JP2008266733A - Magnesium alloy for casting, and magnesium alloy casting - Google Patents

Magnesium alloy for casting, and magnesium alloy casting Download PDF

Info

Publication number
JP2008266733A
JP2008266733A JP2007112014A JP2007112014A JP2008266733A JP 2008266733 A JP2008266733 A JP 2008266733A JP 2007112014 A JP2007112014 A JP 2007112014A JP 2007112014 A JP2007112014 A JP 2007112014A JP 2008266733 A JP2008266733 A JP 2008266733A
Authority
JP
Japan
Prior art keywords
mass
magnesium alloy
casting
compound
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007112014A
Other languages
Japanese (ja)
Inventor
Yuki Okamoto
夕紀 岡本
Kyoichi Kinoshita
恭一 木下
Motoharu Tanizawa
元治 谷澤
Kazuhiko Yoshida
和彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2007112014A priority Critical patent/JP2008266733A/en
Priority to EP08740692A priority patent/EP2138595A1/en
Priority to PCT/JP2008/057646 priority patent/WO2008133218A1/en
Priority to US12/596,815 priority patent/US20100209285A1/en
Publication of JP2008266733A publication Critical patent/JP2008266733A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Continuous Casting (AREA)
  • Forging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnesium alloy for casting suitable for use at high temperature. <P>SOLUTION: The magnesium alloy for casting includes, by mass, 1 to 5% copper (Cu), 0.1 to 5% calcium (Ca) and tin (Sn) of 0.1 to 3 by a mass ratio (Sn/Ca) to the Ca, and the balance magnesium (Mg) with inevitable impurities. By the incorporation of Cu, Ca and Sn, the crystallized products of an Mg-Cu based compound and an Mg-Ca-Sn based compound are crystallized out on the crystal grain boundaries of Mg crystal grains, so as to be a network shape (three-dimensional network shape). By the three-dimensional network structure, boundary sliding particularly activated when temperature is made high is suppressed, so as to improve its high temperature strength and creep strength. Further, since Sn preferentially forms a compound with Ca, its influence on thermal conductivity is smaller than the case of the other additional elements. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高温下での使用に適した鋳造用マグネシウム合金に関するものである。   The present invention relates to a magnesium alloy for casting suitable for use at high temperatures.

アルミニウム合金よりもさらに軽量なマグネシウム合金は、軽量化の観点から航空機材料や車両材料などとして広く用いられつつある。しかしながら、マグネシウム合金は、用途によっては強度や耐熱性などが充分ではないため、さらなる特性の向上が求められている。   Magnesium alloys that are lighter than aluminum alloys are being widely used as aircraft materials and vehicle materials from the viewpoint of weight reduction. However, magnesium alloys are not sufficient in strength, heat resistance, and the like depending on applications, and thus further improvement in characteristics is required.

たとえば、一般的なマグネシウム合金として、AZ91D(ASTM記号)がある。AZ91Dの熱伝導率は73W/mK程度であるため、使用環境が高温であったり使用中に発熱したりする部材に用いられると、放熱が良好に行われず、部材に熱変形が生じることがある。特に、内燃機関のシリンダヘッドやシリンダブロックに用いられるマグネシウム合金として熱伝導率の低いマグネシウム合金を用いると、シリンダヘッドが熱変形したり、シリンダブロック内に熱がこもりシリンダボアが変形することで、摩擦が増大したり気密性が低下したりするなどの悪影響が生じる。そのため、高い熱伝導率をもつことで放熱が良好に行われ、高温下での使用に好適なマグネシウム合金が求められている。   For example, as a general magnesium alloy, there is AZ91D (ASTM symbol). Since the thermal conductivity of AZ91D is about 73 W / mK, when used in a member that is used at a high temperature or generates heat during use, heat dissipation is not performed well, and the member may be thermally deformed. . In particular, if a magnesium alloy with low thermal conductivity is used as the magnesium alloy used in the cylinder head or cylinder block of an internal combustion engine, the cylinder head is thermally deformed, the heat is accumulated in the cylinder block, and the cylinder bore is deformed. Adverse effects such as increase in the airtightness and decrease in airtightness occur. For this reason, there is a demand for a magnesium alloy that has a high thermal conductivity so that heat can be radiated well and is suitable for use at high temperatures.

たとえば、Mg−3%Cu−1%Caの合金組成(単位は「質量%」)をもつマグネシウム合金の熱伝導率は、熱伝導率の高いCuが含まれることで、AZ91Dの熱伝導率よりも高い。しかしながら、使用条件によっては高温での耐クリープ性などが十分ではない場合がある。   For example, the heat conductivity of a magnesium alloy having an alloy composition (unit: “mass%”) of Mg—3% Cu—1% Ca is higher than that of AZ91D due to the inclusion of Cu with high heat conductivity. Is also expensive. However, the creep resistance at a high temperature may not be sufficient depending on the use conditions.

特許文献1には、0.8〜5質量%のカルシウム(Ca)と、0〜10質量%の銅(Cu)と、3〜8質量%の亜鉛(Zn)と、を含むマグネシウム合金が開示されている。特許文献1のマグネシウム合金は、室温および高温において高い強度を示すが、熱伝導率については記載が無く、亜鉛の添加がマグネシウム合金の熱伝導性に影響するか否かは不明である。
特開平6−25791号公報
Patent Document 1 discloses a magnesium alloy containing 0.8 to 5% by mass of calcium (Ca), 0 to 10% by mass of copper (Cu), and 3 to 8% by mass of zinc (Zn). Has been. The magnesium alloy of Patent Document 1 shows high strength at room temperature and high temperature, but there is no description about the thermal conductivity, and it is unclear whether or not the addition of zinc affects the thermal conductivity of the magnesium alloy.
JP-A-6-25791

本発明は、上記問題点に鑑み、高温下での使用に適した鋳造用マグネシウム合金を提供することを目的とする。また、その鋳造用マグネシウム合金からなる鋳物を提供することを目的とする。   An object of this invention is to provide the magnesium alloy for casting suitable for use under high temperature in view of the said problem. Moreover, it aims at providing the casting which consists of the magnesium alloy for casting.

本発明者らは、鋭意研究の結果、マグネシウム合金の合金元素として、銅とカルシウムとともに錫を添加することで、マグネシウム合金の熱伝導性に悪影響を与えることなく高温における耐クリープ性を向上させることができることを見出し、これに基づき本発明を完成するに至った。   As a result of diligent research, the inventors have improved the creep resistance at high temperatures without adversely affecting the thermal conductivity of the magnesium alloy by adding tin together with copper and calcium as the alloying element of the magnesium alloy. The present invention has been completed based on this finding.

すなわち、本発明の鋳造用マグネシウム合金は、全体を100質量%としたときに、1質量%以上5質量%以下の銅(Cu)と、0.1質量%以上5質量%以下のカルシウム(Ca)と、該Caに対する質量比(Sn/Ca)で0.1以上3以下の錫(Sn)と、を含み、残部がマグネシウム(Mg)と不可避不純物とからなることを特徴とする。   That is, the casting magnesium alloy of the present invention has a copper (Cu) content of 1% by mass to 5% by mass and calcium (Ca) of 0.1% by mass to 5% by mass when the total is 100% by mass. ) And tin (Sn) of 0.1 to 3 in terms of mass ratio (Sn / Ca) with respect to Ca, and the balance is made of magnesium (Mg) and inevitable impurities.

また、本発明のマグネシウム合金鋳物は、本発明の鋳造用マグネシウム合金からなる鋳物である。本発明のマグネシウム合金鋳物は、
全体を100質量%としたときに、1質量%以上5質量%以下の銅(Cu)と、0.1質量%以上5質量%以下のカルシウム(Ca)と、該Caに対する質量比(Sn/Ca)で0.1以上3以下の錫(Sn)と、を含み、残部がマグネシウム(Mg)と不可避不純物とからなる合金溶湯を鋳型に注湯する注湯工程と、
該注湯工程後の合金溶湯を冷却させて凝固させる凝固工程と、
を経て得られることを特徴とする。
The magnesium alloy casting of the present invention is a casting made of the magnesium alloy for casting of the present invention. The magnesium alloy casting of the present invention is
When the total is 100% by mass, 1% by mass to 5% by mass of copper (Cu), 0.1% by mass to 5% by mass of calcium (Ca), and a mass ratio to the Ca (Sn / A pouring step of pouring a molten alloy containing 0.1 to 3 tin (Sn) and a balance of magnesium (Mg) and inevitable impurities into a mold;
A solidification step of cooling and solidifying the molten alloy after the pouring step;
It is obtained through the process.

本発明の鋳造用マグネシウム合金は、Cu、CaおよびSnを含むことにより、Mg−Cu系化合物とともにMg−Ca−Sn系化合物の晶出物が、Mg結晶粒の結晶粒界にネットワーク状(三次元網目状)に晶出する。三次元網目構造により、高温になると特に活発になる粒界すべりが抑制され、高温強度および高温での耐クリープ性が向上する。また、Mg−Ca系化合物は比較的脆いが、Mg−Ca系化合物のCaの一部がSnと置換したMg−Ca−Sn系化合物は強度が高いため、三次元網目構造の強度、ひいてはマグネシウム合金の強度が向上する。   The magnesium alloy for casting of the present invention contains Cu, Ca, and Sn, so that the crystallized product of the Mg—Ca—Sn compound together with the Mg—Cu compound is network-like (third order) at the crystal grain boundary of the Mg crystal grains. Crystallized in the original mesh shape. The three-dimensional network structure suppresses intergranular sliding that becomes particularly active at high temperatures, and improves high-temperature strength and creep resistance at high temperatures. In addition, although Mg—Ca compounds are relatively brittle, Mg—Ca—Sn compounds in which part of Ca of Mg—Ca compounds is replaced with Sn have high strength, so that the strength of the three-dimensional network structure, and hence magnesium The strength of the alloy is improved.

また、後に詳説するが、Snは、Caと優先的に化合物を形成するため、アルミニウム等の他の添加元素に比べて熱伝導性への影響が少ない。   As will be described in detail later, since Sn forms a compound preferentially with Ca, it has less influence on thermal conductivity than other additive elements such as aluminum.

なお、本明細書において、「X−Y系化合物」等の記載は、たとえば、組成式でXYと示されるようなXとYとを主成分とする化合物である。 In the present specification, the description of “XY compound” and the like is, for example, a compound containing X and Y as main components as indicated by X 2 Y in the composition formula.

以下に、本発明の鋳造用マグネシウム合金を実施するための最良の形態を説明する。   Below, the best form for implementing the magnesium alloy for casting of this invention is demonstrated.

本発明の鋳造用マグネシウム合金は、銅(Cu)とカルシウム(Ca)と錫(Sn)とを含み、残部がマグネシウム(Mg)と不可避不純物とからなることを特徴とする。   The magnesium alloy for casting according to the present invention includes copper (Cu), calcium (Ca), and tin (Sn), and the balance is composed of magnesium (Mg) and inevitable impurities.

本発明の鋳造用マグネシウム合金は、Cu、CaおよびSnの含有量を適切な量とすることで、Mg−Cu系化合物とともにMg−Ca−Sn系化合物の晶出物が、Mg結晶粒の結晶粒界にネットワーク状(三次元網目状)に晶出する。不連続部分の少ないネットワーク状であるため、粒界すべりの抑制効果が高い。   In the magnesium alloy for casting according to the present invention, when the content of Cu, Ca and Sn is set to an appropriate amount, the crystallized product of the Mg—Ca—Sn compound together with the Mg—Cu compound is converted into a crystal of Mg crystal grains. Crystallizes in the form of a network (three-dimensional network) at the grain boundary. Since it is a network with few discontinuities, the effect of suppressing grain boundary sliding is high.

Cuの含有量は、鋳造用マグネシウム合金全体を100質量%としたときに、1質量%以上5質量%以下である。Cuの含有量が1質量%以上であれば、結晶粒界にMg−Cu系化合物が十分に晶出する。Cuの含有量が1質量%未満では、Mg−Cu系化合物の結晶粒界への晶出が不十分なため、強度が低い。好ましいCuの含有量は、2質量%以上である。一方、Cuが多い程、結晶粒界に晶出するMg−Cu系化合物の量が過剰となり、脆い組織となるため強度は低下する。好ましいCuの含有量は、4質量%以下である。   The content of Cu is 1% by mass or more and 5% by mass or less when the entire magnesium alloy for casting is 100% by mass. When the Cu content is 1% by mass or more, the Mg—Cu compound is sufficiently crystallized at the crystal grain boundary. When the Cu content is less than 1% by mass, the Mg—Cu compound is insufficiently crystallized at the crystal grain boundary, and therefore the strength is low. The preferable Cu content is 2% by mass or more. On the other hand, as the amount of Cu increases, the amount of the Mg—Cu-based compound crystallized at the crystal grain boundary becomes excessive and a brittle structure is formed, so that the strength decreases. The preferable Cu content is 4% by mass or less.

本発明の鋳造用マグネシウム合金は、CuとともにCaおよびSnを含む。CaおよびSnは、Cuとともに結晶粒界に存在して、三次元網目構造の形成に寄与する。具体的には、Mg−Cu系化合物とともにMg−Ca−Sn系化合物が結晶粒界に晶出して、不連続部分の少ない良好な三次元網目構造が形成される。   The magnesium alloy for casting according to the present invention contains Ca and Sn together with Cu. Ca and Sn are present in the grain boundary together with Cu and contribute to the formation of a three-dimensional network structure. Specifically, the Mg—Ca—Sn compound is crystallized at the grain boundary together with the Mg—Cu compound, and a good three-dimensional network structure with few discontinuities is formed.

Caの含有量は、鋳造用マグネシウム合金全体を100質量%としたときに、0.1質量%以上5質量%以下である。Caの含有量が0.1質量%以上であれば、結晶粒界にMg−Ca−Sn系化合物が十分に晶出する。また、マグネシウム合金へCaを添加するとマグネシウム合金の発火温度が上昇するため、マグネシウム合金を溶湯にしたときに発生することがある燃焼が防止される。好ましいCaの含有量は、0.5質量%以上である。一方、Caの含有割合が5質量%を超えると、粒界晶出物の生成量が多くなりすぎて、引張強度や伸びなどの機械的性質が低下し、後加工で問題を生じることがある。好ましいCaの含有量は、3質量%以下さらには2質量%以下である。   The content of Ca is 0.1% by mass or more and 5% by mass or less when the entire magnesium alloy for casting is 100% by mass. When the content of Ca is 0.1% by mass or more, the Mg—Ca—Sn compound is sufficiently crystallized at the crystal grain boundary. Further, when Ca is added to the magnesium alloy, the ignition temperature of the magnesium alloy rises, so that combustion that may occur when the magnesium alloy is made into a molten metal is prevented. The preferable Ca content is 0.5% by mass or more. On the other hand, when the content ratio of Ca exceeds 5% by mass, the amount of grain boundary crystallized product is excessively increased, and mechanical properties such as tensile strength and elongation are lowered, which may cause problems in post-processing. . The preferable Ca content is 3% by mass or less, and further 2% by mass or less.

Snの含有量は、カルシウム(Ca)に対する質量比(Sn/Ca)で0.1以上3以下である。Snの含有量が0.1質量%以上であれば、結晶粒界にMg−Ca−Sn系化合物が十分に晶出する。一方、Snの含有割合が多くなると、Mg−Ca−Sn系化合物が三次元網目構造から分かれて結晶粒内にも晶出するようになり、良好な三次元網目構造が形成され難くなる。その結果、耐クリープ性が低下する傾向にある。また、余剰にSnを添加した場合には、Mg−Ca−Sn系化合物だけでなく、Mg−Sn系化合物を生じる。Mg−Sn系化合物は、低融点の化合物であるため、耐クリープ性を悪化させる。そのため、Snの含有量は、Sn/Caで3以下とする。Sn/Caが3以下であれば、低融点化合物の形成が抑制される。さらに、Sn/Caが2以下であれば、不連続部分が少なく良好な三次元網目構造が形成されて高温強度や高温での耐クリープ性が向上する。すなわち、好ましいSnの含有量は、Sn/Caで2以下さらには1.5以下である。   The content of Sn is 0.1 to 3 in terms of mass ratio (Sn / Ca) to calcium (Ca). When the Sn content is 0.1% by mass or more, the Mg—Ca—Sn compound is sufficiently crystallized at the crystal grain boundary. On the other hand, when the content ratio of Sn increases, the Mg—Ca—Sn-based compound separates from the three-dimensional network structure and crystallizes in the crystal grains, and it becomes difficult to form a good three-dimensional network structure. As a result, creep resistance tends to decrease. Moreover, when Sn is added excessively, not only a Mg-Ca-Sn type compound but a Mg-Sn type compound is produced. Since the Mg—Sn compound is a low melting point compound, it deteriorates creep resistance. Therefore, the Sn content is 3 or less in terms of Sn / Ca. If Sn / Ca is 3 or less, formation of a low melting-point compound will be suppressed. Furthermore, if Sn / Ca is 2 or less, a good three-dimensional network structure with few discontinuities is formed, and high temperature strength and creep resistance at high temperature are improved. That is, the preferable Sn content is 2 or less, further 1.5 or less in terms of Sn / Ca.

なお、Snは、MgやCuよりもCaと優先的に化合物を作る。そのため、熱伝導率が高いCuやMg−Cu系化合物に悪影響を与えることがなく、その結果、マグネシウム合金の熱伝導性が低下し難くなると考えられる。このことから、Mg−Ca−Sn系化合物のSn/Caの化学量論比から考えて、SnのCaに対する質量比(Sn/Ca)を3以下さらには0.1以上2以下とするのが好ましく、Mg−Cu系化合物と化合物を形成するSnはほとんどなく、前述の低融点化合物の晶出も抑制される。   Sn makes a compound preferentially with Ca over Mg and Cu. Therefore, it is considered that Cu or Mg—Cu-based compounds having high thermal conductivity are not adversely affected, and as a result, the thermal conductivity of the magnesium alloy is hardly lowered. Therefore, considering the Sn / Ca stoichiometric ratio of the Mg—Ca—Sn compound, the mass ratio of Sn to Ca (Sn / Ca) is 3 or less, more preferably 0.1 or more and 2 or less. Preferably, there is almost no Sn forming a compound with the Mg—Cu-based compound, and crystallization of the low melting point compound is suppressed.

以上説明した本発明の鋳造用マグネシウム合金は、宇宙、航空の分野をはじめとし、自動車、電気機器など、各種分野で用いることができる。また、本発明の鋳造用マグネシウム合金からなる部材としては、その高温での特性を生かして、高温環境下で使用される製品、たとえば、使用中に高温となるコンプレッサー、ポンプ類、各種ケース類を構成する部品、また、高温および高負荷の下で用いられるエンジン部品、特に、内燃機関のシリンダヘッド、シリンダブロックやオイルパン、内燃機関のターボチャージャー用インペラ、自動車等に用いられるトランスミッションケース等が挙げられる。   The magnesium alloy for casting of the present invention described above can be used in various fields such as space and aviation, automobiles, electrical equipment and the like. In addition, as a member made of the magnesium alloy for casting according to the present invention, a product used under a high temperature environment, for example, a compressor, a pump, various cases, etc., which become high temperature during use, taking advantage of its high temperature characteristics. Component parts, engine parts used under high temperature and high load, especially cylinder heads of internal combustion engines, cylinder blocks and oil pans, impellers for turbochargers of internal combustion engines, transmission cases used in automobiles, etc. It is done.

また、本発明のマグネシウム合金鋳物は、以上詳説した本発明の鋳造用マグネシウム合金からなる鋳物である。すなわち、本発明のマグネシウム合金鋳物は注湯工程と凝固工程とを経て得られる鋳物であって、注湯工程は、全体を100質量%としたときに、1質量%以上5質量%以下の銅(Cu)と、0.1質量%以上5質量%以下のカルシウム(Ca)と、該Caに対する質量比(Sn/Ca)で0.1以上3以下の錫(Sn)と、を含み、残部がマグネシウム(Mg)と不可避不純物とからなる合金溶湯を鋳型に注湯する工程、凝固工程は、注湯工程後の合金溶湯を冷却させて凝固させる工程、である。   The magnesium alloy casting of the present invention is a casting made of the magnesium alloy for casting of the present invention described in detail above. That is, the magnesium alloy casting according to the present invention is a casting obtained through a pouring step and a solidification step, and the pouring step is performed in an amount of not less than 1% by mass and not more than 5% by mass when the total is 100% by mass. (Cu), 0.1 mass% or more and 5 mass% or less calcium (Ca), and 0.1 to 3 or less tin (Sn) by mass ratio (Sn / Ca) to Ca, and the balance The step of pouring molten alloy consisting of magnesium (Mg) and inevitable impurities into the mold, and the solidification step are steps of cooling and solidifying the molten alloy after the pouring step.

本発明のマグネシウム合金鋳物は、通常の重力鋳造や加圧鋳造に限らず、ダイカスト鋳造したものでもよい。また、鋳造に使用される鋳型も砂型、金型等を問わない。凝固工程における凝固速度(冷却速度)にも特に限定はなく、三次元網目構造が形成される程度の凝固速度を鋳塊のサイズに応じて適宜選択すればよい。なお、一般的な凝固速度で凝固させれば、ネットワーク状の金属組織が得られる。   The magnesium alloy casting of the present invention is not limited to ordinary gravity casting or pressure casting, but may be die casting. The mold used for casting may be a sand mold, a mold, or the like. There is no particular limitation on the solidification rate (cooling rate) in the solidification step, and a solidification rate at which a three-dimensional network structure is formed may be appropriately selected according to the size of the ingot. If solidified at a general solidification rate, a network-like metal structure can be obtained.

また、本発明の鋳造用マグネシウム合金およびマグネシウム合金鋳物は、鋳放し材であるのが望ましい。さらに、鋳造後に熱処理することにより、鋳物の特性を向上させてもよい。   Moreover, it is desirable that the magnesium alloy for casting and the magnesium alloy casting of the present invention be an as-cast material. Furthermore, you may improve the characteristic of a casting by heat-processing after casting.

以上、本発明の鋳造用マグネシウム合金およびマグネシウム合金鋳物の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。   As mentioned above, although embodiment of the magnesium alloy for casting of this invention and magnesium alloy casting was described, this invention is not limited to the said embodiment. The present invention can be implemented in various forms without departing from the gist of the present invention, with modifications and improvements that can be made by those skilled in the art.

以下に実施例を挙げて、本発明を具体的に説明する。   The present invention will be specifically described below with reference to examples.

マグネシウム合金中の合金元素の含有量を変更した試験片を複数製作し、それらの特性の評価および金属組織の観察を行った。   A plurality of test pieces having different alloy element contents in the magnesium alloy were manufactured, their characteristics were evaluated, and the metal structure was observed.

[試験片#01〜#05の作製]
電気炉中で予熱した鉄製るつぼの内面に塩化物系のフラックスを塗布し、その中に秤量した純マグネシウム地金、純Cuおよび必要に応じて純Snを投入して溶解した。さらに、750℃に保持したこの溶湯中に秤量したCaを添加した(溶湯調製工程)。
[Production of test pieces # 01 to # 05]
Chloride-based flux was applied to the inner surface of an iron crucible preheated in an electric furnace, and weighed pure magnesium ingot, pure Cu, and pure Sn as needed, were dissolved. Furthermore, weighed Ca was added to the molten metal maintained at 750 ° C. (molten preparation step).

この溶湯を十分に攪拌し、原料を完全に溶解させた後、同温度でしばらく沈静保持した。こうして得た各種の合金溶湯を所定の形状の金型に流し込み(注湯工程)、大気雰囲気中で凝固させて(凝固工程)、#01〜#05の試験片(マグネシウム合金鋳物)を鋳造した。なお、得られた試験片は、30mm×30mm×200mmであった。各試験片の化学組成を表1に示す。   The molten metal was sufficiently stirred to completely dissolve the raw material, and then kept calm at the same temperature for a while. The various alloy melts thus obtained were poured into a mold having a predetermined shape (pouring process) and solidified in an air atmosphere (solidification process) to cast # 01- # 05 test pieces (magnesium alloy castings). . In addition, the obtained test piece was 30 mm x 30 mm x 200 mm. Table 1 shows the chemical composition of each test piece.

[熱伝導率の測定]
上記の手順で作製した#01〜#05の試験片に加え、市販のAZ91D(組成は表1に記載)から作製した同様の試験片について、レーザーフラッシュ法により熱伝導率を求めた。試験結果を表1および図1に示す。
[Measurement of thermal conductivity]
In addition to the # 01 to # 05 test pieces prepared by the above procedure, the thermal conductivity of the same test piece prepared from commercially available AZ91D (composition is described in Table 1) was determined by the laser flash method. The test results are shown in Table 1 and FIG.

[応力緩和試験]
表1に示した試験片#01〜#05およびAZ91Dから作製した試験片について、応力緩和試験を行い、マグネシウム合金の耐クリープ性を調べた。応力緩和試験は、試験片に試験時間中、所定の変形量まで荷重を加えたときの応力が、時間とともに減少する過程を測定する。具体的には、200℃の大気雰囲気中において、試験片に100MPaの圧縮応力を負荷し、そのときの試験片の変位が一定に保たれるように、時間の経過に併せてその圧縮応力を低下させていった。試験開始から40時間後の応力低下量を、表1および図2に示す。また、試験片に付加される圧縮応力を10分毎にプロットして作成したグラフを図3に示す。
[Stress relaxation test]
The test pieces prepared from the test pieces # 01 to # 05 and AZ91D shown in Table 1 were subjected to a stress relaxation test to examine the creep resistance of the magnesium alloy. The stress relaxation test measures a process in which stress when a load is applied to a test piece during a test time up to a predetermined deformation amount decreases with time. Specifically, in an air atmosphere at 200 ° C., a compressive stress of 100 MPa is applied to the test piece, and the compressive stress is adjusted with the passage of time so that the displacement of the test piece is kept constant. It was lowered. The amount of stress reduction 40 hours after the start of the test is shown in Table 1 and FIG. Moreover, the graph produced by plotting the compressive stress added to a test piece every 10 minutes is shown in FIG.

[金属組織の観察]
表1に示した試験片#01〜#05の表面を観察した。表面観察は、各試験片から切り出された断面を金属顕微鏡で観察して行った。#01〜#05の表面の金属組織を、それぞれ図4〜図8に示すが、各図において、(a)は低倍率、(b)は高倍率で同じ断面を観察した。
[Observation of metal structure]
The surfaces of test pieces # 01 to # 05 shown in Table 1 were observed. Surface observation was performed by observing a cross section cut out from each test piece with a metallographic microscope. The metal structures on the surfaces of # 01 to # 05 are shown in FIGS. 4 to 8, respectively. In each figure, (a) is a low magnification, and (b) is a high magnification, the same cross section was observed.

試験片#01では、図4(a)からわかるように、結晶粒界に金属間化合物が晶出してなる三次元網目構造が確認された。また、図4(b)において、結晶粒界で明るく見えるのはCuMgであり、暗く見えるのはMgCaであることをEPMA(エレクトロンプローブマイクロアナライザ)およびXRD(X線回折)により確認した。また、試験片#02および#03では、図5(a)および図6(a)からわかるように、#01よりも網目が細かく連続性の高い三次元網目構造が確認された。また、図5(b)および図6(b)において、結晶粒界で明るく見えるのはCuMgであり、暗く見えるのはMgCaおよびMgCaSnであることをEPMAおよびXRDにより確認した。一方、試験片#04および#05では、図7および図8の各図からわかるように、晶出物が結晶粒の内部にも晶出したことで、三次元網目構造が完全に形成されなかった。ここで、図7(b)および図8(b)に、粒界および粒内に晶出した晶出物を少なくとも一カ所、矢印で示す。図7(b)および図8(b)において、Gaは粒内晶出物、Gbは粒界晶出物である。粒内に晶出するのはMgCaSnであることをEPMAおよびXRDにより確認した。さらに、試験片#05では、低融点化合物であるMgSnがXRDにより検出された。 In test piece # 01, as can be seen from FIG. 4A, a three-dimensional network structure in which an intermetallic compound was crystallized at the grain boundary was confirmed. Further, in FIG. 4B, it was confirmed by EPMA (Electron Probe Microanalyzer) and XRD (X-ray diffraction) that CuMg 2 appears bright at the grain boundary and Mg 2 Ca appears dark. . Further, in test pieces # 02 and # 03, as can be seen from FIGS. 5 (a) and 6 (a), a three-dimensional network structure having finer mesh and higher continuity than # 01 was confirmed. Further, in FIGS. 5B and 6B, it was confirmed by EPMA and XRD that CuMg 2 appeared bright at the grain boundaries and Mg 2 Ca and MgCaSn appeared dark. On the other hand, in test pieces # 04 and # 05, as can be seen from each of FIGS. 7 and 8, the three-dimensional network structure was not completely formed because the crystallized product also crystallized inside the crystal grains. It was. Here, in FIG. 7 (b) and FIG. 8 (b), at least one crystallized substance crystallized in the grain boundary and in the grain is indicated by an arrow. 7 (b) and 8 (b), Ga is an intragranular crystallized product, and Gb is a grain boundary crystallized product. It was confirmed by EPMA and XRD that MgCaSn crystallized in the grains. Further, in test piece # 05, Mg 2 Sn, which is a low melting point compound, was detected by XRD.

Figure 2008266733
Figure 2008266733

#01〜#05の試験片は、いずれもAZ91Dよりも熱伝導性に優れた。Snを含まない#01の試験片の熱伝導率は155W/mKであったが、#02〜#04の試験片では、Snの添加による熱伝導性の低下は見られなかった。一方、Snの含有量が過剰である#05では、AZ91Dよりも熱伝導性に優れるものの、#01との熱伝導率の差が大きかった。   All of the test pieces of # 01 to # 05 were superior in thermal conductivity to AZ91D. The thermal conductivity of the # 01 test piece not containing Sn was 155 W / mK, but no decrease in thermal conductivity due to the addition of Sn was observed in the # 02 to # 04 test pieces. On the other hand, in # 05 where the Sn content is excessive, although the thermal conductivity is superior to AZ91D, the difference in thermal conductivity from # 01 was large.

また、Snを含むマグネシウム合金からなる#02〜#04の試験片は、200℃での応力緩和試験における試験開始から40時間後の応力低下量が、試験片#01よりも少なかった。すなわち、Mg−Cu−Ca合金(#01)にSnを添加することで、高温における耐クリープ性が向上した。これは、三次元網目構造に不連続な部分が多い#01にくらべ、#02〜#04のほうが連続性の高い三次元網目構造を有するからであると推測される。一方で、Snを2質量%含む#04では、Snを含まない#01よりは40時間後の耐クリープ性に優れるものの、#02および#03には劣った。#04の金属組織が、三次元網目構造が#02や#03よりも不完全であったためだと考えられる。Snを4質量%含む#05は、三次元網目構造が不完全であり、低融点化合物であるMgSnを含むため、耐クリープ性が悪化したと考えられる。 In addition, the test pieces of # 02 to # 04 made of a magnesium alloy containing Sn had less stress reduction after 40 hours from the start of the test in the stress relaxation test at 200 ° C. than the test piece # 01. That is, the addition of Sn to the Mg—Cu—Ca alloy (# 01) improved the creep resistance at high temperatures. This is presumed to be because # 02 to # 04 have a highly continuous three-dimensional network structure as compared to # 01 where there are many discontinuous parts in the three-dimensional network structure. On the other hand, # 04 containing 2% by mass of Sn was inferior to # 02 and # 03, although it had better creep resistance after 40 hours than # 01 containing no Sn. It is thought that the # 04 metal structure was due to the incomplete three-dimensional network structure than # 02 and # 03. # 05 containing 4% by mass of Sn is considered to have deteriorated creep resistance because the three-dimensional network structure is incomplete and Mg 2 Sn which is a low melting point compound is contained.

さらに、#02および#03の試験片は、試験開始後約3時間後の応力低下量が#01よりも多いが、3〜40時間までの応力の変化量は小さく、安定していた。また、#04の試験片は、試験開始後約3時間後の応力低下量が#01やAZ91Dよりも多いが、3〜40時間までの応力の変化量は小さく、安定していた。(図3)   Further, the test pieces of # 02 and # 03 had a larger amount of stress reduction after about 3 hours after the start of the test than # 01, but the amount of change in stress from 3 to 40 hours was small and stable. In addition, the # 04 test piece had a greater amount of stress reduction after about 3 hours after the start of the test than # 01 and AZ91D, but the amount of change in stress from 3 to 40 hours was small and stable. (Figure 3)

なお、上記の各試験片は、Cuを3質量%、Caを1質量%で一定とした。いずれの試験片においても、Cuであれば2.7質量%以上3.3質量%以下、Caであれば0.7質量%以上1.3質量%以下の範囲で、上記の各試験片と同程度の熱伝導率および耐クリープ性を示す。   In addition, each said test piece made constant 3 mass% Cu and 1 mass% Ca. In any test piece, in the range of 2.7 mass% to 3.3 mass% for Cu and 0.7 mass% to 1.3 mass% for Ca, Shows similar thermal conductivity and creep resistance.

すなわち、適切な含有量のCu、CaおよびSnを含むマグネシウム合金は、Snの添加による熱伝導性の低下がみられず、高温における耐クリープ性に優れる。   That is, a magnesium alloy containing Cu, Ca, and Sn with appropriate contents does not show a decrease in thermal conductivity due to the addition of Sn, and is excellent in creep resistance at high temperatures.

合金組成の異なるマグネシウム合金の熱伝導率を示すグラフである。It is a graph which shows the heat conductivity of the magnesium alloy from which an alloy composition differs. 合金組成の異なるマグネシウム合金の応力緩和試験における、試験開始から40時間後の応力低下量を示すグラフである。It is a graph which shows the stress fall amount 40 hours after a test start in the stress relaxation test of the magnesium alloy from which an alloy composition differs. 応力緩和試験の試験時間に対し、試験片に付加される圧縮応力を10分毎にプロットしたグラフである。It is the graph which plotted the compressive stress added to a test piece every 10 minutes with respect to the test time of a stress relaxation test. Mg−3質量%Cu−1質量%Ca合金(#01)の金属組織を示す図面代用写真である。It is a drawing substitute photograph which shows the metal structure of Mg-3 mass% Cu-1 mass% Ca alloy (# 01). Mg−3質量%Cu−1質量%Ca−0.1質量%Sn(#02)合金の金属組織を示す図面代用写真である。It is a drawing substitute photograph which shows the metal structure of Mg-3 mass% Cu-1 mass% Ca-0.1 mass% Sn (# 02) alloy. Mg−3質量%Cu−1質量%Ca−1質量%Sn(#03)合金の金属組織を示す図面代用写真である。It is a drawing substitute photograph which shows the metal structure of Mg-3 mass% Cu-1 mass% Ca-1 mass% Sn (# 03) alloy. Mg−3質量%Cu−1質量%Ca−2質量%Sn(#04)合金の金属組織を示す図面代用写真である。It is a drawing substitute photograph which shows the metal structure of Mg-3 mass% Cu-1 mass% Ca-2 mass% Sn (# 04) alloy. Mg−3質量%Cu−1質量%Ca−4質量%Sn(#05)合金の金属組織を示す図面代用写真である。It is a drawing substitute photograph which shows the metal structure of Mg-3 mass% Cu-1 mass% Ca-4 mass% Sn (# 05) alloy.

Claims (5)

全体を100質量%としたときに、1質量%以上5質量%以下の銅(Cu)と、0.1質量%以上5質量%以下のカルシウム(Ca)と、該Caに対する質量比(Sn/Ca)で0.1以上3以下の錫(Sn)と、を含み、残部がマグネシウム(Mg)と不可避不純物とからなることを特徴とする鋳造用マグネシウム合金。   When the total is 100% by mass, 1% by mass to 5% by mass of copper (Cu), 0.1% by mass to 5% by mass of calcium (Ca), and a mass ratio to the Ca (Sn / A magnesium alloy for casting which contains 0.1 to 3 tin (Sn) in Ca), the balance being magnesium (Mg) and inevitable impurities. 前記銅(Cu)は、2質量%以上4質量%以下である請求項1記載の鋳造用マグネシウム合金。   The magnesium alloy for casting according to claim 1, wherein the copper (Cu) is 2% by mass or more and 4% by mass or less. 前記カルシウム(Ca)は、0.5質量%以上3質量%以下である請求項1記載の鋳造用マグネシウム合金。   The magnesium alloy for casting according to claim 1, wherein the calcium (Ca) is 0.5 mass% or more and 3 mass% or less. 前記錫(Sn)は、前記カルシウム(Ca)に対する質量比(Sn/Ca)で0.1以上2以下である請求項1記載の鋳造用マグネシウム合金。   The magnesium alloy for casting according to claim 1, wherein the tin (Sn) has a mass ratio (Sn / Ca) to the calcium (Ca) of 0.1 or more and 2 or less. 全体を100質量%としたときに、1質量%以上5質量%以下の銅(Cu)と、0.1質量%以上5質量%以下のカルシウム(Ca)と、該Caに対する質量比(Sn/Ca)で0.1以上3以下の錫(Sn)と、を含み、残部がマグネシウム(Mg)と不可避不純物とからなる合金溶湯を鋳型に注湯する注湯工程と、
該注湯工程後の合金溶湯を冷却させて凝固させる凝固工程と、
を経て得られることを特徴とするマグネシウム合金鋳物。
When the total is 100% by mass, 1% by mass to 5% by mass of copper (Cu), 0.1% by mass to 5% by mass of calcium (Ca), and a mass ratio to the Ca (Sn / A pouring step of pouring a molten alloy containing 0.1 to 3 tin (Sn) and a balance of magnesium (Mg) and inevitable impurities into a mold;
A solidification step of cooling and solidifying the molten alloy after the pouring step;
Magnesium alloy casting characterized by being obtained through
JP2007112014A 2007-04-20 2007-04-20 Magnesium alloy for casting, and magnesium alloy casting Pending JP2008266733A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007112014A JP2008266733A (en) 2007-04-20 2007-04-20 Magnesium alloy for casting, and magnesium alloy casting
EP08740692A EP2138595A1 (en) 2007-04-20 2008-04-14 Magnesium alloy for casting and magnesium alloy cast
PCT/JP2008/057646 WO2008133218A1 (en) 2007-04-20 2008-04-14 Magnesium alloy for casting and magnesium alloy cast
US12/596,815 US20100209285A1 (en) 2007-04-20 2008-04-14 Magnesium alloy for casting and magnesium-alloy cast product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007112014A JP2008266733A (en) 2007-04-20 2007-04-20 Magnesium alloy for casting, and magnesium alloy casting

Publications (1)

Publication Number Publication Date
JP2008266733A true JP2008266733A (en) 2008-11-06

Family

ID=39925672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007112014A Pending JP2008266733A (en) 2007-04-20 2007-04-20 Magnesium alloy for casting, and magnesium alloy casting

Country Status (4)

Country Link
US (1) US20100209285A1 (en)
EP (1) EP2138595A1 (en)
JP (1) JP2008266733A (en)
WO (1) WO2008133218A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104561709A (en) * 2014-12-04 2015-04-29 沈阳工业大学 High-creep-performance casting magnesium alloy and preparation method thereof
KR101573713B1 (en) * 2013-12-04 2015-12-03 한국생산기술연구원 Magnesium alloys having high thermal conductivity

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8435444B2 (en) 2009-08-26 2013-05-07 Techmag Ag Magnesium alloy
CN103233138B (en) * 2013-04-28 2015-10-14 重庆大学 Mg-Al series magnesium alloy grain-refining agent and preparation method thereof
CN103938045B (en) * 2014-04-30 2016-04-06 东北大学 A kind of calcic wrought magnesium alloys and bar preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625791A (en) * 1992-03-25 1994-02-01 Mitsui Mining & Smelting Co Ltd High-strength magnesium alloy

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO152944C (en) * 1978-05-31 1985-12-18 Magnesium Elektron Ltd MAGNESIUM ALLOY WITH GOOD MECHANICAL PROPERTIES.
JP2003113436A (en) * 2001-10-03 2003-04-18 Matsumoto Seisakusho:Kk Magnesium alloy with high damping ability
JP2005054233A (en) * 2003-08-04 2005-03-03 Chiba Inst Of Technology Heat resistant magnesium alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625791A (en) * 1992-03-25 1994-02-01 Mitsui Mining & Smelting Co Ltd High-strength magnesium alloy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN7012003067; K. P. Rao et al.: 'High Temperature Deformation Behaviour of a New Magnesium Alloy' Key Engineering Materials vols. 340-341, 20070412, p. 89-94 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101573713B1 (en) * 2013-12-04 2015-12-03 한국생산기술연구원 Magnesium alloys having high thermal conductivity
CN104561709A (en) * 2014-12-04 2015-04-29 沈阳工业大学 High-creep-performance casting magnesium alloy and preparation method thereof

Also Published As

Publication number Publication date
US20100209285A1 (en) 2010-08-19
WO2008133218A1 (en) 2008-11-06
EP2138595A1 (en) 2009-12-30

Similar Documents

Publication Publication Date Title
JP2008266734A (en) Magnesium alloy for casting, and magnesium alloy casting
JP5146767B2 (en) Magnesium alloy for casting and method for producing magnesium alloy casting
JP5327515B2 (en) Magnesium alloys for casting and magnesium alloy castings
JP4539572B2 (en) Magnesium alloys and castings for casting
JP5703881B2 (en) High strength magnesium alloy and method for producing the same
KR101395276B1 (en) Mg-Al based alloys for high temperature casting
JP2006291327A (en) Heat-resistant magnesium alloy casting
JP4852082B2 (en) Magnesium alloy
JP2014152375A (en) Piston material for internal combustion engine and method of manufacturing the same
JP2008266733A (en) Magnesium alloy for casting, and magnesium alloy casting
JP6814446B2 (en) Flame-retardant magnesium alloy and its manufacturing method
JP2004162090A (en) Heat resistant magnesium alloy
US8123877B2 (en) Heat-resistant magnesium alloy for casting heat-resistant magnesium alloy cast product, and process for producing heat-resistant magnesium alloy cast product
JP2005187896A (en) Heat resistant magnesium alloy casting
JP2005240129A (en) Heat resistant magnesium alloy casting
JP5590413B2 (en) High thermal conductivity magnesium alloy
JP2011219820A (en) Heat resisting magnesium alloy
JPWO2008120497A1 (en) Heat resistant magnesium alloy
JP2005187895A (en) Heat resistant magnesium alloy casting
CN110573637B (en) Al-Si-Fe aluminum alloy casting material and method for producing same
JP4065977B2 (en) Aluminum alloy for casting with excellent high temperature strength
JP2005240130A (en) Heat resistant magnesium alloy casting
JP2005187894A (en) Heat resistant magnesium alloy casting
JP2007169756A (en) Heat resistant magnesium alloy
JP2024132243A (en) Eutectic Al-Si alloy for casting and eutectic Al-Si alloy casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121122