JP2008280565A - Magnesium alloy and its manufacturing method - Google Patents

Magnesium alloy and its manufacturing method Download PDF

Info

Publication number
JP2008280565A
JP2008280565A JP2007124418A JP2007124418A JP2008280565A JP 2008280565 A JP2008280565 A JP 2008280565A JP 2007124418 A JP2007124418 A JP 2007124418A JP 2007124418 A JP2007124418 A JP 2007124418A JP 2008280565 A JP2008280565 A JP 2008280565A
Authority
JP
Japan
Prior art keywords
magnesium alloy
weight
alloy
treatment
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007124418A
Other languages
Japanese (ja)
Inventor
Tomomichi Ozaki
智道 尾崎
Yasunari Kuroki
康徳 黒木
Shigeharu Kamatsuchi
重晴 鎌土
Hirotoshi Hoshikawa
裕聡 星川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Nagaoka University of Technology NUC
Original Assignee
IHI Corp
Nagaoka University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, Nagaoka University of Technology NUC filed Critical IHI Corp
Priority to JP2007124418A priority Critical patent/JP2008280565A/en
Publication of JP2008280565A publication Critical patent/JP2008280565A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnesium alloy having high strength and excellent corrosion resistance and capable of substituting for aluminum alloys and also to provide its manufacturing method. <P>SOLUTION: The magnesium alloy has a composition consisting of, by weight, 5 to 20% gadolinium, 0.1 to 5% of at least one element among zinc, silver and copper and the balance magnesium and further containing, if necessary, <1.5 wt.% zirconium. In this manufacturing method, the above magnesium alloy is subjected to solution heat treatment at 400 to 550°C treatment temperature and then aging heat treatment at 180 to 250°C treatment temperature. If necessary, e.g. for the removal of internal defects, HIP treatment is applied, before the above solution heat treatment, at 400 to 550°C treatment temperature and 0.05 to 1 GPa treatment pressure. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、耐食性に優れた高強度マグネシウム合金およびその製造方法に関するものである。   The present invention relates to a high-strength magnesium alloy having excellent corrosion resistance and a method for producing the same.

マグネシウムは、密度が鉄の4分の1、アルミニウムの3分の2程度と軽量であるため、航空機や自動車などの輸送機器などへ適用した場合には、軽量化により省エネやCO2排出量の削減が期待できる。   Magnesium is lightweight, with a density that is one-fourth that of iron and two-thirds that of aluminum. Therefore, when applied to transportation equipment such as aircraft and automobiles, magnesium saves energy and reduces CO2 emissions. Can be expected.

マグネシウム合金によりアルミニウム合金の代替を想定した場合、強度特性においてマグネシウム合金の比強度(強度と密度の比)が想定しているアルミニウム合金の130%以上となると、部材の形状変更なしに代替でき、なおかつ30%程度の部材を軽量化することができるため、そのようなマグネシウム合金は、実用上非常に有効な材料となる。   When assuming the replacement of the aluminum alloy with the magnesium alloy, if the specific strength of the magnesium alloy (ratio of strength and density) is 130% or more of the assumed aluminum alloy in the strength characteristics, it can be replaced without changing the shape of the member, In addition, since about 30% of the member can be reduced in weight, such a magnesium alloy is a practically very effective material.

すでに実用化されているマグネシウム合金として、Mg−Al−Zn−Mn系合金(AZ91合金:Al9%、Zn:1%、Mn:0.35%)がある。   As a magnesium alloy that has already been put into practical use, there is an Mg—Al—Zn—Mn alloy (AZ91 alloy: Al 9%, Zn: 1%, Mn: 0.35%).

また、特許文献1および特許文献2には、強度特性、耐熱性を改善させたマグネシウム合金として、Mg−Gd−Y系合金が提案されている。   Patent Documents 1 and 2 propose Mg-Gd-Y alloys as magnesium alloys with improved strength characteristics and heat resistance.

また、特許文献3には、耐食性を向上させたマグネシウム合金としてMg−Al−Zn−Y系合金が提案されている。   Patent Document 3 proposes an Mg-Al-Zn-Y alloy as a magnesium alloy with improved corrosion resistance.

特開平6−49579号公報Japanese Patent Laid-Open No. 6-49579 特開平10−147830号公報Japanese Patent Laid-Open No. 10-147830 特表平3−503661号公報Japanese National Patent Publication No. 3-503661

しかしながら、上述したマグネシウム合金には以下のような問題があった。   However, the above magnesium alloy has the following problems.

AZ91合金などのMg−Al−Zn−Mn系合金は、強度特性が低く、耐食性も不十分であるため、低強度アルミニウム合金においても形状変更なしで代替適用することは不可能である。   Since Mg—Al—Zn—Mn alloys such as AZ91 alloy have low strength characteristics and insufficient corrosion resistance, it is impossible to substitute them without changing the shape even in low strength aluminum alloys.

また、特許文献1や特許文献2のMg−Gd−Y系合金は、強度が360MPa程度と高いが、耐食性に関しては記載がなく、未知である。   Moreover, although the intensity | strength of the Mg-Gd-Y type alloy of patent document 1 and patent document 2 is as high as about 360 MPa, there is no description about corrosion resistance, and it is unknown.

また、特許文献3のMg−Al−Zn−Y系合金は、Mg−Al−Zn−Mn系合金よりも耐食性を改善しているものの、強度が280MPa程度と低く、構造部材として形状変更なしにアルミニウム合金を代替することは不可能である。   Moreover, although the Mg-Al-Zn-Y-based alloy of Patent Document 3 has improved corrosion resistance as compared with the Mg-Al-Zn-Mn-based alloy, the strength is as low as about 280 MPa, and there is no change in shape as a structural member. It is impossible to replace aluminum alloys.

そこで、本願発明者らは、強度特性および耐食性を総合的に向上させたマグネシウム合金として、マグネシウム−ガドリニウム合金(Mg−Gd合金)に亜鉛(Zn)、銀(Ag)、銅(Cu)のうち少なくとも1種を複合添加した合金を開発し、その結果、アルミニウム合金を代替し得る強度特性および耐食性を有する合金組成を見出した。   Therefore, the inventors of the present application have made a magnesium-gadolinium alloy (Mg-Gd alloy) zinc (Zn), silver (Ag), and copper (Cu) as a magnesium alloy that has comprehensively improved strength characteristics and corrosion resistance. As a result, an alloy composition having strength properties and corrosion resistance that can replace aluminum alloys has been found.

すなわち、本発明の目的は、上記課題を解決し、アルミニウム合金を代替し得る耐食性に優れた高強度のマグネシウム合金およびその製造方法を提供することにある。   That is, an object of the present invention is to provide a high-strength magnesium alloy with excellent corrosion resistance that can solve the above problems and can replace an aluminum alloy, and a method for producing the same.

上記目的を達成するために請求項1に係る発明は、ガドリニウムを5〜20重量%含有し、亜鉛、銀、銅のうち少なくとも1種を0.1〜5重量%含有し、残部がマグネシウムからなることを特徴とするマグネシウム合金である。   In order to achieve the above object, the invention according to claim 1 contains 5 to 20% by weight of gadolinium, 0.1 to 5% by weight of at least one of zinc, silver and copper, with the balance being magnesium. This is a magnesium alloy characterized in that

請求項2に係る発明は、亜鉛と銀、もしくは亜鉛と銅を合計0.1〜5重量%含有する請求項1記載のマグネシウム合金である。   The invention according to claim 2 is the magnesium alloy according to claim 1 containing zinc and silver or zinc and copper in a total amount of 0.1 to 5% by weight.

請求項3に係る発明は、ジルコニウムを1.5重量%未満含有する請求項1または2記載のマグネシウム合金である。   The invention according to claim 3 is the magnesium alloy according to claim 1 or 2 containing less than 1.5% by weight of zirconium.

請求項4に係る発明は、比強度をA201合金の130%以上にすべく、亜鉛を0.5〜4重量%含有し、ジルコニウムを0.2〜1重量%含有した請求項3記載のマグネシウム合金である。   The invention according to claim 4 contains 0.5 to 4% by weight of zinc and 0.2 to 1% by weight of zirconium so that the specific strength is 130% or more of the A201 alloy. It is an alloy.

請求項5に係る発明は、比強度をAC4C合金の130%以上にすべく、銀を0.1〜5重量%含有し、ジルコニウムを0.2〜1重量%含有した請求項3記載のマグネシウム合金である。   The invention according to claim 5 contains 0.1 to 5% by weight of silver and 0.2 to 1% by weight of zirconium so that the specific strength is 130% or more of the AC4C alloy. It is an alloy.

請求項6に係る発明は、比強度をAC4C合金の130%以上にすべく、銅を0.1〜5重量%含有し、ジルコニウムを0.2〜1重量%含有した請求項3記載のマグネシウム合金である。   The invention according to claim 6 is the magnesium according to claim 3, which contains 0.1 to 5% by weight of copper and 0.2 to 1% by weight of zirconium so that the specific strength is 130% or more of the AC4C alloy. It is an alloy.

請求項7に係る発明は、請求項1から6いずれかに記載のマグネシウム合金に溶体化処理を行い、その後時効熱処理を行うことを特徴とするマグネシウム合金の製造方法である。   A seventh aspect of the present invention is a method for producing a magnesium alloy, comprising subjecting the magnesium alloy according to any one of the first to sixth aspects to a solution treatment, followed by an aging heat treatment.

請求項8に係る発明は、上記溶体化処理の処理温度が400〜550℃であり、上記時効熱処理の処理温度が180〜250℃である請求項7記載のマグネシウム合金の製造方法である。   The invention according to claim 8 is the method for producing a magnesium alloy according to claim 7, wherein the treatment temperature of the solution treatment is 400 to 550 ° C, and the treatment temperature of the aging heat treatment is 180 to 250 ° C.

請求項9に係る発明は、上記溶体化処理の前に、処理温度が400〜550℃かつ処理圧力が0.05〜1GPaのHIP処理(Hot Isostatic Pressing,熱間等方圧加圧法)を施す請求項7または8記載のマグネシウム合金の製造方法である。   In the invention according to claim 9, before the solution treatment, HIP treatment (hot isostatic pressing, hot isostatic pressing method) with a treatment temperature of 400 to 550 ° C. and a treatment pressure of 0.05 to 1 GPa is performed. A method for producing a magnesium alloy according to claim 7 or 8.

請求項10に係る発明は、上記溶体化処理前に、圧延処理を施す請求項7から9いずれかに記載のマグネシウム合金の製造方法である。   The invention according to claim 10 is the method for producing a magnesium alloy according to any one of claims 7 to 9, wherein a rolling treatment is performed before the solution treatment.

本発明によれば、耐食性に優れると共に高強度を有しアルミニウム合金を代替することができるという優れた効果を発揮するものである。   According to the present invention, the excellent effect of being excellent in corrosion resistance and having high strength and being able to replace an aluminum alloy is exhibited.

以下、本発明の好適な一実施形態を詳述する。   Hereinafter, a preferred embodiment of the present invention will be described in detail.

本発明のマグネシウム合金は、ガドリニウムを5〜20重量%含有し、亜鉛、銀、銅のうち少なくとも1種を0.1〜5重量%含有し、残部がマグネシウムと不可避の不純物とからなるものである。   The magnesium alloy of the present invention contains 5 to 20% by weight of gadolinium, 0.1 to 5% by weight of at least one of zinc, silver and copper, and the balance is composed of magnesium and inevitable impurities. is there.

ガドリニウムは、マグネシウムに添加すると、強度特性、耐食性を向上させる効果があるが、添加しすぎると密度が大きくなり軽量性を失い、また金属間化合物が出現し、強度が低下する。   When gadolinium is added to magnesium, it has the effect of improving strength characteristics and corrosion resistance. However, when added too much, the density increases and the lightness is lost, and an intermetallic compound appears and the strength decreases.

そこで、軽量性を保たせたまま優れた耐食性および高強度を発現する範囲として、ガドリニウムの含有量を5〜20重量%とした。   Therefore, the content of gadolinium was set to 5 to 20% by weight as a range in which excellent corrosion resistance and high strength were exhibited while maintaining lightness.

これは、ガドリニウムの含有量が5重量%未満だと、強度特性、耐食性の向上が十分でなく、他方、20重量%を超えると、マグネシウム合金が重くなり、また金属間化合物により強度が低下してしまうためである。   This is because if the gadolinium content is less than 5% by weight, the strength characteristics and corrosion resistance are not sufficiently improved. On the other hand, if it exceeds 20% by weight, the magnesium alloy becomes heavy, and the strength decreases due to the intermetallic compound. It is because it ends up.

また、亜鉛、銀、銅は、ガドリニウムと複合的にマグネシウムに添加すると、原子レベルで周期性を持った特殊な組織が現れ、強度特性をさらに向上させる効果が期待できるが、添加しすぎると結晶粒界に金属間化合物が析出し、強度特性の低下を招く。   In addition, when zinc, silver, and copper are added to magnesium in combination with gadolinium, a special structure with periodicity appears at the atomic level, and the effect of further improving the strength characteristics can be expected. An intermetallic compound precipitates at the grain boundary, causing a decrease in strength characteristics.

そこで、本発明のマグネシウム合金では、亜鉛、銀、銅のうち少なくとも1種を0.1〜5重量%含有するものとした。   Therefore, the magnesium alloy of the present invention contains at least one of zinc, silver, and copper in an amount of 0.1 to 5% by weight.

これは、亜鉛、銀、銅のうち少なくとも1種の含有量が0.1重量%未満の場合、強度特性の向上が十分でなく、他方、5重量%を超える場合、金属間化合物により強度が低下してしまうためである。   This is because when the content of at least one of zinc, silver and copper is less than 0.1% by weight, the strength characteristics are not sufficiently improved, whereas when the content exceeds 5% by weight, the strength is increased by the intermetallic compound. It is because it will fall.

また、本発明のマグネシウム合金は、結晶粒の微細化および強度特性の改善のための組織微細化材として、ジルコニウムを1.5重量%未満含有する。   The magnesium alloy of the present invention contains less than 1.5% by weight of zirconium as a structure refining material for refining crystal grains and improving strength characteristics.

ジルコニウムの含有量を1.5重量%未満としたのは、ジルコニウムの含有量が1.5重量%以上の場合、ジルコニウムと合金元素とからなる化合物が発生し、合金の特性を低下させるためである。   The reason why the zirconium content is less than 1.5% by weight is that when the zirconium content is 1.5% by weight or more, a compound composed of zirconium and an alloy element is generated and the characteristics of the alloy are deteriorated. is there.

上述した添加元素(Gd、Zn、Ag、Cu、Zr)の種類と量を調整することによって、代替したいアルミニウム合金の強度と延性のバランスとマッチした合金の提供が可能である。   By adjusting the types and amounts of the additive elements (Gd, Zn, Ag, Cu, Zr) described above, it is possible to provide an alloy that matches the balance of strength and ductility of the aluminum alloy that is desired to be replaced.

例えば、高強度アルミニウム合金であるA201合金(ASTM規格)を代替するマグネシウム合金としては、比強度をA201合金の130%以上にすべく、亜鉛を0.5〜4重量%含有し、ジルコニウムを0.2〜1重量%含有するものが好ましい。   For example, a magnesium alloy that replaces the A201 alloy (ASTM standard), which is a high-strength aluminum alloy, contains 0.5 to 4% by weight of zinc and 0% of zirconium so that the specific strength is 130% or more of the A201 alloy. Those containing 2 to 1% by weight are preferred.

汎用アルミニウム合金であるAC4C合金(JIS規格)を代替するマグネシウム合金としては、比強度をAC4C合金の130%以上にすべく、銀を0.1〜5重量%含有し、ジルコニウムを0.2〜1重量%含有したもの、或いは銅を0.1〜5重量%含有し、ジルコニウムを0.2〜1重量%含有したものが好ましい。   As a magnesium alloy that replaces the AC4C alloy (JIS standard), which is a general-purpose aluminum alloy, 0.1 to 5% by weight of silver and 0.2 to 0.2% of zirconium are included so that the specific strength is 130% or more of the AC4C alloy. Those containing 1% by weight, or those containing 0.1 to 5% by weight of copper and 0.2 to 1% by weight of zirconium are preferred.

次に、本発明に係るマグネシウム合金の製造方法を説明する。   Next, the manufacturing method of the magnesium alloy which concerns on this invention is demonstrated.

まず、ガドリニウムが5〜20重量%、亜鉛、銀、銅のうち少なくとも1種が0.1〜5重量%、残部がマグネシウムからなるマグネシウム合金材料を溶解し、その溶湯を、鋳型(砂型、石膏型、金型など)に鋳込んでマグネシウム合金を鋳造する。   First, a magnesium alloy material consisting of 5 to 20% by weight of gadolinium, 0.1 to 5% by weight of at least one of zinc, silver and copper and the balance of magnesium is melted, and the molten metal is used as a mold (sand mold, gypsum). Mold, mold, etc.) and cast magnesium alloy.

次に、鋳造されたマグネシウム合金(鋳造品)の溶体化処理を行い、その後、溶体化処理されたマグネシウム合金の時効熱処理を行う。   Next, a solution treatment of the cast magnesium alloy (cast product) is performed, and then an aging heat treatment of the solution-treated magnesium alloy is performed.

具体的には、溶体化処理を400〜550℃の処理温度で2〜24h行った後、時効熱処理を180〜250℃の処理温度で8〜100h行う。なお、溶体化処理および時効熱処理の処理時間は、合金のサイズや形状を考慮して適宜設定される。   Specifically, after the solution treatment is performed at a processing temperature of 400 to 550 ° C. for 2 to 24 hours, the aging heat treatment is performed at a processing temperature of 180 to 250 ° C. for 8 to 100 hours. The treatment time for solution treatment and aging heat treatment is appropriately set in consideration of the size and shape of the alloy.

このように、鋳造後に熱処理(溶体化処理および時効熱処理)を行うことで、合金は、結晶内部に微細な時効析出物が生成された組織となり、引張強さを最高で400MPa程度に向上させることができる。   Thus, by performing heat treatment (solution treatment and aging heat treatment) after casting, the alloy becomes a structure in which fine aging precipitates are generated inside the crystal, and the tensile strength is improved to about 400 MPa at the maximum. Can do.

さらに、溶体化処理前に、圧延処理を施すことで、より高い強度を発現させるようにしてもよい。ここで、圧延処理は、処理温度が300〜520℃の熱間圧延処理が好ましい。   Furthermore, you may make it express higher intensity | strength by performing a rolling process before solution treatment. Here, the rolling treatment is preferably a hot rolling treatment at a treatment temperature of 300 to 520 ° C.

このように圧延処理を施した場合は、粒界に生成した金属間化合物を微細かつ均質に分散させることができるため、引張強さが鋳造品よりもさらに高くなり、450MPa程度の引張強さ特性を発現させることができる。   When the rolling treatment is performed in this way, the intermetallic compound generated at the grain boundary can be finely and uniformly dispersed, so that the tensile strength is higher than that of the cast product, and the tensile strength property of about 450 MPa. Can be expressed.

また、内部欠陥除去のためなど必要に応じて、溶体化処理の前に、鋳造されたマグネシウム合金にHIP処理を施すようにしてもよく、HIP処理は、処理温度を400〜550℃かつ処理圧力を0.05〜1GPaで行うことが好ましい。   Further, if necessary, for example, for removing internal defects, the cast magnesium alloy may be subjected to HIP treatment before the solution treatment. The HIP treatment is performed at a treatment temperature of 400 to 550 ° C. and a treatment pressure. Is preferably carried out at 0.05 to 1 GPa.

以上の本発明によると、強度特性が向上し、マグネシウム合金からなる鋳物が形状変更なしに汎用アルミニウム合金鋳物を代替し得るレベルに到達する。同時に、本発明のマグネシウム合金では、耐食性も向上し、強度と耐食性が両立するマグネシウム合金を実現できる。   According to the present invention described above, strength characteristics are improved, and a casting made of a magnesium alloy reaches a level at which a general-purpose aluminum alloy casting can be replaced without changing its shape. At the same time, the magnesium alloy of the present invention can improve the corrosion resistance, and can realize a magnesium alloy having both strength and corrosion resistance.

また、イットリウムを含まないためフラックス精錬が可能となり、マグネシウム合金の清浄度(純度)を高めることができる。   Moreover, since it does not contain yttrium, flux refining becomes possible, and the cleanliness (purity) of the magnesium alloy can be increased.

なお、本発明は、上述の実施形態に限定されず、様々な変形例や応用例が考えられるものである。   In addition, this invention is not limited to the above-mentioned embodiment, Various modifications and application examples can be considered.

例えば、亜鉛、銀、銅のうちの2種或いは3種を含有するマグネシウム合金が考えられ、具体的には、亜鉛と銀、もしくは亜鉛と銅を合計0.1〜5重量%含有するものが考えられる。   For example, a magnesium alloy containing two or three of zinc, silver, and copper is conceivable. Specifically, one containing zinc and silver or zinc and copper in a total amount of 0.1 to 5% by weight. Conceivable.

また、ガドリニウムを、他のR.E.元素とガドリニウムの複合添加で代替することも考えられ、このときの添加量は、ガドリニウムと他のR.E.元素の総量で5〜20重量%とするのが好ましい。   Also, gadolinium can be used in other R. E. It is also conceivable to substitute with a composite addition of an element and gadolinium. E. The total amount of elements is preferably 5 to 20% by weight.

次に、本発明に係るマグネシウム合金の実施例を説明する。   Next, examples of the magnesium alloy according to the present invention will be described.

Figure 2008280565
Figure 2008280565

表1は、高強度アルミニウム合金(例えば、A201合金)を代替するための合金について、引張強さ(引張強度)と0.2%耐力と破断伸びとの試験を行った結果を示す。   Table 1 shows the results of tests on tensile strength (tensile strength), 0.2% proof stress, and elongation at break for an alloy for replacing a high-strength aluminum alloy (for example, A201 alloy).

表1の実施例1〜4および比較例1は、表1に示す組成でマグネシウム合金を鋳造し、その鋳造品に515℃×8h+520℃×8hの溶体化処理を行った後、225℃×8hの時効熱処理を行ったものである。鋳造の鋳型は、実施例2では砂型を使用し、それ以外の実施例1、3、4および比較例1では金型を使用した。   In Examples 1 to 4 and Comparative Example 1 in Table 1, a magnesium alloy was cast with the composition shown in Table 1, and the cast product was subjected to a solution treatment of 515 ° C. × 8 h + 520 ° C. × 8 h, then 225 ° C. × 8 h. The aging heat treatment was performed. As the casting mold, a sand mold was used in Example 2, and a mold was used in Examples 1, 3, 4 and Comparative Example 1 other than that.

表1に示すように、実施例1〜4の合金は、引張強さが363〜400MPaと良好であり、400MPa程度の引張強さを達成している。また、0.2%耐力についても272〜278MPaと良好で、破断伸びも1〜2.9%と良好であった。   As shown in Table 1, the alloys of Examples 1 to 4 have a good tensile strength of 363 to 400 MPa, and have achieved a tensile strength of about 400 MPa. The 0.2% proof stress was also good at 272 to 278 MPa, and the elongation at break was also good at 1 to 2.9%.

以上から実施例1〜4は、高強度アルミニウム合金を代替するのに十分な強度特性を有していることが確認できた。   From the above, it was confirmed that Examples 1 to 4 have sufficient strength characteristics to replace the high-strength aluminum alloy.

これに対して、比較例1の合金は、亜鉛の含有量が5.0%を超えるため、引張強さが105MPaと低かった。また、0.2%耐力は248MPaと実施例1〜4に比べて低く、破断伸びも5.2%と実施例1〜4に比べ大きかった。   On the other hand, the alloy of Comparative Example 1 had a tensile strength as low as 105 MPa because the zinc content exceeded 5.0%. The 0.2% proof stress was 248 MPa, which was lower than those of Examples 1 to 4, and the elongation at break was 5.2%, which was larger than those of Examples 1 to 4.

Figure 2008280565
Figure 2008280565

表2は、汎用アルミニウム合金(例えば、AC4C合金)を代替するための合金について、引張強さと0.2%耐力と破断伸びとの試験を行った結果を示す。   Table 2 shows the results of tests for tensile strength, 0.2% proof stress, and elongation at break for an alloy for substituting a general-purpose aluminum alloy (for example, AC4C alloy).

表2の実施例5、6および比較例2、3は、表2に示す組成でマグネシウム合金を金型で鋳造し、その鋳造品に430℃×24hの溶体化処理行った後、225℃×8hの時効熱処理を行ったものである。   In Examples 5 and 6 and Comparative Examples 2 and 3 in Table 2, a magnesium alloy having a composition shown in Table 2 was cast with a mold, and the cast product was subjected to a solution treatment of 430 ° C. × 24 h. Aging heat treatment was performed for 8 hours.

表2に示すように、実施例5、6の合金は、引張強さが378〜393MPaと良好であった。また、0.2%耐力についても276〜278MPaと良好で、破断伸びも1.3〜1.8%と良好であった。   As shown in Table 2, the alloys of Examples 5 and 6 had good tensile strength of 378 to 393 MPa. The 0.2% proof stress was also good at 276 to 278 MPa, and the elongation at break was also good at 1.3 to 1.8%.

以上から実施例5、6の合金は、汎用アルミニウム合金を代替するのに十分な強度特性を有していることが確認できた。   From the above, it was confirmed that the alloys of Examples 5 and 6 had sufficient strength characteristics to replace the general-purpose aluminum alloy.

これに対して、比較例2の合金は、0.2%耐力が291MPa、破断伸びが1.3%と良好なものの、銀の含有量が5.0%を超えるため、引張強さが253MPaと低かった。   On the other hand, although the alloy of Comparative Example 2 has a good 0.2% proof stress of 291 MPa and a breaking elongation of 1.3%, since the silver content exceeds 5.0%, the tensile strength is 253 MPa. It was low.

また、比較例3の合金は、0.2%耐力が267MPa、破断伸びが1.0%と良好なものの、銅の含有量が5.0%を超えるため、引張強さが220MPaと低かった。   Further, although the alloy of Comparative Example 3 had a good 0.2% proof stress of 267 MPa and a breaking elongation of 1.0%, the tensile strength was as low as 220 MPa because the copper content exceeded 5.0%. .

このように、亜鉛、銀、銅の量が多い場合(5.0%を超える場合)、合金の強度が低下することが確認された。   Thus, it was confirmed that when the amount of zinc, silver, and copper is large (over 5.0%), the strength of the alloy decreases.

次に、図1に示すように、JIS Z 2371に則った塩水噴霧試験を実施して耐食性の確認を行った。   Next, as shown in FIG. 1, a salt spray test according to JIS Z 2371 was performed to confirm corrosion resistance.

図1のグラフでは、横軸に時間(h)、縦軸に腐食減量(mg/cm3)とした。このグラフにおいて、十字印は高強度アルミニウム合金であるA201−T7合金(ASTM規格)、丸印はAZ91−T6合金(ASTM規格)、四角印は実施例1を各々示す。   In the graph of FIG. 1, the horizontal axis represents time (h), and the vertical axis represents corrosion weight loss (mg / cm 3). In this graph, the cross marks indicate A201-T7 alloy (ASTM standard), which is a high-strength aluminum alloy, the circle marks indicate AZ91-T6 alloy (ASTM standard), and the square marks indicate Example 1.

塩水噴霧試験は、35℃±1℃の50±5g/L NaCl溶液を噴霧し、所定の間隔ごとに平均腐食減量を測定して行った。   The salt spray test was performed by spraying a 50 ± 5 g / L NaCl solution at 35 ° C. ± 1 ° C. and measuring the average corrosion weight loss at predetermined intervals.

図1に示すように、実施例1は、AZ91−T6合金(従来のマグネシウム合金)よりも大幅に耐食性が改善され、A201−T7合金(高強度アルミニウム合金)に迫る耐食性特性を有している。   As shown in FIG. 1, the corrosion resistance of Example 1 is significantly improved compared to the AZ91-T6 alloy (conventional magnesium alloy) and has a corrosion resistance characteristic approaching that of the A201-T7 alloy (high-strength aluminum alloy). .

以上から本発明のマグネシウム合金は、アルミニウム合金と同程度の良好な耐食性を有していることが確認できた。   From the above, it was confirmed that the magnesium alloy of the present invention has good corrosion resistance comparable to that of the aluminum alloy.

次に、図2に示すように、高温引張試験を実施して耐熱性の確認を行った。   Next, as shown in FIG. 2, a high temperature tensile test was performed to confirm heat resistance.

図2は、25〜250℃における降伏応力(Y.S.)、最大引張応力(U.T.S.)および破断伸び(Fracture elongation)を測定した結果を示し、横軸が温度(℃)、左側の縦軸が降伏応力(Pa)と最大引張応力(Pa)、右側の縦軸が破断伸び(%)である。   FIG. 2 shows the results of measurement of yield stress (YS), maximum tensile stress (UT), and fracture elongation at 25 to 250 ° C., and the horizontal axis represents temperature (° C.). The left vertical axis is the yield stress (Pa) and the maximum tensile stress (Pa), and the right vertical axis is the breaking elongation (%).

図2において、丸印は降伏応力、三角印は最大引張応力、四角印は破断伸びであり、白抜きは実施例1を示し、黒塗りは実施例1にHIP処理を施したHIP処理品を示す。   In FIG. 2, circles indicate yield stress, triangles indicate maximum tensile stress, squares indicate elongation at break, white indicates Example 1, and black indicates a HIP-treated product obtained by subjecting Example 1 to HIP treatment. Show.

HIP処理は、溶体化処理前に、505℃×0.1GPaで行った。   The HIP treatment was performed at 505 ° C. × 0.1 GPa before the solution treatment.

図2に示すように、実施例1およびHIP処理品はともに、150℃までは降伏応力および破断伸びについては強度低下がみられず、最大引張応力については200℃前後まで、強度低下がみられなかった。   As shown in FIG. 2, in both Example 1 and the HIP-treated product, no decrease in strength was observed for yield stress and elongation at break up to 150 ° C., and a decrease in strength was observed until about 200 ° C. for maximum tensile stress. There wasn't.

以上から本発明のマグネシウム合金は良好な耐熱性を示すことを確認できた。   From the above, it was confirmed that the magnesium alloy of the present invention showed good heat resistance.

また、25℃では、HIP処理品のほうが実施例1より高い強度特性を有することが確認できた。   Further, at 25 ° C., it was confirmed that the HIP-treated product had higher strength characteristics than those of Example 1.

図1は、本発明に係るマグネシウム合金の塩水噴霧試験による平均腐食減量を説明するためのグラフである。FIG. 1 is a graph for explaining the average corrosion weight loss by a salt spray test of a magnesium alloy according to the present invention. 図2は、本発明に係るマグネシウム合金の高温引張特性を説明するためのグラフである。FIG. 2 is a graph for explaining the high-temperature tensile properties of the magnesium alloy according to the present invention.

Claims (10)

ガドリニウムを5〜20重量%含有し、亜鉛、銀、銅のうち少なくとも1種を0.1〜5重量%含有し、残部がマグネシウムからなることを特徴とするマグネシウム合金。   A magnesium alloy containing 5 to 20% by weight of gadolinium, 0.1 to 5% by weight of at least one of zinc, silver and copper, and the balance being magnesium. 亜鉛と銀、もしくは亜鉛と銅を合計0.1〜5重量%含有する請求項1記載のマグネシウム合金。   The magnesium alloy according to claim 1, containing zinc and silver or zinc and copper in a total amount of 0.1 to 5% by weight. ジルコニウムを1.5重量%未満含有する請求項1または2記載のマグネシウム合金。   The magnesium alloy according to claim 1 or 2, which contains less than 1.5% by weight of zirconium. 比強度をA201合金の130%以上にすべく、亜鉛を0.5〜4重量%含有し、ジルコニウムを0.2〜1重量%含有した請求項3記載のマグネシウム合金。   The magnesium alloy according to claim 3, containing 0.5 to 4% by weight of zinc and 0.2 to 1% by weight of zirconium so that the specific strength is 130% or more of the A201 alloy. 比強度をAC4C合金の130%以上にすべく、銀を0.1〜5重量%含有し、ジルコニウムを0.2〜1重量%含有した請求項3記載のマグネシウム合金。   The magnesium alloy according to claim 3, which contains 0.1 to 5% by weight of silver and 0.2 to 1% by weight of zirconium so that the specific strength is 130% or more of the AC4C alloy. 比強度をAC4C合金の130%以上にすべく、銅を0.1〜5重量%含有し、ジルコニウムを0.2〜1重量%含有した請求項3記載のマグネシウム合金。   The magnesium alloy according to claim 3, containing 0.1 to 5% by weight of copper and 0.2 to 1% by weight of zirconium so that the specific strength is 130% or more of the AC4C alloy. 請求項1から6いずれかに記載のマグネシウム合金に溶体化処理を行い、その後時効熱処理を行うことを特徴とするマグネシウム合金の製造方法。   A method for producing a magnesium alloy, comprising subjecting the magnesium alloy according to any one of claims 1 to 6 to a solution treatment, and thereafter performing an aging heat treatment. 上記溶体化処理の処理温度が400〜550℃であり、上記時効熱処理の処理温度が180〜250℃である請求項7記載のマグネシウム合金の製造方法。   The method for producing a magnesium alloy according to claim 7, wherein a treatment temperature of the solution treatment is 400 to 550 ° C, and a treatment temperature of the aging heat treatment is 180 to 250 ° C. 上記溶体化処理の前に、処理温度が400〜550℃かつ処理圧力が0.05〜1GPaのHIP処理を施す請求項7または8記載のマグネシウム合金の製造方法。   The manufacturing method of the magnesium alloy of Claim 7 or 8 which performs the HIP process of process temperature 400-550 degreeC and process pressure 0.05-1GPa before the said solution treatment. 上記溶体化処理前に、圧延処理を施す請求項7から9いずれかに記載のマグネシウム合金の製造方法。   The manufacturing method of the magnesium alloy in any one of Claim 7 to 9 which performs a rolling process before the said solution treatment.
JP2007124418A 2007-05-09 2007-05-09 Magnesium alloy and its manufacturing method Pending JP2008280565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007124418A JP2008280565A (en) 2007-05-09 2007-05-09 Magnesium alloy and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007124418A JP2008280565A (en) 2007-05-09 2007-05-09 Magnesium alloy and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008280565A true JP2008280565A (en) 2008-11-20

Family

ID=40141635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007124418A Pending JP2008280565A (en) 2007-05-09 2007-05-09 Magnesium alloy and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008280565A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102877014A (en) * 2012-09-13 2013-01-16 燕山大学 Thermal treatment method suitable for magnetism alloy with age-hardening property
CN103774070A (en) * 2014-01-22 2014-05-07 赣南师范学院 Method for preparing Mg-Zn-Al-Cu super-high strength magnesium alloy sheet
CN105483485A (en) * 2015-12-08 2016-04-13 上海交通大学 High-strength cast magnesium alloy containing Zn and heavy rare-earth Gd and preparation method of high-strength cast magnesium alloy
US10266923B2 (en) * 2017-01-16 2019-04-23 Magnesium Elektron Limited Corrodible downhole article
US10329643B2 (en) 2014-07-28 2019-06-25 Magnesium Elektron Limited Corrodible downhole article
CN111286657A (en) * 2020-03-13 2020-06-16 重庆大学 High-strength Mg-Gd-Zn-Zr-Ag magnesium alloy and preparation method thereof
US11167343B2 (en) 2014-02-21 2021-11-09 Terves, Llc Galvanically-active in situ formed particles for controlled rate dissolving tools
US11365164B2 (en) 2014-02-21 2022-06-21 Terves, Llc Fluid activated disintegrating metal system
CN114672711A (en) * 2022-04-15 2022-06-28 重庆大学 Novel low-expansion binary magnesium alloy and preparation method thereof
US11649526B2 (en) 2017-07-27 2023-05-16 Terves, Llc Degradable metal matrix composite

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09324247A (en) * 1996-06-03 1997-12-16 Nippon Koku Uchu Kogyokai Method for heat-treating titanium alloy casting
JP2000109963A (en) * 1998-10-05 2000-04-18 Agency Of Ind Science & Technol Production of high strength flame retardant magnesium alloy
WO2006036033A1 (en) * 2004-09-30 2006-04-06 Yoshihito Kawamura High-strength and high-toughness metal and process for producing the same
JP2006316326A (en) * 2005-05-13 2006-11-24 Gainsmart Group Ltd Ultrahigh-strength anti-weathering steel and manufacturing method therefor
JP2007284782A (en) * 2006-03-20 2007-11-01 Kobe Steel Ltd Magnesium alloy material and method for manufacturing same
JP2008138249A (en) * 2006-11-30 2008-06-19 Kobe Steel Ltd Magnesium alloy material and method for manufacturing the same
JP2008150704A (en) * 2006-11-21 2008-07-03 Kobe Steel Ltd Magnesium alloy material and production thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09324247A (en) * 1996-06-03 1997-12-16 Nippon Koku Uchu Kogyokai Method for heat-treating titanium alloy casting
JP2000109963A (en) * 1998-10-05 2000-04-18 Agency Of Ind Science & Technol Production of high strength flame retardant magnesium alloy
WO2006036033A1 (en) * 2004-09-30 2006-04-06 Yoshihito Kawamura High-strength and high-toughness metal and process for producing the same
JP2006316326A (en) * 2005-05-13 2006-11-24 Gainsmart Group Ltd Ultrahigh-strength anti-weathering steel and manufacturing method therefor
JP2007284782A (en) * 2006-03-20 2007-11-01 Kobe Steel Ltd Magnesium alloy material and method for manufacturing same
JP2008150704A (en) * 2006-11-21 2008-07-03 Kobe Steel Ltd Magnesium alloy material and production thereof
JP2008138249A (en) * 2006-11-30 2008-06-19 Kobe Steel Ltd Magnesium alloy material and method for manufacturing the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6012027470; 山田健太郎、外3名: '"Mg-Gd-Zn系合金における析出組織の形成過程とAg, Cu添加の影響"' 第112回春期大会講演概要集 , 20070411, p.247-248, 社団法人軽金属学会 *
JPN6012027471; 星川裕聡、外3名: '"Mg-Gd-Zr系合金のミクロ組織および機械的性質に及ぼすAgおよびCu添加の影響"' 第112回春期大会講演概要集 , 20070411, p.249-250, 社団法人軽金属学会 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102877014A (en) * 2012-09-13 2013-01-16 燕山大学 Thermal treatment method suitable for magnetism alloy with age-hardening property
CN103774070A (en) * 2014-01-22 2014-05-07 赣南师范学院 Method for preparing Mg-Zn-Al-Cu super-high strength magnesium alloy sheet
US11167343B2 (en) 2014-02-21 2021-11-09 Terves, Llc Galvanically-active in situ formed particles for controlled rate dissolving tools
US11365164B2 (en) 2014-02-21 2022-06-21 Terves, Llc Fluid activated disintegrating metal system
US11613952B2 (en) 2014-02-21 2023-03-28 Terves, Llc Fluid activated disintegrating metal system
US10329643B2 (en) 2014-07-28 2019-06-25 Magnesium Elektron Limited Corrodible downhole article
US10337086B2 (en) 2014-07-28 2019-07-02 Magnesium Elektron Limited Corrodible downhole article
CN105483485A (en) * 2015-12-08 2016-04-13 上海交通大学 High-strength cast magnesium alloy containing Zn and heavy rare-earth Gd and preparation method of high-strength cast magnesium alloy
US10266923B2 (en) * 2017-01-16 2019-04-23 Magnesium Elektron Limited Corrodible downhole article
US11649526B2 (en) 2017-07-27 2023-05-16 Terves, Llc Degradable metal matrix composite
US11898223B2 (en) 2017-07-27 2024-02-13 Terves, Llc Degradable metal matrix composite
CN111286657A (en) * 2020-03-13 2020-06-16 重庆大学 High-strength Mg-Gd-Zn-Zr-Ag magnesium alloy and preparation method thereof
CN114672711A (en) * 2022-04-15 2022-06-28 重庆大学 Novel low-expansion binary magnesium alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2008280565A (en) Magnesium alloy and its manufacturing method
CA2508079C (en) Castable magnesium alloys
KR101258470B1 (en) High-Strength High-Ductility Ignition-Proof Magnesium Alloy
KR101333915B1 (en) Aluminum-zinc-magnesium-scandium alloys and methods of fabricating same
JP5703881B2 (en) High strength magnesium alloy and method for producing the same
JP4189687B2 (en) Magnesium alloy material
EP3219818B1 (en) Magnesium alloy and preparation method and use thereof
JP6569531B2 (en) Magnesium alloy and manufacturing method thereof
JP5305323B2 (en) Zinc alloy for die casting and method for producing die cast member using Zn alloy for die casting
WO2013157653A1 (en) Magnesium alloy and method for producing same
JP2009506215A (en) Cast aluminum alloy
JP2010150624A (en) alpha+beta TYPE TITANIUM ALLOY FOR CASTING, AND GOLF CLUB HEAD USING THE SAME
JP6704276B2 (en) Method for producing cast material using aluminum alloy for casting
EP3085798A1 (en) Copper alloy
CA3130939C (en) Aluminium-based alloy
JP2005240129A (en) Heat resistant magnesium alloy casting
JP2005187896A (en) Heat resistant magnesium alloy casting
JP2016169431A5 (en)
JP2010047777A (en) Mg-BASED ALLOY
KR20190120227A (en) Magnesium alloy excellent in corrosion resistance and its manufacturing method
WO2016136781A1 (en) Heat-resistant magnesium alloy
JP5688744B2 (en) High strength and high toughness copper alloy forging
JP7073068B2 (en) Al-Cu-Mg-based aluminum alloy and Al-Cu-Mg-based aluminum alloy material
KR101797131B1 (en) Magnesium alloy for castin and method for manufacturing the same
KR101787550B1 (en) Magnesium alloy and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121106