JP5852580B2 - Flame retardant magnesium alloy having excellent mechanical properties and method for producing the same - Google Patents

Flame retardant magnesium alloy having excellent mechanical properties and method for producing the same Download PDF

Info

Publication number
JP5852580B2
JP5852580B2 JP2012541039A JP2012541039A JP5852580B2 JP 5852580 B2 JP5852580 B2 JP 5852580B2 JP 2012541039 A JP2012541039 A JP 2012541039A JP 2012541039 A JP2012541039 A JP 2012541039A JP 5852580 B2 JP5852580 B2 JP 5852580B2
Authority
JP
Japan
Prior art keywords
magnesium alloy
weight
less
alloy
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012541039A
Other languages
Japanese (ja)
Other versions
JP2013512338A (en
Inventor
ミン キム、ヨン
ミン キム、ヨン
シク キム、ハ
シク キム、ハ
スン ユ、ボン
スン ユ、ボン
ドン イム、チャン
ドン イム、チャン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Institute of Machinery and Materials KIMM
Original Assignee
Korea Institute of Machinery and Materials KIMM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Institute of Machinery and Materials KIMM filed Critical Korea Institute of Machinery and Materials KIMM
Publication of JP2013512338A publication Critical patent/JP2013512338A/en
Application granted granted Critical
Publication of JP5852580B2 publication Critical patent/JP5852580B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/04Alloys based on magnesium with zinc or cadmium as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/04Casting aluminium or magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/06Alloys based on magnesium with a rare earth metal as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon

Description

本発明は、発火抵抗性に優れているマグネシウム合金、より詳しくは、溶湯表面に安定した保護被膜を形成することで大気中あるいは一般の活性雰囲気下でも溶解や鋳造が可能となり、発火抵抗性に極めて優れていることでチップの自然発火を抑制することができ、且つ、優れた強度と軟性を併せ持つマグネシウム合金に関する。   The present invention is a magnesium alloy having excellent ignition resistance, more specifically, by forming a stable protective film on the surface of the molten metal, it can be melted and cast even in the atmosphere or in a general active atmosphere, and the ignition resistance is improved. The present invention relates to a magnesium alloy that can suppress spontaneous ignition of a chip by being extremely excellent, and has both excellent strength and flexibility.

マグネシウム合金は、高い比強度を有する最軽量の合金であって、各種の鋳造や加工工程に適用可能であり、自動車部品や電磁気部品などの軽量化が要求されるあらゆる分野に適用可能であってその応用範囲が広い。しかしながら、マグネシウム合金は、電気化学的に電位が低く且つ相当に高い活性を有する金属であって、酸素または水と接触すると強い活性反応を示し、時には火事を起こしたりするなど、材料の安定性及び信頼性の面でまだ限界がある。このために、その応用潜在力に比しては未だその応用範囲が制限的であり、とりわけ、安全性が要求される応用分野には不向きである。   Magnesium alloy is the lightest alloy with high specific strength, can be applied to various casting and processing processes, and can be applied to all fields that require weight reduction such as automobile parts and electromagnetic parts. Its application range is wide. However, a magnesium alloy is a metal having a low electrochemical potential and a considerably high activity, and exhibits a strong active reaction when contacted with oxygen or water, sometimes causing a fire, etc. There are still limitations in terms of reliability. For this reason, the application range is still limited as compared with its application potential, and in particular, it is not suitable for application fields where safety is required.

マグネシウム合金のかかる活性反応のため、溶解時にはフラックス(flux)やCO2+SF6などの不活性混合ガスを使用して不活性雰囲気を作る必要がある。溶解や精錬時に使用されるフラックスは塩化系であるため、溶湯処理条件が合わないと、残留塩素が素材中に残存して耐食性を大きく落とすという不具合があった。このような不具合を解決するためには、フラックスを使用する代わりに、SF6、CO2及びAirを混合した雰囲気下で溶解や鋳造を行なう方法が有効である。しかしながら、SF6は地球温室効果がCO2の24倍にもなる地球温室誘発物質として分類されており、今後、その使用が規制されると見込まれている。 Because of the active reaction of the magnesium alloy, it is necessary to create an inert atmosphere using an inert mixed gas such as flux and CO 2 + SF 6 during melting. Since the flux used at the time of melting and refining is chlorinated, if the molten metal treatment conditions are not suitable, there is a problem that residual chlorine remains in the material and the corrosion resistance is greatly reduced. In order to solve such a problem, a method of melting or casting in an atmosphere in which SF 6 , CO 2 and Air are mixed is effective instead of using a flux. However, SF 6 is classified as a global greenhouse-inducing substance whose global greenhouse effect is 24 times that of CO 2 , and its use is expected to be regulated in the future.

このような問題をより根本的に解決するために、マグネシウム合金そのものの耐酸化性を向上させるための研究として、特にCa、Beなどの希土類金属の添加によるマグネシウム合金の発火温度を向上させようとする研究が進められてきていた。従来は、耐酸化マグネシウム合金に添加される合金元素のうちCaが主に用いられており、その理由は、Ca元素の価格が他の希土類金属に比べて低廉で、毒性がなく、且つ添加量対比発火温度の上昇が大きいためである。   In order to solve these problems more fundamentally, as a study for improving the oxidation resistance of the magnesium alloy itself, an attempt is made to improve the ignition temperature of the magnesium alloy by adding rare earth metals such as Ca and Be. Research has been underway. Conventionally, Ca is mainly used among the alloy elements added to the magnesium oxide-resistant alloy because the price of the Ca element is lower than that of other rare earth metals, is not toxic, and is added in an amount. This is because the rise in the ignition temperature is large.

Caを含むマグネシウム合金に関連する既存の研究によると、3重量%以上のCaを添加すると、発火温度が250程度上がると知られている。したがって、保護ガスを要することなく大気露出鋳造を可能にするための発火温度である700以上の発火温度、または保護ガスを含む状態で鋳造を可能にするための発火温度である650以上の発火温度を得るためには、好ましくは、3重量%以上、最小限2重量%以上のCaがマグネシウム合金に添加されている必要がある。しかしながら、Caが2重量%を超えて添加されると、一般にマグネシウム合金の引張特性は低下し、特に延伸率の減少が著しくなり、これは、粗大な硬質の共晶相が多量形成され、クラックの発生を誘発するためである。このようにCa添加量の増加は、発火抵抗性を増大させるという長所があるものの、引張特性が急激に劣化するという短所があり、したがって、発火抵抗性と引張特性とを同時に満足させるマグネシウム合金の開発が要求されている実情である。   According to existing research related to magnesium alloys containing Ca, it is known that the addition of 3 wt% or more of Ca increases the ignition temperature by about 250. Therefore, an ignition temperature of 700 or more, which is an ignition temperature for enabling atmospheric exposure casting without requiring a protective gas, or an ignition temperature of 650 or more, which is an ignition temperature for enabling casting in a state including protective gas. In order to obtain the above, it is preferable that 3% by weight or more and at least 2% by weight or more of Ca should be added to the magnesium alloy. However, when Ca is added in excess of 2% by weight, the tensile properties of the magnesium alloy are generally lowered, and particularly the stretch ratio is significantly reduced. This is because a large amount of coarse hard eutectic phase is formed and cracks are generated. This is to induce the occurrence of As described above, the increase in the Ca addition amount has the advantage of increasing the ignition resistance, but has the disadvantage that the tensile properties are rapidly deteriorated. Therefore, the magnesium alloy satisfying both the ignition resistance and the tensile properties at the same time. This is the situation where development is required.

そこで、本発明は、前記従来の問題点を解決するためのマグネシウム合金を提供することをその目的とする。   Therefore, an object of the present invention is to provide a magnesium alloy for solving the conventional problems.

具体的に、本発明は、Caを含むマグネシウム合金であって、優れた発火抵抗性と引張特性を併せ持つマグネシウム合金を提供することをその目的とする。   Specifically, an object of the present invention is to provide a magnesium alloy containing Ca, which has both excellent ignition resistance and tensile properties.

また、本発明は、Caを最小限に使用するとともに、SF6のような環境汚染誘発物質である保護ガスを使用しない環境にやさしい製造工程を可能にするマグネシウム合金を提供することをその目的とする。 Another object of the present invention is to provide a magnesium alloy that enables an environmentally friendly manufacturing process that uses Ca at a minimum and does not use a protective gas that is an environmental pollution inducer such as SF 6. To do.

前記目的を達成するための本発明に係るマグネシウム合金は、溶融鋳造法により製造されるマグネシウム合金であって、1.0重量%以上7.0重量%未満のAlと、0.05重量%〜2.0重量%のCaと、0.05重量%〜2.0重量%のYと、0重量%超過6重量%以下のZnと、残部としてのMg、及びその他不可避な不純物とを含み、前記CaとYとの合計含量は、前記マグネシウム合金の全重量に対して0.1重量%以上2.5重量%未満であることを特徴とする。   A magnesium alloy according to the present invention for achieving the above object is a magnesium alloy produced by a melt casting method, and is 1.0 wt% or more and less than 7.0 wt% Al, 0.05 wt% to 2.0 wt% Ca, 0.05 wt% to 2.0 wt% Y, 0 wt% over 6 wt% Zn, Mg as the balance, and other inevitable impurities, The total content of Ca and Y is 0.1 wt% or more and less than 2.5 wt% with respect to the total weight of the magnesium alloy.

また、前記Caの含量は、0.2重量%〜1.5重量%であることが好ましい。   The Ca content is preferably 0.2% by weight to 1.5% by weight.

また、前記Yの含量は、0.1重量%〜1.5重量%であることが好ましい。   The Y content is preferably 0.1% by weight to 1.5% by weight.

また、CaとYの含量は、前記マグネシウム合金の全重量に対して0.3%以上2.0%以下であることが好ましい。   The Ca and Y contents are preferably 0.3% or more and 2.0% or less with respect to the total weight of the magnesium alloy.

また、前記マグネシウム合金は、0重量%超過1重量%未満のMnをさらに含むことが好ましい。   Moreover, it is preferable that the said magnesium alloy further contains Mn of more than 0 weight% and less than 1 weight%.

また、前記マグネシウム合金は、0重量%超過1重量%未満のZrをさらに含むことが好ましい。   Moreover, it is preferable that the said magnesium alloy further contains Zr of more than 0 weight% and less than 1 weight%.

また、本発明に係るマグネシウム合金の製造方法は:
Mg、Al、及びZnを含むマグネシウム合金溶湯を形成するステップ;
前記マグネシウム合金溶湯にCa及びYの原料物質を添加するステップ;
前記Ca及びYの原料物質が添加されたマグネシウム合金溶湯から溶融鋳込方法を用いてマグネシウム合金鋳造材を製造するステップを含み、
前記方法により製造されたマグネシウム合金は、1.0重量%以上及び7.0重量%未満のAl、0.05重量%〜2.0重量%のCa、0.05重量%〜2.0重量%のYと、0重量%超過6重量%以下のZnと、残部としてのMg、及びその他不可避な不純物を含むことを特徴とする。
Also, the method for producing a magnesium alloy according to the present invention is:
Forming a magnesium alloy melt containing Mg, Al, and Zn;
Adding Ca and Y raw materials to the molten magnesium alloy;
Producing a magnesium alloy cast material using a melt casting method from a molten magnesium alloy to which the Ca and Y raw material materials are added,
Magnesium alloy manufactured by the above method is 1.0 wt% or more and less than 7.0 wt% Al, 0.05 wt% to 2.0 wt% Ca, 0.05 wt% to 2.0 wt%. % Y, exceeding 0% by weight and 6% by weight Zn or less, Mg as the balance, and other inevitable impurities.

また、前記マグネシウム合金溶湯にCa及びYの原料物質を添加するステップでは、800℃より高い温度でCa及びYの原料物質を添加することが好ましい。   In the step of adding the Ca and Y raw materials to the magnesium alloy melt, it is preferable to add the Ca and Y raw materials at a temperature higher than 800 ° C.

または、本発明に係るマグネシウム合金の製造方法は:
Mg、Al、及びZnを含むマグネシウム合金溶湯を形成するステップ;
Mg、Al、Zn、Ca、及びYを含み、750℃以下で溶解可能な母合金インゴットを形成するステップ;
前記マグネシウム合金溶湯に前記750℃以下で溶解可能な母合金インゴットを投入するステップ;
前記母合金インゴットが含まれた溶湯から溶融鋳込方法を用いてマグネシウム合金鋳造材を製造するステップを含み、
前記方法により製造されたマグネシウム合金は、1.0重量%以上及び7.0重量%未満のAl、0.05重量%〜2.0重量%のCa、0.05重量%〜2.0重量%のYと、0重量%超過6重量%以下のZnと、残部としてのMg、及びその他不可避な不純物を含むことを特徴とする。
Alternatively, the method for producing a magnesium alloy according to the present invention includes:
Forming a magnesium alloy melt containing Mg, Al, and Zn;
Forming a master alloy ingot containing Mg, Al, Zn, Ca, and Y and meltable at 750 ° C. or lower;
Charging the magnesium alloy melt with a mother alloy ingot which can be melted at 750 ° C. or lower;
Producing a magnesium alloy cast material using a melt casting method from a molten metal containing the mother alloy ingot,
Magnesium alloy manufactured by the above method is 1.0 wt% or more and less than 7.0 wt% Al, 0.05 wt% to 2.0 wt% Ca, 0.05 wt% to 2.0 wt%. % Y, exceeding 0% by weight and 6% by weight Zn or less, Mg as the balance, and other inevitable impurities.

また、前記Mg、Al、Zn、Ca、及びYが含まれた母合金インゴットは、750℃以下で溶解可能なものであり、前記母合金インゴットは、750℃より低い温度で前記マグネシウム合金溶湯に投入されることが好ましい。   The master alloy ingot containing Mg, Al, Zn, Ca, and Y can be melted at 750 ° C. or less, and the master alloy ingot is melted into the magnesium alloy melt at a temperature lower than 750 ° C. It is preferable to be charged.

または、本発明に係るマグネシウム合金の製造方法は:
Mg、Al、及びZnを含むマグネシウム合金溶湯を形成するステップ;
前記マグネシウム合金溶湯にCa化合物及びY化合物を添加するステップ;
前記Ca化合物及びY化合物が添加されたマグネシウム合金溶湯から溶融鋳込方法を用いてマグネシウム合金鋳造材を製造するステップを含み、
前記方法により製造されたマグネシウム合金は、1.0重量%以上及び7.0重量%未満のAl、0.05重量%〜2.0重量%のCa、0.05重量%〜2.0重量%のYと、0重量%超過6重量%以下のZnと、残部としてのMg、及びその他不可避な不純物を含むことが好ましい。
Alternatively, the method for producing a magnesium alloy according to the present invention includes:
Forming a magnesium alloy melt containing Mg, Al, and Zn;
Adding a Ca compound and a Y compound to the molten magnesium alloy;
Including the step of producing a magnesium alloy casting from a molten magnesium alloy to which the Ca compound and Y compound have been added using a melt casting method,
Magnesium alloy manufactured by the above method is 1.0 wt% or more and less than 7.0 wt% Al, 0.05 wt% to 2.0 wt% Ca, 0.05 wt% to 2.0 wt%. % Y, more than 0% by weight and 6% by weight Zn or less, Mg as the balance, and other inevitable impurities are preferably included.

また、前記Ca及びY原料物質、Mg、Al、Zn、Ca、及びYが含まれた母合金インゴット、または前記Ca化合物及びY化合物を前記マグネシウム合金溶湯に投入するステップは、前記マグネシウム合金溶湯を周期的に撹拌するステップをさらに含むことが好ましい。   The step of adding the Ca and Y raw materials, the mother alloy ingot containing Mg, Al, Zn, Ca, and Y, or the Ca compound and the Y compound into the magnesium alloy molten metal may include the magnesium alloy molten metal. Preferably, the method further includes a step of periodically stirring.

また、前記鋳込方法は、金型鋳造法、砂型鋳造法、重力鋳造法、加圧鋳造法、連続鋳造法、薄板鋳造法、ダイカスト法、精密鋳造法、消失模型鋳造法、噴霧鋳造法、及び半凝固鋳造法のいずれかであることが好ましい。   Further, the casting method is a die casting method, a sand casting method, a gravity casting method, a pressure casting method, a continuous casting method, a thin plate casting method, a die casting method, a precision casting method, a vanishing model casting method, a spray casting method, And a semi-solid casting method.

また、前記方法は、前記鋳込方法により形成されたマグネシウム合金鋳造材を熱間加工するステップをさらに含むことが好ましい。   Moreover, it is preferable that the method further includes a step of hot working the magnesium alloy cast material formed by the casting method.

本発明に係るマグネシウム合金において各成分の含量を限定した理由は、それぞれ次のとおりである。   The reasons for limiting the content of each component in the magnesium alloy according to the present invention are as follows.

<アルミニウム(Al)>
アルミニウムはマグネシウム合金の強度の増大及び流動性を向上させ、且つ凝固範囲を増大させることで鋳造性を改善させる元素であって、一般にアルミニウム添加量の増加に伴い、共晶相であるMg17Al12相の分率が増大する。また、後述するように本発明に係る実験結果によると、他の合金元素と複合して添加されると、アルミニウムの含量が増加するほど発火抵抗性が増大することが確認できる。一方、アルミニウムの含量が1重量%未満であると、強度の増大及び発火抵抗性の向上効果が奏されず、アルミニウムの含量が7重量%以上では粗大なMg17Al12共晶相により引張特性が低下するので、アルミニウムは1重量%以上7重量%未満の範囲で含まれることが好ましい。
<Aluminum (Al)>
Aluminum is an element that improves the castability by increasing the strength and fluidity of the magnesium alloy and increasing the solidification range. Generally, as the amount of aluminum added increases, the eutectic phase Mg 17 Al The fraction of 12 phases increases. Further, as will be described later, according to the experimental results of the present invention, it can be confirmed that when added in combination with other alloy elements, the ignition resistance increases as the aluminum content increases. On the other hand, if the aluminum content is less than 1% by weight, the effect of increasing the strength and improving the ignition resistance is not achieved. If the aluminum content is 7% by weight or more, the coarse Mg 17 Al 12 eutectic phase causes tensile properties. Therefore, aluminum is preferably contained in the range of 1 wt% or more and less than 7 wt%.

<カルシウム(Ca)>
カルシウムはMg-Al系合金においてMg-Al-Ca金属間化合物を形成することで強度及び耐熱特性を向上させ、且つ、溶湯表面に薄くて緻密なCaO酸化層を形成させて溶湯の酸化を抑制することでマグネシウム合金の発火抵抗性を向上させる。しかしながら、カルシウムの含量が0.05重量%未満であると、発火抵抗性の向上効果は大きくなく、2重量%を超過すると、溶湯の鋳造性が劣化し熱間割れ(hot cracking)が生じ、金型との粘着性(die sticking)が増大し延伸率が大きく低下するなどの不具合が生じる。このため、本発明に係るマグネシウム合金におけるカルシウムは、0.05重量%〜2.0重量%の範囲で、より好ましくは、0.2重量%〜1.5重量%の範囲で含まれることが好ましい。
<Calcium (Ca)>
Calcium improves the strength and heat resistance by forming Mg-Al-Ca intermetallic compounds in Mg-Al alloys, and forms a thin and dense CaO oxide layer on the surface of the melt to suppress oxidation of the melt. This improves the ignition resistance of the magnesium alloy. However, if the calcium content is less than 0.05% by weight, the effect of improving the ignition resistance is not great, and if it exceeds 2% by weight, the castability of the molten metal deteriorates and hot cracking occurs, Problems such as an increase in die sticking with the mold and a significant reduction in the stretch ratio occur. For this reason, calcium in the magnesium alloy according to the present invention is contained in the range of 0.05 wt% to 2.0 wt%, more preferably in the range of 0.2 wt% to 1.5 wt%. preferable.

<イットリウム(Y)>
イットリウムはそもそもマグネシウムに対して大きな固溶限を持っており、主に析出強化効果による高温耐クリープ向上元素として使用される。ところが、イットリウムをカルシウムとともにマグネシウム合金に添加すると、粗大なカルシウム含有共晶相の分率が減り、0.5重量%以上添加されると、鋳造材の結晶粒を微細化させるAl2Y粒子が形成され、引張特性を改善させるという効果が奏される。また溶湯表面にY23酸化層を形成してMgO、CaOと混合層を形成することで発火抵抗性を増大させる。一方、マグネシウム合金に0.05重量%未満のイットリウムが含まれると発火温度の増大が大きくなく、イットリウムが2重量%を超過して含まれると合金のコストがアップし、Al2Y粒子の粗大化による微細化効果が喪失される。このため、本発明に係るマグネシウム合金におけるイットリウムは、0.05重量%〜2.0重量%の範囲で、より好ましくは、0.1重量%〜1.5重量%の範囲で含まれることが好ましい。
<Yttrium (Y)>
Yttrium has a large solid solubility limit in the first place, and is mainly used as a high-temperature creep resistance improving element due to precipitation strengthening effect. However, when yttrium is added to the magnesium alloy together with calcium, the fraction of the coarse calcium-containing eutectic phase decreases, and when 0.5 wt% or more is added, Al 2 Y particles that refine the crystal grains of the cast material are reduced. This is effective in improving the tensile properties. Further, the Y 2 O 3 oxide layer is formed on the surface of the molten metal to form a mixed layer with MgO and CaO, thereby increasing the ignition resistance. On the other hand, if the magnesium alloy contains less than 0.05% by weight of yttrium, the ignition temperature does not increase significantly. If the yttrium exceeds 2% by weight, the cost of the alloy increases and the Al 2 Y particles are coarse. The effect of miniaturization due to crystallization is lost. For this reason, yttrium in the magnesium alloy according to the present invention is included in the range of 0.05% by weight to 2.0% by weight, more preferably in the range of 0.1% by weight to 1.5% by weight. preferable.

<亜鉛(Zn)>
亜鉛はアルミニウムとともに添加されると、結晶粒を微細化し且つ強度を増大させる効果を奏する。また一般に、マグネシウム合金中の亜鉛の最大固溶限は6.2重量%であり、これを超過してマグネシウム合金に亜鉛を添加すると、鋳造時に生成された粗大な共晶相が鋳造材の機械的特性を劣化させるのみならず、均質化熱処理(T4)の後も相当量の粗大な共晶相が残留するようになり、機械的特性、特に延伸率を劣化させる原因になるため、亜鉛は6重量%以下に添加されることが好ましい。
<Zinc (Zn)>
When zinc is added together with aluminum, it has the effect of refining crystal grains and increasing strength. In general, the maximum solid solubility limit of zinc in a magnesium alloy is 6.2% by weight, and when zinc is added to the magnesium alloy beyond this, the coarse eutectic phase produced during casting becomes a cast material machine. Zinc is not only deteriorated in the mechanical properties, but also a considerable amount of coarse eutectic phase remains after the homogenization heat treatment (T4), which causes the mechanical properties, particularly the draw ratio, to deteriorate. It is preferable to add to 6% by weight or less.

<マンガン(Mn)>
マンガンはMg-Al系合金において耐食性に有害な不純物元素であるFeと結合して耐食性を向上させ、早い冷却速度でAl-Mn金属間化合物を形成することで強度を向上させる。しかしながら、マンガンを1.0重量%を超過して添加すると、マグネシウム合金中に粗大なβ-Mn相あるいはAl8Mn5相が形成されて機械的特性を劣化させるため、マンガンは1.0重量%以下に含まれることが好ましい。
<Manganese (Mn)>
Manganese is combined with Fe, which is an impurity element harmful to corrosion resistance, in an Mg—Al-based alloy to improve corrosion resistance and to improve strength by forming an Al—Mn intermetallic compound at a high cooling rate. However, if manganese is added in an amount exceeding 1.0% by weight, a coarse β-Mn phase or Al 8 Mn 5 phase is formed in the magnesium alloy and deteriorates mechanical properties. % Or less is preferable.

<ジルコニウム(Zr)>
ジルコニウム(Zr)はマグネシウム合金に添加されると、凝固時マグネシウム結晶と極めて類似の結晶格子を有する初晶Zrが形成されるため、初晶Zrでのマグネシウム結晶の不均一核生成による結晶粒微細化のために主に添加されるが、0.1重量%未満に添加されるとその効果が十分ではなく、1.0重量%を超過して添加されると、粗大な初晶Zrの形成により延伸率が低下するため、0.1重量%〜1.0重量%以下の範囲で含むことが好ましい。
<Zirconium (Zr)>
When zirconium (Zr) is added to a magnesium alloy, primary crystal Zr having a crystal lattice very similar to that of the magnesium crystal at the time of solidification is formed. Therefore, the crystal grain fineness due to heterogeneous nucleation of the magnesium crystal in the primary crystal Zr is formed. However, if added to less than 0.1% by weight, the effect is not sufficient, and if added over 1.0% by weight, formation of coarse primary crystal Zr is caused. Since the stretching ratio is lowered by the above, it is preferable to include in the range of 0.1 wt% to 1.0 wt% or less.

<その他不可避な不純物>
本発明に係るマグネシウム合金には、合金の原料または製造過程で不可避に混入される不純物を含んでいてよく、本発明に係るマグネシウム合金に含まれていてよい不純物のうち、特に鉄(Fe)、シリコン(Si)、及びニッケル(Ni)は、マグネシウム合金の耐食性を悪化させる役割をする成分である。このため、Feの含量は0.004重量%以下、Siの含量は0.04重量%、Niの含量は0.001重量%以下を維持させることが好ましい。
<Other inevitable impurities>
The magnesium alloy according to the present invention may include impurities inevitably mixed in the raw material of the alloy or the manufacturing process, and among the impurities that may be included in the magnesium alloy according to the present invention, particularly iron (Fe), Silicon (Si) and nickel (Ni) are components that play a role of deteriorating the corrosion resistance of the magnesium alloy. For this reason, the Fe content is preferably maintained at 0.004% by weight or less, the Si content at 0.04% by weight, and the Ni content at 0.001% by weight or less.

<カルシウムとイットリウムとの合計量>
カルシウムとイットリウムとを複合添加すると、固相あるいは液相のマグネシウム合金表面に緻密なCaO/Y23複合酸化層を形成することで、カルシウムあるいはイットリウムを独立して添加した合金に比べて遥かに優れた発火抵抗性を示す。またカルシウムあるいはイットリウムを独立して添加する場合、優れた発火抵抗性を得るためには、一般に3重量%以上添加しなければならないが、この場合、粗大な金属間化合物を形成することから、引張特性が大きく低下するという不具合が生じる。しかし、カルシウムとイットリウムとを複合添加すると、少量の添加でも発火抵抗性に優れ且つ金属間化合物の分率と大きさを大幅に減らして引張特性を向上させることができるという長所がある。一方、マグネシウム合金に、合計含量0.1重量%未満のカルシウムとイットリウムを添加した場合、カルシウムとイットリウムとの複合添加効果が奏されず、発火温度が650℃以下と低いため、大気中あるいは一般の不活性ガス雰囲気下では溶解することができなくなる。また、カルシウムとイットリウムとの合計含量が2.5重量%以上である場合、さらなる発火温度の上昇による長所がない反面、合金コストのアップをもたらす。したがって、本発明に係るマグネシウム合金におけるカルシウムとイットリウムとの合計含量は、0.1重量%以上及び2.5重量%未満、より好ましくは、0.2重量%〜2.0重量%の範囲で含まれることが好ましい。
<Total amount of calcium and yttrium>
When calcium and yttrium are added together, a dense CaO / Y 2 O 3 composite oxide layer is formed on the surface of the solid or liquid magnesium alloy, which is far more than that of an alloy added with calcium or yttrium independently. Excellent fire resistance. In addition, when calcium or yttrium is added independently, in order to obtain excellent ignition resistance, generally 3% by weight or more must be added. In this case, a coarse intermetallic compound is formed. There arises a problem that the characteristics are greatly deteriorated. However, when calcium and yttrium are added in combination, there are advantages in that they are excellent in ignition resistance even when added in a small amount, and the tensile properties can be improved by greatly reducing the fraction and size of the intermetallic compound. On the other hand, when calcium and yttrium with a total content of less than 0.1% by weight are added to the magnesium alloy, the combined effect of calcium and yttrium is not achieved, and the ignition temperature is as low as 650 ° C. or lower. In an inert gas atmosphere, it cannot be dissolved. On the other hand, when the total content of calcium and yttrium is 2.5% by weight or more, there is no advantage due to a further increase in ignition temperature, but the alloy cost is increased. Therefore, the total content of calcium and yttrium in the magnesium alloy according to the present invention is 0.1 wt% or more and less than 2.5 wt%, more preferably in the range of 0.2 wt% to 2.0 wt%. It is preferably included.

本発明に係るマグネシウム合金は、保護被膜として働く緻密な複合酸化層を形成することで極めて優れた耐酸化性及び発火抵抗性を示し、大気中や一般の不活性雰囲気(Ar、N2)下で溶解や鋳造及び加工が可能となり、機械加工工程の際に堆積するチップの自然発火を抑制することができる。 The magnesium alloy according to the present invention exhibits extremely excellent oxidation resistance and ignition resistance by forming a dense composite oxide layer that acts as a protective film, and is in the atmosphere or in a general inert atmosphere (Ar, N 2 ). Thus, melting, casting and processing become possible, and spontaneous ignition of chips deposited during the machining process can be suppressed.

また、本発明に係るマグネシウム合金は、SF6などのガスを使用しないためコストの削減、作業者の健康保護、環境汚染の防止に適合したものである。 Further, the magnesium alloy according to the present invention does not use a gas such as SF 6, and therefore is suitable for cost reduction, worker health protection, and prevention of environmental pollution.

また、本発明に係るマグネシウム合金は、発火温度が融点+50℃以上であって常用合金に対して遥かに優れた発火抵抗性を示し且つ強度や軟性も優れており、救助用部品素材として適用可能である。   In addition, the magnesium alloy according to the present invention has an ignition temperature of melting point + 50 ° C. or higher, shows far superior ignition resistance to the conventional alloy, and has excellent strength and flexibility, and can be applied as a rescue part material. It is.

また、本発明に係るマグネシウム合金は、加工材または鋳造材として多様に利用でき、特に高強度・高軟性及び安定性特性を要求する次世代自動車、高速鉄道、都心鉄道などに実在的適用が可能な押出材、板材、鍛造材、鋳造材などに製造できる。   In addition, the magnesium alloy according to the present invention can be used in various ways as a processed material or a cast material, and can be practically applied to next-generation automobiles, high-speed railways, urban railways, etc. that particularly require high strength, high flexibility, and stability characteristics. It can be manufactured into various extruded materials, plate materials, forged materials, cast materials and the like.

本発明の好適な実施例に従って大気中で鋳造した比較例1に係る合金鋳造材の表面写真である。It is the surface photograph of the alloy cast material which concerns on the comparative example 1 cast in the air | atmosphere according to the suitable Example of this invention. 本発明の好適な実施例に従って大気中で鋳造した実施例2に係る合金鋳造材の表面写真である。It is the surface photograph of the alloy cast material which concerns on Example 2 cast in air | atmosphere according to the suitable Example of this invention. 本発明の好適な実施例に従って鋳造したマグネシウム合金の発火温度測定方法を例示する図である。It is a figure which illustrates the ignition temperature measuring method of the magnesium alloy cast according to the suitable example of the present invention. 本発明の好適な実施例に従って鋳造した実施例5に係るマグネシウム合金を670℃で10分間保持した後の溶湯表面酸化層のEPMA分析結果を示す図である。It is a figure which shows the EPMA analysis result of the molten metal surface oxidation layer after hold | maintaining the magnesium alloy which concerns on Example 5 cast according to the suitable Example of this invention for 10 minutes at 670 degreeC. CaとYとが複合添加された合金において固相あるいは液状表面で形成された二重の複合酸化層が外部からの酸素の浸透を遮断する構造を概略的に示す図である。It is a figure which shows roughly the structure where the double composite oxidation layer formed in the solid phase or the liquid surface in the alloy with which Ca and Y were added in combination blocks the penetration of oxygen from the outside. 本発明の好適な実施例に従って鋳造した比較例3に係る合金の微細組織を示す光学写真である。It is an optical photograph which shows the microstructure of the alloy which concerns on the comparative example 3 cast according to the suitable Example of this invention. 本発明の好適な実施例に従って鋳造した実施例2に係る合金の微細組織を示す光学写真である。It is an optical photograph which shows the microstructure of the alloy which concerns on Example 2 cast according to the suitable Example of this invention. 本発明の好適な実施例に従って押出した比較例1に係る合金の微細組織を示す光学写真である。It is an optical photograph which shows the microstructure of the alloy which concerns on the comparative example 1 extruded according to the suitable Example of this invention. 本発明の好適な実施例に従って押出した比較例2に係る合金の微細組織を示す光学写真である。It is an optical photograph which shows the microstructure of the alloy which concerns on the comparative example 2 extruded according to the suitable Example of this invention. 本発明の好適な実施例に従って押出した比較例3に係る合金の微細組織を示す光学写真である。It is an optical photograph which shows the microstructure of the alloy which concerns on the comparative example 3 extruded according to the suitable Example of this invention. 本発明の好適な実施例に従って押出した実施例1に係る合金の微細組織を示す光学写真である。It is an optical photograph which shows the microstructure of the alloy which concerns on Example 1 extruded according to the suitable Example of this invention. 本発明の好適な実施例に従って製造した比較例及び実施例におけるCaとYとの合計添加量に応じた発火温度の変化を示す写真である。It is a photograph which shows the change of the ignition temperature according to the total addition amount of Ca and Y in the comparative example and Example which were manufactured according to the suitable Example of this invention. 本発明の好適な実施例に従って製造した比較例及び実施例におけるCaとYとの合計添加量に応じた引張強度×均一延伸率値の変化を示す写真である。It is a photograph which shows the change of the tensile strength x uniform stretch ratio value according to the total addition amount of Ca and Y in the comparative example and Example which were manufactured according to the suitable Example of this invention.

以下、本発明の好適な実施例に係るマグネシウム合金及びその製造方法について、詳しく説明する。なお、下記の実施例は、例示的なものであるに過ぎず、本発明を限定するものではない。   Hereinafter, a magnesium alloy and a manufacturing method thereof according to a preferred embodiment of the present invention will be described in detail. In addition, the following Example is only an illustration and does not limit this invention.

本発明の発明者らは、前述した従来技術の問題点を解決し、本発明の目的を達成するために、熱力学的に計算された合金設計に対する研究の結果、Mg-Al系合金またはMg-Al-Zn系合金にCaとYとを複合添加すると、下表1から確認できるように、Caのみを単独で添加した場合に比べて硬質の共晶相(Eutectic phase I)の分率が画期的に減少し且つ結晶粒微細化粒子であるAl2Y相の形成を誘導することで、発火抵抗性だけでなく引張特性をも向上させることができることを確認した。 In order to solve the above-mentioned problems of the prior art and achieve the object of the present invention, the inventors of the present invention have studied Mg-Al-based alloys or Mg-based alloys as a result of research on thermodynamically calculated alloy designs. When Ca and Y are added together in the Al-Zn alloy, the fraction of the hard eutectic phase (Electric phase I) is higher than that when Ca alone is added, as can be seen from Table 1 below. It was confirmed that not only the ignition resistance but also the tensile properties can be improved by inducing the formation of the Al 2 Y phase, which is epoch-making and crystal grain refinement particles.

本発明の発明者らは、前記データを基に各種の組成を有するマグネシウム合金を製造し、本発明の好適な実施例に係るマグネシウム合金の製造方法は、次のとおりである。   The inventors of the present invention manufacture magnesium alloys having various compositions based on the above data, and a method for manufacturing a magnesium alloy according to a preferred embodiment of the present invention is as follows.

先ず、Mg(99.9%)、Al(99.9%)、Zn(99.99%)、Ca(99.9%)、Y(99.9%)、及び選択的にMn(99.9%)の原料物質を準備した後、前記原料を溶解し、重力鋳造方法を用いて下表2の実施例1ないし実施例17及び比較例1ないし比較例9に記載した合金組成を有するマグネシウム合金鋳造材を形成した。特に、融点がそれぞれ842℃、1525℃と高いCaとYとを直接溶湯に投入して合金化させるために、850℃ないし900℃までに溶湯の温度を上げ、これらの元素を完全溶解させた後、鋳造温度までに徐々に冷却してから鋳造を行い、マグネシウム合金鋳造材を形成した。   First, Mg (99.9%), Al (99.9%), Zn (99.99%), Ca (99.9%), Y (99.9%), and optionally Mn (99.99). 9%) raw material was prepared, the raw material was melted, and magnesium having the alloy composition described in Examples 1 to 17 and Comparative Examples 1 to 9 in Table 2 below using a gravity casting method. An alloy casting was formed. In particular, in order to alloy by directly introducing Ca and Y having high melting points of 842 ° C. and 1525 ° C. into the molten metal, the temperature of the molten metal was raised to 850 ° C. to 900 ° C., and these elements were completely dissolved. Then, after gradually cooling to the casting temperature, casting was performed to form a magnesium alloy cast material.

または、本発明の好適な実施例によると、Mg(99.9%)、Al(99.9%)、Zn(99.99%)、Ca(99.9%)、Y(99.9%)の原料物質を同時に溶解させて溶湯を形成した後に鋳造する方法の他、種々の方法にてマグネシウム合金を製造することが可能である。例えば、Mg、Al、及びZnの原料物質またはこれらの合金を利用してマグネシウム合金溶湯を予め形成し、Ca及びYの原料物質、またはCa化合物及びY化合物を前記マグネシウム合金溶湯に投入した後、好適な鋳造方法を用いてマグネシウム合金鋳造材を形成することも可能である。または、最終目標よりもCa及びYの含量が高いMg、Al、Zn、Ca、及びY合金(母合金インゴット)を製造し、これとは別にMg、Al、及びZnの原料物質またはこれらの合金を利用してマグネシウム合金溶湯を形成した後、前記母合金インゴットを前記マグネシウム合金溶湯に投入してマグネシウム合金鋳造材を形成することもできる。前記方法によると、母合金インゴットの融点はCa及びY原料物質の融点よりも低いので、Ca及びY原料物質を直接マグネシウム合金溶湯に投入する時よりも低い温度で母合金インゴットを投入することができるという点で特に有用である。その他にも、本発明に係るマグネシウム合金の形成は、種々の方法にて具現可能であり、本発明が属する技術分野において既に広く知られたマグネシウム合金の形成方法はいずれも本発明に一体として取り込まれる。   Alternatively, according to a preferred embodiment of the present invention, Mg (99.9%), Al (99.9%), Zn (99.99%), Ca (99.9%), Y (99.9%) The magnesium alloy can be produced by various methods other than the method of casting after forming the molten metal by simultaneously dissolving the raw material of ()). For example, a magnesium alloy molten metal is formed in advance using raw materials of Mg, Al, and Zn or alloys thereof, and after the raw materials of Ca and Y, or Ca compound and Y compound are put into the molten magnesium alloy, It is also possible to form the magnesium alloy casting using a suitable casting method. Alternatively, Mg, Al, Zn, Ca, and Y alloys (mother alloy ingots) having a higher Ca and Y content than the final target are manufactured, and separately, Mg, Al, and Zn raw materials or alloys thereof After the magnesium alloy melt is formed using the above, the mother alloy ingot can be put into the magnesium alloy melt to form a magnesium alloy cast material. According to the above method, since the melting point of the master alloy ingot is lower than that of the Ca and Y raw material, the master alloy ingot may be charged at a lower temperature than when the Ca and Y raw material are directly charged into the molten magnesium alloy. It is particularly useful in that it can. In addition, the formation of the magnesium alloy according to the present invention can be implemented by various methods, and any of the magnesium alloy formation methods already widely known in the technical field to which the present invention belongs are incorporated into the present invention. It is.

一方、本実施例における誘導溶解は黒鉛るつぼ(graphite crucible)を使用し、合金化が完了するまでは溶湯の酸化を防止するためにSF6とCO2混合ガスを溶湯の上部に塗布して溶湯と大気とが接触することを遮断した。また、溶解が完了した後は、保護ガスを使用せずに鉄系金型にて金型鋳造を行ない、圧延実験のために幅100mm、長さ150mm、厚さ15mmの板状鋳造材を製造し、押出実験のために直径80mm、長さ150mmの円筒状ビレット(billet)を製造し、合金鋳造材の発火実験のために直径55mm、長さ100mmの円筒状ビレットを製造した。また、本実施例では、金型鋳造法を使用してマグネシウム合金を鋳造したが、砂型鋳造、重力鋳造、加圧鋳造、連続鋳造、薄板鋳造、ダイカスト、精密鋳造、噴霧鋳造、半凝固鋳造などの各種の鋳造法が使用でき、本発明に係るマグネシウム合金は、必ずしもある特定の鋳造方式に限定されるものではないが、溶融鋳込法であることがより好ましい。 Meanwhile, a graphite crucible is used for induction melting in this example, and SF 6 and CO 2 mixed gas is applied to the upper part of the molten metal to prevent oxidation of the molten metal until alloying is completed. And contact with the atmosphere was blocked. In addition, after melting is complete, die casting is performed with an iron-based die without using protective gas, and a plate-like cast material having a width of 100 mm, a length of 150 mm, and a thickness of 15 mm is manufactured for a rolling experiment. Then, a cylindrical billet having a diameter of 80 mm and a length of 150 mm was manufactured for the extrusion experiment, and a cylindrical billet having a diameter of 55 mm and a length of 100 mm was manufactured for the ignition test of the alloy casting material. In this example, the magnesium alloy was cast using the die casting method, but sand casting, gravity casting, pressure casting, continuous casting, thin plate casting, die casting, precision casting, spray casting, semi-solid casting, etc. The magnesium alloy according to the present invention is not necessarily limited to a specific casting method, but is preferably a melt casting method.

次いで、先に形成した鋳造材に対して400℃で15時間均質化熱処理を施した。しかる後、表2の比較例1ないし比較例6及び実施例1ないし実施例7に対して均質化熱処理が施された材料をロール温度200℃、ロール径210mm、ロール速度5.74mpm、圧延1回当たり圧下率30%/pass及び72%/passの条件下でそれぞれ圧延処理を行い、最終厚さ1mmの板材に熱間加工した。このとき、圧延1回当り圧下率が30%/passの場合、最終厚さ1mmまでに計7回の圧延が行われた。   Next, the previously formed cast material was subjected to a homogenization heat treatment at 400 ° C. for 15 hours. Thereafter, the materials subjected to the homogenization heat treatment for Comparative Examples 1 to 6 and Examples 1 to 7 in Table 2 were subjected to a roll temperature of 200 ° C., a roll diameter of 210 mm, a roll speed of 5.74 mpm, and a rolling 1 Rolling was performed under conditions of a rolling reduction ratio of 30% / pass and 72% / pass, respectively, and hot-worked into a plate material having a final thickness of 1 mm. At this time, when the rolling reduction per rolling was 30% / pass, a total of seven rollings were performed up to a final thickness of 1 mm.

一方、表2の比較例7と比較例8及び実施例8は、均質化熱処理が施された材料を押出温度250、押出速度5m/minで25:1の押出比にてそれぞれ押出し、最終径16mmの表面状態が良好な棒状押出材を製造した。   On the other hand, Comparative Example 7 and Comparative Example 8 and Example 8 in Table 2 were obtained by extruding the material subjected to the homogenization heat treatment at an extrusion ratio of 25: 1 at an extrusion temperature of 250 and an extrusion speed of 5 m / min. A rod-like extruded material having a good surface state of 16 mm was produced.

なお、本発明の実施例では鋳造及び均質化熱処理後に圧延及び押出加工を実施したが、例えば鍛造、引抜などの各種の加工方法により製造することもでき、必ずしもある特定の加工方式に限定されるものではない。   In the embodiment of the present invention, rolling and extrusion are performed after casting and homogenization heat treatment. However, it can be manufactured by various processing methods such as forging and drawing, and is not necessarily limited to a specific processing method. It is not a thing.

<マグネシウム合金の発火温度測定>
前記マグネシウム合金の発火温度を測定するために、先に製造された円筒状ビレットの外郭を深さ0.5mm、ピッチ0.1mm、350rpmの一定の速度でチップ加工を行い、所定の大きさのチップを得た。前記方法で得たチップ0.1gを1000℃に保持される加熱炉内に一定の速度で装入して昇温させた。その過程で図3に示すように発火によって急激な温度上昇が始まる温度を発火温度と測定し、その結果を表2に表した。
<Ignition temperature measurement of magnesium alloy>
In order to measure the ignition temperature of the magnesium alloy, the outer periphery of the previously manufactured cylindrical billet is subjected to chip processing at a constant speed of depth 0.5 mm, pitch 0.1 mm, 350 rpm, and a predetermined size. I got a chip. 0.1 g of the chip obtained by the above method was charged in a heating furnace maintained at 1000 ° C. at a constant rate and heated. In the process, as shown in FIG. 3, the temperature at which a rapid temperature increase starts by ignition was measured as the ignition temperature, and the results are shown in Table 2.

表2の比較例1ないし比較例6から分かるように、マグネシウム合金の発火温度は、カルシウムの添加によって急激に増大し、同じ量のカルシウムが添加された場合、アルミニウムの含量が多い合金であるほど、発火温度も増大する傾向を示す。   As can be seen from Comparative Example 1 to Comparative Example 6 in Table 2, the ignition temperature of the magnesium alloy increases rapidly with the addition of calcium, and when the same amount of calcium is added, the higher the aluminum content, the higher the alloy. The ignition temperature also tends to increase.

表2において実施例2及び実施例5の発火温度を比較例2及び比較例5の発火温度とそれぞれ比較してみると、マグネシウム合金にカルシウムのみが含まれた場合に比べて、イットリウムがさらに添加された場合に発火温度が遥かに高く形成されることを確認することができる。なぜならば、図4のEPMA(Electron Probe Micro-Analyzer)分析結果から分かるように、Y添加によって溶湯と接する部分にCaOとY23との混合層が形成され、この層が大気中の酸素が溶湯へ浸透して反応することを効果的に抑制することができるためである。またCaOとY23との混合層の外部分にもCaOとMgOとの混合層が存在し、かかる二重混合層が溶湯を高い温度でも安定して保持できるようにする。 In Table 2, when comparing the ignition temperatures of Example 2 and Example 5 with those of Comparative Example 2 and Comparative Example 5, respectively, yttrium was further added as compared with the case where the magnesium alloy contained only calcium. In this case, it can be confirmed that the ignition temperature is formed much higher. This is because, as can be seen from the results of EPMA (Electron Probe Micro-Analyzer) analysis in FIG. 4, a mixed layer of CaO and Y 2 O 3 is formed in the portion in contact with the molten metal by adding Y, and this layer is oxygen in the atmosphere This is because it is possible to effectively suppress the penetration and reaction of molten metal into the molten metal. Further, a mixed layer of CaO and MgO exists also in the outer part of the mixed layer of CaO and Y 2 O 3, and this double mixed layer can stably maintain the molten metal even at a high temperature.

また、比較例3と実施例2及び比較例6と実施例5を比較してみると、カルシウムのみを添加した場合に比べてカルシウムとイットリウムとを複合添加した場合、カルシウムとイットリウムとの合計含量がカルシウムのみを添加した場合のカルシウムの含量に比べて少ない場合であっても発火温度が遥かに高いことを確認することができる。これは、マグネシウム合金の発火温度を高めるためにカルシウムのみを利用した場合に比べて、カルシウムとイットリウムとを複合添加した場合に、発火抵抗性を高めるという面においてより優れた効果が得られることを示す。   In addition, when Comparative Example 3 and Example 2 and Comparative Example 6 and Example 5 are compared, the total content of calcium and yttrium is greater when calcium and yttrium are added in combination than when only calcium is added. It can be confirmed that the ignition temperature is much higher even when the content of calcium is less than the content of calcium when only calcium is added. This indicates that when calcium and yttrium are added together to increase the ignition temperature of the magnesium alloy, a superior effect can be obtained in terms of increasing ignition resistance when combined with calcium and yttrium. Show.

また、表2において実施例1に係るマグネシウム合金の発火温度が807℃と極めて高い発火抵抗性を示しているが、これは、イットリウムの含量が1重量%と高いためであり、したがって、イットリウムの添加量が増大するほど発火抵抗性も大きく向上され得ることが分かる。また、表2において実施例8に係るマグネシウム合金の発火温度が811℃と極めて高い発火抵抗性を示しているが、これは、亜鉛が6重量%添加されたマグネシウム合金でもカルシウムとイットリウムとが1重量%ずつ添加された場合、発火温度が大きく向上することを示す。   Moreover, in Table 2, the ignition temperature of the magnesium alloy according to Example 1 is 807 ° C., which indicates extremely high ignition resistance. This is because the yttrium content is as high as 1% by weight. It can be seen that the ignition resistance can be greatly improved as the addition amount increases. Moreover, in Table 2, the ignition temperature of the magnesium alloy according to Example 8 is 811 ° C., which indicates extremely high ignition resistance. However, even in the magnesium alloy to which 6 wt% of zinc is added, calcium and yttrium are 1 When added by weight%, the ignition temperature is greatly improved.

<マグネシウム合金の引張特性の評価>
前述した方法により製造された板材に対して250℃で30分間熱処理を施した後、ゲージ部の長さが25mmのASTM−E−8M規格のサブサイズ(sub−size)板状試片を製造し、通常の引張試験機を使用して1×10-3-1の変形率で常温引張試験を実施し、その結果を表3に表した。
<Evaluation of tensile properties of magnesium alloy>
After the plate material manufactured by the above-described method is heat-treated at 250 ° C. for 30 minutes, a sub-size plate specimen of ASTM-E-8M standard having a gauge part length of 25 mm is manufactured. Then, a normal temperature tensile test was performed at a deformation rate of 1 × 10 −3 s −1 using a normal tensile tester, and the results are shown in Table 3.

また、押出材の場合、ゲージ部の長さが25mmの棒状試片を製造し、板状試片と同一の条件で引張試験を実施した。   In the case of an extruded material, a rod-shaped specimen having a gauge part length of 25 mm was manufactured, and a tensile test was performed under the same conditions as the plate-shaped specimen.

表3から分かるように、比較例2と比較例3、比較例5と比較例6、及び比較例7と比較例8を比較してみると、カルシウムの含量が1重量%から2重量%に増加することにより、降伏強度と引張強度は増大するものの、延伸率は大きく低下することが分かる。このような延伸率の低下は、図5(a)に示すように、カルシウムの添加量が2重量%に増加した場合、基材中における微細なAl2Ca析出相とともに粗大な硬質のMg-Al-Ca三元系共晶相の分率が高くなるためである。一方、図5(b)に示すように、カルシウムの添加量が1重量%である場合、0.6重量%のイットリウムが含まれる場合であっても粗大な硬質のMg-Al-Ca三元系共晶相は発見されず、したがって、延伸率が低くならない。同様に、図6において比較例1ないし比較例3と実施例1の押出材の微細組織を比較してみると、カルシウムの添加量が1重量%と2重量%に増加した場合、図6(b)と図6(c)において矢印にて示された黒色の2次相が多量観察され、このような硬質の2次相から欠陥が発生しやすくなるため、延伸率が低下するようになる。 As can be seen from Table 3, when comparing Comparative Example 2 and Comparative Example 3, Comparative Example 5 and Comparative Example 6, and Comparative Example 7 and Comparative Example 8, the calcium content was changed from 1 wt% to 2 wt%. By increasing, yield strength and tensile strength increase, but it can be seen that the stretch ratio greatly decreases. As shown in FIG. 5 (a), such a decrease in the stretching ratio is caused when the amount of calcium added is increased to 2% by weight, and the coarse hard Mg— together with the fine Al 2 Ca precipitated phase in the substrate. This is because the fraction of the Al—Ca ternary eutectic phase increases. On the other hand, as shown in FIG. 5 (b), when the addition amount of calcium is 1% by weight, even if 0.6% by weight of yttrium is contained, coarse hard Mg—Al—Ca ternary No system eutectic phase is found and therefore the draw ratio is not lowered. Similarly, when the microstructures of the extruded materials of Comparative Examples 1 to 3 and Example 1 are compared in FIG. 6, when the added amount of calcium is increased to 1 wt% and 2 wt%, FIG. A large amount of the black secondary phase indicated by the arrows in b) and FIG. 6C is observed, and defects are likely to occur from such a hard secondary phase, so that the draw ratio is reduced. .

一方、図6(d)に示すように、カルシウムとイットリウムとがそれぞれ1重量%ずつ添加された合金の押出材では、延伸率を低下させる硬質の2次相が観察されていない。このような結果は、実施例2と比較例3、実施例5と比較例6、及び実施例13と比較例8をそれぞれ比較してみるとより明らかとなる。すなわち、実施例2と実施例5はカルシウム1重量%、イットリウム0.6重量%のみを添加したにもかかわらず、カルシウムを2重量%添加した比較例3及び比較例6に比べて、ほぼ同じレベルの発火抵抗性や引張強度を持ちつつ、延伸率が極めて高いことを確認することができる。実施例13も同様に、Mg-6Zn-1Al合金にカルシウム1重量%、イットリウム1重量%を添加すると、発火抵抗性が大きく向上し、且つ引張特性、特に引張強度×均一延伸率値が大きく向上することが分かる。すなわち、本実施例に係るマグネシウム合金は、イットリウムを少量添加することでカルシウムの含量を1重量%のレベルに低く保持しつつも粗大な硬質の三元系共晶相の分率を大きく低下させ、強度と延伸率が同時に向上したマグネシウム合金を得ることができる。   On the other hand, as shown in FIG. 6 (d), in the extruded material of the alloy to which calcium and yttrium are each added by 1% by weight, a hard secondary phase that lowers the stretch ratio is not observed. Such a result becomes clearer when comparing Example 2 and Comparative Example 3, Example 5 and Comparative Example 6, and Example 13 and Comparative Example 8, respectively. That is, Example 2 and Example 5 were almost the same as Comparative Example 3 and Comparative Example 6 in which 2% by weight of calcium was added although only 1% by weight of calcium and 0.6% by weight of yttrium were added. It can be confirmed that the stretch ratio is extremely high while having a level of ignition resistance and tensile strength. Similarly, in Example 13, when 1% by weight of calcium and 1% by weight of yttrium are added to the Mg-6Zn-1Al alloy, the ignition resistance is greatly improved, and the tensile properties, particularly the tensile strength × the uniform stretch ratio value, are greatly improved. I understand that In other words, the magnesium alloy according to this example greatly reduces the fraction of the coarse hard ternary eutectic phase while keeping the calcium content low at the level of 1% by adding a small amount of yttrium. A magnesium alloy having improved strength and stretch ratio can be obtained.

また、実施例2と比較例2、実施例5と比較例5をそれぞれ比較してみると、実施例2及び実施例5は、イットリウムを添加することでカルシウムを同一の含量で添加しイットリウムを添加していない場合に比べて、優れた発火抵抗性を示し、且つより優れた引張強度×均一延伸率値を示すことを確認することができる。   In addition, comparing Example 2 and Comparative Example 2 and Example 5 and Comparative Example 5, respectively, Example 2 and Example 5 added yttrium to the same content of yttrium by adding yttrium. Compared with the case where it does not add, it can confirm that it shows the outstanding ignition resistance and shows the more excellent tensile strength x uniform stretch ratio value.

このような傾向は、カルシウムとイットリウムの合計添加量に応じた発火温度と引張特性の変化を示す図7と図8からも確認することができる。図7においてカルシウムとイットリウムとの合計添加量が増加するにつれて、発火温度が徐々に増大する傾向を示し、特にイットリウムが添加されていない合金に比べて、イットリウムが添加された場合、発火温度の増大勾配がより大きくなることを確認することができる。一方、図8に示すように、カルシウム単独添加の場合、カルシウム添加量が増加するにつれて、熱間加工の種類とは関係なく引張強度×均一延伸率値が大きく低下する傾向を示すが、カルシウムとイットリウムとが同時に添加された場合、反ってカルシウムとイットリウムとが添加されていない合金よりも機械的特性が向上する結果を示す。このような結果から、少量のカルシウムとイットリウムとを同時に添加することで発火抵抗性を大きく向上させ、且つ、引張特性も向上させることを確認することができる。   Such a tendency can be confirmed also from FIGS. 7 and 8 showing changes in the ignition temperature and tensile properties according to the total amount of calcium and yttrium added. In FIG. 7, the ignition temperature tends to gradually increase as the total amount of calcium and yttrium added increases. In particular, when yttrium is added, the ignition temperature increases as compared to an alloy to which yttrium is not added. It can be confirmed that the gradient becomes larger. On the other hand, as shown in FIG. 8, in the case of adding calcium alone, as the amount of calcium added increases, the tensile strength × homogeneous stretch ratio value tends to decrease greatly regardless of the type of hot working. When yttrium is added at the same time, the mechanical properties are improved as compared with an alloy to which calcium and yttrium are not added. From these results, it can be confirmed that the ignition resistance is greatly improved and the tensile properties are improved by adding a small amount of calcium and yttrium simultaneously.

以上、本発明の好適な実施例に係るマグネシウム合金及びその製造方法を添付図面を参照して詳細に説明した。なお、本発明が属する技術分野における通常の知識を有する者ならば、前記実施例が本発明の一例を例示するものに過ぎず、別の種々の修正及び変形が可能であることが理解できるであろう。したがって、本発明の範囲は、もっぱら後で説明する特許請求の範囲によってのみ限定される。   In the above, the magnesium alloy which concerns on the preferred Example of this invention and its manufacturing method were demonstrated in detail with reference to the accompanying drawing. A person having ordinary knowledge in the technical field to which the present invention belongs can understand that the above-described embodiment is merely an example of the present invention, and that various other modifications and variations are possible. I will. Accordingly, the scope of the invention is limited only by the claims set forth below.

Claims (13)

マグネシウム合金鋳造材であって、
前記マグネシウム合金鋳造材は、1.0重量%以上及び7.0重量%未満のAl、0.05重量%〜2.0重量%のCa、0.05重量%〜2.0重量%のYと、0重量%超過及び6.0重量%以下のZnと、残部としてのMg、及びその他不可避な不純物とを含み、
前記CaとYとの合計含量は、前記マグネシウム合金鋳造材の全重量に対して0.1重量%以上2.5重量%未満であることを特徴とするマグネシウム合金鋳造材
Magnesium alloy casting material ,
The magnesium alloy cast material is 1.0 wt% or more and less than 7.0 wt% Al, 0.05 wt% to 2.0 wt% Ca, 0.05 wt% to 2.0 wt% Y. And Zn in excess of 0 wt% and 6.0 wt% or less, Mg as the balance, and other inevitable impurities,
The magnesium alloy cast material , wherein the total content of Ca and Y is 0.1 wt% or more and less than 2.5 wt% with respect to the total weight of the magnesium alloy cast material .
前記Caの含量は、0.2重量%〜1.5重量%であることを特徴とする請求項1に記載のマグネシウム合金鋳造材The magnesium alloy casting material according to claim 1, wherein the Ca content is 0.2 wt% to 1.5 wt%. 前記Yの含量は、0.1重量%〜1.5重量%であることを特徴とする請求項1に記載のマグネシウム合金鋳造材The magnesium alloy cast material according to claim 1, wherein the Y content is 0.1 wt% to 1.5 wt%. 前記CaとYとの含量は、前記マグネシウム合金鋳造材の全重量に対して0.3%以上2.0%以下であることを特徴とする請求項1ないし3のいずれかに記載のマグネシウム合金鋳造材4. The magnesium alloy according to claim 1, wherein the content of Ca and Y is 0.3% or more and 2.0% or less with respect to the total weight of the magnesium alloy casting material. 5. Cast material . 前記マグネシウム合金鋳造材は、0重量%超過及び1.0重量%以下のMnをさらに含むことを特徴とする請求項1ないし3のいずれかに記載のマグネシウム合金鋳造材The magnesium alloy cast material, 0% excess and more claims 1, characterized in that it comprises 1.0 wt% or less of Mn to magnesium alloy cast material according to any one of the three. 前記マグネシウム合金鋳造材は、0.1重量%〜1.0重量%以下のZrをさらに含むことを特徴とする請求項1ないし3のいずれかに記載のマグネシウム合金鋳造材The magnesium alloy cast material is a magnesium alloy cast material according to any one of claims 1 to 3, further comprising 0.1% to 1.0% by weight or less of Zr. Mg、Al、及びZnを含むマグネシウム合金溶湯を形成するステップ;
前記マグネシウム合金溶湯にCa及びYの原料物質を添加するステップ;
前記Ca及びYの原料物質が添加されたマグネシウム合金溶湯から溶融鋳込方法を用いてマグネシウム合金鋳造材を製造するステップを含み、
前記方法により製造されたマグネシウム合金は、1.0重量%以上及び7.0重量%未満のAl、0.05重量%〜2.0重量%のCa、0.05重量%〜2.0重量%のYと、0重量%超過6重量%以下のZnと、残部としてのMg、及びその他不可避な不純物を含むことを特徴とするマグネシウム合金の製造方法。
Forming a magnesium alloy melt containing Mg, Al, and Zn;
Adding Ca and Y raw materials to the molten magnesium alloy;
Producing a magnesium alloy cast material using a melt casting method from a molten magnesium alloy to which the Ca and Y raw material materials are added,
Magnesium alloy manufactured by the above method is 1.0 wt% or more and less than 7.0 wt% Al, 0.05 wt% to 2.0 wt% Ca, 0.05 wt% to 2.0 wt%. % Of Y, more than 0% by weight and less than 6% by weight of Zn, Mg as the balance, and other inevitable impurities, and manufacturing method of magnesium alloy
前記マグネシウム合金溶湯にCa及びYの原料物質を添加するステップでは、800℃より高い温度でCa及びYの原料物質を添加することを特徴とする請求項7に記載のマグネシウム合金の製造方法。   The method for producing a magnesium alloy according to claim 7, wherein in the step of adding the Ca and Y raw materials to the molten magnesium alloy, the Ca and Y raw materials are added at a temperature higher than 800 ° C. Mg、Al、及びZnを含むマグネシウム合金溶湯を形成するステップ;
Mg、Al、Zn、Ca、及びYを含み、750℃以下で溶解可能な母合金インゴットを形成するステップ;
前記マグネシウム合金溶湯に前記750℃以下で溶解可能な母合金インゴットを投入するステップ;
前記母合金インゴットが含まれた溶湯から溶融鋳込方法を用いてマグネシウム合金鋳造材を製造するステップを含み、
前記方法により製造されたマグネシウム合金は、1.0重量%以上及び7.0重量%未満のAl、0.05重量%〜2.0重量%のCa、0.05重量%〜2.0重量%のYと、0重量%超過6重量%以下のZnと、残部としてのMg、及びその他不可避な不純物を含むことを特徴とするマグネシウム合金の製造方法。
Forming a magnesium alloy melt containing Mg, Al, and Zn;
Forming a master alloy ingot containing Mg, Al, Zn, Ca, and Y and meltable at 750 ° C. or lower;
Charging the magnesium alloy melt with a mother alloy ingot which can be melted at 750 ° C. or lower;
Producing a magnesium alloy cast material using a melt casting method from a molten metal containing the mother alloy ingot,
Magnesium alloy manufactured by the above method is 1.0 wt% or more and less than 7.0 wt% Al, 0.05 wt% to 2.0 wt% Ca, 0.05 wt% to 2.0 wt%. % Of Y, more than 0% by weight and less than 6% by weight of Zn, Mg as the balance, and other inevitable impurities, and manufacturing method of magnesium alloy
前記Mg、Al、Zn、Ca、及びYが含まれた母合金インゴットは、750℃以下で溶解可能なものであり、前記母合金インゴットは、 750℃より低い温度で前記マグネシウム合金溶湯に投入されることを特徴とする請求項9に記載のマグネシウム合金の製造方法。   The master alloy ingot containing Mg, Al, Zn, Ca, and Y can be melted at 750 ° C. or less, and the master alloy ingot is put into the magnesium alloy molten metal at a temperature lower than 750 ° C. The method for producing a magnesium alloy according to claim 9. Mg、Al、及びZnを含むマグネシウム合金溶湯を形成するステップ;
前記マグネシウム合金溶湯にCa化合物及びY化合物を添加するステップ;
前記Ca化合物及びY化合物が添加されたマグネシウム合金溶湯から溶融鋳込方法を用いてマグネシウム合金鋳造材を製造するステップを含み、
前記方法により製造されたマグネシウム合金は、1.0重量%以上及び7.0重量%未満のAl、0.05重量%〜2.0重量%のCa、0.05重量%〜2.0重量%のYと、0重量%超過6重量%以下のZnと、残部としてのMg、及びその他不可避な不純物を含むことを特徴とするマグネシウム合金の製造方法。
Forming a magnesium alloy melt containing Mg, Al, and Zn;
Adding a Ca compound and a Y compound to the molten magnesium alloy;
Including the step of producing a magnesium alloy casting from a molten magnesium alloy to which the Ca compound and Y compound have been added using a melt casting method,
Magnesium alloy manufactured by the above method is 1.0 wt% or more and less than 7.0 wt% Al, 0.05 wt% to 2.0 wt% Ca, 0.05 wt% to 2.0 wt%. % Of Y, more than 0% by weight and less than 6% by weight of Zn, Mg as the balance, and other inevitable impurities, and manufacturing method of magnesium alloy
前記Ca原料物質及びY原料物質、Mg、Al、Zn、Ca、及びYが含まれた母合金インゴット、または前記Ca化合物及びY化合物を前記マグネシウム合金溶湯に投入するステップは、前記マグネシウム合金溶湯を周期的に撹拌するステップをさらに含むことを特徴とする請求項7ないし11のいずれかに記載のマグネシウム合金の製造方法。   The step of introducing the Ca raw material and the Y raw material, a master alloy ingot containing Mg, Al, Zn, Ca, and Y, or the Ca compound and the Y compound into the molten magnesium alloy includes: The method for producing a magnesium alloy according to any one of claims 7 to 11, further comprising a step of periodically stirring. 前記マグネシウム合金の製造方法は、前記鋳込方法により形成されたマグネシウム合金鋳造材を熱間加工するステップをさらに含むことを特徴とする請求項7ないし11のいずれかに記載のマグネシウム合金の製造方法。   The method for producing a magnesium alloy according to any one of claims 7 to 11, wherein the method for producing a magnesium alloy further includes a step of hot working the magnesium alloy cast material formed by the casting method. .
JP2012541039A 2010-10-05 2011-10-04 Flame retardant magnesium alloy having excellent mechanical properties and method for producing the same Active JP5852580B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR10-2010-96709 2010-10-05
KR20100096709 2010-10-05
KR10-2011-23260 2011-03-16
KR1020110023260A KR101066536B1 (en) 2010-10-05 2011-03-16 Ignition-proof magnesium alloy with excellent mechanical properties and method for manufacturing the ignition-proof magnesium alloy
PCT/KR2011/007298 WO2012046984A2 (en) 2010-10-05 2011-10-04 Flame retardant magnesium alloy with excellent mechanical properties, and preparation method thereof

Publications (2)

Publication Number Publication Date
JP2013512338A JP2013512338A (en) 2013-04-11
JP5852580B2 true JP5852580B2 (en) 2016-02-03

Family

ID=44957671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012541039A Active JP5852580B2 (en) 2010-10-05 2011-10-04 Flame retardant magnesium alloy having excellent mechanical properties and method for producing the same

Country Status (7)

Country Link
US (1) US20130183193A1 (en)
EP (1) EP2492365B1 (en)
JP (1) JP5852580B2 (en)
KR (1) KR101066536B1 (en)
CN (1) CN102712969B (en)
CA (1) CA2781995A1 (en)
WO (1) WO2012046984A2 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101223045B1 (en) * 2011-12-29 2013-01-17 한국기계연구원 Magnesium inactivating materal and method for manufacturing magnesium alloy using the magnesium inactivating materal
EP2840156B1 (en) * 2012-04-19 2020-05-06 National University Corporation Kumamoto University Magnesium alloy and method for producing same
CN103074467B (en) * 2013-02-01 2015-12-23 浙江宝信新型炉料科技发展有限公司 A kind of solid metal Mg alloy cored wine for steel desulfurization and preparation method thereof
JP6048217B2 (en) * 2013-02-28 2016-12-21 セイコーエプソン株式会社 Magnesium-based alloy powder and magnesium-based alloy compact
JP5852039B2 (en) * 2013-03-29 2016-02-03 株式会社栗本鐵工所 Heat-resistant magnesium alloy
EP2987875B1 (en) * 2013-04-15 2018-10-10 National University Corporation Kumamoto University Fire-resistant magnesium alloy and production method therefor
JP6199073B2 (en) * 2013-05-02 2017-09-20 雅史 野田 Method for producing magnesium alloy
CN104233027B (en) * 2014-06-06 2017-03-22 河南科技大学 Flame-retardant high-strength magnesium alloy and preparation method thereof
KR101585089B1 (en) * 2014-06-17 2016-01-22 한국생산기술연구원 High ignition-resistance with high-strength magnesium alloy and method of manufacturing the same
JP2016076701A (en) * 2014-10-07 2016-05-12 ジャパンファインスチール株式会社 Electromagnetic wave shield film and compact including the same
KR101608429B1 (en) 2014-10-27 2016-04-04 한국철도기술연구원 A railway vehicle body made of non-framable magnesium alloy
CN104532094A (en) * 2014-12-15 2015-04-22 镁联科技(芜湖)有限公司 Casting magnesium alloy as well as preparation method and application thereof
KR101931672B1 (en) * 2014-12-19 2018-12-21 한국기계연구원 High speed extrudable non-flammability magnesium alloys and method for manufacturing magnesium alloy extrusion using the same
CN104630586B (en) * 2015-02-27 2017-03-22 河南科技大学 Flame-retardant and heat-resistant magnesium alloy and preparation method
KR101670043B1 (en) * 2015-03-17 2016-10-27 전북대학교산학협력단 Calcium added magnesium alloy and its manufacturing method
KR101684300B1 (en) 2015-05-26 2016-12-08 주식회사 에스제이테크 Method of the magnesium alloy castings produced using the calcium silicon alloy powder
KR101889018B1 (en) * 2016-12-23 2018-09-20 주식회사 포스코 Magnesium alloy sheet and method for manufacturing the same
CN108660348A (en) * 2017-04-01 2018-10-16 比亚迪股份有限公司 A kind of fire-retardant wrought magnesium alloy of high strength and low cost
CN108796327B (en) * 2018-06-28 2020-08-28 郑州大学 High-plasticity low-anisotropy deformed magnesium alloy plate and preparation method thereof
CN110656270B (en) * 2018-06-29 2021-11-12 比亚迪股份有限公司 Die-casting magnesium alloy and preparation method and application thereof
KR102271295B1 (en) * 2018-07-18 2021-06-29 주식회사 포스코 Magnesium alloy sheet and method for manufacturing the same
KR102242818B1 (en) * 2018-10-25 2021-04-21 한국재료연구원 Magnesium alloy with excellent corrosion resistance and room-temperature formability, magnesium alloy plate, and method of manufacturing the same
JP6814446B2 (en) * 2019-03-12 2021-01-20 本田技研工業株式会社 Flame-retardant magnesium alloy and its manufacturing method
WO2020054880A2 (en) * 2019-12-18 2020-03-19 一般社団法人日本マグネシウム協会 Flame retardant magnesium alloy with high toughness
CN111254334B (en) * 2020-03-10 2022-03-29 东莞宜安科技股份有限公司 Flame-resistant magnesium alloy and preparation method thereof
CN111455245A (en) * 2020-05-21 2020-07-28 东北大学 High-strength Mg-Ca-Mn-Al-Zn series wrought magnesium alloy containing gadolinium-yttrium rare earth elements and preparation method thereof
CN113373398B (en) * 2021-06-24 2023-04-28 重庆大学 Flame-retardant magnesium alloy part
CN115537619A (en) * 2022-09-22 2022-12-30 宁波尚镁新材料科技有限责任公司 Magnesium alloy for processing cookware, magnesium alloy cookware and processing method thereof

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08269609A (en) * 1995-03-27 1996-10-15 Toyota Central Res & Dev Lab Inc Mg-al-ca alloy excellent in die castability
US6264763B1 (en) * 1999-04-30 2001-07-24 General Motors Corporation Creep-resistant magnesium alloy die castings
JP2002129272A (en) * 2000-10-31 2002-05-09 Ahresty Corp Magnesium alloy for diecasting
JP2005068550A (en) * 2003-08-06 2005-03-17 Aisin Seiki Co Ltd Inexpensive heat resistant magnesium alloy for casting having excellent heat resistance and casting property
GB0323855D0 (en) * 2003-10-10 2003-11-12 Magnesium Elektron Ltd Castable magnesium alloys
KR100605741B1 (en) * 2004-04-06 2006-08-01 김강형 magnesium alloy wrought product with anti-corrosion and good plating characteristics
CN101982259B (en) * 2004-06-30 2013-04-17 住友电气工业株式会社 Producing method for magnesium alloy material
JP4500916B2 (en) * 2004-09-28 2010-07-14 国立大学法人 熊本大学 Magnesium alloy and manufacturing method thereof
JP4415098B2 (en) * 2005-03-16 2010-02-17 独立行政法人産業技術総合研究所 Method for producing flame retardant magnesium alloy extruded material and extruded material
JP4706011B2 (en) 2005-07-27 2011-06-22 国立大学法人東北大学 Magnesium alloy, molded article, and method of forming magnesium alloy
DE112007002016T5 (en) * 2006-09-01 2009-07-23 National Institute Of Advanced Industrial Science And Technology High strength non-flammable magnesium alloy
JP5035893B2 (en) * 2006-09-01 2012-09-26 独立行政法人産業技術総合研究所 High strength and high ductility flame retardant magnesium alloy and method for producing the same
CN100467647C (en) * 2007-04-19 2009-03-11 沈阳工业大学 High-strength heat-proof compression casting magnesium alloy and preparation method thereof
JP5252629B2 (en) * 2008-08-06 2013-07-31 独立行政法人産業技術総合研究所 Flame retardant magnesium alloy filler
KR101045218B1 (en) * 2008-09-18 2011-06-30 한국생산기술연구원 Magnesium alloy and manufacturing method thereof

Also Published As

Publication number Publication date
CN102712969B (en) 2015-06-17
EP2492365A2 (en) 2012-08-29
CA2781995A1 (en) 2012-04-12
WO2012046984A3 (en) 2012-06-21
EP2492365A4 (en) 2017-12-20
CN102712969A (en) 2012-10-03
WO2012046984A2 (en) 2012-04-12
EP2492365B1 (en) 2019-12-11
JP2013512338A (en) 2013-04-11
US20130183193A1 (en) 2013-07-18
KR101066536B1 (en) 2011-09-21

Similar Documents

Publication Publication Date Title
JP5852580B2 (en) Flame retardant magnesium alloy having excellent mechanical properties and method for producing the same
JP5852585B2 (en) Magnesium alloy having excellent ignition resistance and mechanical properties and method for producing the same
KR101258470B1 (en) High-Strength High-Ductility Ignition-Proof Magnesium Alloy
KR101159790B1 (en) Magnesium alloy having high ductility and high toughness and process for preparing the same
JP5327515B2 (en) Magnesium alloys for casting and magnesium alloy castings
KR101931672B1 (en) High speed extrudable non-flammability magnesium alloys and method for manufacturing magnesium alloy extrusion using the same
KR101276665B1 (en) Magnesium alloy heat-treatable at high temperature
KR20160011136A (en) Magnesium alloy having improved corrosion resistance and method for manufacturing magnesium alloy member using the same
JP2008127639A (en) Magnesium alloy material, and method for producing the same
WO2016152569A1 (en) Magnesium-lithium alloy, rolled material formed from magnesium-lithium alloy, and processed article containing magnesium-lithium alloy as starting material
JP2006291327A (en) Heat-resistant magnesium alloy casting
JP5595891B2 (en) Method for producing heat-resistant magnesium alloy, heat-resistant magnesium alloy casting and method for producing the same
KR20210130455A (en) Wrought magnesium alloys with high mechanical properties and method for preparing the same
WO2009123084A1 (en) Magnesium alloy and process for producing the same
EP2692883B1 (en) Mg-al-ca-based master alloy for mg alloys, and a production method therefor
JP6589443B2 (en) Al-Si-Mg-based aluminum alloy plate, method for producing the alloy plate, and automotive parts using the alloy plate
KR102407828B1 (en) Wrought magnesium alloys with high mechanical properties and method for preparing the same
KR101988794B1 (en) Magnesium alloy sheet having excellent corrosion resistance, and method for manufacturing the same
JP2020509196A (en) High strength magnesium alloy excellent in flame retardancy and method for producing the same
JP2012197486A (en) Magnesium alloy
KR20150090379A (en) Method of manufacturing high strength Mg alloy with good formability

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20131111

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20131118

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20131211

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20131218

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140114

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150414

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151204

R150 Certificate of patent or registration of utility model

Ref document number: 5852580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250