JP2002129272A - Magnesium alloy for diecasting - Google Patents

Magnesium alloy for diecasting

Info

Publication number
JP2002129272A
JP2002129272A JP2000331857A JP2000331857A JP2002129272A JP 2002129272 A JP2002129272 A JP 2002129272A JP 2000331857 A JP2000331857 A JP 2000331857A JP 2000331857 A JP2000331857 A JP 2000331857A JP 2002129272 A JP2002129272 A JP 2002129272A
Authority
JP
Japan
Prior art keywords
component
weight
magnesium alloy
present
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000331857A
Other languages
Japanese (ja)
Inventor
Taketoshi Ishida
武敏 石田
Shigeharu Kamatsuchi
重晴 鎌土
Hide Takeda
秀 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ahresty Corp
Original Assignee
Ahresty Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ahresty Corp filed Critical Ahresty Corp
Priority to JP2000331857A priority Critical patent/JP2002129272A/en
Priority claimed from PCT/JP2002/004017 external-priority patent/WO2003091465A1/en
Publication of JP2002129272A publication Critical patent/JP2002129272A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mold Materials And Core Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnesium alloy for diecasting which is excellent in castability (fluidity), hot cracking resistance and high temperature creep resis tance. SOLUTION: This magnesium alloy has a composition containing, by weight, 0.5 to 4% zinc, 4 to 10% aluminum, 1 to 3% calcium and <=3% rare earth elements, and the balance magnesium with inevitable impurities.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ダイカスト用マグ
ネシウム合金に関し、更に詳しくは、自動車用部品、特
にエンジン回りの部品のように高温下にさらされると同
時に耐高温クリープ性が求められる製品を成形するのに
用いられるダイカスト用マグネシウム合金に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnesium alloy for die-casting, and more particularly, to a product which is required to be exposed to high temperatures and at the same time is required to have high-temperature creep resistance, such as parts for automobiles, particularly parts around an engine. The present invention relates to a magnesium alloy for die casting that is used to perform the process.

【0002】[0002]

【従来の技術】マグネシウム合金で成形された製品は、
鉄系合金はもちろんのことアルミニウム合金で成形され
た製品と比べても軽量であり、強度と軽量化が求められ
る製品を成形するための素材としてダイカスト鋳造可能
なマグネシウム合金が注目されている。
2. Description of the Related Art Products formed of magnesium alloy are:
Magnesium alloys that can be die-cast are attracting attention as materials for forming products that require strength and weight reduction, as well as iron-based alloys as well as products formed of aluminum alloys.

【0003】ダイカスト鋳造が可能なマグネシウム合金
として、JIS規格にはMg−Al−Zn−Mn系合金
(AZ91D合金)やMg−Al−Mn系合金(AM6
0B合金)等があるが、これらのマグネシウム合金は1
20℃程度の高温下で強度が低下してしまうので、エン
ジン回りの部品のように耐熱強度が要求される製品には
使用できない。
[0003] As magnesium alloys that can be die-cast, according to JIS standards, Mg-Al-Zn-Mn-based alloys (AZ91D alloy) and Mg-Al-Mn-based alloys (AM6
OB alloy), but these magnesium alloys are 1
Since the strength decreases at a high temperature of about 20 ° C., it cannot be used for products requiring heat resistance, such as parts around an engine.

【0004】そこで、マグネシウム合金の耐熱強度を改
良するべく、希土類元素(RE)を添加したMg−Al
−RE(Rare Earth)系合金が、米国ダウ・ケミカル社
などから提案された。しかし、例えば米国ダウ・ケミカ
ル社から提案されたAE42規格のマグネシウム合金
は、耐高温クリープ強度が十分ではないので、150℃
程度の高温下にさらされると同時に高温下においてボル
トで締結されるような加圧された状態で耐熱強度が要求
される製品には使用できなず、エンジン回りの部品に使
用された例はない。加えて、既知のマグネシウム合金は
いずれも、ダイカスト鋳造に際して流動性(いわゆる、
溶湯の湯流れ性、以下同じ。)や熱間割れ性(鋳造直後
に発生する高熱割れのことを言う。)などの鋳造性に問
題があり、量産製品への使用には不向きであった。
[0004] Therefore, in order to improve the heat resistance of a magnesium alloy, Mg-Al added with a rare earth element (RE) is used.
-RE (Rare Earth) alloys have been proposed by Dow Chemical Company of the United States and the like. However, for example, a magnesium alloy of AE42 standard proposed by Dow Chemical Company of the United States does not have sufficient high-temperature creep strength, so that it has a temperature of 150 ° C.
It cannot be used for products that require heat-resistant strength in a pressurized state, such as being bolted under high temperature at the same time as being exposed to a high temperature of about the same degree, and there is no example used for parts around the engine . In addition, any of the known magnesium alloys has a fluidity (so-called,
The same applies to the flow of molten metal. ) And hot cracking (which means high heat cracking that occurs immediately after casting), and is not suitable for use in mass-produced products.

【0005】[0005]

【発明が解決しようとする課題】一般的に、マグネシウ
ム合金に亜鉛を添加すると、ダイカスト鋳造時の鋳造性
(湯流れ性)は向上するが亜鉛の増加に伴って耐高温ク
リープ性が低下すると思われており事実そうであるが、
本発明者等は、同時に所要量のアルミニウムとカルシウ
ム及び希土類元素を添加することにより、耐高温クリー
プ性を向上させることが可能であることを見出した。
Generally, when zinc is added to a magnesium alloy, the castability (fluidity) during die casting improves, but the high-temperature creep resistance decreases with an increase in zinc. It seems to be true,
The present inventors have found that it is possible to improve high-temperature creep resistance by simultaneously adding required amounts of aluminum, calcium, and a rare earth element.

【0006】本発明はこのような知見に基づいてなされ
たものであり、ダイカスト鋳造に際して鋳造性(湯流れ
性)に優れ且つ熱間割れが生じにくく、よって量産製品
の鋳造に適すると共に、耐高温クリープ性に優れ、加圧
された状態で耐熱強度が要求されるエンジン回りの部品
のような製品にも使用可能なダイカスト用マグネシウム
合金を提供せんとするものである。
The present invention has been made based on such knowledge, and has excellent castability (flowability) and is less likely to cause hot cracking during die casting, so that it is suitable for casting of mass-produced products and has a high temperature resistance. An object of the present invention is to provide a magnesium alloy for die casting which has excellent creep properties and can be used for products such as parts around an engine which requires heat resistance in a pressurized state.

【0007】[0007]

【課題を解決するための手段】斯かる目的を達成する本
発明のダイカスト用マグネシウム合金は、重量比で、亜
鉛0.5〜8%、アルミニウム1〜10%、カルシウム
1〜3%、希土類元素3%以下を含み、残部がマグネシ
ウム及び不可避的不純物からなる事を特徴としたもので
ある(請求項1)。この際、鋳造性(湯流れ性)をより
向上させ熱間割れを生じにくし且つ耐高温クリープ性を
向上させるために、前記亜鉛成分を重量比で0.5〜4
%とし、アルミニウム成分を重量比で4〜10%、希土
類元素成分を重量比で1〜3%とすることが好ましい
(請求項2)。また、耐高温クリープ性をより向上させ
るために、前記ダイカスト用マグネシウム合金にマンガ
ンを、重量比で0.10〜2.0%(請求項3)、更に
好ましくは0.15〜1.50%添加する(請求項
4)。上記希土類元素としては、スカンジウム,イット
リウム,ランタン,セリウム,プラセオジム,ネオジ
ム,プロメチウム,サマリウム,ユウロピウム,ガドリ
ニウム,テルビウム,ジスプロシウム,ホルミウム,エ
ルビウム,ツリウム,イッテルビウム,ルテチウム,か
ら選ばれた1種または2種以上を用いることができる
が、これらの希土類元素は単体として分離すると非常に
高価であるので、実際の添加に際しては、比較的安価で
セリウム,ランタン,プラセオジム,ネオジム,サマリ
ウム,等を含んでいるセリウム族希土類の自然合金であ
るミッシュメタルを用いることが好ましい。
According to the present invention, there is provided a die-casting magnesium alloy which achieves the above object by weight ratio of zinc: 0.5 to 8%, aluminum: 1 to 10%, calcium: 1 to 3%, rare earth element. 3% or less, with the balance being magnesium and unavoidable impurities (claim 1). At this time, the zinc component is added in a weight ratio of 0.5 to 4 in order to further improve the castability (flowability of the molten metal), prevent the occurrence of hot cracking, and improve the high temperature creep resistance.
%, The aluminum component is preferably 4 to 10% by weight, and the rare earth element component is preferably 1 to 3% by weight (claim 2). In order to further improve the high temperature creep resistance, manganese is added to the magnesium alloy for die casting in a weight ratio of 0.10 to 2.0% (Claim 3), more preferably 0.15 to 1.50%. It is added (claim 4). The rare earth element is at least one selected from scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. However, since these rare earth elements are very expensive when separated as a simple substance, they are relatively inexpensive when actually added. It is preferable to use a misch metal which is a rare earth natural alloy.

【0008】[0008]

【発明の実施の形態】以下、本発明を具体的に説明す
る。本発明に係るダイカスト用マグネシウム合金は、重
量比で亜鉛(Zn)を0.5〜8%、アルミニウム(A
l)を1〜10%、カルシウム(Ca)を1〜3%、そ
して希土類元素(RE)を3%以下含み、残部がマグネ
シウム及び不可避的不純物からなるものと、上記成分に
更にマンガン(Mn)を0.10〜2.0%含むものと
からなる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below. In the magnesium alloy for die casting according to the present invention, zinc (Zn) is 0.5 to 8% by weight and aluminum (A) is used.
l) contains 1 to 10%, calcium (Ca) 1 to 3%, and rare earth element (RE) 3% or less, with the balance consisting of magnesium and unavoidable impurities, and manganese (Mn) added to the above components. Of 0.10 to 2.0%.

【0009】Zn(亜鉛)成分は、マグネシウム合金と
しての凝固範囲を広げてダイカスト鋳造時における流動
性を向上させるはたらきがある反面(図1参照)、Zn
成分の増加に伴って熱的に不安定なMg−Zn化合物が
増加し、耐高温クリープ性が低下する傾向が見られる
(図2参照)。また、Mg−Zn化合物が多量に存在す
ると、熱間割れが発生しやすくなる傾向も見られる(図
3参照)。しかし、同時に添加するAl(アルミニウ
ム)成分と協働して、熱的に安定なMg32(Al,Z
n)49化合物が析出して耐高温クリープ性を向上させる
と同時に、Mg−Zn化合物の発生を抑制して熱間割れ
を抑制する傾向も見られた。そこで、本発明に係るマグ
ネシウム合金においては、Zn成分を重量比で最大0.
5%〜8%の範囲で添加し、好ましくは0.5%〜4%
の範囲、更に好ましくは2%〜4%の範囲で添加する。
すなわち、図1に示す通り、Zn成分が0.5重量%未
満ではダイカスト鋳造時における流動性(湯流れ性)の
向上効果を発揮し得なくなり、1重量%以上を添加する
ことが好ましい。しかし、図2に示す通り、Zn成分の
増加に伴って耐高温クリープ性が低下する傾向が見られ
ことと、図3に示す通り、Zn成分が4重量%を超える
と熱間割れが発生しやすくなり、8重量%を超えると熱
間割れが極端に発生しやすくなる。従って、Zn成分の
添加量を、重量比で最大0.5%〜8%の範囲、好まし
くは0.5%〜4%の範囲とするものである。
The Zn (Zinc) component has the function of expanding the solidification range as a magnesium alloy and improving the fluidity during die casting (see FIG. 1).
As the component increases, the thermally unstable Mg—Zn compound increases, and the high-temperature creep resistance tends to decrease (see FIG. 2). In addition, when a large amount of the Mg—Zn compound is present, there is a tendency that hot cracking is likely to occur (see FIG. 3). However, in cooperation with the Al (aluminum) component added at the same time, thermally stable Mg 32 (Al, Z
n) At the same time that 49 compounds were precipitated to improve the high-temperature creep resistance, there was also a tendency to suppress the generation of Mg-Zn compounds and to suppress hot cracking. Thus, in the magnesium alloy according to the present invention, the Zn component is contained in a maximum of 0.1 wt%.
Added in the range of 5% to 8%, preferably 0.5% to 4%
, More preferably in the range of 2% to 4%.
That is, as shown in FIG. 1, if the Zn content is less than 0.5% by weight, the effect of improving the fluidity (fluidity) at the time of die casting cannot be exhibited, and it is preferable to add 1% by weight or more. However, as shown in FIG. 2, the high-temperature creep resistance tends to decrease as the Zn component increases, and as shown in FIG. 3, hot cracking occurs when the Zn component exceeds 4% by weight. When the content exceeds 8% by weight, hot cracking is extremely likely to occur. Therefore, the addition amount of the Zn component is set to be in a range of 0.5% to 8% at maximum, preferably in a range of 0.5% to 4% by weight.

【0010】Al(アルミニウム)成分は、Mg−Zn
合金に添加することにより、熱的に安定なMg32(A
l,Zn)49化合物が析出して耐高温クリープ性を向上
させる(図4参照)と同時に、熱間割れを抑制するはた
らきがある(図5参照)が、Al成分の増加に伴って金
属間化合物量も増加し、粒界析出過多により脆性が低下
するので、本発明のマグネシウム合金においては、Al
成分を重量比で1%〜10%の範囲で添加し、好ましく
は4%〜10%の範囲で添加する。すなわち、図4に示
す通り、Al成分が重量比で1%未満では耐高温クリー
プ性を向上させる効果をほとんど発揮し得なくなり、好
ましくは4重量%以上を必要とし、また図5に示す通
り、Al成分が4重量%未満では熱間割れを抑制するは
たらきをほとんど発揮し得なくなり、10重量%を超え
ると熱間割れが極端に多くなってしまう。従って、本発
明に係るマグネシウム合金においては、Al成分の添加
量を、重量比で1%〜10%の範囲、好ましくは4%〜
10%の範囲とするものである。
The Al (aluminum) component is Mg-Zn
By adding to the alloy, thermally stable Mg 32 (A
(1, Zn) 49 compounds precipitate to improve high-temperature creep resistance (see FIG. 4) and at the same time serve to suppress hot cracking (see FIG. 5). Since the amount of the compound also increases and the brittleness decreases due to excessive grain boundary precipitation, in the magnesium alloy of the present invention, Al
The components are added in a range of 1% to 10% by weight, preferably in a range of 4% to 10%. That is, as shown in FIG. 4, when the Al component is less than 1% by weight, the effect of improving the high temperature creep resistance can hardly be exerted, and preferably 4% by weight or more, and as shown in FIG. If the Al component is less than 4% by weight, the effect of suppressing hot cracking can hardly be exhibited, and if it exceeds 10% by weight, hot cracking becomes extremely large. Therefore, in the magnesium alloy according to the present invention, the addition amount of the Al component is in the range of 1% to 10% by weight, preferably 4% to
The range is 10%.

【0011】Ca(カルシウム)成分は、熱的に不安定
なMg−Zn合金と化合してMg−Zn−Ca化合物と
なって耐高温クリープ性を向上させるはたらきがある
(図6参照)反面、添加量の増加に伴って金属間化合物
量が増加して熱間割れが発生しやすくなる傾向が見られ
(図7参照)、しかも溶湯の見かけの粘度が上昇して製
品に湯境不良が発生しやすくなる傾向も見られる(図8
参照)。そこで、本発明のマグネシウム合金において
は、Ca成分を重量比で1%〜3%の範囲で添加するも
のである。Ca成分が1重量%未満では、図6に示す通
り、耐高温クリープ性を向上させる効果がほとんど期待
できなくなり、かと言ってCa成分が3重量%を超える
と、図7及び図8に示す通り、熱間割れ及び湯境不良の
発生率が極端に多くなってしまう。また、本発明のマグ
ネシウム合金では、Ca成分を上記の範囲で添加するこ
とにより、金属間化合物であるAl−Ca系化合物が生
成され、この化合物がデンドライトまたはα結晶粒界の
全面を覆うことにより鋳造金属組織の脆弱化が抑制され
るようになる。
The Ca (calcium) component has a function of improving the high-temperature creep resistance by combining with a thermally unstable Mg—Zn alloy to form a Mg—Zn—Ca compound (see FIG. 6). As the amount of addition increases, the amount of the intermetallic compound increases and hot cracking tends to occur (see FIG. 7). In addition, the apparent viscosity of the molten metal increases, resulting in a defective hot junction in the product. (See FIG. 8)
reference). Therefore, in the magnesium alloy of the present invention, the Ca component is added in a range of 1% to 3% by weight. When the Ca component is less than 1% by weight, the effect of improving the high-temperature creep resistance can hardly be expected as shown in FIG. 6, and when the Ca component exceeds 3% by weight, as shown in FIGS. In addition, the rate of occurrence of hot cracking and poor hot junction becomes extremely large. Further, in the magnesium alloy of the present invention, by adding the Ca component in the above range, an Al-Ca-based compound which is an intermetallic compound is generated, and this compound covers the entire surface of the dendrite or α crystal grain boundary. The brittleness of the cast metal structure is suppressed.

【0012】RE(希土類元素)成分は、Mg−RE系
化合物を生成すると共に、同時に添加するAl成分と化
合してAl−RE系化合物を生成することにより、耐高
温クリープ性を向上させるはたらきがある(図9参
照)。すなわち、デンドライトまたはα結晶粒界を覆う
Al−Ca系化合物と相俟って、得られた合金における
高温域での変形抵抗が高くなり、耐高温クリープ性を向
上させるものである。しかし、RE成分の増加はマグネ
シウム合金としてコストアップをもたらすと同時に、金
属間化合物量が増加して熱間割れが発生しやすくなる
(図10参照)ので、本発明のマグネシウム合金におい
ては、RE成分を重量比で3%以下、好ましくは1%〜
3%の範囲で添加する。RE成分が1重量%未満では、
耐高温クリープ性を向上させる効果がほとんど期待でき
なくなり、RE成分が3重量%を超えると図10に示し
た通り、熱間割れが多くなってしまう。
The RE (rare earth element) component not only forms an Mg-RE compound but also combines with an Al component to be added at the same time to form an Al-RE compound, thereby improving the high-temperature creep resistance. (See FIG. 9). That is, in combination with the dendrite or the Al-Ca-based compound covering the α crystal grain boundary, deformation resistance in a high-temperature region of the obtained alloy is increased, and high-temperature creep resistance is improved. However, an increase in the RE component increases the cost of the magnesium alloy, and at the same time, increases the amount of the intermetallic compound to easily cause hot cracking (see FIG. 10). Is not more than 3% by weight, preferably 1% to
Add in the range of 3%. If the RE component is less than 1% by weight,
The effect of improving the high-temperature creep resistance can hardly be expected. If the RE component exceeds 3% by weight, hot cracking increases as shown in FIG.

【0013】Mn(マンガン)成分は、Zn−Al−C
a−REを含むマグネシウム合金に添加することによ
り、Mg成分に固溶して、固溶強化による耐力を向上さ
せると共に、高温での耐クリープ性を向上させるはたら
きがある(図11参照)。そこで、本発明のマグネシウ
ム合金においては、Mn成分を重量比で0.10〜2.
0%の範囲で添加し、好ましくは0.15%〜1.50
%の範囲で添加する。Mn成分が0.10重量%未満で
は、図11に示す通り、耐高温クリープ性を向上させる
効果がほとんど期待できなくなり、かと言ってMn成分
が2.0重量%を超えると、図12に示す通り、熱間割
れの発生率が極端に多くなってしまう。
The Mn (manganese) component is Zn-Al-C
When added to a magnesium alloy containing a-RE, it has a function to improve the strength by solid solution strengthening and to improve the creep resistance at a high temperature (see FIG. 11). Therefore, in the magnesium alloy of the present invention, the Mn component is contained in a weight ratio of 0.10 to 2.0.
0%, preferably 0.15% to 1.50
%. If the Mn component is less than 0.10% by weight, the effect of improving the high-temperature creep resistance can hardly be expected as shown in FIG. 11, and if the Mn component exceeds 2.0% by weight, it is shown in FIG. As a result, the incidence of hot cracking becomes extremely large.

【0014】下記の表1に、本発明の実施例と比較例に
ついて、合金組成とクリープひずみ及び鋳造性に関する
データをまとめて示す。尚、合金組成中のRE(希土類
元素)としては、セリウム50重量%、ランタン25重
量%、プラセオジム4重量%、ネオジム20重量%、サ
マリウム1重量%、を含むミッシュメタルを用いた。ま
た、本実施例では、金型温度200℃、鋳造温度700
℃、鋳造圧力60MPa、でダイカスト鋳造し、クリー
プ試験は175℃の温度下で50Mpaの応力をかけて
行なった。
Table 1 below summarizes data on the alloy composition, creep strain and castability of Examples and Comparative Examples of the present invention. As RE (rare earth element) in the alloy composition, a misch metal containing 50% by weight of cerium, 25% by weight of lanthanum, 4% by weight of praseodymium, 20% by weight of neodymium, and 1% by weight of samarium was used. In this embodiment, the mold temperature is 200 ° C. and the casting temperature is 700.
C. and a casting pressure of 60 MPa, and a creep test was performed at a temperature of 175 ° C. with a stress of 50 Mpa.

【0015】[0015]

【表1】 [Table 1]

【0016】上記表1から明らかなように、本発明に係
るマグネシウム合金を用いてダイカスト鋳造したもの
は、比較例(マグネシウム合金のJIS規格品であるA
Z91D材、米国ダウ・ケミカル社規格のAE41材な
ど)と比較しても、クリープひずみ(%)が0.3%〜
0.6%内にあり、鋳造時における流動長が190mm
〜221mmと十分に長く、しかも熱間割れの発生率が
0%〜3%程度であり、鋳造性にも優れたものであるこ
とが理解される。
As is evident from Table 1, the magnesium alloy according to the present invention, which is die-cast, is a comparative example (magnesium alloy, JIS standard product A
Creep strain (%) is 0.3% or more as compared with Z91D material, AE41 material of Dow Chemical Co., USA
Within 0.6%, the flow length during casting is 190mm
221 mm, which is sufficiently long, and the rate of occurrence of hot cracking is about 0% to 3%.

【0017】[0017]

【発明の効果】本発明に係るダイカスト用マグネシウム
合金によれば、ダイカスト鋳造に際して鋳造性(湯流れ
性)に優れ且つ熱間割れが発生しにくくなり、よって、
量産製品のダイカスト鋳造に適すると共に、耐高温クリ
ープ性にも優れ、加圧された状態下で耐熱強度が要求さ
れるエンジン回りの部品のような製品にも使用が可能と
なる。
According to the magnesium alloy for die-casting of the present invention, the castability (fluidity) is excellent and hot cracking is less likely to occur during die-casting.
It is suitable for die-casting of mass-produced products, has excellent high-temperature creep resistance, and can be used for products such as parts around engines that require heat resistance under pressure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明実施例におけるZn成分増加に伴う流
動長(湯流れ性)への影響を示すグラフ。
FIG. 1 is a graph showing the influence on the flow length (fluidity) with an increase in the Zn component in Examples of the present invention.

【図2】 本発明実施例におけるZn成分増加に伴うク
リープひずみへの影響を示すグラフ。
FIG. 2 is a graph showing the effect of increasing the Zn component on creep strain in an example of the present invention.

【図3】 本発明実施例におけるZn成分増加に伴う熱
間割れへの影響を示すグラフ。
FIG. 3 is a graph showing the effect on hot cracking due to an increase in the Zn component in Examples of the present invention.

【図4】 本発明実施例におけるMg−Zn合金にAl
成分を添加したときのクリープひずみへの影響を示すグ
ラフ。
FIG. 4 shows an example in which the Mg—Zn alloy according to the embodiment of the present invention is made of Al.
4 is a graph showing the effect on creep strain when a component is added.

【図5】 本発明実施例におけるMg−Zn合金にAl
成分を添加したときの熱間割れへの影響を示すグラフ。
FIG. 5 shows an example in which the Mg—Zn alloy according to the embodiment of the present invention is made of Al.
4 is a graph showing the effect on hot cracking when a component is added.

【図6】 本発明実施例におけるMg−Zn−4Al合
金にCa成分を添加したときのクリープひずみへの影響
を示すグラフ。
FIG. 6 is a graph showing the effect on creep strain when a Ca component is added to the Mg—Zn-4Al alloy in the example of the present invention.

【図7】 本発明実施例におけるMg−Zn−4Al合
金にCa成分を添加したときの熱間割れへの影響を示す
グラフ。
FIG. 7 is a graph showing the effect on hot cracking when a Ca component is added to the Mg—Zn-4Al alloy in the example of the present invention.

【図8】 本発明実施例におけるMg−Zn−4Al合
金にCa成分を添加したときの湯境不良発生への影響を
示すグラフ。
FIG. 8 is a graph showing the effect of the addition of a Ca component to the Mg-Zn-4Al alloy in the embodiment of the present invention on the occurrence of poor hot junctions.

【図9】 本発明実施例におけるMg−Zn−4Al−
1Ca合金にRE成分を添加したときのクリープひずみ
への影響を示すグラフ。
FIG. 9 shows Mg—Zn-4Al— according to an embodiment of the present invention.
4 is a graph showing the effect on creep strain when an RE component is added to a 1Ca alloy.

【図10】 本発明実施例におけるMg−Zn−4Al
−1Ca合金にRE成分を添加したときの熱間割れへの
影響を示すグラフ。
FIG. 10 shows Mg—Zn-4Al according to an embodiment of the present invention.
1 is a graph showing the effect on hot tearing when an RE component is added to a -1Ca alloy.

【図11】 本発明実施例におけるMg−Zn−Al−
Ca−RE合金にMn成分を添加したときのクリープひ
ずみへの影響を示すグラフ。
FIG. 11 shows an example of Mg—Zn—Al— according to an embodiment of the present invention.
4 is a graph showing the effect on creep strain when a Mn component is added to a Ca-RE alloy.

【図12】 本発明実施例におけるMg−Zn−Al−
Ca−RE合金にMn成分を添加したときの熱間割れへ
の影響を示すグラフ。
FIG. 12 shows an example of Mg—Zn—Al— according to an embodiment of the present invention.
4 is a graph showing the effect on hot cracking when a Mn component is added to a Ca-RE alloy.

【図13】 本発明実施例と比較例における耐高温クレ
ープ性を示すグラフ。
FIG. 13 is a graph showing high-temperature crepe resistance in Examples of the present invention and Comparative Examples.

【図14】 本発明の実施例と比較例における流動長
(湯流れ性)を示すグラフ。
FIG. 14 is a graph showing the flow length (fluidity) in Examples of the present invention and Comparative Examples.

【図15】 本発明の実施例と比較例における熱間割れ
性を示すグラフ。
FIG. 15 is a graph showing hot cracking properties in Examples of the present invention and Comparative Examples.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量比で、亜鉛0.5〜8%、アルミニ
ウム1〜10%、カルシウム1〜3%、希土類元素3%
以下を含み、残部がマグネシウム及び不可避的不純物か
らなる事を特徴とするダイカスト用マグネシウム合金。
1. Zinc 0.5 to 8%, aluminum 1 to 10%, calcium 1 to 3%, rare earth element 3% by weight
A magnesium alloy for die casting, characterized in that the balance includes magnesium and inevitable impurities.
【請求項2】 重量比で、亜鉛0.5〜4%、アルミニ
ウム4〜10%、カルシウム1〜3%、希土類元素1〜
3%を含み、残部がマグネシウム及び不可避的不純物か
らなる事を特徴とするダイカスト用マグネシウム合金。
2. A weight ratio of zinc: 0.5 to 4%, aluminum: 4 to 10%, calcium: 1 to 3%, rare earth element: 1 to
A magnesium alloy for die casting, comprising 3% and the balance consisting of magnesium and inevitable impurities.
【請求項3】 重量比で、マンガン0.10〜2.0%
を含む請求項1又は2記載のダイカスト用マグネシウム
合金。
3. Manganese 0.10 to 2.0% by weight
The magnesium alloy for die casting according to claim 1, comprising:
【請求項4】 重量比で、マンガン0.15〜1.50
%を含む請求項1又は2記載のダイカスト用マグネシウ
ム合金。
4. Manganese in a weight ratio of 0.15 to 1.50.
The magnesium alloy for die casting according to claim 1, wherein
JP2000331857A 2000-10-31 2000-10-31 Magnesium alloy for diecasting Pending JP2002129272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000331857A JP2002129272A (en) 2000-10-31 2000-10-31 Magnesium alloy for diecasting

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000331857A JP2002129272A (en) 2000-10-31 2000-10-31 Magnesium alloy for diecasting
PCT/JP2002/004017 WO2003091465A1 (en) 2002-04-23 2002-04-23 Magnesium alloy for diecasting

Publications (1)

Publication Number Publication Date
JP2002129272A true JP2002129272A (en) 2002-05-09

Family

ID=30772091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000331857A Pending JP2002129272A (en) 2000-10-31 2000-10-31 Magnesium alloy for diecasting

Country Status (1)

Country Link
JP (1) JP2002129272A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003091465A1 (en) * 2002-04-23 2003-11-06 Ahresty Corporation Magnesium alloy for diecasting
WO2009119701A1 (en) 2008-03-26 2009-10-01 独立行政法人科学技術振興機構 Casting mold for magnesium alloy and method of casting magnesium alloy
US7922967B2 (en) 2004-06-15 2011-04-12 Toudai TLD, Ltd. High-strength and high-toughness magnesium based alloy, driving system part using the same and manufacturing method of high-strength and high-toughness magnesium based alloy material
KR101066536B1 (en) * 2010-10-05 2011-09-21 한국기계연구원 Ignition-proof magnesium alloy with excellent mechanical properties and method for manufacturing the ignition-proof magnesium alloy
US8123877B2 (en) 2003-01-31 2012-02-28 Kabushiki Kaisha Toyota Jidoshokki Heat-resistant magnesium alloy for casting heat-resistant magnesium alloy cast product, and process for producing heat-resistant magnesium alloy cast product
WO2012096432A1 (en) * 2011-01-11 2012-07-19 한국기계연구원 Magnesium alloy having excellent ignition resistance and mechanical properties, and method for manufacturing same
JP2014205920A (en) * 2008-06-06 2014-10-30 ジンテス ゲゼルシャフト ミット ベシュレンクテル ハフツング Resorbable magnesium alloy
EP3561095A4 (en) * 2016-12-22 2019-10-30 Posco Magnesium alloy sheet and method for manufacturing same
US10961608B2 (en) 2016-03-30 2021-03-30 Kurimoto, Ltd. Heat-resistant magnesium alloy
KR20210158244A (en) * 2020-06-23 2021-12-30 경북대학교 산학협력단 Magnesium alloy for high speed extrusion and manufacturing method of extruded magnesium alloy using the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003091465A1 (en) * 2002-04-23 2003-11-06 Ahresty Corporation Magnesium alloy for diecasting
US8123877B2 (en) 2003-01-31 2012-02-28 Kabushiki Kaisha Toyota Jidoshokki Heat-resistant magnesium alloy for casting heat-resistant magnesium alloy cast product, and process for producing heat-resistant magnesium alloy cast product
US7922967B2 (en) 2004-06-15 2011-04-12 Toudai TLD, Ltd. High-strength and high-toughness magnesium based alloy, driving system part using the same and manufacturing method of high-strength and high-toughness magnesium based alloy material
WO2009119701A1 (en) 2008-03-26 2009-10-01 独立行政法人科学技術振興機構 Casting mold for magnesium alloy and method of casting magnesium alloy
JP2014205920A (en) * 2008-06-06 2014-10-30 ジンテス ゲゼルシャフト ミット ベシュレンクテル ハフツング Resorbable magnesium alloy
KR101066536B1 (en) * 2010-10-05 2011-09-21 한국기계연구원 Ignition-proof magnesium alloy with excellent mechanical properties and method for manufacturing the ignition-proof magnesium alloy
WO2012046984A3 (en) * 2010-10-05 2012-06-21 한국기계연구원 Flame retardant magnesium alloy with excellent mechanical properties, and preparation method thereof
WO2012096432A1 (en) * 2011-01-11 2012-07-19 한국기계연구원 Magnesium alloy having excellent ignition resistance and mechanical properties, and method for manufacturing same
US9822432B2 (en) 2011-01-11 2017-11-21 Korea Institute Of Machinery & Materials Magnesium alloy with excellent ignition resistance and mechanical properties, and method of manufacturing the same
US10961608B2 (en) 2016-03-30 2021-03-30 Kurimoto, Ltd. Heat-resistant magnesium alloy
EP3561095A4 (en) * 2016-12-22 2019-10-30 Posco Magnesium alloy sheet and method for manufacturing same
US11268178B2 (en) 2016-12-22 2022-03-08 Posco Magnesium alloy sheet and method for manufacturing same
KR20210158244A (en) * 2020-06-23 2021-12-30 경북대학교 산학협력단 Magnesium alloy for high speed extrusion and manufacturing method of extruded magnesium alloy using the same
KR102441441B1 (en) * 2020-06-23 2022-09-08 경북대학교 산학협력단 Magnesium alloy for high speed extrusion and manufacturing method of extruded magnesium alloy using the same

Similar Documents

Publication Publication Date Title
EP2369025B1 (en) Magnesium alloy and magnesium alloy casting
KR101367892B1 (en) Magnesium alloy for high temperature and manufacturing method thereof
JP4539572B2 (en) Magnesium alloys and castings for casting
JP2005068550A (en) Inexpensive heat resistant magnesium alloy for casting having excellent heat resistance and casting property
JP3592659B2 (en) Magnesium alloys and magnesium alloy members with excellent corrosion resistance
WO2006125278A1 (en) Hpdc magnesium alloy
Son et al. Effects of samarium (Sm) additions on the microstructure and mechanical properties of as-cast and hot-extruded Mg-5 wt% Al-3 wt% Ca-based alloys
JP2008266734A (en) Magnesium alloy for casting, and magnesium alloy casting
JP2002129272A (en) Magnesium alloy for diecasting
JP2004162090A (en) Heat resistant magnesium alloy
JP6814446B2 (en) Flame-retardant magnesium alloy and its manufacturing method
CN101818293B (en) Heat resistant magnesium alloy
US20080187454A1 (en) Heat-resistant magnesium alloy for casting heat-resistant magnesium alloy cast product, and process for producing heat-resistant magnesium alloy cast product
US20120070331A1 (en) Magnesium alloy and method for making the same
Kiełbus Microstructure of AE44 magnesium alloy before and after hot-chamber die casting
CA2366924A1 (en) Creep resistant magnesium alloys with improved castability
JP4285188B2 (en) Heat-resistant magnesium alloy for casting, casting made of magnesium alloy and method for producing the same
JP4575645B2 (en) Heat-resistant magnesium alloy for casting and heat-resistant magnesium alloy casting
JP2008266733A (en) Magnesium alloy for casting, and magnesium alloy casting
JP2006089772A (en) Magnesium alloy
JP2002266044A (en) Magnesium alloy
JP3164252B2 (en) Manufacturing method of heat-resistant magnesium alloy
KR20070096477A (en) Magnesium alloy having heat resisting property
JP2012197490A (en) High thermal conductivity magnesium alloy
WO2003091465A1 (en) Magnesium alloy for diecasting