JP2010047777A - Mg-BASED ALLOY - Google Patents

Mg-BASED ALLOY Download PDF

Info

Publication number
JP2010047777A
JP2010047777A JP2007124879A JP2007124879A JP2010047777A JP 2010047777 A JP2010047777 A JP 2010047777A JP 2007124879 A JP2007124879 A JP 2007124879A JP 2007124879 A JP2007124879 A JP 2007124879A JP 2010047777 A JP2010047777 A JP 2010047777A
Authority
JP
Japan
Prior art keywords
alloy
strength
aging
amount
based alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007124879A
Other languages
Japanese (ja)
Inventor
Chamini Mendis
チャミニ メンディス
Keiichiro Oishi
敬一郎 大石
Kazuhiro Takano
和博 宝野
Yoshiaki Kawamura
善明 川村
Shigeharu Kamatsuchi
重晴 鎌土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2007124879A priority Critical patent/JP2010047777A/en
Priority to KR1020097022266A priority patent/KR101561147B1/en
Priority to PCT/JP2008/058677 priority patent/WO2008140062A1/en
Priority to JP2009514158A priority patent/JP5404391B2/en
Priority to EP08752560.6A priority patent/EP2157201B1/en
Priority to US12/451,356 priority patent/US20100202916A1/en
Publication of JP2010047777A publication Critical patent/JP2010047777A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/04Alloys based on magnesium with zinc or cadmium as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Extrusion Of Metal (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Heat Treatment Of Steel (AREA)
  • Contacts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an Mg base alloy having not only a practically sufficient strength but good ductility at room temperature to an extent that it has hitherto been unable to be desired and having small anisotropy in strength characteristics. <P>SOLUTION: The Mg base alloy contains Ag in an amount of not more than 1.98 at.% as an additive material other than Zn. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、Alに変わる軽量材としてその実現が望まれてMgを主材とするMg基合金に関する。   The present invention relates to a Mg-based alloy containing Mg as a main material, which is desired to be realized as a lightweight material replacing Al.

このMg基合金については、従来より、下記特許文献1〜8に示された各種のものが開発されてきた。
特許文献2、3、4、6、8においては、強度改善を図るため、希土類元素やスカンジウム、リチウムが添加されている。しかし、これら希土類元素は、地球上では得にくい希少元素であるので合金の価格が高くなり、汎用性が低くなる。
特許文献1ではCaを0.3〜3質量%含有し、同時にAl、Sr、Mnを含有した5元系の合金である。このようなものは、Mgの結晶粒界に析出(晶出)物が形成され、特許文献2では、Zrを0.3%以上1.0%以下、Caを含む場合には0.2%以上2.0%以下含むMg合金である。(%は質量%)
特許文献8の合金はZnを3〜8重量%、Caを0.8〜5重量%含む鋳造材として開発されたMg合金が示されている。
As for this Mg-based alloy, conventionally, various alloys shown in Patent Documents 1 to 8 below have been developed.
In Patent Documents 2, 3, 4, 6, and 8, rare earth elements, scandium, and lithium are added to improve the strength. However, since these rare earth elements are rare elements that are difficult to obtain on the earth, the price of the alloy increases, and the versatility decreases.
Patent Document 1 is a ternary alloy containing 0.3 to 3% by mass of Ca and simultaneously containing Al, Sr, and Mn. In such a case, a precipitate (crystallized product) is formed at the grain boundary of Mg, and in Patent Document 2, Zr is 0.3% or more and 1.0% or less, and 0.2% when Ca is contained. Mg alloy containing 2.0% or less. (% Is mass%)
The alloy of Patent Document 8 is an Mg alloy developed as a casting material containing 3 to 8 wt% Zn and 0.8 to 5 wt% Ca.

本発明の実験の過程で、Caの含有量が過剰であることが原因で、粒界析出物が形成され、室温での延性が低くなることが判明し、このことから前記特許文献の1、2、8の何れにおいても室温での延性が乏しくなるものである。   In the course of the experiment of the present invention, it was found that due to the excessive Ca content, grain boundary precipitates were formed, resulting in low ductility at room temperature. In both cases 2 and 8, the ductility at room temperature becomes poor.

特許文献7の合金は鋳造材として開発された合金であり、具体的にはCaがゼロまたは0.5重量%で、Znが1重量%〜7重量%、ゼロの組み合わせにおいて、Caがゼロ又は0.5重量%でZnがゼロの時は75MPa未満、Znが1重量%〜7重量%の場合は75MPa〜100MPa未満の0.2%耐力を有するとしていることから、構造材料として使用するには不十分な強度であることを示している。また、延性については、本発明者等が本発明の実験において得た上記知見からすれば、Caを高濃度含有するものは、低いものであると推察する他はない。   The alloy of Patent Document 7 is an alloy developed as a cast material. Specifically, in a combination of zero or 0.5% by weight of Ca and 1% to 7% by weight of Zn and zero, When it is 0.5 wt% and Zn is zero, it has a 0.2% proof stress of less than 75 MPa, and when Zn is 1 to 7 wt%, it has a 0.2% proof stress of 75 MPa to less than 100 MPa. Indicates insufficient strength. In addition, regarding the ductility, there is no other way than to infer that those containing a high concentration of Ca are low based on the above findings obtained by the present inventors in the experiment of the present invention.

特許文献5でMnとZnを添加物の主体とするMg基合金が示されており、高強度を得るために溶体化処理が示されているが、2段時効の付加的な熱処理を必要とするなどの、工程が複雑化する問題を有しているものである。
文献8において、Cuを10重量%以下添加した合金を開発しているが、Cuの添加はMg合金の耐食性を著しく低下させる欠点がある。
Patent Document 5 shows an Mg-based alloy mainly composed of Mn and Zn, and shows solution treatment in order to obtain high strength, but requires an additional heat treatment with two-stage aging. This has a problem that the process is complicated.
In Reference 8, an alloy to which Cu is added in an amount of 10% by weight or less is developed. However, the addition of Cu has a drawback that the corrosion resistance of the Mg alloy is remarkably lowered.

以上要するに、現在、Mg合金が利用される部材の大部分は、鋳造、ダイカスト法で製造されている。将来、自動車、航空機などの輸送機器へのMg合金の応用が期待されるが、鋳造法では材料の組織が粗大になり延性が低くなる、サイズに制限があり板材、棒材、パイプ材等に適用できないという欠点がある。一方、展伸用実用Mg合金にはMg‐Al‐Zn(AZ系合金)、あるいはMg‐Zn‐Zr(ZK系合金)があるが、それらの展伸用Mg合金の強度は不十分であり、しかも熱間加工時に形成される集合組織の影響により強度設計に使用する耐力が、引張荷重が負荷される場合と圧縮荷重が負荷される場合で大きく異なる(市販のAZ31合金圧延材では圧縮耐力は引張耐力の約50%)ため、そのまま使用することは困難である。これまでに、Mg合金の高強度化を図るため、希土類元素の添加および多量の合金元素の添加する方法がとられてきた。
しかし、希土類元素は高価であることから汎用性は低く、さらに多量合金元素の添加は粗大な化合物相の形成をともない、高強度は得られるが延性が損なわれるという欠点がある。そこで、希土類元素フリーで、安価な合金元素添加による強度と延性に優れた新しい展伸用Mg合金の開発が求められている。
In short, most of the members using Mg alloys are currently manufactured by casting and die casting. In the future, it is expected that Mg alloys will be applied to transportation equipment such as automobiles and airplanes. However, the casting method makes the material structure coarse and lowers the ductility. There is a disadvantage that it cannot be applied. On the other hand, there are Mg-Al-Zn (AZ alloy) or Mg-Zn-Zr (ZK alloy) as practical Mg alloys for extension, but the strength of these extension Mg alloys is insufficient. In addition, the yield strength used for the strength design is greatly different between the case where a tensile load is applied and the case where a compressive load is applied due to the influence of the texture formed during hot working (compressive strength in a commercially available AZ31 alloy rolled material). Is about 50% of the tensile strength), so it is difficult to use as it is. In the past, in order to increase the strength of Mg alloys, methods of adding rare earth elements and adding a large amount of alloy elements have been employed.
However, since rare earth elements are expensive, their versatility is low, and the addition of a large amount of alloy elements is accompanied by the formation of a coarse compound phase, and there is a disadvantage that high strength is obtained but ductility is impaired. Accordingly, development of a new wrought Mg alloy that is free of rare earth elements and is excellent in strength and ductility by addition of an inexpensive alloy element is required.

特開2007−70688JP2007-70688A 特開2006−28548JP 2006-28548 A 特開2006−16658JP 2006-16658 A 特開2005−113235JP 2005-113235 A 特表2004−510057Special table 2004-510057 特開2003−226929JP2003-226929A 特開2002−212662JP 2002-212661 A 特開平6−25791JP-A-6-25791

本発明は、このような実情に鑑み、実用上十分な強度のみならず、室温での延性が従来には望むことが出来ないほど良好で、かつ強度特性の異方性が小さいMg基合金を提供することを目的とする。   In view of such circumstances, the present invention provides an Mg-based alloy that has not only a sufficient strength for practical use but also a ductility at room temperature that is so good that it cannot be desired in the past and has low strength property anisotropy. The purpose is to provide.

発明1のMg基合金は、Zn以外の添加材として、Agが1.98at%以下含有されていることを特徴とする。   The Mg-based alloy of the invention 1 is characterized in that Ag is contained in an amount of 1.98 at% or less as an additive other than Zn.

発明2は、発明1に記載のMg基合金において、Zn、Ag以外の添加材として、さらにCaが0.61at%以下含有されていることを特徴とする。   Invention 2 is characterized in that, in the Mg-based alloy described in Invention 1, Ca is further contained in an amount of 0.61 at% or less as an additive other than Zn and Ag.

発明3は、発明2に記載のMg基合金において、Zn、Ag及びCa以外の添加材として、さらにZrが0.17at%以下含有されていることを特徴とする。   Invention 3 is characterized in that, in the Mg-based alloy described in Invention 2, Zr is further contained in an amount of 0.17 at% or less as an additive other than Zn, Ag and Ca.

発明4は、発明1から3の何れかに記載のMg基合金において、その結晶粒径が0.1μm〜10μmであることを特徴とする。   Invention 4 is characterized in that the crystal grain size of the Mg-based alloy according to any one of Inventions 1 to 3 is 0.1 μm to 10 μm.

発明1から4により、安価な合金元素のみを添加することにより、強度と延性に双方が従来には望むことができない程に優れ、かつ強度の異方性が少ないMg基合金を提供できるようになった。
さらにCu等の耐食性を損なう合金元素を使用していないので、優れた耐久性をも期待できるものである。
According to Inventions 1 to 4, by adding only an inexpensive alloy element, it is possible to provide an Mg-based alloy that is superior in strength and ductility to the extent that both cannot be desired in the past and has low strength anisotropy. became.
Furthermore, since an alloy element such as Cu that impairs corrosion resistance is not used, excellent durability can be expected.

本発明合金は、荷重負荷方向に対する底面すべり方向の平均シュミット因子が0.2以上であり、実用Mg合金である既存のAZ91合金(Mg−9質量%Al−1質量%Zn合金)押出し材と比較しても、シュミット因子の一様な分布を有する。つまり、本発明合金は押出し方向に平行な底面の集積度が弱いことを特徴とする。   The alloy of the present invention has an average Schmid factor in the bottom slip direction with respect to the load direction of 0.2 or more, and an existing AZ91 alloy (Mg-9 mass% Al-1 mass% Zn alloy) extruded material which is a practical Mg alloy Even in comparison, it has a uniform distribution of Schmid factors. That is, the alloy of the present invention is characterized in that the degree of integration of the bottom surface parallel to the extrusion direction is weak.

本発明合金は、圧縮耐力が引張耐力の75%以上であり、強度の異方性が少ない優れた機械的性質を有する。 The alloy of the present invention has excellent mechanical properties such that the compressive strength is 75% or more of the tensile strength and the strength anisotropy is small.

下記実施例より、本願発明では、希土類元素フリーで比較的入手しやすい元素であるAg、Ca、Zrを微量添加することにより時効硬化性が向上することがわかる。また、その合金を熱間押出するだけでも微細析出物が分散した微細結晶粒組織が形成され、強度だけでなく延性にも優れ、従来合金より強度の異方性も少ないMg基合金であることがわかる。
また、実施例及び技術的な常識からすれば下記の範囲で上記効果を発揮することが予測できる。
From the following examples, it can be seen that in the present invention, age hardening is improved by adding a small amount of Ag, Ca, Zr, which are rare earth element-free and relatively easily available elements. In addition, it is a Mg-based alloy that forms a fine grain structure in which fine precipitates are dispersed just by hot extrusion of the alloy, has excellent strength as well as ductility, and has less strength anisotropy than conventional alloys. I understand.
Further, from the examples and technical common sense, it can be predicted that the above-described effects are exhibited in the following range.

Znについて:Mg中へのZnの最大固溶量は2.4at%である。
0.75at%以上の組成範囲であれば時効硬化が行われるが、Mg−Zn系合金の強化相として作用する棒状のβ′析出物を分散させ高強度化を図るには、Zn含有量はできるだけ多くする必要があり、1.52at%以上が好ましい。
この棒状のβ′析出物をさらに大量に且つ微細に分散させるには、1.92at%以上とするのが好ましい。
Regarding Zn: The maximum solid solution amount of Zn in Mg is 2.4 at%.
If the composition range is 0.75 at% or more, age hardening is performed. To disperse the rod-shaped β ′ precipitates acting as the strengthening phase of the Mg—Zn alloy and increase the strength, the Zn content is It is necessary to increase it as much as possible, and 1.52 at% or more is preferable.
In order to disperse the rod-like β ′ precipitates in a larger amount and finer, it is preferably 1.92 at% or more.

Agについて:Mg中へのAgの溶解度は大きく、その最大固溶量は3.82at%である。
鋳造後の溶体化熱処理を400℃で行う場合には、Ag含有量が1.98at%を超えると粗大な析出物が形成され、機械的性質を劣化させる恐れがある。
0.2at%を超えると添加量を増加しても時効硬化性はあまり変化しないから、構成元素であるZn或いはCaやZrとの化合物相形成を阻止するためには、できるだけ含有量を抑える意味で上限を0.2at%とするのが好ましい。
また、0.08at%以上であると、析出物の核形成を促す働きをするので、下限値を0.08at%以上とするのが好ましい。
About Ag: The solubility of Ag in Mg is large, and the maximum solid solution amount is 3.82 at%.
When the solution heat treatment after casting is performed at 400 ° C., if the Ag content exceeds 1.98 at%, coarse precipitates may be formed and the mechanical properties may be deteriorated.
If it exceeds 0.2 at%, the age hardening does not change much even if the addition amount is increased. Therefore, in order to prevent the compound phase formation with the constituent elements Zn, Ca and Zr, the content should be suppressed as much as possible. And the upper limit is preferably 0.2 at%.
Moreover, since it works to promote the nucleation of precipitates when it is 0.08 at% or more, the lower limit is preferably 0.08 at% or more.

Caについて:MgへのCaの最大固溶量は0.82at%である。
鋳造後溶体化熱処理を400℃で行う場合には、Ca含有量が0.61at%を超えると、粗大な粒界析出物が形成され、機械的性質を損なう。
それ故に、上限を0.61at%以下とした。
また、実施例1の図2、3に示すように、Caの添加量を2倍にしても時効硬化特性には変化は認められない。それ故、構成元素であるZn或いはAgやZrとの化合物相形成を阻止するためには、できるだけ含有量を抑える意味で上限を0.2at%とするのが好ましい。
また、0.08at%以上であると、析出物の核形成を促す働きをするので、下限値を0.08at%以上とするのが好ましい。
About Ca: The maximum solid solution amount of Ca in Mg is 0.82 at%.
When the solution heat treatment after casting is performed at 400 ° C., if the Ca content exceeds 0.61 at%, coarse grain boundary precipitates are formed and the mechanical properties are impaired.
Therefore, the upper limit was made 0.61 at% or less.
As shown in FIGS. 2 and 3 of Example 1, no change is observed in the age-hardening characteristics even when the addition amount of Ca is doubled. Therefore, in order to prevent the formation of a compound phase with the constituent elements Zn, Ag, and Zr, the upper limit is preferably set to 0.2 at% in order to suppress the content as much as possible.
Moreover, since it works to promote the nucleation of precipitates when it is 0.08 at% or more, the lower limit is preferably 0.08 at% or more.

Zrについて:MgへのZrの最大固溶量は1.04at%である。
しかし、0.17at%を超えると650℃付近に包晶反応が存在しており、粗大な析出物が形成されるから0.17at%以下とした。
0.08at%以上であると、微細な析出物、あるいはZr原子自身により、溶体化および熱間押出における結晶粒粗大化抑制効果が期待されることから、下限を0.08at%以上とするのが好ましい。
About Zr: The maximum solid solution amount of Zr in Mg is 1.04 at%.
However, if it exceeds 0.17 at%, a peritectic reaction is present at around 650 ° C., and a coarse precipitate is formed, so that it is set to 0.17 at% or less.
If it is 0.08 at% or more, fine precipitates or Zr atoms themselves are expected to suppress the grain coarsening in solution and hot extrusion, so the lower limit is made 0.08 at% or more. Is preferred.

以上のような各元素の具体的な添加量は、以下の実施例の結果に基づき、微細結晶粒組織の平均粒径を出来るだけ小さくし、結晶粒の配向性を弱めるように配分されることとなる。   Based on the results of the following examples, the specific amount of each element as described above should be distributed so that the average grain size of the fine grain structure is as small as possible and the orientation of the grain is weakened. It becomes.

表1に示す合金組成になるように各元素を配合し、アルゴン雰囲気下で鉄製のるつぼを用いて高周波溶解炉で溶製した。
Each element was blended so as to have the alloy composition shown in Table 1, and melted in a high-frequency melting furnace using an iron crucible under an argon atmosphere.

パイレックス管にアルゴンガスとともに封入した後、340oCで48h均質化熱処理を行った。
試料を切断し、パイレックス管にアルゴンガスとともに封入した後、400oCで1h溶体化し、氷水中に焼入れした。
オイル浴を使って160、200oCの温度で時効した。
時効による硬度はビッカース硬度計により荷重1kg、保持時間15秒の条件で測定した。
透過型電子顕微鏡(TEM)を用いて組織観察を実行した。
実験手順の詳細を図1に示す。
After encapsulating the Pyrex tube with argon gas, homogenization heat treatment was performed at 340 ° C. for 48 hours.
The sample was cut, sealed in a Pyrex tube with argon gas, then melted at 400 ° C. for 1 h, and quenched in ice water.
Aged at 160 and 200 ° C using an oil bath.
The hardness by aging was measured with a Vickers hardness tester under the conditions of a load of 1 kg and a holding time of 15 seconds.
Tissue observation was performed using a transmission electron microscope (TEM).
Details of the experimental procedure are shown in FIG.

図2,3は160、200oC時効における硬度変化を示している。
これらの図から160oC時効では100h前後に、200oC時効では10h前後に最高硬度に達する。
時効硬化性はMg−2.3Zn合金にAg、Ag+Ca、Ag+Ca+Zrと添加することにより良好になる。
Mg−2.3Zn合金にAg+Ca+Zr添加をした合金の最高硬度がもっとも高く100Hvにまで達している。
Ag+Ca添加合金において、それぞれの元素添加量を0.2at%に増やした合金の時効硬度を調べている。
しかし、添加量を増やしても時効特性の明らかな違いは認められない。
2 and 3 show the hardness change at 160 and 200 ° C aging.
From these figures, the maximum hardness is reached around 100 h at 160 ° C aging and around 10 h at 200 ° C aging.
Age hardening is improved by adding Ag, Ag + Ca, Ag + Ca + Zr to the Mg-2.3Zn alloy.
The highest hardness of the alloy obtained by adding Ag + Ca + Zr to the Mg-2.3Zn alloy is as high as 100 Hv.
In the Ag + Ca-added alloy, the aging hardness of the alloy in which each element addition amount is increased to 0.2 at% is examined.
However, no obvious difference in aging characteristics is observed even when the amount added is increased.

図4から9にそれぞれの合金の160oC時効におけるピーク時効段階のTEM組織を示している。
いずれの時効組織において、Mgのc軸方向に伸びた棒状の析出物が観察される。
Mg−2.3Zn合金にAg、Ag+Ca、Ag+Ca+Zrと添加することでその析出物は微細になっている。
この析出物の微細化がピーク時効硬さの上昇に起因していると考えられる。
結論として、Ag+Ca+Zrを複合添加した合金において、良好な時効硬化性が得られる。
図4、5、6、8に示したそれぞれの合金について、切片法(ASTM standard E112)により結晶粒径を測定した。平均結晶粒径は図4に示すMg−2.3Zn2元系合金で約100μm、図5に示すMg−2.3Zn−0.1Ag合金で約50μm、図6に示すMg−2.3Zn−0.1Ag−0.1Ca合金で約50μm、図8に示すMg−2.3Zn−0.1Ag−0.1Ca−0.17Zr合金で約10μmであった。
FIGS. 4 to 9 show the TEM structures at the peak aging stage in 160 ° C. aging of the respective alloys.
In any aging structure, a rod-like precipitate extending in the c-axis direction of Mg is observed.
By adding Ag, Ag + Ca, Ag + Ca + Zr to the Mg-2.3Zn alloy, the precipitates become fine.
This refinement of the precipitate is considered to be caused by an increase in peak age hardness.
In conclusion, good age-hardening properties can be obtained in an alloy to which Ag + Ca + Zr is added in combination.
For each of the alloys shown in FIGS. 4, 5, 6, and 8, the crystal grain size was measured by the intercept method (ASTM standard E112). The average crystal grain size is about 100 μm for the Mg-2.3Zn binary alloy shown in FIG. 4, about 50 μm for the Mg-2.3Zn-0.1Ag alloy shown in FIG. 5, and Mg-2.3Zn-0 shown in FIG. 0.1 Ag-0.1Ca alloy was about 50 μm, and Mg-2.3Zn-0.1Ag-0.1Ca-0.17Zr alloy shown in FIG.

実験手順の詳細を図10に示す。
表1の合金組成になるように合金元素を配合し、CO+SF混合ガス雰囲気下で溶解し、鋳造した。
その後、Arガスを流しながら350oCで48h均質化熱処理を施した。
その後、300、350oCで熱間押出しした。
熱間押出の条件は押出比20、ラム速度0.1mm/sであった。
押出し後の材料を400oCで0.5から4hの溶体化処理を施し、160,200oCの温度で時効処理を行った。
その時効した試料について、ビッカース硬度測定、およびTEMによる組織観察を行った。
Details of the experimental procedure are shown in FIG.
Alloy elements were blended so as to have the alloy composition shown in Table 1, and were melted and cast in a CO 2 + SF 6 mixed gas atmosphere.
Thereafter, homogenization heat treatment was performed at 350 ° C. for 48 hours while flowing Ar gas.
Thereafter, hot extrusion was performed at 300 and 350 ° C.
The conditions for hot extrusion were an extrusion ratio of 20 and a ram speed of 0.1 mm / s.
The extruded material was subjected to a solution treatment at 400 ° C. for 0.5 to 4 h, and an aging treatment was performed at temperatures of 160 and 200 ° C.
About the aged sample, the Vickers hardness measurement and the structure | tissue observation by TEM were performed.

図11、12は160,200oCにおけるMg−2.3%Zn−0.1%Ag−0.1%Ca合金の時効曲線を示している。
鋳造後、溶体化処理した材料と熱間押出後溶体化処理した材料の比較を行ったところ、最高硬度および時効硬化特性はほぼ同じである。
11 and 12 show the aging curves of Mg-2.3% Zn-0.1% Ag-0.1% Ca alloy at 160, 200 ° C.
When a comparison was made between the solution-treated material after casting and the material that was solution-treated after hot extrusion, the maximum hardness and age-hardening characteristics were almost the same.

図13,14は160、200oCにおけるMg−2.3%Zn−0.1%Ag−0.1%Ca−0.17%Zr合金の時効曲線を示している。
鋳造後、溶体化処理した材料と熱間押出後溶体化処理した材料の比較を行ったところ、最高硬度および時効硬化特性に明らかな違いはない。
FIGS. 13 and 14 show the aging curves of Mg-2.3% Zn-0.1% Ag-0.1% Ca-0.17% Zr alloy at 160 and 200 ° C.
A comparison between the solution-treated material after casting and the material that was solution-treated after hot extrusion revealed no obvious differences in maximum hardness and age-hardening properties.

図15,16は350oCで熱間押出したMg−2.3%Zn−0.1%Ag−0.1%Ca−0.17%Zr合金のTEM組織である。
図15より結晶粒径約500nmの微細粒組織であることがわかる。
図16よりその結晶粒内にはMgのc軸に沿った微細な棒状析出物が観察される。
時効硬化性に優れるMg−2.3%Zn−0.1%Ag−0.1%Ca合金およびMg−2.3%Zn−0.1%Ag−0.1%Ca−0.17%Zr合金について室温引張試験および室温圧縮試験を押出し方向に平行に実行した。
引張試験片はJIS14B試験片、標点間距離20mmであった。
圧縮試験片は直径9.5mm、高さ14.3mmであった。
引張試験および圧縮試験は初期ひずみ速度10−3−1の条件下で行った。
15 and 16 are TEM structures of Mg-2.3% Zn-0.1% Ag-0.1% Ca-0.17% Zr alloy hot extruded at 350 ° C.
It can be seen from FIG. 15 that the fine grain structure has a crystal grain size of about 500 nm.
From FIG. 16, fine rod-like precipitates along the c-axis of Mg are observed in the crystal grains.
Mg-2.3% Zn-0.1% Ag-0.1% Ca alloy and Mg-2.3% Zn-0.1% Ag-0.1% Ca-0.17% which are excellent in age hardening A room temperature tensile test and a room temperature compression test were performed on the Zr alloy parallel to the extrusion direction.
The tensile test piece was a JIS 14B test piece and the distance between the gauge points was 20 mm.
The compression test piece had a diameter of 9.5 mm and a height of 14.3 mm.
The tensile test and the compression test were performed under conditions of an initial strain rate of 10 −3 s −1 .

図17(その基になった測定データを表2に示す)に引張荷重負荷方向、すなわち押出し方向に対する底面すべり方向のシュミット因子の分布を示す。本発明合金のシュミット因子の分布は、押出し方向に平行な底面の集積度が弱いため、既存のAZ91合金(Mg−9質量%Al−1質量%Zn合金)押出し材と比較すると一様に分布し、その平均値は0.20以上となる。
FIG. 17 (measurement data on which the data is based is shown in Table 2) shows the Schmid factor distribution in the direction of tensile load, that is, in the bottom slip direction relative to the extrusion direction. The Schmid factor distribution of the alloy of the present invention is uniformly distributed as compared with the existing AZ91 alloy (Mg-9 mass% Al-1 mass% Zn alloy) extruded material because the degree of accumulation of the bottom surface parallel to the extrusion direction is weak. The average value is 0.20 or more.

図18(その基になった測定データを表3〜11に示す)350oCで押出したMg−2.3%Zn−0.1%Ag−0.1%Ca−0.17%Zr合金の室温引張試験および圧縮試験で得られた応力‐ひずみ曲線を示す。
(初期ひずみ速度:10−3−1。引張試験片形状:JIS14B (標点間距離20mm)、圧縮試験片形状:直径9.5mm、高さ14.3mm)









表12は300,350oCで押出したMg−2.3%Zn−0.1%Ag−0.1%Ca、Mg−2.3%Zn−0.1%Ag−0.1%Ca−0.17%Zr合金の引張試験および圧縮試験の結果をまとめたものである。
表12から0.2%引張耐力290MPa、最大引張強度350MPa、破断伸び17%であることがわかる。また0.2%圧縮耐力は245MPaで、引張耐力に対する比率は84%である。
FIG. 18 (measurement data based thereon is shown in Tables 3 to 11) Room temperature of Mg-2.3% Zn-0.1% Ag-0.1% Ca-0.17% Zr alloy extruded at 350 ° C. The stress-strain curve obtained by the tension test and the compression test is shown.
(Initial strain rate: 10 −3 s −1 . Tensile test piece shape: JIS14B (distance between gauge points 20 mm), compression test piece shape: diameter 9.5 mm, height 14.3 mm)









Table 12 shows Mg-2.3% Zn-0.1% Ag-0.1% Ca and Mg-2.3% Zn-0.1% Ag-0.1% Ca-0 extruded at 300,350 ° C. This is a summary of the tensile test and compression test results for a 17% Zr alloy.
It can be seen from Table 12 that the 0.2% tensile strength is 290 MPa, the maximum tensile strength is 350 MPa, and the breaking elongation is 17%. The 0.2% compressive yield strength is 245 MPa, and the ratio to the tensile yield strength is 84%.

これらの結果より、熱間押出したMg−2.3%Zn−0.1%Ag−0.1%Ca、Mg−2.3%Zn−0.1%Ag−0.1%Ca−0.17%Zr合金は高強度・高延性を兼ね備え、かつ耐力の異方性も少ない材料であることがわかる。
この高強度・高延性で、強度の異方性が少ない優れた機械的性質の発現は、微細結晶粒、底面集合組織の集積度の低下およびその粒内における微細析出物が関係していると考えられる。
From these results, hot extruded Mg-2.3% Zn-0.1% Ag-0.1% Ca, Mg-2.3% Zn-0.1% Ag-0.1% Ca-0. It can be seen that the .17% Zr alloy is a material having both high strength and high ductility and low anisotropy in yield strength.
The expression of excellent mechanical properties with high strength and high ductility and low strength anisotropy is related to the decrease in the degree of accumulation of fine crystal grains, bottom texture, and fine precipitates in the grains. Conceivable.

本発明の材料は、高強度でなおかつ高延性を有しており、Al部材との代替えにより軽量化が期待される輸送機器、例えば自動車、バイク、飛行機などに使用されうる。さらに、本発明材料の機械的性質は、熱間加工後付加的な熱処理を必要としなくても得られることから、現在使用されている展伸用Mg合金に変わる部材としても期待される。また、350oCの熱間押出後の試料において、平均結晶粒径が約500nmの超微細粒組織を呈していることから、超塑性材料として応用される可能性がある。 The material of the present invention has high strength and high ductility, and can be used for transportation equipment such as automobiles, motorcycles, airplanes, and the like that are expected to be reduced in weight by replacement with Al members. Furthermore, since the mechanical properties of the material of the present invention can be obtained without the need for additional heat treatment after hot working, it is also expected as a member that replaces the currently used Mg alloy for extension. Further, since the sample after hot extrusion at 350 ° C. exhibits an ultrafine grain structure with an average crystal grain size of about 500 nm, it may be applied as a superplastic material.

実施例1の実験手順を示すフローFlow showing experimental procedure of Example 1 実施例1の各合金の160oCでの時効硬化曲線を示すグラフThe graph which shows the age hardening curve in 160 degreeC of each alloy of Example 1. 実施例1の各合金の200oCでの時効硬化曲線を示すグラフThe graph which shows the age hardening curve in 200 degreeC of each alloy of Example 1. 実施例1のMg−2.3%Zn合金の160oCで時効したピーク時効段階のTEM組織写真TEM micrograph of the peak aging stage of the Mg-2.3% Zn alloy of Example 1 aged at 160 ° C. 実施例1のMg−2.3%Zn−0.1%Ag合金の160oCで時効したピーク時効段階のTEM組織写真TEM micrograph of the peak aging stage of the Mg-2.3% Zn-0.1% Ag alloy of Example 1 aged at 160 ° C. 実施例1のMg−2.3%Zn−0.1%Ag−0.1%Ca合金の160oCで時効したピーク時効段階のTEM組織写真TEM micrograph of the peak aging stage of the Mg-2.3% Zn-0.1% Ag-0.1% Ca alloy of Example 1 aged at 160 ° C. 実施例1のg−2.3%Zn−0.1%Ag−0.1%Ca合金の160oCで時効したピーク時効段階のTEM組織。図6の高倍率TEM写真TEM structure of the peak aging stage of the g-2.3% Zn-0.1% Ag-0.1% Ca alloy of Example 1 aged at 160 ° C. High-magnification TEM photograph of Fig. 6 実施例1のMg−2.3%Zn−0.1%Ag−0.1%Ca−0.17%Zr合金の160oCで時効したピーク時効段階のTEM組織写真TEM micrograph of the peak aging stage of the Mg-2.3% Zn-0.1% Ag-0.1% Ca-0.17% Zr alloy of Example 1 aged at 160 ° C. 実施例1のMg−2.3%Zn−0.1%Ag−0.1%Ca−0.17%Zr合金の160oCで時効したピーク時効段階のTEM組織。図8の高倍率TEM写真The TEM structure of the peak aging stage aged at 160 ° C. of the Mg-2.3% Zn-0.1% Ag-0.1% Ca-0.17% Zr alloy of Example 1. High-magnification TEM photograph of Fig. 8 実施例2の実験手順を示すフローFlow showing experimental procedure of Example 2 実施例2のMg−2.3%Zn−0.1%Ag−0.1%Ca合金の160oCにおける時効曲線であって、鋳造後、溶体化処理した材料と熱間押出し後、溶体化処理を1hした材料との比較を示すグラフ。It is an aging curve in 160 degreeC of the Mg-2.3% Zn-0.1% Ag-0.1% Ca alloy of Example 2, Comprising: It heat-extruses with the material which carried out solution treatment after casting, and solution treatment. The graph which shows the comparison with the material which carried out 1h. 実施例2のMg−2.3%Zn−0.1%Ag−0.1%Ca合金の200oCにおける時効曲線であって、鋳造後、溶体化処理した材料と熱間押出し後、溶体化処理を0.5、1hした材料との比較を示すグラフ。FIG. 2 is an aging curve at 200 ° C. of the Mg-2.3% Zn-0.1% Ag-0.1% Ca alloy of Example 2 after hot extrusion with a solution-treated material after casting and solution treatment. The graph which shows the comparison with the material which carried out 0.51 for 1 hour. 実施例2のMg−2.3%Zn−0.1%Ag−0.1%Ca−0.17%Zr合金の160oCにおける時効曲線であって、鋳造後、溶体化処理した材料と熱間押出し後、溶体化処理を1hした材料との比較を示すグラフ。It is an aging curve in 160 degreeC of the Mg-2.3% Zn-0.1% Ag-0.1% Ca-0.17% Zr alloy of Example 2, Comprising: It is hot with the material which carried out solution treatment after casting. The graph which shows the comparison with the material which carried out solution treatment for 1 h after extrusion. 実施例2のMg−2.3%Zn−0.1%Ag−0.1%Ca−0.17%Zr合金の200oCにおける時効曲線であって、鋳造後、溶体化処理した材料と熱間押出し後、溶体化処理を1、4hした材料との比較を示すグラフ。FIG. 2 is an aging curve at 200 ° C. of the Mg-2.3% Zn-0.1% Ag-0.1% Ca-0.17% Zr alloy of Example 2, which is hot between the material that has undergone solution treatment after casting. The graph which shows the comparison with the material which carried out solution treatment for 1 and 4 hours after extrusion. 実施例2のMg−2.3%Zn−0.1%Ag−0.1%Ca−0.17%Zr合金の350oCで押出し加工したTEM組織写真。The TEM structure | tissue photograph extruded at 350 degrees C of the Mg-2.3% Zn-0.1% Ag-0.1% Ca-0.17% Zr alloy of Example 2. FIG. 図15の高倍率写真15 high magnification photo 実施例2のMg−2.3%Zn−0.1%Ag−0.1%Ca合金およびMg−2.3%Zn−0.1%Ag−0.1%Ca−0.17%Zr合金を300℃および350oCで押出し加工した試料の引張荷重負荷方向に対する底面すべり方向のシュミット因子の分布であって、既存AZ91合金の400℃押出し材よりその分布が一様で、底面集合組織の集積度が小さいことを示すグラフ。Mg-2.3% Zn-0.1% Ag-0.1% Ca alloy and Mg-2.3% Zn-0.1% Ag-0.1% Ca-0.17% Zr of Example 2 The distribution of the Schmid factor in the bottom slip direction relative to the tensile load direction of the sample extruded at 300 ° C. and 350 ° C. is more uniform than the 400 ° C. extruded material of the existing AZ91 alloy, and the accumulation of the bottom texture A graph showing that the degree is small. 実施例2のMg−2.3%Zn−0.1%Ag−0.1%Ca−0.17%Zr合金の350oC押出し材の室温引張試験および圧縮試験で得られた応力‐ひずみ曲線を示すグラフ。The stress-strain curve obtained by the room temperature tensile test and the compression test of the 350 ° C extruded material of the Mg-2.3% Zn-0.1% Ag-0.1% Ca-0.17% Zr alloy of Example 2 is shown. Graph showing.

Claims (4)

Mgを主材とし、Znを添加材としたMg基合金であって、Zn以外の添加材として、Agが1.98at%以下含有されていることを特徴とするMg基合金。   A Mg-based alloy comprising Mg as a main material and Zn as an additive, wherein Ag is contained in an amount of 1.98 at% or less as an additive other than Zn. 請求項1に記載のMg基合金において、Zn、Ag以外の添加材として、さらにCaが0.61at%以下含有されていることを特徴とするMg基合金。   2. The Mg-based alloy according to claim 1, further comprising 0.61 at% or less of Ca as an additive other than Zn and Ag. 請求項2に記載のMg基合金において、Zn、Ag及びCa以外の添加材として、さらにZrが0.17at%以下含有されていることを特徴とするMg基合金。   The Mg-based alloy according to claim 2, wherein Zr is further contained in an amount of 0.17 at% or less as an additive other than Zn, Ag, and Ca. 請求項1から3の何れかに記載のMg基合金において、その結晶粒径が0.1μm〜10μmであることを特徴とするMg基合金。   4. The Mg-based alloy according to claim 1, wherein the crystal grain size is 0.1 μm to 10 μm. 5.
JP2007124879A 2007-05-09 2007-05-09 Mg-BASED ALLOY Pending JP2010047777A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007124879A JP2010047777A (en) 2007-05-09 2007-05-09 Mg-BASED ALLOY
KR1020097022266A KR101561147B1 (en) 2007-05-09 2008-05-09 Mg-BASED ALLOY
PCT/JP2008/058677 WO2008140062A1 (en) 2007-05-09 2008-05-09 Mg-BASED ALLOY
JP2009514158A JP5404391B2 (en) 2007-05-09 2008-05-09 Mg-based alloy
EP08752560.6A EP2157201B1 (en) 2007-05-09 2008-05-09 Mg-based alloy
US12/451,356 US20100202916A1 (en) 2007-05-09 2008-05-09 Mg BASE ALLOY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007124879A JP2010047777A (en) 2007-05-09 2007-05-09 Mg-BASED ALLOY

Publications (1)

Publication Number Publication Date
JP2010047777A true JP2010047777A (en) 2010-03-04

Family

ID=40002256

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2007124879A Pending JP2010047777A (en) 2007-05-09 2007-05-09 Mg-BASED ALLOY
JP2009514158A Expired - Fee Related JP5404391B2 (en) 2007-05-09 2008-05-09 Mg-based alloy

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2009514158A Expired - Fee Related JP5404391B2 (en) 2007-05-09 2008-05-09 Mg-based alloy

Country Status (5)

Country Link
US (1) US20100202916A1 (en)
EP (1) EP2157201B1 (en)
JP (2) JP2010047777A (en)
KR (1) KR101561147B1 (en)
WO (1) WO2008140062A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101899600B (en) * 2010-08-13 2012-04-25 上海交通大学 Osteopathic magnesium alloy interstitial implant material and preparation method thereof
KR101252784B1 (en) * 2010-11-09 2013-04-11 도쿠리츠교세이호징 붓시쯔 자이료 겐큐키코 Magnesium alloy sheet having high strength and high formability and method for manufacturing the same
KR101303585B1 (en) * 2010-11-23 2013-09-11 포항공과대학교 산학협력단 Magnesium alloy sheet having excellent room temperature formability and method of fabricating the same
US9510932B2 (en) * 2011-10-06 2016-12-06 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Biodegradable metal alloys

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB544351A (en) * 1940-10-04 1942-04-09 Dow Chemical Co Improved magnesium base alloys
GB987515A (en) * 1963-04-03 1965-03-31 Magnesium Elektron Ltd Improvements in or relating to magnesium base alloys
US4765954A (en) * 1985-09-30 1988-08-23 Allied Corporation Rapidly solidified high strength, corrosion resistant magnesium base metal alloys
JP2725112B2 (en) 1992-03-25 1998-03-09 三井金属鉱業株式会社 High strength magnesium alloy
JPH08134581A (en) * 1994-11-14 1996-05-28 Mitsui Mining & Smelting Co Ltd Production of magnesium alloy
JP2001239326A (en) * 2000-02-28 2001-09-04 Mitsui Mining & Smelting Co Ltd Manufacturing method for products made of magnesium material
JP2001300643A (en) * 2000-04-21 2001-10-30 Mitsui Mining & Smelting Co Ltd Manufacturing method of magnesium product
JP3891933B2 (en) 2000-09-26 2007-03-14 クワン セオン シン, High strength magnesium alloy and method for producing the same
JP2002212662A (en) 2001-01-19 2002-07-31 Aisin Takaoka Ltd Magnesium alloy
JP2003226929A (en) 2002-02-01 2003-08-15 Kasatani:Kk Cold press forming method for magnesium alloy
JP4064720B2 (en) * 2002-05-10 2008-03-19 東洋鋼鈑株式会社 Magnesium sheet for extending excellent in formability and manufacturing method thereof
JP2003328064A (en) * 2002-05-10 2003-11-19 Toyo Kohan Co Ltd Wrought magnesium thin-sheet superior in formability, and manufacturing method therefor
WO2004085689A1 (en) * 2003-03-25 2004-10-07 Yoshihito Kawamura Magnesium alloy of high strength and high toughness and method for production thereof
JP2005113235A (en) 2003-10-09 2005-04-28 Toyota Motor Corp High strength magnesium alloy, and its production method
KR101245203B1 (en) * 2003-11-26 2013-03-19 요시히토 카와무라 High strength and high toughness magnesium alloy and method for production thereof
JP4840751B2 (en) 2004-06-30 2011-12-21 独立行政法人物質・材料研究機構 High strength magnesium alloy and method for producing the same
JP4433916B2 (en) 2004-07-13 2010-03-17 株式会社豊田中央研究所 Magnesium alloy and magnesium alloy member for plastic working
JP4803357B2 (en) 2005-09-06 2011-10-26 独立行政法人産業技術総合研究所 Heat-resistant magnesium alloy produced by hot working and method for producing the same
DE102006015457A1 (en) * 2006-03-31 2007-10-04 Biotronik Vi Patent Ag Magnesium alloy and related manufacturing process

Also Published As

Publication number Publication date
JPWO2008140062A1 (en) 2010-08-05
WO2008140062A1 (en) 2008-11-20
JP5404391B2 (en) 2014-01-29
KR101561147B1 (en) 2015-10-16
EP2157201A1 (en) 2010-02-24
EP2157201B1 (en) 2015-11-18
KR20100021563A (en) 2010-02-25
US20100202916A1 (en) 2010-08-12
EP2157201A4 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
Xu et al. Extruded Mg–Zn–Ca–Mn alloys with low yield anisotropy
JP3354098B2 (en) Magnesium alloy with excellent high temperature properties and die castability
JP4189687B2 (en) Magnesium alloy material
JP5327515B2 (en) Magnesium alloys for casting and magnesium alloy castings
JP2013512338A (en) Flame retardant magnesium alloy having excellent mechanical properties and method for producing the same
JP5703881B2 (en) High strength magnesium alloy and method for producing the same
JP2014040672A (en) Magnesium alloy, and manufacturing method thereof
JP6860235B2 (en) Magnesium-based alloy wrought material and its manufacturing method
WO2013115490A1 (en) Magnesium alloy having high ductility and high toughness, and preparation method thereof
WO2008117890A1 (en) Magnesium alloys and process for producing the same
WO2015060459A1 (en) Magnesium alloy and method for producing same
JP2008280565A (en) Magnesium alloy and its manufacturing method
WO2013157653A1 (en) Magnesium alloy and method for producing same
Hou et al. Structure and mechanical properties of extruded Mg–Gd based alloy sheet
Jain et al. Creep and corrosion properties of the extruded magnesium alloy containing rare earth
Kliauga et al. The influence of impurity level and tin addition on the ageing heat treatment of the 356 class alloy
JP5404391B2 (en) Mg-based alloy
Trojanova et al. Tensile and fracture properties of an Mg-RE-Zn alloy at elevated temperatures
JP2004162090A (en) Heat resistant magnesium alloy
JP4433916B2 (en) Magnesium alloy and magnesium alloy member for plastic working
Kubásek et al. Structural characteristics and elevated temperature mechanical properties of AJ62 Mg alloy
JP2004238676A (en) Magnesium alloy
JP2006089772A (en) Magnesium alloy
JP5590413B2 (en) High thermal conductivity magnesium alloy
JP4526769B2 (en) Magnesium alloy