の組み合わせによる効果は従来知見されなかった
のは、両者の有機的結合によりダイキャストでは得られ
なかった結晶組織が得られた結果と思われる。一般に、
マグネシウム合金ではマグネシウムに固溶し、時効硬化
性を示し、合金の機械的性質を高めるためにアルミニウ
ム2〜10重量%を添加する。2重量%未満では添加効
果が十分でなく、他方10重量%を越えると、その添加
効果が飽和する一方、添加量の増加に伴い、合金の伸び
が低下するからである。本発明方法では、更にカルシウ
ム1.0〜10重量%を含有させるものに適用される。
カルシウムの添加はマグネシウムへのアルミニウムの添
加に伴い、低下する傾向にある高温強度を増強するため
である。1.0重量%未満では添加効果が不十分で、他
方10重量%を越えると、添加効果が飽和するからであ
る。
In the present invention, by applying the semi-melt forming method and the injection molding method to the following heat-resistant magnesium alloy instead of the general-purpose AZ alloy, the effect which cannot be obtained by the die casting method can be achieved. The effect of such a combination of the alloy and the forming method has not been found in the past, but it is considered that the organic structure of the two has resulted in the formation of a crystal structure that could not be obtained by die casting. In general,
In a magnesium alloy, 2 to 10% by weight of aluminum is added in order to form a solid solution in magnesium, exhibit age hardening, and enhance the mechanical properties of the alloy. This is because if it is less than 2% by weight, the effect of addition is not sufficient, and if it exceeds 10% by weight, the effect of addition is saturated, while the elongation of the alloy decreases as the amount of addition increases. In the method of the present invention, it is applied to those containing 1.0 to 10% by weight of calcium.
This is because the addition of calcium enhances the high temperature strength which tends to decrease with the addition of aluminum to magnesium. If it is less than 1.0% by weight, the effect of addition is insufficient, while if it exceeds 10% by weight, the effect of addition is saturated.

【0009】上記マグネシウム合金が更に亜鉛、マンガ
ン、ジルコニウム、及びケイ素からなる群から選ばれた
少なくとも1種の元素を2重量%以下、及び/又は希士
類元素(例えば、イットリウム、ネオジウム、ランタ
ン、セリウム、ミッシュメタル)4重量%以下を含有し
てもよい。これらはその上限以下で上記マグネシウム合
金の強度または高温強度を有効に向上させるものであ
り、本発明方法を適用する場合も同様であることを確認
した。
The magnesium alloy further contains 2% by weight or less of at least one element selected from the group consisting of zinc, manganese, zirconium, and silicon, and / or rare earth elements (eg, yttrium, neodymium, lanthanum, Cerium, misch metal) 4 wt% or less may be contained. It was confirmed that these are effective to improve the strength or high temperature strength of the magnesium alloy below the upper limit thereof, and the same applies when the method of the present invention is applied.

【0010】上記マグネシウム合金を本発明方法により
射出成形するにあたっては金属粒またはペレット形態と
する必要がある。したがって、平均3mm径以上の金属
粒またはペレットが用いられるが、切削等により加工歪
みを付与しておくと、成形後の合金組成を微細化し、強
度向上に役立つ。その加工法としては切削加工がコスト
的に有利である。
When the above magnesium alloy is injection-molded by the method of the present invention, it must be in the form of metal particles or pellets. Therefore, although metal particles or pellets having an average diameter of 3 mm or more are used, if a working strain is imparted by cutting or the like, the alloy composition after forming will be refined and it will be useful for improving strength. As the processing method, cutting is cost effective.

【0011】[0011]

【発明の実施の形態】図1に本発明に係る半溶融成形法
及び射出成形法に用いられる成形機1の全体構成を示
す。本発明の成形方法では、図中のホッパー8に機械の
切削等の方法で作製されたマグネシウム合金金属粒また
はペレット(径3mm以上)の原料3を投入する。原料
3はホッパー8からアルゴン雰囲気の通入口7を通って
シリンダ4内に供給される。このシリンダ4内ではスク
リュー2によって原料3は前方に送られながら、加熱さ
れる。この加熱ゾーンを10で示す。加熱温度が略液相
線ではマグネシウム合金原料3は溶融状態となるが、液
相線以下の温度では図示したように固相と液相が混在し
た半溶融状態となる。また、半溶融状態にあるマグネシ
ウム合金はスクリューの回転撹拌により、図示のように
その剪断力が固相を細かく分断する。ここで、後方の高
速射出機構5でスクリュー2を前方に押し出すと、半溶
融状態で細かく固相が細断された溶湯が図示のようにノ
ズル9より高速射出され、金型6内に充填されることに
なる。ここで、凝固まで金型内を加圧保持し、凝固後型
を開き成形製品を取り出す。
FIG. 1 shows the overall construction of a molding machine 1 used in the semi-melt molding method and the injection molding method according to the present invention. In the molding method of the present invention, the raw material 3 of magnesium alloy metal particles or pellets (having a diameter of 3 mm or more) produced by a method such as machine cutting is put into the hopper 8 in the figure. The raw material 3 is supplied into the cylinder 4 from the hopper 8 through the argon atmosphere passage 7. In the cylinder 4, the raw material 3 is heated while being fed forward by the screw 2. This heating zone is shown at 10. When the heating temperature is substantially the liquidus, the magnesium alloy raw material 3 is in a molten state, but at a temperature below the liquidus, it is in a semi-molten state in which a solid phase and a liquid phase are mixed as illustrated. In addition, as shown in the figure, the shearing force of the magnesium alloy in the semi-molten state causes the solid phase to be finely divided by the rotational stirring of the screw. Here, when the screw 2 is pushed forward by the high-speed injection mechanism 5 on the rear side, the melt in which the solid phase is finely cut in the semi-molten state is high-speed injected from the nozzle 9 as shown in the figure, and is filled in the mold 6. Will be. Here, the inside of the mold is pressurized and held until the solidification, and after the solidification, the mold is opened and the molded product is taken out.

【0012】実施例1〜15及び比較例 低周波炉に鉄ルツボを設置し、SF6ガス1%(残はド
ライエア)を溶湯表面に流動させながら実施例および比
較例の成分の合金を溶製した。これらの合金を板状に鋳
造し、フライス加工にて3〜5mm径のペレットを製造
し、これらを原料として上記成形機を用いて、半溶融成
形及び射出成形を行った。半溶融成形及び射出成形は型
締め力450tのマシンを用い、その条件は共に射出速
度は金型ゲート部において50m/s、射出圧力約70
0kg/cm2であり、ノズル部の合金の温度を表1の
各温度に設定した。射出成形の場合はこの合金の温度を
融点直上に設定し、他は半溶融成形法と同じとした。以
上の成形条件にて、引張試験片(JIS4号試験片)を
作成した。また、成形時の熱間割れと金型への焼付きの
頻度を観察した。成形数は150〜500個であった。
また、型締め力50tのホットチャンバーダイキャスト
にて同様の試験を実施した。この時の条件は溶湯温度は
いずれも650℃で金型温度200℃、射出圧力160
kgf/cm2、プランジャー速度1.5m/秒、金型
時間(DT)2〜3秒である。なお、引張試験の条件は
インストロン引張試験機によりクロスヘッド速度10m
m/分、測定温度25℃及び200℃で破断強度と破断
伸びを測定した。
Examples 1 to 15 and Comparative Example An iron crucible was installed in a low frequency furnace, and alloys of the components of the Examples and Comparative Examples were melted while flowing SF 6 gas 1% (the balance is dry air) on the surface of the molten metal. did. These alloys were cast into a plate shape, pellets having a diameter of 3 to 5 mm were manufactured by milling, and these were used as raw materials for semi-melt molding and injection molding using the above molding machine. For the semi-melt molding and the injection molding, a machine with a mold clamping force of 450 t was used, and the conditions were that the injection speed was 50 m / s at the mold gate and the injection pressure was about 70.
Was 0 kg / cm 2, the temperature of the alloy of the nozzle portion was set at each temperature shown in Table 1. In the case of injection molding, the temperature of this alloy was set just above the melting point, and the other conditions were the same as in the semi-melt molding method. Under the above molding conditions, a tensile test piece (JIS No. 4 test piece) was prepared. Also, the frequency of hot cracking and seizure on the mold during molding was observed. The number of moldings was 150 to 500.
Further, the same test was performed by hot chamber die casting with a mold clamping force of 50 t. At this time, the molten metal temperature was 650 ° C, the mold temperature was 200 ° C, and the injection pressure was 160 ° C.
kgf / cm 2 , plunger speed 1.5 m / sec, mold time (DT) 2-3 sec. The conditions for the tensile test are as follows: Crosshead speed 10m
The breaking strength and the breaking elongation were measured at m / min and a measuring temperature of 25 ° C and 200 ° C.

【0013】表1に各種成形法と合金毎の強度・成形性
を示すが比較例4〜6より、AZ91D相当の合金では
ダイキャストと比較して本発明の半溶融射成形法を適用
してもは伸びなどが若干改善されるが、製品レベルで見
ると材料特性上大きな差は認められない。また、ダイキ
ャストにおいても焼付き、熱間割れなどの問題は発生し
ない。すなわち、溶融炉は必要としない、消費エネルギ
ーが少ないなどの製法上のメリットを享受できるのみで
ある。他方、比較例1〜2及び実施例1〜15より、C
aを含むマグネシウム合金では本発明方法を適用する
と、材料特性の改善の効果も大きいだけではなく、熱間
割れの発生の有無や焼付き頻度においても大きな差があ
る。すなわち、本発明方法では半溶融成形法や射出成形
法を採用することで、ダイキャスト成形での問題点であ
る熱間割れや焼付きが解決できることがわかる。
Table 1 shows various forming methods and the strength and formability of each alloy. From Comparative Examples 4 to 6, alloys corresponding to AZ91D were applied with the semi-melt injection molding method of the present invention as compared with die casting. Although the haze and the like are slightly improved, there is no significant difference in material properties at the product level. Also, problems such as seizure and hot cracking do not occur in die casting. In other words, the melting furnace is not required, and energy consumption is low, and the manufacturing merits can only be enjoyed. On the other hand, from Comparative Examples 1-2 and Examples 1-15, C
When the method of the present invention is applied to the magnesium alloy containing a, not only the effect of improving the material properties is great, but also the presence or absence of hot cracking and the seizure frequency are greatly different. That is, it is understood that the method of the present invention can solve the problems of die casting, such as hot cracking and seizure, by adopting the semi-melt molding method or the injection molding method.

【表1】 [Table 1]

【0014】表2は実施例のマグネシウム合金は本発明
方法で成形すると、高温強度のみならずクリーブ特性
(JIS Z 2271に基づく引張クリープ試験方法
による)にも優れることを示している。比較例8のAS
41は規格化された耐熱合金であるが、比較例5のAZ
91Dを含めて実施例1のマグネシウム合金より劣る。
これが従来自動車用のエンジン部品などにマグネシウム
合金が適用されなかった理由のひとつである。
Table 2 shows that the magnesium alloys of the examples, when formed by the method of the present invention, are excellent not only in high temperature strength but also in the cleave characteristics (according to the tensile creep test method based on JIS Z 2271). AS of Comparative Example 8
41 is a standardized heat-resistant alloy, but AZ of Comparative Example 5
It is inferior to the magnesium alloy of Example 1 including 91D.
This is one of the reasons why magnesium alloys have not been applied to automobile engine parts.

【表2】 [Table 2]

【0015】表3は、半溶融成形法での固相率の影響及
び成形部材の組織の平均粒径の影響を示す。半溶融成形
法での固相率は低い程成形部材の組織の平均粒径が小さ
く、密度が高くなる、即ち強度が向上することが分か
る。
Table 3 shows the influence of the solid fraction in the semi-melt forming method and the influence of the average grain size of the structure of the formed member. It can be seen that the lower the solid fraction in the semi-melt molding method, the smaller the average grain size of the structure of the molded member and the higher the density, that is, the higher the strength.

【表3】 [Table 3]

【0016】[0016]

【発明の効果】以上の説明で明らかなように、本発明に
よれば、Mg−Al−Ca系耐熱マグネシウム合金を略
液相線またはそれ以下の温度で半溶融成形または射出成
形することにより、従来ダイキャスト法での熱間割れや
金型への焼付きの課題を解決しつつ、従来法と同等また
はそれ以上の常温および高温強度並びに伸びを保持する
ことができる。したがって、軽量かつ耐熱性が要求され
る自動車などのエンジン部品のマグネシウム合金での製
造を可能にした。
As is apparent from the above description, according to the present invention, the Mg-Al-Ca heat-resistant magnesium alloy is semi-melt-molded or injection-molded at a liquidus temperature or lower, It is possible to maintain the normal temperature and high temperature strength and elongation equal to or higher than those of the conventional method while solving the problems of hot cracking and seizure on the die in the conventional die casting method. Therefore, it has become possible to manufacture engine parts for automobiles and the like, which are required to be lightweight and heat resistant, using magnesium alloy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る半溶融成形法及び射出成形法に用
いられる成形機の構成を示す概要図。
FIG. 1 is a schematic diagram showing a configuration of a molding machine used in a semi-melt molding method and an injection molding method according to the present invention.

【符号の説明】[Explanation of symbols]

1…射出成形機 2…スクリュー 3…原料ペレット 4…シリンダー 5…高速射出機構 6…金型 7…シリンダーへの材料通入路 8…ホッパ 9…ノズル l0…加熱ゾーン 1 ... Injection molding machine 2 ... screw 3 ... Raw material pellets 4 ... cylinder 5 ... High-speed injection mechanism 6 ... Mold 7. Material passage to cylinder 8 ... Hopper 9 ... Nozzle 10 ... heating zone

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C22C 23/02 C22C 23/02 (72)発明者 星谷 光治 埼玉県上尾市原市1333の2 三井金属鉱 業株式会社総合研究所内 (72)発明者 坂本 和夫 広島県安芸郡府中町新地3番1号 マツ ダ株式会社内 (72)発明者 山本 幸男 広島県安芸郡府中町新地3番1号 マツ ダ株式会社内 (72)発明者 坂手 宣夫 広島県安芸郡府中町新地3番1号 マツ ダ株式会社内 (72)発明者 平原 庄司 広島県安芸郡府中町新地3番1号 マツ ダ株式会社内 (56)参考文献 特開 平9−272945(JP,A) 特開 平6−25790(JP,A) 特開 平7−118785(JP,A) 特開 昭61−3863(JP,A) 特開 平3−90530(JP,A) 特開 平8−269609(JP,A) 特開 平6−297127(JP,A) 特開 平5−285627(JP,A) 特表 平2−503331(JP,A) 特表 平9−508859(JP,A) 特表 平3−504830(JP,A) 特許3415987(JP,B2) (58)調査した分野(Int.Cl.7,DB名) B22D 17/00 - 17/32 C22C 1/02,23/02 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI C22C 23/02 C22C 23/02 (72) Inventor Koji Hoshitani 1333-2, Hara-shi, Ageo-shi, Saitama Mitsui Mining & Smelting Co., Ltd. (72) Inventor Kazuo Sakamoto 3-1, Shinchi Fuchu-cho, Aki-gun, Hiroshima Prefecture Mazda Co., Ltd. (72) Inventor Yukio Yamamoto 3-3-1 Shinchi, Fuchu-cho, Aki-gun, Hiroshima Prefecture (72) Invention Nobuo Sakate, 3-1, Shinchi, Fuchu-cho, Aki-gun, Hiroshima Prefecture Mazda Co., Ltd. (72) Inventor Shoji Hirahara, 3-1, Shinchi, Fuchu-cho, Aki-gun, Hiroshima Prefecture (56) References 9-272945 (JP, A) JP-A-6-25790 (JP, A) JP-A-7-118785 (JP, A) JP-A-61-3863 (JP, A) JP-A-3-90530 (JP, A) A) JP-A-8-269609 (JP, A) JP-A-6-297127 (JP, A) JP-A-5-285627 (JP, A) JP-A-2-503331 (JP, A) JP-A-9-508859 (JP, A) JP Table 3-504830 (JP, A) Patent 3415987 (JP, B2) (58) Fields investigated (Int.Cl. 7 , DB name) B22D 17/00-17/32 C22C 1 / 02,23 / 02

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 アルミニウム2〜10重量%及びカルシ
ウム1.0〜10重量%を含有し、残部がマグネシウム
と不可避の不純物からなるマグネシウム合金を略液相線
温度またはそれ以下で射出成形することを特徴とする耐
熱マグネシウム合金部材の製造方法。
1. A magnesium alloy containing 2 to 10% by weight of aluminum and 1.0 to 10% by weight of calcium, with the balance being magnesium and inevitable impurities, is injection molded at a liquidus temperature or below. A method for manufacturing a heat-resistant magnesium alloy member having the characteristics.
【請求項2】 成形方法が固相と液相が混在する液相線
以下の温度で射出成形を行う半溶融成形法である請求項
1記載の耐熱マグネシウム合金部材の製造方法。
2. The method for producing a heat-resistant magnesium alloy member according to claim 1, wherein the molding method is a semi-melt molding method in which injection molding is performed at a temperature below a liquidus line in which a solid phase and a liquid phase coexist.
【請求項3】 半溶融成形を行う際、半溶融状態時の固
相率が25%以下である請求項2記載の耐熱マグネシウ
ム合金の製造方法。
3. The method for producing a heat-resistant magnesium alloy according to claim 2, wherein the solid fraction in the semi-molten state is 25% or less when performing the semi-melt forming.
【請求項4】 マグネシウム合金が更に亜鉛、マンガ
ン、ジルコニウム、及びケイ素からなる群から選ばれた
少なくとも1種の元素を2重量%以下、及び/又は希士
類元素4重量%以下を含有する請求項1ないし3のいず
れかに記載の耐熱マグネシウム合金の製造方法。
4. The magnesium alloy further contains 2% by weight or less of at least one element selected from the group consisting of zinc, manganese, zirconium, and silicon, and / or 4% by weight or less of rare earth elements. Item 4. A method for producing a heat-resistant magnesium alloy according to any one of Items 1 to 3.
【請求項5】 マグネシウム合金が金属粒またはペレッ
ト形態である請求項1ないし4のいずれかに記載の耐熱
マグネシウム合金の製造方法。
5. The method for producing a heat-resistant magnesium alloy according to claim 1, wherein the magnesium alloy is in the form of metal particles or pellets.
【請求項6】 アルミニウム2〜10重量%及びカルシ
ウム1.0〜10重量%を含有し、残部がマグネシウム
と不可避の不純物からなる半溶融成形用または射出成形
用マグネシウム合金。
6. A magnesium alloy for semi-melt molding or injection molding, containing 2 to 10% by weight of aluminum and 1.0 to 10% by weight of calcium, and the balance being magnesium and unavoidable impurities.
【請求項7】 マグネシウム合金が更に亜鉛、マンガ
ン、ジルコニウム、及びケイ素からなる群から選ばれた
少なくとも1種の元素を2重量%以下、及び/又は希士
類元素4重量%以下を含有する請求項6記載の半溶融成
形用または射出成形用マグネシウム合金。
7. The magnesium alloy further contains 2% by weight or less of at least one element selected from the group consisting of zinc, manganese, zirconium, and silicon, and / or 4% by weight or less of rare earth elements. Item 7. A magnesium alloy for semi-melt molding or injection molding according to Item 6.
【請求項8】 マグネシウム合金が金属粒またはペレッ
ト形態である請求項6または7記載の半溶融成形用また
は射出成形用マグネシウム合金。
8. The magnesium alloy for semi-melt molding or injection molding according to claim 6 or 7, wherein the magnesium alloy is in the form of metal particles or pellets.
【請求項9】 請求項1ないし5のいずれかに記載の方
法で製造されたマグネシウム合金成形部材。
9. A magnesium alloy molded member produced by the method according to claim 1.
JP08282996A 1996-04-04 1996-04-04 Method for producing heat-resistant magnesium alloy member, magnesium alloy used therefor, and magnesium alloy molded member Expired - Fee Related JP3522963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08282996A JP3522963B2 (en) 1996-04-04 1996-04-04 Method for producing heat-resistant magnesium alloy member, magnesium alloy used therefor, and magnesium alloy molded member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08282996A JP3522963B2 (en) 1996-04-04 1996-04-04 Method for producing heat-resistant magnesium alloy member, magnesium alloy used therefor, and magnesium alloy molded member

Publications (2)

Publication Number Publication Date
JPH09271919A JPH09271919A (en) 1997-10-21
JP3522963B2 true JP3522963B2 (en) 2004-04-26

Family

ID=13785296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08282996A Expired - Fee Related JP3522963B2 (en) 1996-04-04 1996-04-04 Method for producing heat-resistant magnesium alloy member, magnesium alloy used therefor, and magnesium alloy molded member

Country Status (1)

Country Link
JP (1) JP3522963B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19915277A1 (en) * 1999-04-03 2000-10-05 Volkswagen Ag Magnesium alloy used e.g. in the manufacture of a wheel rim contains traces of cadmium, copper, iron, nickel and lanthanum and yttrium
JP4596580B2 (en) * 1999-09-27 2010-12-08 三井金属鉱業株式会社 Magnesium alloy casting method and castings
JP3611759B2 (en) * 1999-10-04 2005-01-19 株式会社日本製鋼所 Magnesium alloy and magnesium alloy heat-resistant member with excellent heat resistance and castability
US6342180B1 (en) 2000-06-05 2002-01-29 Noranda, Inc. Magnesium-based casting alloys having improved elevated temperature properties
JP2004162090A (en) * 2002-11-11 2004-06-10 Toyota Industries Corp Heat resistant magnesium alloy
US8123877B2 (en) 2003-01-31 2012-02-28 Kabushiki Kaisha Toyota Jidoshokki Heat-resistant magnesium alloy for casting heat-resistant magnesium alloy cast product, and process for producing heat-resistant magnesium alloy cast product
JP4575645B2 (en) * 2003-01-31 2010-11-04 株式会社豊田自動織機 Heat-resistant magnesium alloy for casting and heat-resistant magnesium alloy casting
JP4539572B2 (en) * 2006-01-27 2010-09-08 株式会社豊田中央研究所 Magnesium alloys and castings for casting
WO2008026333A1 (en) * 2006-09-01 2008-03-06 National Institute Of Advanced Industrial Science And Technology High-strength flame resistant magnesium alloy
US20100116378A1 (en) * 2007-04-03 2010-05-13 Kabushiki Kaisha Toyota Jidoshokki Heat-resistant magnesium alloy
JP2009007676A (en) * 2008-07-30 2009-01-15 Toyota Industries Corp Heat resistant magnesium alloy for casting, and heat resistant magnesium alloy casting
DE102008039683B4 (en) * 2008-08-26 2010-11-04 Gkss-Forschungszentrum Geesthacht Gmbh Creep resistant magnesium alloy
JP5445820B2 (en) * 2008-10-03 2014-03-19 株式会社豊田自動織機 Heat resistant magnesium alloy
JP5709063B2 (en) * 2012-06-19 2015-04-30 株式会社栗本鐵工所 Heat-resistant magnesium alloy
KR101581461B1 (en) * 2014-04-28 2015-12-30 (주) 장원테크 Magnesium alloy having heat radiation property and its manufacturing method
KR101670043B1 (en) * 2015-03-17 2016-10-27 전북대학교산학협력단 Calcium added magnesium alloy and its manufacturing method
JP2019063835A (en) * 2017-10-04 2019-04-25 株式会社日本製鋼所 Method for producing stock for forging made of magnesium alloy
KR102016144B1 (en) * 2017-11-06 2019-09-09 (주) 장원테크 Method for manufacturng magnesium alloy having eccellent thermal dissipation properties
WO2020203050A1 (en) * 2019-03-29 2020-10-08 株式会社栗本鐵工所 Heat-resistant magnesium alloy
CN113579198A (en) * 2021-07-15 2021-11-02 伯乐智能装备有限公司 Production equipment for magnesium alloy modified product
CN113579196A (en) * 2021-07-15 2021-11-02 伯乐智能装备有限公司 Method for manufacturing light alloy modified product

Also Published As

Publication number Publication date
JPH09271919A (en) 1997-10-21

Similar Documents

Publication Publication Date Title
JP3522963B2 (en) Method for producing heat-resistant magnesium alloy member, magnesium alloy used therefor, and magnesium alloy molded member
JP3415987B2 (en) Molding method of heat-resistant magnesium alloy molded member
US9074269B2 (en) Magnesium alloy
EP2653578B1 (en) Aluminum die casting alloy
CN101760683B (en) High-strength casting magnesium alloy and melting method thereof
AU753538B2 (en) Die casting magnesium alloy
CN102628133B (en) Magnesium-aluminum based alloy
KR20160011136A (en) Magnesium alloy having improved corrosion resistance and method for manufacturing magnesium alloy member using the same
CN100552072C (en) In-situ authigenic aluminum nitride enhanced magnesium-base composite material and preparation method thereof
CN101871066A (en) High-obdurability magnesium alloy comprising tin and zinc and preparation method thereof
CN113913653A (en) Aluminum-silicon alloy, casting and preparation method thereof
US7041179B2 (en) High strength creep resistant magnesium alloys
CN103305732A (en) Method for preparing rare-earth yttrium containing super-high-strength wrought aluminium alloy
CN103305731A (en) Ultra-high-strength wrought aluminum alloy containing rare-earth yttrium
JPH08120390A (en) Magnesium-silicon alloy tip and method for forming same alloy
CN101831582B (en) Low-cost heat resistance magnesium alloy containing rare earth and preparation method thereof
JP6590814B2 (en) High performance creep resistant magnesium alloy
CN112708810A (en) Extrusion casting regenerated aluminum-magnesium alloy with high Fe content and preparation method thereof
CN109161767B (en) Creep-resistant magnesium alloy containing W phase and preparation method thereof
JP3737371B2 (en) Magnesium alloy for die casting
CN100557054C (en) Contain creep resistance Dow metal of Si and C and preparation method thereof
CN100537808C (en) Cast Mg alloy with high strength and manufacture method thereof
JPH1161299A (en) Heat resistant zinc alloy and formed part
CN103484742A (en) High-strength damping magnesium alloy
KR19990069044A (en) SIC / (2XXX AL + SI) composite material for reaction solidification and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031218

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040205

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

LAPS Cancellation because of no payment of annual fees