JP5590413B2 - High thermal conductivity magnesium alloy - Google Patents

High thermal conductivity magnesium alloy Download PDF

Info

Publication number
JP5590413B2
JP5590413B2 JP2011062771A JP2011062771A JP5590413B2 JP 5590413 B2 JP5590413 B2 JP 5590413B2 JP 2011062771 A JP2011062771 A JP 2011062771A JP 2011062771 A JP2011062771 A JP 2011062771A JP 5590413 B2 JP5590413 B2 JP 5590413B2
Authority
JP
Japan
Prior art keywords
magnesium alloy
thermal conductivity
content
alloy
ductility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011062771A
Other languages
Japanese (ja)
Other versions
JP2012197490A (en
Inventor
夕紀 岡本
正則 原田
元治 谷澤
裕哉 赤塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2011062771A priority Critical patent/JP5590413B2/en
Publication of JP2012197490A publication Critical patent/JP2012197490A/en
Application granted granted Critical
Publication of JP5590413B2 publication Critical patent/JP5590413B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)

Description

本発明は、高温下での使用に好適な高熱伝導性マグネシウム合金に関する。   The present invention relates to a highly thermally conductive magnesium alloy suitable for use at high temperatures.

アルミニウム合金よりもさらに軽量なマグネシウム合金は、軽量化の観点から航空機材料や車両材料などとして広く用いられつつある。しかしながら、マグネシウム合金は、用途によっては要求される特性が十分に発揮されないため、さらなる特性の向上が求められている。   Magnesium alloys that are lighter than aluminum alloys are being widely used as aircraft materials and vehicle materials from the viewpoint of weight reduction. However, the magnesium alloy does not sufficiently exhibit the required characteristics depending on the application, and therefore further improvement of the characteristics is required.

たとえば、一般的なマグネシウム合金として、AZ91D(ASTM記号)がある。AZ91Dの熱伝導率は60W/mK程度であるため、使用環境が高温であったり使用中に発熱したりする部材に用いられると、放熱が良好に行われず、部材に熱変形が生じることがある。特に、内燃機関のシリンダヘッドやシリンダブロックに用いられるマグネシウム合金として熱伝導率の低いマグネシウム合金を用いると、シリンダヘッドが熱変形したり、シリンダブロック内に熱がこもりシリンダボアが変形することで、摩擦が増大したり気密性が低下したりするなどの悪影響が生じる。そのため、高い熱伝導率をもつマグネシウム合金が求められている。また、一般的なマグネシウム合金は、その延性についても十分とは言えない。   For example, as a general magnesium alloy, there is AZ91D (ASTM symbol). Since the thermal conductivity of AZ91D is about 60 W / mK, when used in a member that is used in a high temperature environment or generates heat during use, heat dissipation is not performed well, and the member may be thermally deformed. . In particular, if a magnesium alloy with low thermal conductivity is used as the magnesium alloy used in the cylinder head or cylinder block of an internal combustion engine, the cylinder head is thermally deformed, the heat is accumulated in the cylinder block, and the cylinder bore is deformed. Adverse effects such as increase in the airtightness and decrease in airtightness occur. Therefore, a magnesium alloy having a high thermal conductivity is demanded. Moreover, it cannot be said that a general magnesium alloy has sufficient ductility.

高温環境での使用を前提としたマグネシウム合金は、これまでにも開発されている。特許文献1には、高温での使用を目的としたマグネシウム合金が開示されている。実施例13のマグネシウム合金は、亜鉛を6.1重量%、珪素を1.0重量%、マンガンを0.30重量%含む。   Magnesium alloys premised on use in high temperature environments have been developed so far. Patent Document 1 discloses a magnesium alloy intended for use at high temperatures. The magnesium alloy of Example 13 contains 6.1 wt% zinc, 1.0 wt% silicon, and 0.30 wt% manganese.

また、特許文献2には、実施例13よりも亜鉛含有量を大きく低減させた、延性に優れたマグネシウム合金が開示されている。表2には、亜鉛を0.2〜1.0重量%、珪素を0.4〜1.4重量%、マンガンを0.2〜0.4重量%含むマグネシウム合金が示されている。   Patent Document 2 discloses a magnesium alloy excellent in ductility in which the zinc content is greatly reduced as compared with Example 13. Table 2 shows a magnesium alloy containing 0.2 to 1.0% by weight of zinc, 0.4 to 1.4% by weight of silicon, and 0.2 to 0.4% by weight of manganese.

特開平5−255794号公報JP-A-5-255794 特公昭38−1954号公報Japanese Examined Patent Publication No. 38-1954

特許文献1では、実施例13のマグネシウム合金に対して、150℃において引張試験を行い、高温での強度を評価している。しかしながら、マグネシウム合金の熱伝導率については全く触れられていない。また、特許文献2では、マグネシウム合金の延性を改善するために亜鉛の含有量を0.5〜1.3重量%とすることが記載されているが、高温での特性については評価されていない。つまり、高温で使用するマグネシウム合金に必要とされる熱伝導性および高温耐クリープ性、さらには延性を、十分なレベルで満足するマグネシウム合金は得られていないのが現状である。   In Patent Document 1, a tensile test is performed on the magnesium alloy of Example 13 at 150 ° C. to evaluate strength at high temperature. However, no mention is made of the thermal conductivity of the magnesium alloy. Patent Document 2 describes that the zinc content is 0.5 to 1.3% by weight in order to improve the ductility of the magnesium alloy, but the properties at high temperatures are not evaluated. . That is, the present situation is that a magnesium alloy satisfying a sufficient level of thermal conductivity, high temperature creep resistance, and ductility required for a magnesium alloy used at a high temperature has not been obtained.

本発明は、延性および耐クリープ性を両立する高熱伝導性マグネシウム合金を提供することを目的とする。   An object of the present invention is to provide a highly heat-conductive magnesium alloy having both ductility and creep resistance.

本発明の高熱伝導性マグネシウム合金は、全体を100質量%としたときに(以下単に「%」という。)、
1.5%以上4.3%以下の亜鉛(Zn)と、
0.3%以上2%以下の珪素(Si)と、
0.1%以上0.5%以下のマンガン(Mn)と、
残部がマグネシウム(Mg)と不可避不純物および/または改質元素とからなることを特徴とする。
The high thermal conductivity magnesium alloy of the present invention is 100% by mass as a whole (hereinafter simply referred to as “%”).
1.5% to 4.3% zinc (Zn);
0.3% or more and 2% or less of silicon (Si);
0.1% to 0.5% manganese (Mn);
The balance is made of magnesium (Mg) and inevitable impurities and / or modifying elements.

本発明者等は、Zn、SiおよびMnを含むマグネシウム合金が、一般的なAZ91Dよりも熱伝導性に優れることを新たに見出した。さらに、Zn含有量を上記の範囲とすることで、延性および耐クリープ性を両立する本発明のマグネシウム合金が得られることがわかった。Znを含まずSiを含むマグネシウム合金は、α−Mg結晶粒の粒界にMgSiが三次元網目状に晶出するが、このような構造は、耐クリープ性に有利に働かないことがわかった。そして、SiとともにZnを含むマグネシウム合金は、粒状のMgSiが均一に分散する金属組織が得られやすいことがわかった。上記の範囲でZnを含む本発明のマグネシウム合金は、Znがマグネシウムのα相に固溶してマグネシウム合金が固溶強化されるとともに、MgSiが金属組織に均一に分散することで、マグネシウム合金の延性および耐クリープ性がともに高く維持される。 The present inventors have newly found that a magnesium alloy containing Zn, Si, and Mn has better thermal conductivity than general AZ91D. Furthermore, it turned out that the magnesium alloy of this invention which makes ductility and creep resistance compatible is obtained by making Zn content into said range. In a magnesium alloy that does not contain Zn but contains Si, Mg 2 Si crystallizes in a three-dimensional network at the grain boundaries of α-Mg crystal grains. However, such a structure may not work favorably in creep resistance. all right. Then, it was found that a magnesium alloy containing Zn together with Si can easily obtain a metal structure in which granular Mg 2 Si is uniformly dispersed. In the magnesium alloy of the present invention containing Zn within the above range, Zn is solid-solved in the α phase of magnesium, the magnesium alloy is solid-solution strengthened, and Mg 2 Si is uniformly dispersed in the metal structure. Both the ductility and creep resistance of the alloy are maintained high.

本発明のマグネシウム合金は、熱伝導性が高く、延性および耐クリープ性を両立する。   The magnesium alloy of the present invention has high thermal conductivity, and achieves both ductility and creep resistance.

種々のマグネシウム合金のZn含有量に対する熱伝導率を示すグラフである。It is a graph which shows the heat conductivity with respect to Zn content of various magnesium alloys. 種々のマグネシウム合金のZn含有量に対する応力保持率を示すグラフである。It is a graph which shows the stress retention with respect to Zn content of various magnesium alloys. 種々のマグネシウム合金のZn含有量に対する引張強さを示すグラフである。It is a graph which shows the tensile strength with respect to Zn content of various magnesium alloys. 種々のマグネシウム合金のZn含有量に対する伸びを示すグラフである。It is a graph which shows the elongation with respect to Zn content of various magnesium alloys. 種々のマグネシウム合金のZn含有量に対する0.2%耐力を示すグラフである。It is a graph which shows 0.2% yield strength with respect to Zn content of various magnesium alloys. 種々のマグネシウム合金のZn含有量に対する硬さを示すグラフである。It is a graph which shows the hardness with respect to Zn content of various magnesium alloys. Mg−0.9Si−0.2Mn合金のEPMA(エレクトロンプローブマイクロアナライザ)反射電子像(組成像)を示す図面代用写真である。It is a drawing substitute photograph which shows the EPMA (electron probe microanalyzer) reflected electron image (composition image) of a Mg-0.9Si-0.2Mn alloy. Mg−0.9Si−0.2Mn合金をEPMAにより面分析した結果である。It is the result of surface analysis of the Mg-0.9Si-0.2Mn alloy by EPMA. Mg−1.4Zn−1.1Si−0.3Mn合金のEPMA反射電子像(組成像)を示す図面代用写真である。It is a drawing substitute photograph which shows the EPMA reflection electron image (composition image) of a Mg-1.4Zn-1.1Si-0.3Mn alloy. Mg−1.4Zn−1.1Si−0.3Mn合金をEPMAにより面分析した結果である。It is the result of surface analysis of the Mg-1.4Zn-1.1Si-0.3Mn alloy by EPMA. Mg−1.9Zn−1.7Si−0.3Mn合金のEPMA反射電子像(組成像)を示す図面代用写真である。It is a drawing substitute photograph which shows the EPMA reflection electron image (composition image) of a Mg-1.9Zn-1.7Si-0.3Mn alloy. Mg−2.2Zn−1.1Si−0.3Mn合金のEPMA反射電子像(組成像)を示す図面代用写真である。It is a drawing substitute photograph which shows the EPMA reflection electron image (composition image) of a Mg-2.2Zn-1.1Si-0.3Mn alloy. Mg−3.1Zn−1.3Si−0.2Mn合金のEPMA反射電子像(組成像)を示す図面代用写真である。It is a drawing substitute photograph which shows the EPMA reflection electron image (composition image) of a Mg-3.1Zn-1.3Si-0.2Mn alloy. Mg−3.1Zn−1.3Si−0.2Mn合金EPMAにより面分析した結果である。It is the result of surface analysis by Mg-3.1Zn-1.3Si-0.2Mn alloy EPMA. Mg−4.1Zn−1.6Si−0.3Mn合金のEPMA反射電子像(組成像)を示す図面代用写真である。It is a drawing substitute photograph which shows the EPMA reflection electron image (composition image) of a Mg-4.1Zn-1.6Si-0.3Mn alloy. Mg−4.6Zn−1.2Si−0.2Mn合金のEPMA反射電子像(組成像)を示す図面代用写真である。It is a drawing substitute photograph which shows the EPMA reflection electron image (composition image) of a Mg-4.6Zn-1.2Si-0.2Mn alloy. Mg−4.6Zn−1.2Si−0.2Mn合金をEPMAにより面分析した結果である。This is a result of surface analysis of the Mg-4.6Zn-1.2Si-0.2Mn alloy by EPMA. Mg−6.0Zn−0.9Si−0.3Mn合金のEPMA反射電子像(組成像)を示す図面代用写真である。It is a drawing substitute photograph which shows the EPMA reflection electron image (composition image) of a Mg-6.0Zn-0.9Si-0.3Mn alloy. Mg−2.9Zn−0.6Si−0.3Mn合金のEPMA反射電子像(組成像)を示す図面代用写真である。It is a drawing substitute photograph which shows the EPMA reflection electron image (composition image) of a Mg-2.9Zn-0.6Si-0.3Mn alloy. Mg−2.9Zn−3.1Si−0.3Mn合金のEPMA反射電子像(組成像)を示す図面代用写真である。It is a drawing substitute photograph which shows the EPMA reflection electron image (composition image) of a Mg-2.9Zn-3.1Si-0.3Mn alloy.

以下に実施形態を挙げて本発明をより詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to embodiments.

本発明の高熱伝導性マグネシウム合金は、Znと、Siと、Mnと、残部がマグネシウム(Mg)と不可避不純物および/または改質元素とからなる。   The high thermal conductivity magnesium alloy of the present invention is composed of Zn, Si, Mn, the balance being magnesium (Mg), unavoidable impurities and / or modifying elements.

Znは、α相に固溶して、マグネシウム合金の機械的強度を向上させる元素である。Znの含有量が多いと機械的強度および耐クリープ性は向上するが、1.5%以上とすることで十分な耐クリープ性を確保することができる。好ましいZn含有量は、1.8%以上、1.9%以上、2.5%以上、2.7%以上、さらに好ましくは2.8%以上、特に好ましくは2.9%以上である。しかし、Znが過多であると、粗大なMgZnが晶出したり、MgSiを粗大化させたり、といった延性を低下させる要因となる。また、過剰なZnの添加は、熱伝導率を低下させる。そのため、Zn含有量は4.3%以下とする。好ましくは3.6%以下、3.4%以下、さらに好ましくは3.2%以下、特に好ましくは3.1%以下である。 Zn is an element that improves the mechanical strength of the magnesium alloy by dissolving in the α phase. When the Zn content is large, mechanical strength and creep resistance are improved, but by setting the content to 1.5% or more, sufficient creep resistance can be ensured. A preferable Zn content is 1.8% or more, 1.9% or more, 2.5% or more, 2.7% or more, more preferably 2.8% or more, and particularly preferably 2.9% or more. However, when Zn is excessive, coarse MgZn 2 is crystallized or Mg 2 Si is coarsened, which causes a reduction in ductility. Moreover, addition of excess Zn reduces thermal conductivity. Therefore, the Zn content is set to 4.3% or less. Preferably it is 3.6% or less, 3.4% or less, More preferably, it is 3.2% or less, Most preferably, it is 3.1% or less.

Siは、α−Mg結晶粒の粒界にMgSiとして晶出し、マグネシウム合金の機械的強度を向上させる元素である。Znを含有しないマグネシウム合金では、MgSiが三次元網目状に晶出するが、前述のとおり、本発明のマグネシウム合金では、SiとともにZnが存在することで、粒界に晶出するMnSiは粒状に分断されて均一に分散される。このような金属組織を有する本発明のマグネシウム合金は、機械的強度を大きく低下させることなく、延性および耐クリープ性を十分に維持できると考えらえる。MgSiの晶出量を確保する観点から、Si含有量は0.3%以上とする。好ましくは、0.4%以上さらに好ましくは0.5%以上である。しかし、Siが過多であると、MgSiが粗大な初晶として晶出して延性を低下させる。また、Si量の増加とともに液相温度が上昇し、鋳造の際の湯流れが悪くなる。そのため、Si含有量は2%以下とする。好ましくは、1.8%以下さらに好ましくは1.5%以下である。 Si is an element that crystallizes as Mg 2 Si at the grain boundary of α-Mg crystal grains and improves the mechanical strength of the magnesium alloy. In a magnesium alloy not containing Zn, Mg 2 Si crystallizes in a three-dimensional network, but as described above, in the magnesium alloy of the present invention, Mn 2 crystallizes at grain boundaries due to the presence of Zn together with Si. Si is divided into particles and uniformly dispersed. It can be considered that the magnesium alloy of the present invention having such a metal structure can sufficiently maintain ductility and creep resistance without greatly reducing the mechanical strength. From the viewpoint of securing the crystallization amount of Mg 2 Si, the Si content is set to 0.3% or more. Preferably, it is 0.4% or more, more preferably 0.5% or more. However, if Si is excessive, Mg 2 Si is crystallized as a coarse primary crystal and the ductility is lowered. In addition, the liquidus temperature rises as the Si amount increases, and the hot water flow during casting deteriorates. Therefore, the Si content is 2% or less. Preferably, it is 1.8% or less, more preferably 1.5% or less.

Mnは、Znと同様にα相に固溶して、マグネシウム合金の機械的強度を向上させる元素である。そのため、Mnは、高い熱伝導性および高い延性を維持するために添加を抑制したZn量を補う役割を果たす。しかし、Mnが過多であると、粒界に粗大な塊状の化合物が晶出して延性が低下する。そのため、望ましいMn含有量は0.1%以上0.5%以下である。   Mn is an element that improves the mechanical strength of the magnesium alloy by being dissolved in the α phase in the same manner as Zn. Therefore, Mn plays a role of supplementing the Zn content that is suppressed from being added in order to maintain high thermal conductivity and high ductility. However, when Mn is excessive, a coarse massive compound crystallizes at the grain boundary and the ductility is lowered. Therefore, the desirable Mn content is 0.1% or more and 0.5% or less.

本発明のマグネシウム合金に含まれる不可避不純物としては、たとえば、Al、Fe、Ni、Cu、Cl、Ca、K、Be等が挙げられる。これらの各不可避不純物は、0.02%以下さらには0.01%以下とするのが好ましい。   Examples of the inevitable impurities contained in the magnesium alloy of the present invention include Al, Fe, Ni, Cu, Cl, Ca, K, and Be. Each of these inevitable impurities is preferably 0.02% or less, more preferably 0.01% or less.

また、本発明のマグネシウム合金は、金属組織、耐酸化性、耐腐食性、電気的特性等、種々の特性を改善するための改質元素を添加してもよい。つまり、本発明のマグネシウム合金に対して、公知の改質元素の添加を妨げるものではない。改質元素としては、たとえば、Sr、Y、Zr等が挙げられる。これら各元素の含有量は、マグネシウム合金に要求される特性によって適宜調整される。コストや基本組成への影響等の観点から、改質元素は含有総量で1%以下、0.8%以下さらには0.6%以下程度が好ましい。   In addition, the magnesium alloy of the present invention may contain modifying elements for improving various characteristics such as metal structure, oxidation resistance, corrosion resistance, and electrical characteristics. That is, it does not prevent the addition of a known modifying element to the magnesium alloy of the present invention. Examples of the modifying element include Sr, Y, Zr, and the like. The content of each of these elements is appropriately adjusted according to the characteristics required for the magnesium alloy. From the viewpoint of cost, influence on the basic composition, etc., the total content of the modifying element is preferably 1% or less, 0.8% or less, more preferably about 0.6% or less.

本発明のマグネシウム合金は、高熱伝導性であって、延性および耐クリープ性を両立する。具体的に規定するのであれば、本発明のマグネシウム合金の熱伝導率は、100W/mK以上さらには120W/mK以上であるとよい。延性は、伸びが5.5%以上、6.0%以上さらには6.5%以上であるとよい。なお、熱伝導率の測定にはレーザフラッシュ法、伸びの測定にはJISに規定の引張試験、を行うとよい。また、耐クリープ性は、後述の方法により算出される応力保持率が55%以上さらには60%以上であるとよい。   The magnesium alloy of the present invention has high thermal conductivity, and achieves both ductility and creep resistance. If specifically defined, the thermal conductivity of the magnesium alloy of the present invention is preferably 100 W / mK or more, more preferably 120 W / mK or more. As for the ductility, the elongation is preferably 5.5% or more, 6.0% or more, and more preferably 6.5% or more. In addition, it is good to perform the laser flash method for the measurement of thermal conductivity and the tensile test prescribed in JIS for the measurement of elongation. The creep resistance is preferably 55% or more, more preferably 60% or more, with a stress retention calculated by a method described later.

マグネシウム合金は、上述した組成を有するものであれば、溶製材でも焼結材でもよい。溶製または焼結中のマグネシウム合金の酸化を防止するために、酸化防止雰囲気さらには真空雰囲気で鋳造または焼結されてもよい。また、マグネシウム合金を鋳造する場合、その冷却速度に特に限定はなく、たとえば、大気中で徐冷するとよい。また、砂型、金型のいずれを使用して鋳造を行ってもよい。   The magnesium alloy may be a melted material or a sintered material as long as it has the above-described composition. In order to prevent oxidation of the magnesium alloy during melting or sintering, the magnesium alloy may be cast or sintered in an antioxidant atmosphere or a vacuum atmosphere. Moreover, when casting a magnesium alloy, there is no limitation in particular in the cooling rate, For example, it is good to anneal slowly in air | atmosphere. Moreover, you may cast using either a sand mold or a metal mold | die.

本発明のマグネシウム合金は、熱伝導性が高く、延性および耐クリープ性に優れることから、高温下で使用される部材に好適である。具体的には、自動車エンジン用シリンダブロック、ベッドプレート、オイルパン、コンプレッサ用ハウジング、シリンダ等が挙げられる。なお、本発明のマグネシウム合金を使用する温度領域に特に限定はなく、0〜200℃程度であれば、その特性を良好に発揮する。また、高温下とは、80〜200℃さらには100〜200℃程度を想定している。   The magnesium alloy of the present invention has high thermal conductivity and is excellent in ductility and creep resistance. Therefore, the magnesium alloy is suitable for members used at high temperatures. Specific examples include a cylinder block for an automobile engine, a bed plate, an oil pan, a compressor housing, a cylinder, and the like. In addition, there is no limitation in particular in the temperature range which uses the magnesium alloy of this invention, If it is about 0-200 degreeC, the characteristic will be exhibited favorably. Moreover, under high temperature, 80-200 degreeC and also about 100-200 degreeC are assumed.

以上、本発明の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。   As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment. The present invention can be implemented in various forms without departing from the gist of the present invention, with modifications and improvements that can be made by those skilled in the art.

実施例を挙げて本発明をより具体的に説明する。   The present invention will be described more specifically with reference to examples.

マグネシウム合金中の合金元素の含有量を変更した試験片を複数製作し、それらの特性の評価および金属組織の観察を行った。   A plurality of test pieces having different alloy element contents in the magnesium alloy were manufactured, their characteristics were evaluated, and the metal structure was observed.

〔試験片#01〜#08、#11、#12、#21および#22の作製〕
電気炉中で予熱した鉄製るつぼの内面に塩化物系のフラックスを塗布し、その中に秤量した純マグネシウム地金、純Siおよび純Mn、必要に応じて純Znを投入して750℃で溶解した。この溶湯を十分に攪拌し、原料を完全に溶解させた後、700℃でしばらく沈静保持した。こうして得た各種の合金溶湯を所定の形状の鉄製鋳型に流し込み、大気中で空冷して凝固させて、各試験片(マグネシウム合金鋳物)を鋳造した。なお、得られた試験片は、20mm×30mm×200mmであった。
[Production of test pieces # 01 to # 08, # 11, # 12, # 21 and # 22]
Apply a chloride flux to the inner surface of an iron crucible preheated in an electric furnace, and weigh in pure magnesium ingot, pure Si and pure Mn, and if necessary, add pure Zn and melt at 750 ° C did. The molten metal was sufficiently stirred to completely dissolve the raw material, and then kept calm at 700 ° C. for a while. The various alloy melts thus obtained were poured into iron molds of a predetermined shape, air-cooled in the atmosphere and solidified, and each test piece (magnesium alloy casting) was cast. In addition, the obtained test piece was 20 mm x 30 mm x 200 mm.

各試験片の化学組成を表1に示した。表1の「分析組成」は、蛍光X線(XRF)分析による元素分析により測定した。   The chemical composition of each test piece is shown in Table 1. “Analytical composition” in Table 1 was measured by elemental analysis by X-ray fluorescence (XRF) analysis.

〔熱伝導率の測定〕
上記の手順で作製した各試験片に加え、市販のAZ91Dから作製した同様の試験片について、レーザフラッシュ法により熱伝導率を求めた。試験結果を表1および図1に示した。
(Measurement of thermal conductivity)
In addition to each test piece produced by the above procedure, thermal conductivity was determined by a laser flash method for the same test piece produced from commercially available AZ91D. The test results are shown in Table 1 and FIG.

〔応力緩和試験〕
表1に示した各試験片について、応力緩和試験を行い、マグネシウム合金の耐クリープ性を調べた。応力緩和試験は、試験片に試験時間中、所定の変形量まで荷重を加えたときの応力が、時間とともに減少する過程を測定した。具体的には、150℃の大気雰囲気中において、試験片に100MPaの圧縮応力を負荷し、そのときの試験片の変位が一定に保たれるように、時間の経過に併せてその圧縮応力を低下させていった。試験開始から40時間後の圧縮応力の値を、初期の値に対する割合(応力保持率)として表1および図2に示した。
[Stress relaxation test]
About each test piece shown in Table 1, the stress relaxation test was done and the creep resistance of the magnesium alloy was investigated. In the stress relaxation test, a process in which the stress when a load was applied to a test piece up to a predetermined deformation amount during the test time decreased with time was measured. Specifically, in an air atmosphere at 150 ° C., a compressive stress of 100 MPa is applied to the test piece, and the compressive stress is adjusted with the passage of time so that the displacement of the test piece is kept constant. It was lowered. The compressive stress values after 40 hours from the start of the test are shown in Table 1 and FIG.

〔引張り試験〕
表1に示した各試験片からJISZ2201の14号引張試験片を作製し、JISZ2241の引張試験を室温にて行い、引張強さ、伸び、0.2%耐力およびヤング率を求めた。結果を表1に示した。また、Zn含有量に対する引張強さを図3に、伸びを図4に、0.2%耐力を図5に、それぞれ示した。
[Tensile test]
A No. 14 tensile test piece of JISZ2201 was prepared from each test piece shown in Table 1, and a tensile test of JISZ2241 was performed at room temperature to determine tensile strength, elongation, 0.2% proof stress and Young's modulus. The results are shown in Table 1. Further, FIG. 3 shows the tensile strength with respect to the Zn content, FIG. 4 shows the elongation, and FIG. 5 shows the 0.2% proof stress.

〔ビッカース硬さ測定〕
表1に示した各試験片について、ビッカース硬さ測定を行った。ビッカース硬さ測定は、試験片中央部の断面に対して、ビッカース硬さ計を用いて測定荷重10kgfで室温にて行った。測定結果を表1および図6に示した。
[Vickers hardness measurement]
Each test piece shown in Table 1 was measured for Vickers hardness. The Vickers hardness measurement was performed at room temperature with a measurement load of 10 kgf using a Vickers hardness tester on the cross section of the central part of the test piece. The measurement results are shown in Table 1 and FIG.

なお、各試験片を熱処理してから、上記と同様の引張試験および硬さ測定を行った。熱処理は、200℃1〜8時間の人工時効処理(T5処理)のみとした。結果を表1に示した。 In addition, after heat-treating each test piece, the same tensile test and hardness measurement as described above were performed. The heat treatment was only an artificial aging treatment (T5 treatment) at 200 ° C. for 1 to 8 hours. The results are shown in Table 1.

また、図1〜図6のグラフに示したAZ91Dの熱伝導率等は、比較のための参考値であって、Zn量に依存する値ではない。   Moreover, the thermal conductivity and the like of AZ91D shown in the graphs of FIGS. 1 to 6 are reference values for comparison, and are not values depending on the amount of Zn.

〔金属組織の観察〕
表1に示した試験片のうち、Zn含有量の異なる#01〜#08、#21および#22の金属組織を観察した。各試験片から切り出された断面からEPMA(エレクトロンプローブマイクロアナライザ)の反射電子像(組成像)を得た。また、同じ表面を、EPMAにより面分析した。観察結果を図7〜図20に示した。
[Observation of metal structure]
Among the test pieces shown in Table 1, metal structures of # 01 to # 08, # 21 and # 22 having different Zn contents were observed. A reflected electron image (composition image) of EPMA (electron probe microanalyzer) was obtained from the cross section cut out from each test piece. The same surface was analyzed by EPMA. The observation results are shown in FIGS.

〔鋳放し材の測定結果について〕
熱伝導性は、いずれの試験片もAZ91Dよりも優れた(図1)。しかし、Zn含有量が増加するにしたがい熱伝導率は徐々に低下し、図示していないが、Zn含有量が12%になるとAZ91Dに近づく。つまり、熱伝導性の観点からは、Znの含有量は、少ないほうが好ましいと言える。また、同程度の量のZnを含む場合には、Si量の差は熱伝導率の値に影響しないことがわかった。
[Measurement results of as-cast material]
All the test pieces were superior to AZ91D in thermal conductivity (FIG. 1). However, as the Zn content increases, the thermal conductivity gradually decreases and is not shown, but approaches AZ91D when the Zn content reaches 12%. That is, from the viewpoint of thermal conductivity, it can be said that the smaller the Zn content, the better. It was also found that the difference in the amount of Si did not affect the value of thermal conductivity when the same amount of Zn was included.

応力保持率は、Zn含有量が多いほど高くなる傾向にあった(図2)。特に、Zn含有量が1.4%以下の#01および#02では、40時間後の応力が初期の応力の半分程度であった。耐クリープ性の観点からは、Zn含有量が1.5%以上必要であることがわかった。なお、60%以上の応力保持率を安定しているためには、Zn含有量を1.8〜3.2%さらには1.9〜3.1%とするのが好ましいことがわかった。また、同程度の量のZnを含む場合には、Si量の差は耐クリープ性に影響しないことがわかった。   The stress retention rate tended to increase as the Zn content increased (FIG. 2). In particular, in # 01 and # 02 having a Zn content of 1.4% or less, the stress after 40 hours was about half of the initial stress. From the viewpoint of creep resistance, it was found that the Zn content is required to be 1.5% or more. In addition, in order to stabilize the stress retention of 60% or more, it was found that the Zn content is preferably 1.8 to 3.2%, more preferably 1.9 to 3.1%. It was also found that the difference in Si amount did not affect the creep resistance when the same amount of Zn was included.

引張強さおよび伸びは、Si含有量が3%を越えると極端に低下することがわかった。しかし、Si含有量を適切な量とすることで、引張強さおよび伸びは、Zn含有量が3%付近で最も優れ、Zn含有量が過少でも過多でも低下する傾向があった(図3および図4)。Zn量が4.6%の#07の伸びは、延性に乏しいAZ91Dと同等であった。さらに、Zn量が6.0%である#08は、引張強さも伸びも大きく低下した。Zn含有量を2.8〜3.2%さらには2.9〜3.1%とすることで、高い延性を示すことがわかった。   It was found that the tensile strength and elongation are extremely lowered when the Si content exceeds 3%. However, by setting the Si content to an appropriate amount, the tensile strength and the elongation were most excellent when the Zn content was around 3%, and there was a tendency to decrease when the Zn content was too low or too high (FIG. 3 and FIG. 3). FIG. 4). The elongation of # 07 with a Zn content of 4.6% was equivalent to AZ91D with poor ductility. Furthermore, # 08 with Zn content of 6.0% greatly decreased both the tensile strength and the elongation. It was found that high ductility was exhibited by setting the Zn content to 2.8 to 3.2%, and further 2.9 to 3.1%.

図7および図8は、耐クリープ性が不十分である#01のEPMA反射電子像(組成像)および面分析結果である。図7および図8より、α−Mg結晶粒の粒界にMgSiが晶出していることがわかった。この構造は、図2のグラフから、耐クリープ性の向上には寄与しないことがわかった。また、#01はZnを含まないため十分に固溶強化されず、引張強さの値は低かった(図3)。#02のようにZnを少量添加しても、固溶強化による引張強さの向上は見られたものの、図9および図10には#01に見られた連続的な網目構造は観察されなかったため、耐クリープ性はさらに悪化したと推測される。#02よりもZn量が多い#03〜06では、網目構造が細かく分断されて粒状のMgSiが均一に分散している様子が観察された(図9〜図15)。細かいMgSiが均一に分散した#03〜06は、耐クリープ性および延性を両立し、引張強さも高かった。さらにZn量が多い#07および#08では、網目構造が分断されて分散している様子が観察されたが、大きな塊状であった(図16および図18)。EPMAより、これらの塊は、MgSiおよびMgZnであることがわかった(図17)。#21および#22は、Zn含有量およびMn含有量は同じであるが、Si含有量が異なる。Si含有量の少ない#21では、粗大なMgSi粒の形成が抑制され、耐クリープ性も延性も良好であったと考えられる。一方、過剰にSiを含む#22は、粗大なMgSiが形成され、延性が極端に低下したと考えられる。 FIG. 7 and FIG. 8 show the EPMA backscattered electron image (composition image) and surface analysis results of # 01 with insufficient creep resistance. 7 and 8, it was found that Mg 2 Si was crystallized at the grain boundaries of the α-Mg crystal grains. From the graph of FIG. 2, it was found that this structure does not contribute to the improvement of creep resistance. Moreover, # 01 did not contain Zn, so it was not sufficiently solid solution strengthened, and the tensile strength value was low (FIG. 3). Even when a small amount of Zn was added as in # 02, the tensile strength was improved by solid solution strengthening, but the continuous network structure observed in # 01 was not observed in FIGS. Therefore, it is estimated that the creep resistance was further deteriorated. In # 03 to 06, where the amount of Zn was larger than # 02, it was observed that the network structure was finely divided and the particulate Mg 2 Si was uniformly dispersed (FIGS. 9 to 15). # 03 to 06, in which fine Mg 2 Si was uniformly dispersed, had both creep resistance and ductility and high tensile strength. Further, in # 07 and # 08 having a large amount of Zn, it was observed that the network structure was divided and dispersed, but it was a large lump (FIGS. 16 and 18). EPMA revealed that these lumps were Mg 2 Si and MgZn 2 (FIG. 17). # 21 and # 22 have the same Zn content and Mn content, but different Si contents. In # 21 having a small Si content, it is considered that the formation of coarse Mg 2 Si particles was suppressed, and the creep resistance and ductility were good. On the other hand, # 22 containing excessive Si is considered that coarse Mg 2 Si was formed and the ductility was extremely lowered.

また、いずれの試験片も、AZ91Dに近い耐力と硬さを示した。   Moreover, any test piece showed the yield strength and hardness close | similar to AZ91D.

組成によっては、T5の熱処理をすることで、機械的強度が向上することがわかった。特に#06は、T5熱処理の影響が顕著に表れ、熱処理後の引張強さおよび硬さが向上することがわかった。   It was found that depending on the composition, the mechanical strength is improved by heat treatment of T5. In particular, in # 06, the influence of the T5 heat treatment appeared remarkably, and it was found that the tensile strength and hardness after the heat treatment were improved.

Claims (5)

全体を100質量%としたときに(以下単に「%」という。)、
1.5%以上4.3%以下の亜鉛(Zn)と、
0.3%以上2%以下の珪素(Si)と、
0.1%以上0.5%以下のマンガン(Mn)と、
残部がマグネシウム(Mg)と不可避不純物からなることを特徴とする高熱伝導性マグネシウム合金。
When the total is 100% by mass (hereinafter simply referred to as “%”),
1.5% to 4.3% zinc (Zn);
0.3% or more and 2% or less of silicon (Si);
0.1% to 0.5% manganese (Mn);
High thermal conductivity magnesium alloy, characterized in that the balance of magnesium and (Mg) and inevitable impurities.
Znを3.6%以下含む請求項1に記載の高熱伝導性マグネシウム合金。   The high thermal conductivity magnesium alloy according to claim 1, comprising 3.6% or less of Zn. Znを1.8%以上含む請求項1または2に記載の高熱伝導性マグネシウム合金。   The highly heat-conductive magnesium alloy according to claim 1 or 2, which contains 1.8% or more of Zn. Znを3.2%以下含む請求項1〜3のいずれかに記載の高熱伝導性マグネシウム合金。   The high thermal conductivity magnesium alloy according to any one of claims 1 to 3, which contains 3.2% or less of Zn. Znを2.5%以上含む請求項1〜4のいずれかに記載の高熱伝導性マグネシウム合金。   The high thermal conductivity magnesium alloy according to any one of claims 1 to 4, comprising 2.5% or more of Zn.
JP2011062771A 2011-03-22 2011-03-22 High thermal conductivity magnesium alloy Expired - Fee Related JP5590413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011062771A JP5590413B2 (en) 2011-03-22 2011-03-22 High thermal conductivity magnesium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011062771A JP5590413B2 (en) 2011-03-22 2011-03-22 High thermal conductivity magnesium alloy

Publications (2)

Publication Number Publication Date
JP2012197490A JP2012197490A (en) 2012-10-18
JP5590413B2 true JP5590413B2 (en) 2014-09-17

Family

ID=47180003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011062771A Expired - Fee Related JP5590413B2 (en) 2011-03-22 2011-03-22 High thermal conductivity magnesium alloy

Country Status (1)

Country Link
JP (1) JP5590413B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2583482A (en) 2019-04-29 2020-11-04 Univ Brunel A casting magnesium alloy for providing improved thermal conductivity
US20230054126A1 (en) 2020-02-07 2023-02-23 MG Port Inc. Magnesium alloy and production method thereof
CN115896573B (en) * 2022-12-23 2023-09-01 深圳市鑫申新材料科技有限公司 High-strength high-heat-conductivity die-casting magnesium alloy and preparation method and application thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05255794A (en) * 1992-01-14 1993-10-05 Ube Ind Ltd Heat resistant magnesium alloy
JPH08120390A (en) * 1994-10-26 1996-05-14 Mitsui Mining & Smelting Co Ltd Magnesium-silicon alloy tip and method for forming same alloy
AU2000276884B2 (en) * 2000-09-26 2005-09-29 Kwang Seon Shin High strength magnesium alloy and its preparation method
JP3879038B2 (en) * 2001-12-25 2007-02-07 財団法人新産業創造研究機構 Surface treatment method of Mg alloy product and Mg alloy product formed with high corrosion resistance coating
JP2004124152A (en) * 2002-10-01 2004-04-22 Sumitomo Denko Steel Wire Kk Rolled wire rod of magnesium based alloy, and its production method
JP4757692B2 (en) * 2005-10-21 2011-08-24 新日本製鐵株式会社 Thermal spray material excellent in explosion-proof property during spraying and corrosion resistance of sprayed part, and thermal spraying method using the same
JP2010242146A (en) * 2009-04-03 2010-10-28 Toyota Central R&D Labs Inc Magnesium alloy and magnesium alloy member

Also Published As

Publication number Publication date
JP2012197490A (en) 2012-10-18

Similar Documents

Publication Publication Date Title
JP5703881B2 (en) High strength magnesium alloy and method for producing the same
JP5327515B2 (en) Magnesium alloys for casting and magnesium alloy castings
JP5146767B2 (en) Magnesium alloy for casting and method for producing magnesium alloy casting
KR101258470B1 (en) High-Strength High-Ductility Ignition-Proof Magnesium Alloy
US20100119405A1 (en) Magnesium alloy for casting and magnesium-alloy cast product
JP6569531B2 (en) Magnesium alloy and manufacturing method thereof
JP6432344B2 (en) Magnesium alloy and manufacturing method thereof
JP2006291327A (en) Heat-resistant magnesium alloy casting
JP6594663B2 (en) Heat-resistant magnesium casting alloy and its manufacturing method
JP2004162090A (en) Heat resistant magnesium alloy
JP5590413B2 (en) High thermal conductivity magnesium alloy
JP6596236B2 (en) Heat-resistant magnesium alloy and method for producing the same
JP2005187896A (en) Heat resistant magnesium alloy casting
US20100209285A1 (en) Magnesium alloy for casting and magnesium-alloy cast product
JP2005240129A (en) Heat resistant magnesium alloy casting
JPWO2008120497A1 (en) Heat resistant magnesium alloy
JP5419061B2 (en) Magnesium alloy
JP2005187895A (en) Heat resistant magnesium alloy casting
JP2010047777A (en) Mg-BASED ALLOY
JP2011219820A (en) Heat resisting magnesium alloy
JP4065977B2 (en) Aluminum alloy for casting with excellent high temperature strength
JP2005240130A (en) Heat resistant magnesium alloy casting
JP2022147009A (en) Heat-resistant aluminum alloy and heat-resistant aluminum alloy member
JP2005187894A (en) Heat resistant magnesium alloy casting
JP2012197486A (en) Magnesium alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140716

R151 Written notification of patent or utility model registration

Ref document number: 5590413

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees